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Terrestrial environments have been suggested as an oxic haven
for eukaryotic life and diversification during portions of the Pro-
terozoic Eon when the ocean was dominantly anoxic. However,
iron speciation and Fe/Al data from the ca. 1.1-billion-year-old
Nonesuch Formation, deposited in a large lake and bearing a
diverse assemblage of early eukaryotes, are interpreted to indi-
cate persistently anoxic conditions. To shed light on these distinct
hypotheses, we analyzed two drill cores spanning the trans-
gression into the lake and its subsequent shallowing. While the
proportion of highly reactive to total iron (Feygr/Fer) is consis-
tent through the sediments and typically in the range taken
to be equivocal between anoxic and oxic conditions, magnetic
experiments and petrographic data reveal that iron exists in
three distinct mineral assemblages resulting from an oxycline. In
the deepest waters, reductive dissolution of iron oxides records
an anoxic environment. However, the remainder of the sedi-
mentary succession has iron oxide assemblages indicative of an
oxygenated environment. At intermediate water depths, a mixed-
phase facies with hematite and magnetite indicates low oxygen
conditions. In the shallowest waters of the lake, nearly every iron
oxide has been oxidized to its most oxidized form, hematite. Com-
bining magnetics and textural analyses results in a more nuanced
understanding of ambiguous geochemical signals and indicates
that for much of its temporal duration, and throughout much of
its water column, there was oxygen in the waters of Paleolake
Nonesuch.
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ollowing the origin of eukaryotic life in the Paleoproterozoic

Era (2,500-1,600 Ma), eukaryotic diversity is interpreted to
have remained relatively low in marine environments through-
out the Mesoproterozoic Era (1,600-1,000 Ma) until ca. 800 Ma
during the Neoproterozoic Era (1, 2). A hypothesis to explain
delayed eukaryotic diversification is that marine environments
in a relatively low-oxygen world were prone to the upwelling
of anoxic, and sometimes sulfidic, waters from widespread oxy-
gen minimum zones (refs. 1, 3-5, but see ref. 6). The inhibitory
effect of low-oxygen waters on aerobic eukaryotic life holds true
whether hypoxic conditions were caused by low atmospheric
oxygen—as commonly assumed—or by shallow remineraliza-
tion of sinking organic matter (7). This potential challenge for
eukaryotic life in the marine realm has led to the suggestion that
oxygenated terrestrial environments may have been cradles of
eukaryotic diversification (4, 8).

Microfossils recovered from the Torridonian sequence of
Scotland and the Nonesuch Formation of North America have
been interpreted to indicate that by ca. 1.1 billion years ago
freshwater habitats were colonized by eukaryotes as well as
cyanobacteria (4, 8, 13). Recovered specimens from the None-
such Formation include Valeria lophostriata (4), which is con-
sidered to be diagnostically eukaryotic as the complex wall
morphologies and microstructures could not be generated by
an organism that does not have a cytoskeleton and endomem-
brane system (14). The microfossil record of the Nonesuch
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Formation has been further interpreted to indicate the pres-
ence of more than 50 different species (4). This record is
argued to be more diverse than similar-aged marine assemblages,
which leads to the interpretation that lacustrine environments
with stable oxygenated waters may have been more hospitable
to eukaryotic evolution than marine ones (4). Early oxygena-
tion of lacustrine environments during the Mesoproterozoic
has also been proposed based on large sulfur isotope frac-
tionations from sedimentary rocks of the Stoer and Torridon
groups that were interpreted to have resulted from oxidative
sulfur cycling (15). However, this interpretation is equivocal
given that such fractionation can arise without oxidative cycling
(16, 17).

The chemistry and mineralogy of iron and oxygen in the
environment are tightly interwoven, and iron-based geochem-
ical proxies are among the most mature available for gaining
insight into local redox conditions (18). Iron speciation measure-
ments, combined with total iron to aluminum ratios (Fer/Al),
have been performed on the Nonesuch Formation in the Presque
Isle Syncline and used to infer persistent water-column anoxia
throughout Paleolake Nonesuch (11). This finding was extrapo-
lated to terrestrial environments as a whole in the Mesoprotero-
zoic, thereby challenging the interpretation of such environments
as a potential locus of aerobic Proterozoic eukaryotic evolution
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(11). However, published bulk-rock iron speciation data are
not entirely straightforward to interpret. The strength of the
iron speciation proxy lies in its empirical calibration in modern
marine sediments, allowing for the identification of authigenic
reactive iron enrichments (resulting from anoxic water column
processes) above an oxic baseline (the reactive iron delivered
through detrital processes). There are few baseline data from
lacustrine settings, and the delivery of iron to different lakes can
be highly variable (19). Further, most of the existing iron specia-
tion values from the Nonesuch Formation fall not in the clearly
defined oxic or anoxic fields but in the “possibly anoxic” area
of iron speciation interpretive space (18). Given these ambigui-
ties, new approaches to harness the redox information contained
in the sedimentary iron record will have high utility in lacus-
trine rocks and other sediments where established proxies like
iron speciation are ambiguous. This study pairs rock magnet-
ics, geochemistry, and microscopy to develop a more detailed
picture of assemblages of iron oxides and sulfides in Paleolake
Nonesuch. These data reveal distinct depth-dependent miner-
alogical facies associated with the oxycline of this 1.1-billion-
year-old lake. These facies are also seen within iron speciation
extractions, but are obscured if these geochemical data are inter-
preted solely on the basis of the traditional anoxia proxy of
Feur/Fer (highly reactive iron to total iron) in conjunction
with Fer/Al

Paleolake Nonesuch

Following a prolonged interval of voluminous volcanic activity
within the North American Midcontinent Rift, sedimentation
within a thermally subsiding basin led to the deposition of sed-
imentary rocks of the Oronto Group (20). The Oronto Group
commences with the Copper Harbor Conglomerate, which rep-
resents a terrestrially deposited alluvial fan and fluvial sediments
(21). Locally, on the Keweenaw Peninsula, lava flows of the
Lake Shore Traps erupted within the Copper Harbor Con-
glomerate and an andesitic lava within these flows has a U-Pb
date of 1,085.57 £ 0.25/1.3 Ma (Fig. 1) (10). The Copper Har-
bor Conglomerate fines upward and is conformable with the
overlying shales, siltstones, and sandstones of the Nonesuch For-
mation, which are the focus of this study. These lithologies of the
Nonesuch Formation are interpreted as a lacustrine facies asso-
ciation (e.g., refs. 22 and 23) along a >250-km-long belt in
northern Michigan and Wisconsin (Fig. 1). Similar facies in

drill core as far south as Iowa has led to an interpretation
that Paleolake Nonesuch was >800 km long (24), although
the extent of these lithofacies could be due to multiple lakes
along the rift axis as in the modern East African Rift. Regard-
less, the lake in northern Wisconsin and Michigan was large
and persistent with lacustrine sedimentation continuing until
after the transition into the overlying Freda Formation. The
Freda Formation is a >4-km-thick succession that is domi-
nantly composed of channelized sandstone and overbank silt-
stone deposits representing a prolonged terrestrial fluvial envi-
ronment (25). The Nonesuch Formation has been directly
dated using Re-Os geochronology with a preferred date of
1,078 £24 Ma (11). Paleomagnetic data from the Nonesuch
Formation (26) suggest deposition in the tropics at a latitude
of 3° £ 3°.

Five drill cores from northern Wisconsin were used by ref.
23 to develop a sequence stratigraphic framework for the
Nonesuch Formation. Our work focuses on two of these cores:
DO-8 and WC-9 (Figs. 1 and 2). In this region, the transgression
that marks the flooding surface where alluvial facies of the Cop-
per Harbor Conglomerate transition to the lacustrine facies of
the Nonesuch Formation is followed by an interval of deep water
lacustrine facies dominated by planar laminated siltstone and
very-fine sandstone with intervals of thinly interbedded siltstone
and carbonate (Fig. 2) (23). Following the maximum flooding
of the lake, an aggradational-progradational sequence records
a progressive shallowing sequence (Fig. 2). The Nonesuch For-
mation is transitional with the overlying Freda Formation and
the formation boundary is typically set on the basis of color
(23, 25). As a result, similar lithofacies deposited in a lacustrine
environment are found on either side of the formation bound-
ary, with fluvial channel sandstone present higher in the Freda
stratigraphy (Fig. 2).

That the Nonesuch Formation is conformable with underly-
ing and overlying terrestrial sediments has been interpreted to
imply that it was deposited in a terrestrial lake rather than a
marine setting (e.g., refs. 22 and 27). However, the Nonesuch
facies themselves could be consistent with either a lacustrine
or a protected marine depositional environment. Some workers
have invoked incursion of marine waters into the basin based
on interpretations of the affinity of putative sterane biomarkers
(data from ref. 28; the indigenous origin is called into question
by data from ref. 29 revealing modern contamination) and the
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Fig. 1.

Geologic map and summary stratigraphy of the Nonesuch Formation and other units from within the Midcontinent Rift. The geological data on the

map are from ref. 9 and the stratigraphic column from ref. 10. The Re-Os date for the Nonesuch Formation is shown in italics with 2o uncertainty (11). The
U-Pb dates (10, 12) are shown with 2o uncertainties (X/Y) that include analytical uncertainty alone (X) and include tracer and decay constant uncertainty (Y)
for comparison with the Re-Os date. Cores studied in this work from the Ashland Syncline (DO-8 and WC-9) are shown with red stars.
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Fig. 2. (A and B) Rock magnetic and iron speciation data from the DO-8 (A) and WC-9 (B) cores through the Nonesuch Formation. Lithostratigraphy is
modified from ref. 23 with additional measured section. Core depth is given in feet (1 foot = 0.3048 m) as those units are used for depth in the original
cores. The grain size abbreviations are as follows: C, coarse sandstone; F, fine sandstone; G, granule to cobble conglomerate; M, medium sandstone; Mu,
mud; S, silt; Vf, very fine sandstone. The sequence stratigraphic interpretation of deepening and shallowing follows refs. 22 and 23. Data points are
colored, reflecting the actual rock color. On the B, (coercivity of remanence) plot, the average coercivity values of hematite and magnetite are plotted
for reference. Magnetite abundance is an upper bound calculated using the saturation magnetization value of well-characterized magnetite grains (39).
Hematite abundance was calculated using either the saturation magnetization (when it is the only ferromagnetic phase present) or the remanent saturation
magnetization and coercivity spectra. Range bars on these calculated values capture both 1 standard deviation uncertainty associated with coercivity spectra
unmixing and the range of (remanent) saturation magnetization values measured in pure minerals (40, 41) (for more details see S/ Appendix). The three
distinct magnetic facies, composed of distinct magnetic mineral assemblages, are denoted by blue lines and labeled along with interpreted depositional
redox conditions. In the Feygr/Fer and Fepy/Feyr plots (HR, highly reactive; py, pyrite; T, total), vertical dashed lines denote boundaries for oxic vs. anoxic
and ferruginous vs. euxinic water column conditions, respectively, that are used for iron speciation paleoredox proxy interpretations (18). While many of
the Feur/Fer data fall in the “equivocal” zone between anoxic and oxic conditions, the iron removed through each progressive extraction, particularly the

Fegithionite €Xtraction, varies with the magnetic facies.

presence of sulfides indicative of bacterial sulfate reduction (30).
Given that neither of these lines of evidence is diagnostic of a
marine environment, the stratigraphic context of the formation
and its position within an intracontinental rift favor a lacustrine
depositional setting (22).

The Nonesuch Formation is exceptionally well preserved,
with maximum burial temperatures of 140-150 °C estimated
by modeled burial temperatures (31) and 125-155 °C inferred
from solid-state reordering modeling of clumped isotope val-
ues (32). In contrast to the Iron River Syncline and Presque
Isle Syncline (>100 km away; Fig. 1) where there is copper
mineralization in the basal Nonesuch Formation, there is no
mineralization in cores from the Ashland Syncline (23) (S/
Appendix, Fig. S1).

12940 | www.pnas.org/cgi/doi/10.1073/pnas.1813493115

Iron Speciation Results

Geochemical analyses were performed to compare the DO-8 and
WC-9 cores to previously published analyses from the None-
such Formation within the Presque Isle Syncline (Fig. 1). Iron
speciation is a bulk sequential extraction technique that sepa-
rates iron into distinct pools that are ratioed and compared with
empirical calibrations on modern sediments to make interpre-
tations of paleoredox conditions (18, 33). Analyses proceeded
using standard protocols (33, 34) with measurements of stan-
dards consistent with those of previous analyses (35). Our results
for Fexr/Fer are generally below the common threshold of 0.38
used to separate likely oxic (<0.38) from anoxic (>0.38) depo-
sitional environments (18, 36) such that they fall in the range
of equivocal values (0.2-0.38) or the oxic range (<0.2; Fig. 2).
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Samples falling in the equivocal zone could have been deposited
under an oxygenated water column or could have been deposited
in anoxic conditions but with processes masking Fexr enrich-
ment. Such processes could include rapid sedimentation or burial
diagenesis/metamorphism that transformed highly reactive iron
minerals into unreactive phases such as clay minerals (37, 38).
The Fe,y/Feur (pyrite iron to highly reactive iron) is elevated
in lower portions of the formation, but still indicates that not
all reactive iron was pyritized, similar to the findings from
the Presque Isle Syncline (11). Overall, these iron speciation
ratios are ambiguous and elude straightforward interpretation of
paleoredox.

Magnetic and Petrographic Results with Interpretation

Experimentally determined estimates of magnetization and coer-
civity on samples spanning the stratigraphic sections (Figs. 2
and 3) reveal three distinct magnetic facies within the Nonesuch
Formation. Low-temperature magnetic experiments designed to
elucidate low-temperature transitions confirm the ferromagnetic
mineral identifications associated with these facies in both cores
(SI Appendix, Figs. S2 and S3). Petrographic and microscale
textural geochemical analyses on selected samples using trans-
mitted light, reflected light, and electron microscopy paired
with energy-dispersive X-ray spectroscopy further confirm the
magnetic mineralogy interpretations and give a more complete
perspective of the mineralogy associated with each facies and the
depositional and diagenetic processes they represent (Fig. 3 and
SI Appendix, Figs. S7-S9).

Magnetic facies 1 is present in the deepest water lithologic
facies and is characterized by a lack of hematite and a very

Facies 2: sample DO8-1113

; 7 ‘
Titanomagnetite

Hematite + :%ﬁ
Fe-bearing clay

weak magnetization carried by trace magnetite (Figs. 2 and 3
and SI Appendix, Figs. S1-S3). No magnetite could be seen using
microscopy techniques, corroborating the low abundance and/or
nanoscale size of these minerals. The iron within this facies is
predominantly found in phyllosilicates, calcalumnosilicates, and
abundant sulfides (Fig. 3 and SI Appendix, Fig. S7). Euhedral
pyrite crystals range in size from <1 pm to 15 pm and can form
aggregates up to 100 um. Based on their shape and occasional
textural association with iron-bearing clays, we interpret them to
have formed in pore fluids from iron liberated from magnetite
and clays during reductive dissolution and sulfidization (Fig. 3
and SI Appendix, Fig. S7). Facies 1 shows no evidence for oxida-
tion of these reduced phases, highlighting the excellent preserva-
tion of these drill cores and lack of secondary oxidative fluid flow
in this region. Titanium minerals—titanium oxide (rutile and/or
anatase), leucoxene, and titanite—are found in samples of this
facies, and texturally some appear to be authigenic (SI Appendix,
Fig. S7). Authigenic titanium-bearing minerals commonly form
during dissolution of iron-bearing phases including titanomag-
netite grains (42-44). Taken together, these data indicate that
the very weak magnetization relative to the other magnetic facies
is the result of reductive dissolution of iron oxides, likely through
a combination of dissimilatory iron reduction and sulfidization.
Magnetic facies 2 is characterized by a mixed assemblage of
magnetite and hematite with relatively strong overall magneti-
zation (Figs. 2 and 3 and SI Appendix, Figs. S1-S3). Microscale
textural observations demonstrate the presence of detrital
(titano)magnetite with igneous origins based on the exsolution
between titanomagnetite and ilmenite (Fig. 3 and SI Appendix,
Fig. S8). A sharply preserved Verwey transition revealed through
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Fig. 3. Example backscatter electron microscope images and bulk coercivity spectra from each magnetic facies. The coercivity spectra show the derivative
of magnetization (dM (Am?)/dB (mT)) as a function of applied field and are fitted with log-Gaussian components (40). The multiple components in facies
2 are unmixed and shown with uncertainty associated with the unmixing (40). Facies 1 is characterized by the presence of pyrite and a noisy coercivity
spectrum due to weak magnetization that indicates the presence of magnetite in trace quantities (~15 ppm in this sample). Facies 2 has detrital grains of
titanomagnetite (igneous titanomagnetite with exsolution lamallae visible in image) and hematite; significant quantities of both magnetite and hematite
result in a double-peaked coercivity spectrum. Facies 3 has a coercivity spectrum dominated by hematite with disseminated hematite, aggregates of hematite
crystals, and oxidized detrital titanomagnetite grains visible via electron microscopy. Mineral abbreviations are as follows: K-spar, potassium feldspar; and

Ti-Maghem, titanomaghemite.
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low-temperature magnetometry indicates the presence of mag-
netite with no to minimal oxidation (SI Appendix, Figs. S2 and
S3). The relatively high coercivity of the magnetite as revealed
in coercivity spectra (Fig. 3), combined with the results of first-
order reversal curve experiments (SI Appendix, Fig. S5), is con-
sistent with behavior dominated by small (<3 pm) vortex-state
grains (45). Detrital grains containing hematite are observed,;
the hematite is typically associated with, and replacing, phyl-
losilicates, indicating oxidation during pretransport weathering,
riverine transport, and/or deposition (Fig. 3 and SI Appendix,
Fig. S8). The detrital nature of these grains is confirmed by their
sometimes rounded shapes and the deformation of clay minerals
between them and other detrital grains (S Appendix, Fig. S8).
Pieces of organic matter (80-100 um by 10 pm) with compaction
warping are also preserved within this facies (SI Appendix, Fig.
S8). Some reductive dissolution of iron oxides may have occurred
based on the presence of mixed mineral grains of titanite and
iron oxides as well as minor amounts of pyrite (SI Appendix, Fig.
S8). However, in contrast with facies 1, the data show that such
reductive dissolution was minimal and likely isolated to small
regions of pore waters that became anoxic and sulfidic within
the sediment. We interpret this mixed hematite and magnetite
assemblage as a good representation of the detrital riverine input
to the lake given that iron oxide grains were largely not reduc-
tively dissolved nor were magnetite grains fully oxidized to ferric
oxide phases. The preservation of a detrital assemblage is there-
fore more consistent with persistent intermediate oxygen levels
than with fluctuations between anoxic and oxic conditions.

Magnetic facies 3 is present in the shallowest water sedi-
ments and is dominated by hematite with a minimal contri-
bution from lower coercivity phases such as magnetite (Figs.
2 and 3 and SI Appendix, Figs. S2 and S3). Microscale tex-
tural analyses reveal hematite that formed from oxidation
of detrital igneous (titano)magnetite grains based on abun-
dant titanohematite/titanomaghemite, sometimes within rutile
grains or with relict skeletal and trellis lamallae shapes (Fig. 3
and SI Appendix, Fig. S9). Additional hematite and titanohe-
matite/titanomaghemite grains are seen as platelets within phyl-
losilicate grains or rimming quartz grains (SI Appendix, Fig.
S9). Titanite and leucoxene are frequently observed and authi-
genic titanium oxide grains were found, confirming that in-place
oxidation of iron-titanium minerals occurred (Fig. 3 and S/
Appendix, Fig. S9) (42). Petrography also shows that, in addition
to the observed grains of hematite, there is abundant pigmentary
hematite in facies 3 (SI Appendix, Fig. S9). These data reveal that
in this facies there has been significant oxidation of the detrital
input to the lake both during transport and, due to the presence
of pigmentary hematite and authigenic titanium oxides, within
the sediment. The original detrital input appears to have been
similar to facies 2 before additional oxidation.

Combined Insights from Magnetism and Microscale Textural
Analyses with Iron Speciation

While rock magnetism and petrography reveal that the iron
mineralogy (and interpreted paleoredox) changes significantly
through the cores, the Feur/Fer ratios are rather uniform. The
previous iron speciation study of Lake Nonesuch (11) inter-
preted their similar equivocal Feyr/Fer ratios to be indicative
of ferruginous environmental conditions obscured by postdepo-
sitional transformation of the Feyr pool into clays. A major
driver of this interpretation was elevated Fer/Al ratios above
normal oxic shale values (e.g., 0.53 £ 0.11) (46) and elevated
iron abundance in poorly reactive silicates. Both of these enrich-
ments were proposed to result from iron shuttling under anoxic
conditions (11). The Fer/Al ratios determined for our sam-
ples (ranging from 0.57 to 0.99) are similar to these previous
results (SI Appendix, Fig. S1). However, maps of modern soil geo-
chemistry reveal there is substantial variability in detrital Fer/Al
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ratios (19) and a lake setting within a volcanic province, such
as Paleolake Nonesuch, is a setting where the Fer/Al ratio of
the detrital flux is likely to be higher than average. The Fer/Al
ratios in the oxic shallow sediments of facies 3, which should not
have experienced authigenic enrichments, are similar to those
within the other facies (SI Appendix, Fig. S1). These data sup-
port an interpretation that the Fer/Al ratio is representative of
the detrital flux into Paleolake Nonesuch rather than the result
of enrichment of iron from an anoxic water column.

Although the Fepgr/Fer ratios themselves may be ambigu-
ous and lack a clear correlation to the three magnetic facies,
if the iron extraction pools are looked at in detail, consider-
able differences are noted, which also separate the sections into
three facies (Fig. 2 and SI Appendix, Fig. S1). Facies 3 stands
out as having high Fedithionite; I0W F€acetate, and low Fecrs
[chromium reducible sulfur (CRS)]; the dithionite extraction
targets ferric iron (hydr)oxides, which agrees well with our mag-
netic quantification of abundant hematite in this facies. While
hematite is the most oxidized endmember within the ulvospinel-
magnetite—ilmenite—hematite series and forms within oxidizing
environments, in iron speciation analysis it is grouped with
the highly reactive phases. Therefore, its presence increases
Feur/Fer, which is higher in oxic facies 3 than in the other facies
and contains the only sample with Fexr/Fer > 0.38. This high
Feur/Fer value could erroneously lead to the interpretation of
an anoxic environment if the mineralogy leading to this high
value were not considered. Facies 1 has relatively low Feqithionite
and high Fecrs, which agrees with magnetic analyses suggesting
no hematite and petrographic observations of pyrite (extracted
as CRS) in these samples. While the Feoxaiate pool is typically
attributed to magnetite such that it is sometimes called Femag
(33), facies 1, 2, and 3 have similar Feoxalate values even though
the magnetic and textural analyses show facies 2 to have much
more magnetite. The quantity of iron in the oxalate extraction is
one to three orders of magnitude higher than the abundance of
magnetite calculated using the magnetic data (S Appendix, Fig.
S10), and quantities of magnetite approaching 1 wt% in a shale
would be highly unusual. These results indicate that the oxalate
extraction is solubilizing iron from other minerals in addition
to magnetite. More research is needed to fully understand the
mineralogy removed by each sequential extraction step in nat-
ural samples. In the meantime, workers should continue to use
careful terminology to make it clear that this is an operational
definition and that much of the iron in the oxalate extraction
is not from magnetite. Considering the sequential iron specia-
tion extraction data from ref. 11 in a similar framework would
place most of those analyses in facies 1 with zones of facies 3
and 2 near the basal flooding surface with the Copper Harbor
Conglomerate. As less than half of the thickness of the None-
such Formation was captured in the Presque Isle drill core*
from which these prior data were obtained, such a classification
matches our interpretations.

A Preserved Oxycline

These three facies and their juxtaposition can be explained as the
result of an oxycline in Paleolake Nonesuch. The detrital input
to the lake included both magnetite and hematite (preserved in
facies 2) due to weathering and oxidation of the source igneous
material during transport. Sediments in the deepest part of the
lake were anoxic, possibly with anoxia extending into the water
column. As a result, delivered iron oxides underwent reductive
dissolution through microbial metabolic processes as recorded by
facies 1. Much of this iron and iron within sheet silicates reacted
with sulfide to form pyrite, but sulfide availability was restricted

*The 1958 Bear Creek Mining Company PI-1 and PI-2 drill logs are archived and available
by request from the Northern Michigan Geologic Core and Sample Repository.
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to pore waters and not sufficient to sulfidize all of the available
reactive iron. Intermediate oxygen levels in waters throughout
much of the lake allowed for the preservation of detrital mag-
netite and hematite in facies 2. In the shallow waters of the lake
recorded in facies 3, oxic conditions prevailed and most of the
detrital magnetite, as well as iron in other phases, was oxidized
to hematite.

We interpret this vertical sequence of facies to reflect a
stacking of laterally distributed environments such that the
transition from the deepest-water low—iron-oxide facies into
the intermediate-water magnetite-rich facies and the shallower-
water hematite-rich facies is the result of an oxycline within the
ancient lake. The depth dependence of the oxycline is similar
to that found in modern eutrophic lakes wherein the aerobic
respiration of descending organic matter leads to a decrease in
dissolved oxygen with depth. Overall, these data indicate that
the lake was more deeply oxygenated than has previously been
interpreted on the basis of iron speciation data alone. For much
of its temporal duration, and throughout much of its water col-
umn, there was oxygen in the waters of Paleolake Nonesuch.
While trophic modes are poorly known for the diverse biota
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found within Nonesuch (4) and their paleobathymetric distribu-
tion is not well constrained, these eukaryotes lived in a stable and
hospitable lake environment with available oxygen. It remains
a puzzle why these eukaryotic denizens preserved in the fossil
record did not leave an appreciable sterane record (29) and why,
despite seemingly favorable environmental conditions, eukary-
otic productivity was so low that sterane/hopane ratios have been
found to be zero in indigenous organic matter (47). Regard-
less, the environmental signal from this diverse lacustrine fossil
locality is becoming clear. Overall, these results highlight that
coupling magnetic and microscale textural data with geochemical
data can resolve ambiguous redox interpretations in deep time.
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