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Abstract—We consider the decentralized reactive power
control of photovoltaic (PV) inverters spread throughout a
radial distribution network. Our objective is to minimize
the expected voltage regulation error, while guaranteeing the
robust satisfaction of distribution system voltage magnitude
and PV inverter capacity constraints. Our approach entails
the offline design and the online implementation of the decen-
tralized controller. In the offline control design, we compute
the decentralized controller through the solution of a robust
convex program. Under the restriction that the decentralized
controller have an affine disturbance feedback form, the
optimal solution of the decentralized control design problem
can be computed via the solution of a finite-dimensional
conic program. In the online implementation, we provide a
method to implement the decentralized controller at a time-
scale that is fast enough to counteract the fluctuations in
the system disturbance process. The resulting trajectories
of PV inverter reactive power injections and nodal voltage
magnitudes are guaranteed to be feasible for any realization
of the system disturbance under the proposed controller.
We demonstrate the ability of the proposed decentralized
controller to effectively regulate voltage over a fast time-
scale with a case study of the IEEE 123-node test feeder.

I. INTROUDCTION

The installation of rooftop and community solar facil-

ities continues to increase in the United States. In Cali-

fornia, for example, approximately 40% of all electricity

demand was served by solar energy on the afternoon of

May 13, 2017 [1]. Meanwhile, the increasing penetration

of rooftop and community solar resources brings new

challenges to voltage regulation in distribution networks

[2], including overvoltage in distribution networks and de-

teriorated power quality due to rapid fluctuation in feeder

voltage magnitudes. Traditional techniques for voltage

regulation, such as the deployment of on-load tap changing

(OLTC) transformers and shunt capacitors, are limited in

their ability to address these challenges. Specifically, the

tap positions of OLTC transformers cannot be changed at a

fast time-scale due to mechanical limitations [3], and shunt

capacitors cannot be switched on and off frequently due
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to the large inrush current that results during switching

operations [4]. Photovoltaic (PV) inverters, on the other

hand, do not suffer from these limitations. Their reactive

power injections can be actively controlled at a time-

scale that is fast enough to counteract the fluctuation in

demand and PV active power supply. Our objective in this

paper is to develop a systematic approach to the design

of decentralized controllers for PV inverters, in order to

effectively regulate network voltage profile in real-time,

while guaranteeing the robust satisfaction of network and

individual inverter constraints.

Related Work: A large swath of literature treats the

reactive power management of PV inverters as a central-

ized optimal power flow (OPF) problem, which aims to

minimize a network-wide objective function (e.g., volt-

age regulation error) subject to network and resource

constraints [5]–[10]. To set its reactive power injection,

each PV inverter communicates its local measurements

of demand and PV active power supply to a central

computer. Using this data, the central computer solves a

centralized OPF problem, and subsequently transmits the

optimal solution back to each inverter for local imple-

mentation. Due to the rapid variation in the active power

supply from PV resources, the reactive power injections

of PV inverters need to be updated repeatedly over a

fast time-scale (e.g., every minute). In the presence of

a large number of PV inverters, the implementation of

such reactive power control methods might be impractical,

as the time required for computation and communication

might exceed the time-scale at which the inverter control

needs to be implemented.

This challenge in practical implementation gives rise

to the need for decentralized and distributed optimization

methods. In particular, there has emerged a recent stream

of literature developing fully decentralized optimization

methods, which enable the real-time control of PV reac-

tive power injections using only local measurements of

nodal complex power injections and voltage magnitudes

[11]–[16]. Under the assumption that the underlying OPF

problem being solved is time-invariant, the sequence of

reactive power injection profiles computed using these

decentralized methods is guaranteed to asymptotically con-

verge to a feasible injection profile that respects both the

network voltage and individual inverter constraints. There
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is, however, no guarantee on the constraint-satisfaction

of these methods in finite time. Distributed optimization

methods, on the other hand, rely on the explicit exchange

of information between neighboring controllers in com-

puting reactive power injections from PV inverters [17]–

[23]. Given the satisfaction of certain requirements on

the communication network specific to the optimization

method being used, the sequence of reactive power injec-

tion profiles computed using these distributed optimization

methods is guaranteed to converge asymptotically to a

globally optimal solution of the OPF problem.

The aforementioned methods rely on a static OPF for-

mulation of the reactive power control problem. In partic-

ular, the resulting OPF problem is parameterized by static

demand and PV active power supply data. As a result,

the implementation of these methods requires that demand

and PV active power supply remain constant within the

time interval during which the resulting optimal control

is applied. Such an assumption is likely to be violated in

practice, as demand and PV active power supply might

vary at a time-scale that is much faster than the time-

scale needed for the computation and communication of

the control inputs. This problem is partially addressed

in [24], in which the system disturbance is treated as a

random vector, and the optimal open-loop PV reactive

power injections are computed to minimize the expected

cost of serving demand. However, the performance of

the resulting controller might be poor due to absence of

feedback.

Contribution: The setting we consider entails the de-

centralized reactive power control of PV inverters spread

throughout a radial distribution network, subject to un-

certainty in demand and PV active power supply. Our

approach to the decentralized control of PV inverters

involves the offline design and the online implementation

of the decentralized controller. In the offline control de-

sign, our objective is to minimize the expected voltage

regulation error, while guaranteeing the robust satisfaction

of distribution system voltage magnitude and PV inverter

capacity constraints. The resulting decentralized control

design problem amounts to a robust convex program. In

the online implementation, we deploy the decentralized

controller at each individual inverter, and implement the

controller at a time-scale fast enough to counteract fluc-

tuations in demand and PV active power supply. Our

primary contributions are two-fold. First, we present a

systematic approach to the computation of decentralized

affine controllers via the solution of a finite-dimensional

conic program.1 In particular, this approach to the compu-

1It should be noted that, subsequent to the initial submission of the
present paper, Jabr in [25] has independently proposed a similar approach
to the design of affine disturbance-feedback control laws for PV inverters
under a different linear approximation of the AC power flow equations.

tation of decentralized controllers does not require a priori

knowledge of the demand and PV active power supply

realizations. Second, we provide a method to implement

the decentralized affine controller over arbitrarily fast time-

scales (up to seconds). The proposed method is guaran-

teed to yield trajectories of PV inverter reactive power

injections and nodal voltage magnitudes that are robustly

feasible.

Organization: The remainder of this paper is organized

as follows. Section II describes the distribution network,

load, and PV inverter models. Section III formulates

the decentralized control design problem, and presents

a method to compute the optimal decentralized affine

controller via the solution of a finite-dimensional conic

program. Section IV describes an approach to enable real-

time implementation of the decentralized affine controller.

Section V demonstrates the proposed techniques with a

numerical study of the IEEE 123-node test feeder. Section

VI concludes the paper.

Notation: Let R denote the set of real numbers. For

two real numbers a ≤ b, Uni [a, b] denotes the uniform

distribution on [a, b]. We denote by In the n-by-n identity

matrix, by 0m×n the m-by-n zero matrix, and by 1m×n the

m-by-n matrix of all ones. Subscripts are omitted when the

underlying matrix dimension is clear from the context. We

denote the trace of a square matrix A by Tr (A). We denote

the Kronecker product operator by ⊗. Finally, we denote

by K a proper cone (i.e., convex, closed, and pointed with

a nonempty interior). Let K∗ denote its dual cone. We

write x �K y to indicate that x− y ∈ K. For a matrix A
of appropriate dimension, A �K 0 denotes its columnwise

inclusion in K.

II. NETWORK AND RESOURCE MODELS

A. Branch Flow Model

Consider a radial distribution network whose topol-

ogy is described by a rooted tree G = (V, E), where

V = {0, 1, .., n} denotes its set of nodes, and E its set

of (directed edges) distribution lines. In particular, node

0 is defined as the root of the network, and represents

the substation that connects to the external power system.

Each directed distribution line admits the natural orienta-

tion, i.e., away from the root. For each distribution line

(i, j) ∈ E , we denote by rij + ixij its impedance, whose

real and imaginary parts are both assumed to be strictly

positive. In addition, define Iij as the complex current

flowing from node i to j, and pij + iqij as the complex

power flowing from node i to j. For each node i ∈ V , let

vi denote its voltage magnitude, and pi + iqi the complex

power injection at this node. We assume that the voltage

magnitude v0 at the substation is fixed and known.

We employ the branch flow model proposed in [26], [27]

to describe the steady-state, single-phase AC power flow
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equations associated with this radial distribution network.

In particular, for each node j = 1, . . . , n, and its unique

parent i ∈ V , we have

−pj = pij − rij`ij −
∑

k:(j,k)∈E

pjk, (1)

−qj = qij − xij`ij −
∑

k:(j,k)∈E

qjk, (2)

v2j = v2i − 2(rijpij + xijqij) + (r2ij + x2
ij)`ij , (3)

`ij = (p2ij + q2ij)/v
2
i , (4)

where `ij = |Iij |
2. We note that the branch flow model is

well defined only for radial distribution networks, as we

require that each node j (excluding the substation) have a

unique parent i ∈ V .

For the remainder of the paper, we consider a linear

approximation of the branch flow model (1)–(4) based on

the Simplified Distflow method developed in [28]. The

derivation of this approximation relies on the assumption

that `ij = 0 for all lines (i, j) ∈ E , as the power losses

on distribution lines are considered to be small relative

to the power flows. According to [16], [29], such an

approximation tends to introduce a relative model error of

1–5% in calculating power flows for practical distribution

networks. Under this assumption, Eqs. (1)–(3) can be

simplified to

−pj = pij −
∑

k:(j,k)∈E

pjk, (5)

−qj = qij −
∑

k:(j,k)∈E

qjk, (6)

v2j = v2i − 2(rijpij + xijqij). (7)

The linearized branch flow Eqs. (5)–(7) can be written

more compactly as

v2 = Rp+Xq + v201. (8)

Here, v2 = (v21 , .., v
2
n), p = (p1, .., pn), and q = (q1, .., qn)

denote the vectors of squared nodal voltage magnitudes,

real power injections, and reactive power injections, re-

spectively. The matrices R,X ∈ R
n×n are defined ac-

cording to

Rij = 2
∑

(h,k)∈Pi∩Pj

rhk,

Xij = 2
∑

(h,k)∈Pi∩Pj

xhk,

where Pi ⊂ E is defined as the set of edges on the unique

path from node 0 to i. As is shown in [16], the matrices

R and X are guaranteed to be positive definite, since the

resistance and reactance of each distribution line are both

strictly positive. In particular, the positive definiteness of

the matrix X guarantees the uniqueness of the optimal

solution to the robust convex program that we analyze in

Section III.

For the remainder of this paper, we impose voltage

magnitude constraints of the form

v2 ≤ v2 ≤ v2, (9)

where the allowable range of squared voltage magnitudes

is defined by the lower and upper limits v2, v2 ∈ R
n.

B. Photovoltaic Inverter Model

We consider a distribution system consisting of n photo-

voltaic (PV) inverters whose reactive power injections can

be actively controlled. For the inverter at node i (excluding

the substation), we denote by ξIi + iqIi its complex power

injection, and sIi its nameplate apparent power capacity.

Due to the intermittency of solar irradiance, we will

model the active power injection ξIi as a random variable,

whose precise specification is presented in Section II-D.

Additionally, we assume that the maximum value of the

random variable ξIi is fixed and known, which we denote

by pIi . Clearly, it must hold that pIi ≤ sIi . We require that

the reactive power injections respect capacity constraints

of the form:

∣

∣qIi
∣

∣ ≤

√

sIi
2
− ξIi

2
, i = 1, . . . , n. (10)

In the sequel, it will be convenient to work with a

polyhedral inner approximation of the set of feasible com-

plex power injections from the PV inverter. Namely, we

consider the following inner approximation to constraint

(10):

|qIi | ≤ sIi − aiξ
I
i , (11)

where the coefficient ai is defined according to

ai =

(

sIi −

√

sIi
2
− pIi

2
)/

pIi .

Constraint (11) approximates the set of feasible complex

power injections from the PV inverter from within as a

trapezoid. We provide a graphical illustration of this inner

approximation in Figure 1(b). The constraints in (11) can

be equivalently expressed in vector form as

|qI | ≤ sI −AξI .

Here, ξI = (ξI1 , . . . , ξ
I
n), qI = (qI1 , . . . , q

I
n), and sI =

(sI1, . . . , s
I
n) denote the vectors of active power injections,

reactive power injections, and nameplate apparent power

capacities of PV inverters, respectively. Also, |qI | denotes

the element-wise absolute value of the vector qI . The

matrix A is defined as A = diag(a1, . . . , an).
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Fig. 1: The above plots depict an inverter’s range of

feasible complex power injections (in gray) as specified

by (a) the original quadratic constraints (10) and (b) the

inner linear constraints (11).

C. Load Model

Each node in the distribution network (apart from the

substation) is assumed to have a constant power load.

Accordingly, we denote by ξpi ∈ R and ξqi ∈ R the

active and reactive power demand, respectively, at node

i. To accommodate a priori uncertainty in realizations of

active and reactive power demand, we model them as

random variables—their precise specification is presented

in Section II-D. The nodal active and reactive power

balance equations can be expressed as

pi = ξIi − ξpi ,

qi = qIi − ξqi ,

where pi ∈ R and qi ∈ R denote the net active and reac-

tive power injections, respectively, at node i ∈ {1, . . . , n}.

D. Uncertainty Model

As indicated earlier, we model the active power demand,

reactive power demand, and PV active power supply as

random variables. As a notational convention, we represent

random vectors in boldface, and represent their realizations

in normal face. Accordingly, we associate with each node

i a local disturbance defined as ξi = (ξpi , ξ
q
i , ξ

I
i ), which

takes value in R
3. We define the system disturbance

according to the random vector

ξ = (1, ξ1, . . . , ξn), (12)

which takes value in R
Nξ , where Nξ = 1+3n. Note that,

in our specification of the system disturbance ξ, we have

included a constant scalar as its initial component. Such

notational convention will prove useful in simplifying the

specification of affine control policies in the sequel.

We assume that the system disturbance ξ has support

Ξ that is a nonempty and compact subset of R
Nξ , repre-

sentable as

Ξ = {ξ ∈ R
Nξ | e>1 ξ = 1 and Wξ �K 0},

where the matrix W ∈ R
`×Nξ is known, and e1 is the

first standard basis vector in R
Nξ . It follows from the

compactness of Ξ that the second-order moment matrix

M = E

[

ξξ>
]

is finite-valued. We assume, without loss of generality, that

M is a positive definite matrix. We emphasize that our

specification of the system disturbance ξ captures a large

family of disturbances, including those whose support can

be described as the intersection of polytopes and ellipsoids.

III. DECENTRALIZED CONTROL DESIGN VIA CONVEX

OPTIMIZATION

We now describe our approach to the decentralized

reactive power control of PV inverters. Specifically, we

restrict our attention to the setting in which the reactive

power injections from PV inverters are determined accord-

ing to a decentralized affine disturbance-feedback control

policy. That is, each PV inverter determines its reactive

power injection according to an affine function of its local

disturbance. Our objective is to minimize the expected

voltage regulation error, subject to network voltage mag-

nitude and PV inverter capacity constraints.2 The resulting

decentralized control design problem amounts to a robust

convex program. We show that its optimal solution can be

computed by solving a finite-dimensional conic program.

A. Controller Information Structure

The controller information structure we consider in

this paper is such that each PV inverter determines its

reactive power injection based only on its measurements

of local disturbance.3 That is, we restrict ourselves to

fully decentralized disturbance-feedback controllers. The

determination of an optimal decentralized controller re-

quires the solution of an infinite-dimensional optimization

problem (cf. [31]), and is, in general, computationally

intractable. We thus resort to approximation, and consider

decentralized controllers that are affine in the system

disturbance.4 Specifically, we consider decentralized affine

controllers of the form

qI
i = qIi +QI

i ξi,

2We note that the control design methodology proposed in this paper
is general enough to accommodate power loss minimization objectives
as well. We omit this treatment for the sake of brevity.

3For the ease of exposition, we assume that each PV inverter has access
to perfect measurements of its local disturbance. We remark, however,
that all our subsequent results can be generalized to the setting in which
each PV inverter has partial linear observations of its local disturbance.
We refer the readers to [30] for a detailed treatment of such problems.

4We note that it is possible to improve the performance of the
decentralized controller computed in this paper by enlarging the set
of admissible decentralized controllers. One example is to consider
decentralized controllers that are polynomial or piecewise affine in the
system disturbance.
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for each node i = 1, . . . , n. Here, qIi ∈ R represents the

open-loop component of the local control, and QI
i ∈ R

1×3

is the feedback control gain matrix. We write this affine

controller more compactly as

qI = QIξ, (13)

where the matrix QI ∈ R
n×Nξ is given by

QI =







qI1 QI
1

...
. . .

qIn QI
n






. (14)

We denote by S ⊆ R
n×Nξ the linear subspace of all

matrices of the form specified by Eq. (14). Clearly, a

matrix QI ∈ R
n×Nξ corresponds to a decentralized affine

controller if and only if QI ∈ S.

B. Design of Disturbance-feedback Affine Controllers

Our objective is to design a decentralized affine con-

troller that minimizes the expected voltage regulation error,

while guaranteeing the satisfaction of network voltage

magnitude and PV inverter capacity constraints for all

possible realizations of the system disturbance ξ. In what

follows, we formulate the resulting decentralized control

design problem as a robust convex program. In Theorem 1,

we show that its optimal solution can be computed via the

solution of an equivalent finite-dimensional conic program.

We first specify the affine map, which relates the system

disturbance to the vectors of nodal active and reactive

power injections. Namely, under the decentralized affine

controller specified according to Eq. (13), we have

p = Pξ, (15)

q = Qξ +QIξ, (16)

where the matrices P and Q are given by

P =
[

0 In ⊗
[

−1 0 1
]

]

,

Q =
[

0 In ⊗
[

0 −1 0
]

]

.

We measure the performance of a decentralized affine

controller according to the expected Euclidean distance

between the desired and the induced vector of squared

voltage magnitudes. In particular, we define the desired

vector of voltage magnitudes as vi = v0 for all i ∈ V .

Accordingly, we define the decentralized control design

problem as:

minimize E

[

∥

∥v2 − v201
∥

∥

2

2

]

subject to QI ∈ S,

v2 = Rp+Xq + v201,

p = Pξ,

q = Qξ +QIξ,

|QIξ| ≤ sI −AξI

v2 ≤ v2 ≤ v2

}

∀ξ ∈ Ξ,

(17)

where the decision variables are the matrix QI and the

random vectors v2, p, and q. In what follows, we write

problem (17) more concisely by eliminating the decision

variables v2, p, and q. First note that v2 can be equiva-

lently written as the following affine function of the system

disturbance ξ:

v2 = V ξ + v201, (18)

where the matrix V ∈ R
n×Nξ is given by

V = RP +XQ+XQI .

Additionally, we represent the m = 4n robust linear

constraints in problem (17) more succinctly as

FQIξ +Gξ ≤ 0 (19)

where the matrices F and G can be constructed from the

underlying problem data. Their exact specification is given

in Appendix A. We can now write problem (17) more

compactly as

minimize E

[

‖V ξ‖
2
2

]

subject to QI ∈ S, V ∈ R
n×Nξ ,

V = RP +XQ+XQI ,

FQIξ +Gξ ≤ 0 ∀ξ ∈ Ξ.

(20)

The decentralized control design problem (20) amounts

to a robust convex program, which can be solved offline.

The decentralized affine control policy computed accord-

ing to problem (20) can then be implemented online in

a fully decentralized fashion without requiring explicit

communication between PV inverters. We refer the reader

to Section IV for a detailed description of the online

controller implementation.

C. Conic Programming Reformulation

The robust convex program (20) is seemingly intractable

due to the infinite number of linear constraints that must be

enforced. However, given our assumption that the support

Ξ of the system disturbance admits a conic representation,

one can leverage on strong duality of conic linear programs
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to equivalently reformulate the robust convex program

(20) as a finite-dimensional conic program—a classical

technique from robust optimization. Specifically, one can

prove the following result using [32, Thm. 3.2], and the

fact that E[‖V ξ‖
2
2] = E[Tr(V >V ξξ>)] = Tr(V >VM).

Theorem 1. Let QI∗ be an optimal solution to the

following finite-dimensional conic program:

minimize Tr
(

MV >V
)

subject to QI ∈ S, V ∈ R
n×Nξ ,

Π ∈ R
`×m, ν ∈ R

m
+ ,

V = RP +XQ+XQI ,

FQI +G+ νe>1 +Π>W = 0,

Π �K∗ 0.

(21)

It follows that QI∗ is an optimal solution to problem (20).

Several comments are in order. First, the specification

of the conic program (21) relies on the probability dis-

tribution of the disturbance ξ only through its support Ξ
and second-order moment matrix M . Second, this conic

program can be efficiently solved for a variety of cones K,

including polyhedral and second-order cones. In particular,

problem (21) amounts to a quadratic program if K is a

polyhedral cone, and a second-order cone program if K is

a second-order cone.

IV. REAL-TIME CONTROLLER IMPLEMENTATION

The implementation of the controller designed accord-

ing to Theorem 1 relies on the assumption that the statistics

of the system disturbance remain unchanged within the

time interval during which the decentralized controller is

deployed and implemented. This assumption might not

hold in practice. In what follows, we present a method

to the offline design and online implementation of the

decentralized controller, when the statistics of the system

disturbance vary at an (arbitrarily) fast time-scale. In the

offline design, we compute the decentralized controller via

the solution of a robust convex program, which takes into

account the time variation in the statistics of the system

disturbance. In the online implementation, the controller

we design yields reactive power injection profiles that are

guaranteed to robustly satisfy the network voltage and

inverter capacity constraints at the fast time-scale.

A. Real-time System Disturbance Model

We begin by describing the real-time system disturbance

as a discrete-time stochastic process over time periods

indexed by t = 1, 2, . . . . Each discrete time period is

defined over a time interval of length ∆. Accordingly,

we denote by ξ(t) the system disturbance during time

period t, which is modeled as a random vector with known

second-moment and support. Similar to our development

of the uncertainty model in Section II-D, we assume that

the random vector ξ(t) has support Ξ(t) that is convex,

compact, and representable as

Ξ(t) = {ξ(t) ∈ R
Nξ | e>1 ξ(t) = 1 and W (t)ξ(t) �K 0},

where the matrix W (t) ∈ R
`×Nξ is known. The second-

order moment matrix of the random vector ξ(t)

M(t) = E
[

ξ(t)ξ(t)>
]

is assumed to be positive definite and finite-valued.

B. Control Design to Enable Real-time Implementation

The support and second-order moment matrix of the

system disturbance might vary at a fast time-scale of

seconds to minutes. In general, this corresponds to a

time interval that is much shorter than the time interval

during which a decentralized controller is deployed and

implemented. In order to ensure its robust constraint

satisfaction in real-time, the decentralized controller needs

to be designed in anticipation of the non-stationarity in the

statistics of the underlying system disturbance. In what

follows, we formally present the problem of designing a

static robust decentralized controller that is implemented

over multiple discrete time periods. Its optimal solution

can be calculated via the solution of a finite-dimensional

conic program.

More specifically, consider the problem of designing a

decentralized affine controller that is implemented over

discrete time periods t = 1, . . . , T . Our objective is to

minimize the sum of expected voltage regulation error over

the T time periods, while guaranteeing the robust satisfac-

tion of network voltage and inverter capacity constraints.

This amounts to the following robust convex program:

minimize E

[

T
∑

t=1

‖V ξ(t)‖
2
2

]

subject to QI ∈ S, V ∈ R
n×Nξ ,

V = RP +XQ+XQI ,

FQIξ +Gξ ≤ 0 ∀ξ ∈

T
⋃

t=1

Ξ(t).

(22)

A challenge in the solution of robust program (22) derives

from the potential non-convexity in the uncertainty set
⋃T

t=1 Ξ(t). In Theorem 2, we show that problem (22)

admits an equivalent reformulation as a finite-dimensional

conic program. Its proof mirrors on that of Theorem 1,

and is, therefore, omitted due to space constraints.
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Fig. 3: The above figure depicts the expected total system

load (active and reactive power) trajectories.

TABLE I: Specification of system data.

Feeder specifications

Base voltage magnitude 4.16 kV

Substation voltage magnitude v0 = 1 (per-unit)

Voltage magnitude constraints v = 0.95 · 1, v = 1.05 · 1 (per-unit)

PV inverter at node i

Apparent power capacity sI
i
= 1 (MVA)

Max active power supply pI
i
(t) = max

{

0.8 sin
(

∆πt

720
− π

2

)

, 0
}

Active power supply ξI
i
(t) ∼ Uni [0, pI

i
(t)] (MW)

The exact specification of the nodal demand processes is

omitted due to space constraints. Additionally, we assume

that for each discrete time period t, the system disturbance

ξ(t) consists of Nξ random variables that are mutually

uncorrelated.

We assume that the system disturbance stays constant

in every 2-minute interval. Accordingly, each discrete time

period corresponds to a time interval of length ∆ = 2
minutes. The decentralized affine controllers we use are

computed according to Corollary 1. The decentralized

affine controller is updated every 10 minutes by the central

computer.

B. Numerical Results and Discussion

We begin by demonstrating the effectiveness of the pro-

posed decentralized affine controller in regulating voltage.

We do so by comparing the nodal voltage trajectories in

the distribution system with and without control. In Figure

4(a), we plot a particular realization and the empirical

confidence interval of the trajectories of nodal voltage

magnitudes that materialize under the decentralized con-

troller computed according to Corollary 1. In Figure 4(b),

we plot their uncontrolled counterparts. First, note that

in the uncontrolled distribution system, the large amount

of active power supply from PV inverters manifests in

overvoltage in the distribution network. Additionally, the

nodal voltage magnitudes in the uncontrolled distribution

system exhibit large fluctuations as a consequence of the

large fluctuation in the active power supplied from PV

inverters. On the contrary, the nodal voltage magnitudes

in the controlled distribution network are always feasible,

and are regulated close to 1 per-unit throughout the entire

day with high probability.

In Figure 5, we illustrate the behavior of the trajectories

of PV reactive power injections generated by the decen-

tralized controller. First, notice that the reactive power in-

jections from PV inverters exhibit large fluctuations during

the daytime hours. This is a consequence of the large fluc-

tuations in the active power supplied from PV inverters.

In particular, an increase in active power supplied from

PV inverters increases the voltage magnitudes across the

network. In order to suppress the rise and fall in voltage,

the decentralized affine controller generates reactive power

injections from PV inverters that are negatively correlated

with their active power supply. More interestingly, there is

a dip in the maximum reactive power consumption from

PV inverters during the middle of the day. Note that the

active power supply from PV inverters is at peak during

the middle of the day. This serves to limit the reactive

power capacity available to the PV inverter during those

times. As a result, the reactive power capacity constraint

(11) is binding during the middle of the day, which leads

to the dip in the maximum reactive power being absorbed

by the PV inverters.

VI. CONCLUSION

In this paper, we consider the decentralized reactive

power control of photovoltaic (PV) inverters to regulate

distribution system voltage profile subject to voltage mag-

nitude and PV inverter capacity constraints. Our approach

involves the offline design and the online implementation

of the decentralized controller. In the offline control de-

sign, we devise a method to compute a decentralized affine

controller through the solution of a finite-dimensional

conic program. In the online implementation, the resulting

affine controller can be implemented over a fast time-

scale, and yields nodal voltage and PV reactive power

injection trajectories that are guaranteed to be feasible for

all realizations of the system disturbance. We demonstrate

the ability of our control design technique to regulate

voltage profile effectively with a study of the IEEE 123-

node test feeder.

There are several interesting directions for future work.

For example, a practical drawback of our approach is

its explicit reliance on the assumption of constant power

loads. Such a load model does not capture the class of

voltage-dependent loads, e.g., heating and lighting loads,

induction motors, and shunt capacitors. In the future, it

would be of interest to extend the formulation in this

paper to accommodate a mixture of constant power and

voltage-dependent loads. Additionally, all of our results
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(a) Nodal voltage magnitudes in a controlled distribution system.
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(b) Nodal voltage magnitudes in an uncontrolled distribution system.

Fig. 4: The figures in the first and third rows depict a particular realization of nodal voltage magnitude trajectories

in (a) a controlled distribution system operated under the decentralized affine controller, and (b) an uncontrolled

distribution system. The figures in the second and fourth rows depict the empirical confidence intervals associated with

these trajectories. The empirical confidence intervals are estimated using 500 independent realizations of the system

disturbance. The black dashed lines specify voltage magnitudes limits.
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Fig. 5: The figures in the first row depict a particular realization of the PV reactive power injection trajectories at node

7, 250, and 110, respectively. The figures in the second row depict the empirical confidence intervals associated with

these trajectories. They are estimated using 500 independent realizations of the system disturbance.
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rely on the assumption that the distribution system is three-

phase balanced. Such an assumption is unlikely to hold in

practice. It would be of interest to extend our techniques

to accommodate unbalanced distribution systems.
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APPENDIX A

MATRIX DEFINITIONS

The matrices F and G used in Eq. (19) are specified

according to

F =









X

−X

In
−In









,

G =











v201− v2 0

v2 − v201 0

−sI A⊗
[

0 0 1
]

−sI A⊗
[

0 0 1
]











+









RP +XQ

−(RP +XQ)

0

0









.
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