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Abstract—This paper studies network design and efficiency loss
in online platforms using the model of networked Cournot compe-
tition. We consider two styles of platforms: open access platforms
and discriminatory access platforms. In open access platforms,
every firm can connect to every market, while discriminatory
access platforms limit connections between firms and markets in
order to improve social welfare. Our results provide tight bounds
on the efficiency loss of both open access and discriminatory
access platforms. For open access platforms, we show that the
efficiency loss at a Nash equilibrium is upper bounded by 3/2.
In the case of discriminatory access platforms, we prove that,
under an assumption on the linearity of cost functions, a greedy
algorithm for optimizing network connections can guarantee the
efficiency loss at a Nash equilibrium is upper bounded by 4/3.

I. INTRODUCTION

Online platforms like Uber, Lyft, and Amazon have changed
the way entire industries are run. Unlike traditional firms,
platforms do not manufacture products or provide a service.
Instead, they arrange matches between firms and consumers,
facilitating a safe and simple trading process, providing value
for all parties involved. Today, platforms like Uber, Amazon,
eBay, etc. make up a $3 trillion market in the US alone [1].

The design and operation of platforms is extremely diverse.
For example, Amazonmatches buyers to sellers in a man-
ner that takes their preferences into account; and online ad
exchanges usepricingto indirectly control the matching of
firms to markets. More recently, some platforms have moved
towards directly controlling the allocation of firms to markets,
e.g., Uber’s explicit matching of drivers to riders [9, 11].

Broadly, there are two common platform designs: (i)open
access, where the platform provides information about all
potential matches, and allows firms and markets to determine
their own matching and corresponding allocations [17, 18, 20],
or (ii)discriminatory access, where the platform restricts the
set of markets that each firm is allowed to enter [4, 12, 29].
Examples of open access platforms include eBay and Etsy, and
examples of discriminatory access platforms include Amazon’s
Buy Box. We summarize these two approaches in Figure 1.

Open and discriminatory access designs are contrasting
approaches with differing benefits. Open access designs are
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easy to maintain, completely transparent, and provide natural
fairness guarantees [31]. On the other hand, discriminatory
access offers the platform additional control to improve upon
social welfare, at the expense of complexity, transparency, and
fairness. It is, therefore, natural to ask:to what degree can
discriminatory access control improve upon the efficiency of
open access platforms?

A. Contributions of this paper

In this paper we characterize the efficiency of both open
access and discriminatory access platform designs, and quan-
tify the improvement in efficiency that discriminatory ac-
cess designs can provide relative to open access platforms.
Concretely, this paper builds on recent work [28], which
studies platform design using the model of networked Cournot
competition. In the context of this model, this paper makes two
main contributions.

First, in Section III, we study the efficiency loss in open
access platforms consisting ofnfirms. We provide a tight
upper bound of 3

2(1−1/(3n+6)) on the efficiency loss
in open access platforms in Theorem 4, which improves
upon the previously known16/7efficiency loss bound [28].
Additionally, we provide a sharper efficiency loss bound in
Proposition 6 that depends not only on the number of firms,
but also on a measure of ‘asymmetry’ between firms’ cost
functions. In particular, this bound reveals that a reduction in
the asymmetry in cost leads to a reduction in efficiency loss.

Second, in Section IV, we illustrate the efficiency improve-
ment discriminatory access platforms provide over open access
platforms. Specifically, we consider a setting in which a dis-
criminatory access platform solves an optimal network design
problem to maximize the social welfare at Nash equilibrium.
This amounts to a mathematical program with equilibrium
constraints (MPEC) that is, in general, computationally in-
tractable. Under the simplifying assumption that firms have
linear cost functions, we construct a greedy algorithm that is
guaranteed to yield an optimal (welfare maximizing) network.
Moreover, we provide a tight upper bound on the efficiency
loss incurred under the optimal network design. Specifically,
we show that discriminatory access platforms designed in this
manner yield an efficiency loss that is upper bounded by 4/3 in
the worst case, which improves upon the worst case efficiency
loss bound of 3/2 for open access platforms.

B. Related work

Our work lies in the intersection of platform design and
networked Cournot competition, and contributes to both liter-
atures.
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(a) Open access platforms. (b) Discriminatory access platforms.

Fig. 1: The above figures depict (a) open access platforms,
where firms can participate in all markets, and (b) discrim-
inatory access platforms, where the platform constrains the
markets in which firms can participate. In both platforms, each
firm can only access markets that it connects to via the red
links, but can choose the exact quantity it allocates to each
connected market strategically.

a) Platform design:The recent growth of online plat-
forms has led researchers to focus on identifying design
features common to successful platforms. Work in this area
has covered a variety of possible design factors, including
pricing [32] and competition [6]. Recent empirical studies
reveal significant price dispersion in online marketplaces [15],
causing platforms to differentiate products in order to create
distinct consumer markets [14]. In particular, these results
highlight the need to study platforms in using models of
networked competition.

b) Competition in networked settings: Models of net-
worked competition aim to capture the effects of network con-
straints on strategic interactions between firms. These models
include networked Bertrand competition [5, 10, 19], networked
Cournot competition [2, 7, 21], and other networked bargain-
ing games where agents can trade via bilateral contracts over
a network that determines the set of feasible trades [3, 16, 27].

Our work relies on a model of networked Cournot competi-
tion. A large majority of the literature on networked Cournot
competition, e.g., [2, 7, 21], focuses on characterizing and
computing Nash equilibria. In a similar spirit to the present
paper, [22, 28] provide bounds on the worst case efficiency loss
of networked Cournot games, and [8] attempts to understand
the impact that system operator governance has on the Nash
equilibria that result under network constraints. This paper is
the first to provide a tight bound on the efficiency loss of open
access platforms, improving on the bounds in [28], and the
first to provide an algorithm for optimal network designs with
provable efficiency loss guarantees. All proofs are omitted in
this version of the paper due to the space constraints.

II. MODEL ANDPRELIMINARIES

We describe competition in online platforms according to
thenetworked Cournot competitionmodel first introduced by
[2] and [7], and later employed by [28] to describe competition
in platforms. As a generalization of the classical model of
Cournot competition, the networked Cournot model captures
the setting in which firms compete to produce a homogeneous
good inmultiple markets, where each market is accessible

by a subset of firms. We formally develop the model in the
following subsections.

A. Network and Platform Models

The network specifying the connections between firms and
markets is described according to a directed bipartite graph
(F, M,E). Here, we denote byF:={1,...,n}the set ofn
firms,M :={1,...,m}the set ofmmarkets, andE⊆F×M
the set of directed edges connecting firms to markets. That is
to say,(i, j)∈Eif and only if firmihas access to marketj.

In general, the efficiency of such marketplaces depends on
the structure of the underlying graph, which restricts the set of
markets to which each firm has access. A crucial role that the
platform might, therefore, play in this setting is the selection of
markets that are made available to each firm. In what follows,
we examine two important classes of platform designs:open
accessplatforms anddiscriminatory accessplatforms.

Open access platforms: An open access platform allows all
firms to access all markets. This corresponds to the complete
set of directed edges from firms to markets, i.e.,E=F×M.
Examples include eBay and Etsy, where every customer is
shown every retailer that sells the item she desires.

Discriminatory access platforms: In contrast to open access
platforms, a discriminatory access platform can restrict the set
of markets that are accessible by each firm. This corresponds
to the platform’s selection of an edge setE ⊆F×M that
may prevent certain firms from accessing certain markets.
The goal of this restriction might entail the improvement of
producer surplus, consumer surplus, or total social welfare of
the system. An example of a discriminatory access platform is
Amazon’s Buy Box, where Amazon chooses a default seller
based on a score that combines pricing, availability, fulfillment,
and customer service.

B. Producer Model

Under both the open and discriminatory access platform
models, each firm can specify the quantity it produces in each
market. Accordingly, we let qij ∈ R+ denote the quantity
produced by firmiin marketj, and letqi:= (qi1,...,qim)∈
Rm

+ denote the supply profile from firmi. We require that
qij=0for all(i, j)/∈E, and define the set of feasible supply
profiles from firmias:

Qi(E):= x∈Rm
+ |xj=0,∀(i, j)/∈E .

We denote the supply profile from all firms by q :=
(q1,...,qn)∈Rmn

+ . Accordingly, the set of feasible supply
profiles from all firms is given byQ(E):=

n
i=1 Qi(E).

We let sibe the aggregate production quantity of firmi∈F.
It is given by

si:=

m

j=1

qij. (1)

The resulting production cost of firmiis defined byCi(si).
We assume that the cost function Ciis convex, differentiable
on(0,∞), and satisfiesCi(si) =0for allsi≤ 0.1Finally,
we defineC:= (C1,...,Cn)as the cost function profile.

1This family of cost functions represents a generalization of [28], which
assumed that all firms have quadratic cost functions.
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C. Market Model

As is standard in Cournot models of competition, we model
price formation according to an inverse demand function in
each market. Similar to [7], we restrict our attention to affine
inverse demand functions throughout this paper. Specifically,
the price in each marketj∈M is determined according to

pj(dj):=αj−βjdj,

wheredjdenotes the aggregate quantity supplied to marketj,
given by

dj:=

n

i=1

qij. (2)

Here,αj>0measures consumers’ maximum willingness to
pay, andβj>0measures the price elasticity of demand.

D. Social Welfare

In this paper, we measure the performance (or efficiency) of
a platform according tosocial welfare. For platforms, the pur-
suit of social welfare benefits both buyers and sellers, and in
the long run, promotes their expansion. For example, Amazon
(in its Buy Box design) believes that welfare measures such as
availability, fulfillment, and customer service ultimately lead
to increased customer satisfaction, and thereby, promote its
growth in the long run [13].

We adopt the standard notion of social welfare defined
as aggregate consumer utility less the total production cost.
Specifically, the social welfare associated with a supply profile
qand a cost function profileCis defined according to

SW(q, C):=

m

j=1

dj

0

pj(z)dz−

n

i=1

Ci(si), (3)

wheresianddjare defined in Eqs. (1) and (2), respectively.
We define the efficient social welfareassociated with an edge
setEand a cost function profileCas:

SW∗(E,C):= sup
q∈Q(E)

SW(q, C). (4)

A supply profileq∈Q(E)is said to beefficientif it satisfies
SW(q, C) =SW∗(E,C). It is straightforward to check that
the above supremum can be attained, and that the set of
efficient supply profiles is non-empty.

E. The Networked Cournot Game

We describe the equilibrium of the market specified above
according to Nash. In particular, we consider profit maximiz-
ing firms, where the profit of a firmi, given the supply profiles
of all other firmsq−i=(q1, .., qi−1,qi+1, .., qn),isgivenby

πi(qi,q−i):=

m

j=1

qijpj(dj)−Ci(si). (5)

We denote by π := (π1,...,πn)the collection of payoff
functions of all firms. The triple(F,Q(E),π)defines a normal-
form game, which we refer to as thenetworked Cournot game
associated with the edge setE. Its Nash equilibrium is defined
as follows.

Definition 1. A supply profileq∈ Q(E)constitutes apure
strategy Nash equilibriumof the game(F,Q(E),π)if for ev-
ery firmi∈F,πi(qi,q−i)≥πi(qi,q−i),for allqi∈Qi(E).

Under the assumptions of convex cost functions and affine
inverse demand functions, [2] has shown that the networked
Cournot game is an ordinal potential game. Additionally, it
admits a unique Nash equilibrium that is the unique optimal
solution to a convex program. We summarize the results of
[2] in the following lemma.

Lemma 1.([2]) The game(F,Q(E),π)admits a unique Nash
equilibriumqNE(E)that is the unique optimal solution to the
following convex program:

maximize
q∈Q(E)

SW(q, C)−
n

i=1

m

j=1

βjq
2
ij

2
. (6)

In general, the supply profile at the unique Nash equilibrium
differs from the efficient supply profile. We measure this loss
of efficiency according theprice of anarchyof the game [23].2

Definition 2. Theprice of anarchyassociated with the edge
setE, the cost function profileC, and the corresponding
networked Cournot game(F,Q(E),π)is defined as

ρ(E,C):=
SW∗(E,C)

SW (qNE(E),C)
.

We set ρ(E,C)=1ifSW∗(E,C)/SW(qNE(E),C)=0/0.

III. OPENACCESSPLATFORMS

For our first set of results, we provide tight bounds on
the price of anarchy of the networked Cournot game in an
open access platform, under a variety of assumptions on firms’
cost functions. In particular, our tight price of anarchy bounds
depend not only on the number of firms, but also on the degree
of asymmetry between firms’ cost functions. These results
improve upon the bounds in [28] and generalize those in [22].

A. Identifying the Worst-case Cost Function Profile

The following technical lemma reveals that the price of
anarchy is maximized at a cost function profile consisting of
cost functions that are linear over the non-negative reals.

Lemma 2. Given a cost function profile C, define the cost
function profileC=(C1,...,Cn)according to

Ci(si)=

⎛

⎝∂+Ci

⎛

⎝
m

j=1

qNE
ij (F×M)

⎞

⎠·si

⎞

⎠

+

fori=1,...,n, where∂+Cidenotes the right-derivative of
the functionCi. It holds thatρ(F×M, C)≤ρ(F×M,C).

Lemma 2 reveals that, given any cost function profileC,it
is always possible to construct another cost function profileC
consisting of (piecewise) linear functions, which has a price of

2Implicit in Definition 2 is the fact that the networked Cournot game admits
a unique Nash equilibrium. In general, for games with a possible multiplicity
of Nash equilibria, the price of anarchy is defined as the ratio of the efficient
social welfare over that of the Nash equilibrium with theworstsocial welfare.
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anarchy that is no smaller. Therefore, in constructing a price of
anarchy bound that is guaranteed to hold for all cost functions
belonging to the family specified in Section II-B, it suffices to
consider cost functions that are linear on(0,∞).

B. Efficiency Loss in Open Access Platforms

The characterization of the worst-case cost function profile
in Lemma 2 facilitates the derivation of tight upper bounds on
the price of anarchy for networked Cournot games. In what
follows, we examine the role played by(a)symmetryin the
cost function profile in determining platform efficiency.

1) Symmetric Cost Functions:We begin by analyzing the
setting in which firms have identical cost functions. Under
this assumption, we establish a tight upper bound on the price
of anarchy in Proposition 3 that ismonotonically decreasing
in the number of firms, and converges to one as the number
of firms grows large. This conforms with the intuition that
increasing the number of (symmetric) suppliers will manifest
in increased competition, and thereby reduce the extent to
which any one producer might exert market power.

Proposition 3. IfC1 = C2 = ···= Cn, then the price
of anarchy associated with the corresponding open access
networked Cournot game(F,Q(F×M),π)is bounded by

ρ(F×M, C)≤1+
1

(n+1)2−1
.

Moreover, the bound is tight. That is, for any choice ofn, there
exists a symmetric cost function profile with a corresponding
price of anarchy equal to the upper bound.

2) Arbitrary Asymmetric Cost Functions:We now consider
the more general setting in which firms have arbitrary asym-
metric cost functions satisfying the assumptions in Section
II-B. In Theorem 4, we establish a tight upper bound on the
price of anarchy that ismonotonically increasingin the number
of firms.

Theorem 4.The price of anarchy associated with a cost func-
tion profileC and the corresponding open access networked
Cournot game(F,Q(F×M),π)is upper bounded by

ρ(F×M, C)≤
3

2
1−

1

3n+6
.

The bound is tight ifα1=α2=···=αm.

The price of anarchy bound established in Theorem 4
is perhaps counterintuitive, in the sense that the efficiency
loss at a Nash equilibrium can increase with the number of
firms. This seemingly counterintuitive behavior can occur if
an expensive firm enters the market. First, note that the entry
of this new firm results in an increase in aggregate supply at
Nash equilibrium, because of increased ‘competition’ in the
market. However, its entry takes away production from its
(cheap) competitors. This manifests in a reduction in social
welfare if the increase in production cost exceeds the increase
in consumer utility. Such a phenomenon is known as the
“excess entry theorem” in the economics literature, and reveals
the possibility that a new firm’s entry can lead to a reduction
in social welfare [24, 26, 30].

Additionally, taking the number of firmsn→ ∞ yields a
price of anarchy bound that is valid for any number of firms,
and any number of markets. This recovers the3/2price of
anarchy bound first established by Johari and Tsitsiklis [22]
for a single market. Moreover, it improves upon the previously
known16/7price of anarchy bound for open access networked
Cournot games in [28]. We have the following corollary.

Corollary 5. Open access platforms have a price of anarchy
that is at most 3/2.

3) Linear Cost Functions with Bounds on Asymmetry:The
efficiency loss results in Proposition 3 and Theorem 4 appear
contradictory. Namely, the price of anarchy bound is decreas-
ing innif producers have symmetric cost functions. But it is
increasing innif producers are allowed to have asymmetric
cost functions. In what follows, we explore how the price
of anarchy depends on the asymmetry between firms’ cost
functions. We restrict ourselves to cost functions that are linear
on(0,∞), and whose slopes lie within[cmin,cmax]⊆R+.

L(cmin,cmax):= C0:R→ R+ C0(x)=(cx)
+

,

c∈[cmin,cmax].

We write C ∈Ln(cmin,cmax)if the cost function profileC
satisfiesCi∈L(cmin,cmax)for each firmi∈F. It will be
convenient to define a non-dimensional parameterγj, which
measures the degree of asymmetry between firms for each
marketj∈M. Specifically, for each marketj∈M, define

γj:= 1−
cmax −cmin

αj−cmin
.

It holds thatγj ∈ (−∞,1]ifcmin < αj. Clearly,γj is
increasing in consumers’ maximum willingness to payαj,
and decreasing in the maximum costcmax. It follows that a
value ofγjclose to one implies a small degree of asymmetry
between firms’ cost functions relative to consumers’ maximum
willingness to pay in marketj.

The following proposition provides a tight bound on the
price of anarchy bound when firms have linear cost functions
with a bounded degree of asymmetry.

Proposition 6. LetC ∈ Ln(cmin,cmax), and assume that
cmin < maxj∈M αj. The price of anarchy associated with
the corresponding open access networked Cournot game
(F,Q(F×M),π)is upper bounded by

ρ(F×M, C)≤

m
j=1

((αj−cmin )+)
2

βj

m
j=1

2n+4
3n+5 +δ(γj,n)

((αj−cmin )+)2

βj

,

where the functionδ(γ, n)is defined according to

δ(γ, n)=

⎧
⎨

⎩

0 ifγ<2n+3
3n+5,

(n−1)(3n+5)
(n+1)2 γ−2n+3

3n+5

2

otherwise.

The bound is tight ifα1=α2=···=αm.

The price of anarchy bound specified in Proposition 6
depends on the degree of asymmetry between firms’ cost
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functions only through the termsδ(γj,n)forj=1,...,m.In
particular, asδ(γ, n)is non-decreasing inγ, a reduction in the
degree of asymmetry between firms’ cost functions manifests
in a reduction in the price of anarchy bound.

IV. DISCRIMINATORYACCESSPLATFORMS

While many early platforms relied on an open access model,
more recent platforms have begun to exercise control over the
set of markets to which each firm has access. In the setting of
our model, such access control corresponds to the specification
of the edge set of the bipartite graph that connect firms to
markets, with the goal of maximizing the social welfare at the
unique Nash equilibrium of the resulting networked Cournot
game.

In what follows, we first show that the problem of choosing
the optimal edge set that maximizes the social welfare at
Nash equilibrium amounts to a mathematical program with
equilibrium constraints (MPEC), and is, in general, compu-
tationally intractable. Under the simplifying assumption that
each firm’s cost function is linear on(0,∞), we present a
greedy algorithm that is guaranteed to generate an optimal
solution to the MPEC. Moreover, we present a tight price of
anarchy bound for the networked Cournot game that results
under the optimal network design. The bound reveals the
reduction in efficiency loss achievable through discriminatory
access platforms.

A. Network Design

The optimal network design problem amounts to the selec-
tion of an edge setE, which maximizes the social welfare
at the unique Nash equilibrium of the resulting networked
Cournot game. Formally, Lemma 1 provides a characterization
of the supply profile at the unique Nash equilibrium of the
game(F,Q(E),π)as the unique optimal solution to a con-
vex program. Therefore, theoptimal network design problem
admits a formulation as the following MPEC:

maximize SW(q, C)

subject to E⊆F×M

q∈arg max
x∈Q(E)

⎧
⎨

⎩
SW(x, C)−

m

j=1

n

i=1

βjx
2
ij

2

⎫
⎬

⎭

(7)
Here, the decision variables are the edge setEand the supply
profileq. The challenge in solving problem (7) stems from the
equilibrium constraint3onq, and the presence of the discrete
decision variableE. In what follows, we show that, under the
simplifying assumption of linear cost functions, problem (7)
can be solved using a simple greedy algorithm.

B. Greedy Algorithm for Optimal Network Design

In this section, we restrict ourselves to cost functions that
are linear on(0,∞). Specifically, we assume that the cost
function of each firmi∈FsatisfiesCi(si)=(cisi)

+, where
ci≥0. Leveraging on this assumption, we propose a greedy

3An equilibrium constraint requires that a vector be an optimal solution to a
optimization problem. In general, this leads to a nonconvex and disconnected
feasible region for MPECs. See [25] for a more detailed discussion.

algorithm for solving the optimal network design problem (7)
in Algorithm 1. For each marketj∈M, the greedy algorithm
visits firms in ascending order of marginal cost, and provides
each firm it visits access to marketjif its inclusion in that
market increases social welfare.

Algorithm 1The Greedy Algorithm

Require: c1≤···≤cn.
1:Initialize edge setE ←∅.
2:forj=1tom do
3: Initialize firm indexi← 1.
4: Initialize edge setE ←E.
5: repeat
6: Update edge setE ←E.
7: ifi≤nthen
8: Set edge setE ←E∪(i, j).
9: Set firm indexi← i+1.

10: end if
11: untilSW(qNE(E),C)≤SW(qNE(E),C).
12:end for
13:returnE.

The following result establishes optimality of the greedy
algorithm when firms’ cost functions are linear over(0,∞).

Theorem 7. Assume that each firm’s cost function is linear
over(0,∞).IfE∗ is the edge set generated by the greedy
algorithm, then E∗,qNE(E∗) is an optimal solution to(7).

Clearly, Algorithm 1 yields an edge set E∗, whose cor-
responding Nash equilibrium has a social welfare that is
no smaller than that of the open access platform. In the
following theorem, we quantify the resulting improvement in
social welfare via a tight bound on the price of anarchy in
discriminatory access networked Cournot games.

Theorem 8.LetC∈Ln(cmin,cmax), and assume thatcmin <
maxj∈M αj.IfE∗ is the edge set generated by the greedy
algorithm, then the efficient social welfare associated with the
edge setE∗satisfies

SW∗(E∗,C)=SW∗(F×M, C).

Moreover, the price of anarchy associated with the discrimina-
tory access networked Cournot game(F,Q(E∗),π)is upper
bounded by

ρ(E∗,C)≤

m
j=1

((αj−cmin )+)
2

βj

m
j=1 max

k∈{1,..,n}

2k+4
3k+5 +δ(γj,k)

((αj−cmin )+)2

βj

.

The above bound is tight ifα1=α2=···=αm.

Theorem 8 reveals the advantage discriminatory access plat-
forms have over open access ones in reducing the efficiency
loss at Nash equilibrium. Namely, when the edge set is chosen
to be an optimal solution of the network design problem (7),
the discriminatory access platform is guaranteed to have a tight
bound on the price of anarchy that is no larger than that of the
open access platform. Moreover, this price of anarchy bound
is guaranteed to be non-increasing in the number of firmsn.
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Additionally, choosing the number of firmsn=1yields a
price of anarchy bound of4/3for (optimized) discriminatory
access platforms with any number of firms and markets. It
improves upon the3/2price of anarchy bound for open access
platforms established in Corollary 5. The result is formally
stated as follows.

Corollary 9. Assume that each firm’s cost function is linear
over(0,∞). Discriminatory access platforms have a price of
anarchy of at most4/3.

V. CONCLUDINGREMARKS

This paper examines the design and efficiency loss of open
and discriminatory access platforms. Open access platforms
offer transparency to market participants, while discriminatory
access platforms provide additional control that might be
leveraged on to improve market efficiency. For open access
platforms, we establish a tight upper bound on the price of
anarchy that is decreasing in the number of firms, when costs
are symmetric. On the other hand, when costs are asymmetric,
we derive a tight upper bound on the price of anarchy that is
increasing in the number of firms, and show that open access
platforms have a price of anarchy of at most 3/2.

Our second set of results contrast this bound against the case
of discriminatory access platforms. We formulate the optimal
network design problem for discriminatory access platforms as
a mathematical program with equilibrium constraints (MPEC),
which is computationally intractable, in general. Under the
assumption that the firms’ costs are linear, we propose and
prove the optimality of a greedy algorithm, recovering the
optimal network design for discriminatory access platforms
in networked Cournot games. In this setting, we show that the
price of anarchy bound shrinks to 4/3, thereby improving upon
the worst-case efficiency loss of open access platforms.

Our work builds on a growing literature studying networked
Cournot competition, including [2, 7, 8, 21, 28]. While this
literature is maturing, there are still a wide variety of important
open questions that remain. For example, the formulation of
the optimal network design as an MPEC highlights that they
are, in general, difficult to solve. The problem of constructing
approximation algorithms with provable bounds on perfor-
mance is an interesting direction for future research.
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