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Robust AC Optimal Power Flow
Raphael Louca Eilyan Bitar

Abstract—There is a growing need for new optimization
methods to facilitate the reliable and cost-effective operation
of power systems with intermittent renewable energy resources.
In this paper, we formulate the robust AC optimal power flow
(RAC-OPF) problem as a two-stage robust optimization problem
with recourse. This problem amounts to a nonconvex infinite-
dimensional optimization problem that is computationally in-
tractable, in general. Under the assumption that there is ad-
justable generation or load at every bus in the power transmission
network, we develop a technique to approximate RAC-OPF from
within by a finite-dimensional semidefinite program by restricting
the space of recourse policies to be affine in the uncertain
problem data. We establish a sufficient condition under which
the semidefinite program returns an affine recourse policy that is
guaranteed to be feasible for the original RAC-OPF problem. We
illustrate the effectiveness of the proposed optimization method
on the WSCC 9-bus and IEEE 14-bus test systems with different
levels of renewable resource penetration and uncertainty.

I. INTRODUCTION

The AC optimal power flow (AC-OPF) problem is a funda-

mental decision problem that is at the heart of power system

operations [2]. AC-OPF is a nonconvex optimization problem,

where the objective is to minimize the cost of generation

subject to power balance constraints described by Kirchhoffs

current and voltage laws, and operational constraints reflecting

real and reactive limits on power generation, bus voltage

magnitudes, and power flows along transmission lines. It is

also common to enforce contingency constraints to ensure that

the power system can withstand sudden disturbances, such as

generator or line outages [3]. The nonconvexity of the AC-

OPF problem is in part due to the need to enforce quadratic

constraints, which are indefinite in the vector of complex

bus voltages. The treatment of such nonconvexities in AC-

OPF has traditionally relied on the use of local constrained-

optimization methods, or the use of approximate linear models

of power flow (e.g., DC-OPF) to convexify the feasible region

of the underlying optimization problem [4]. More recently,

considerable effort has been made to identify conditions under

which an optimal solution to AC-OPF can be obtained from

a solution to its semidefinite programming relaxation [4]–[7].

According to the US Federal Energy Regulatory Commission,

a 5% increase in the efficiency of algorithms for AC-OPF will

yield six billion dollars in savings per year in the United States

alone [8].
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Recently, growing concerns about climate change have led

many US states to implement policies, which require that a

large fraction of their electricity come from renewable energy

resources such as wind and solar. A fundamental challenge

facing the deep integration of such resources stems from the

need to accommodate the intrinsic uncertainty in their power

supply. Doing so efficiently will require the development of

robust optimization methods for the AC optimal power flow

(AC-OPF) problem. In its most elemental formulation, the

robust AC optimal power flow (RAC-OPF) problem gives

rise to a two-stage robust optimization problem, in which

the system operator must determine a day-ahead generation

schedule that minimizes the expected cost of dispatch, given

an opportunity for recourse to adjust its day-ahead schedule

in real-time when the uncertain system variables have been

realized (e.g., the power that can be supplied from wind

and solar resources). The RAC-OPF problem is a nonconvex,

infinite-dimensional optimization problem in its most general

form due to the nonconvexity of the underlying AC power

flow constraints, and the need to optimize over an infinite-

dimensional recourse policy space.

Related Work: In order to treat the nonconvexity of the

RAC-OPF problem, a large fraction of the literature prescribes

techniques that rely on a DC linear approximation of the

power flow model [9]–[18]. The computational intractabil-

ity associated with the need to optimize over an infinite-

dimensional recourse policy space is predominantly addressed

by employing affine or piecewise-affine approximations of

the recourse policy space [9]–[21]. Lastly, both robust [10],

[11], [14], [18], [19], [22] and chance-constrained [9], [15]–

[17], [21], [23] formulations have been proposed to treat the

uncertainty in the constraints, which define the RAC-OPF

problem. As the title of this paper suggests, we adopt a robust

approach to constraint satisfaction.

The chance-constrained paradigm assigns a distribution to

the uncertain variables, and the system constraints are enforced

up to a prespecified probability level. The procurement of such

distributions, however, is challenging as distributions describ-

ing uncertain power system parameters, such as renewable

energy generation, can be difficult to identify [24]. In order

to account for the potential inaccuracy in the specification

of the underlying distribution, the authors of [25] consider

ambiguous chance constraint formulations using DC power

flow models. Under this paradigm, the underlying distribution

is assumed to belong to a closed ball centered around a known

distribution. An alternative treatment of ambiguous chance

constraints is provided in [26]. In addition to the basic diffi-

culty inherent to the identification of an accurate distributional

model, chance constraints do not explicitly account for the

magnitude of constraint violations when they occur—however

small their a priori specified probability. To account for this,
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the conditional value at risk (CVaR) is commonly used in place

of chance constraints to promote solutions that minimize the

expected magnitude of such constraint violations [16], [17]. In

contrast to the chance-constrained paradigm, robust optimiza-

tion takes a deterministic approach to uncertainty modeling.

In particular, the uncertain parameters are assumed to vary in

a known and bounded uncertainty set. A robust solution is

one that optimizes the objective function and remains feasible

for any realization of the uncertain parameters in the given

set. This immunity of robust solutions, however, comes at

the expense of potential conservatism in their performance.

Under certain mild assumptions, robust linear constraints aris-

ing in approximate DC power flow models admit equivalent

reformulations as finite-dimensional conic linear constraints

[10]. In general, however, robust nonlinear constraints, which

arise in AC power flow models, do not admit such equivalent

reformulations. The predominant approach to their treatment

relies on scenario or sample-based approximation techniques

[27], which give rise to outer approximations (relaxations) of

the robustly feasible set.
Summary of Results: In this paper, we formulate RAC-OPF

as a two-stage robust optimization problem with recourse. The

formulation considered departs from the majority of the extant

literature given its treatment of the full AC power flow model.

To our knowledge, the only other papers in the literature that

treat the AC model in the robust optimization framework

are [19], [21], [22], [28]. They address the nonconvexity,

which arises from the AC power flow equations, by means

of a convex (second-order cone or semidefinite) relaxation.1

A crucial assumption made in these papers is the exactness of

their convex relaxations. Exactness of such relaxations for the

RAC-OPF problem is not guaranteed, and, in particular, the

solutions generated by these relaxations are not guaranteed to

be feasible for RAC-OPF. In this paper, we adopt an approach

that relies on the restriction of the space of recourse policies

to those which are affine in the uncertain problem data. Under

this restriction and the assumption that there is adjustable

generation or load at every bus in the power transmission

network, we develop a technique to approximate the RAC-

OPF problem from within by a finite-dimensional semidefinite

program. We establish a sufficient condition under which the

resulting semidefinite program—a convex inner approximation

to RAC-OPF—yields recourse policies, which are guaranteed

to be feasible for RAC-OPF.
Organization: The paper is organized as follows. In Sec-

tions II and III, we develop the power system model and

provide a detailed formulation of RAC-OPF, respectively. In

Section IV, we offer a detailed derivation of the semidefinite

programming inner approximation of RAC-OPF, and provide

a sufficient condition under which the resulting approxima-

tion is guaranteed to have a nonempty feasible region. In

Section V, we describe an iterative optimization method that

generates a sequence of feasible affine recourse policies with

nonincreasing costs. Finally, we illustrate the effectiveness of

the proposed optimization method on the WSCC 9-bus and

1We refer the reader to [4], [6], [7] for a detailed derivation and analysis
of semidefinite and second-order cone relaxations for the deterministic (zero-
recourse) AC-OPF problem.

IEEE 14-bus power systems with different levels of renewable

resource penetration and uncertainty. Section VII concludes

the paper. Detailed proofs for the theoretical results contained

in this paper can be found in an online companian to this paper

[29].
Notation: Let R, C, and N denote the set of real, complex,

and natural numbers, respectively. Given m ∈ N, define the set

of natural numbers from 1 to m by [m] := {1, 2, . . . ,m}. Let

ei denote the real ith standard basis vector, whose dimension

will be apparent from the context. Given any pair of complex

numbers z1, z2 ∈ C, we write z1 ≤ z2 if and only if Re{z1} ≤
Re{z2} and Im{z1} ≤ Im{z2}. Given a matrix X ∈ Cm×n,

we denote its conjugate transpose by X∗, and its (i, j) entry by

[X]ij . Given a matrix X ∈ Rm×n, we denote its transpose by

XT and use X ≥ 0 to specify that X is entrywise nonnegative.

We denote the trace of a matrix X by tr(X). Denote by In the

n×n identity matrix. Denote by Hn the set of n×n Hermitian

matrices. We use X � 0 to specify that the matrix X ∈
Hn is positive semidefinite. Finally, let L2

k,n denote the space

of all square-integrable, Borel measurable functions from Rk

to Cn. A complex-valued function f on Rk is said to be

Borel measurable if both Re{f} and Im{f} are real-valued

Borel measurable. We summarize frequently used symbols and

variables in Appendix C.

II. POWER SYSTEM MODEL

In this Section, we develop the robust AC optimal power

flow (RAC-OPF) problem. We consider a power system con-

sisting of a heterogeneous mix of generators, which differ

in terms of their predictability and controllability. We adopt

the perspective of the independent system operator (ISO),

whose aim is to dispatch generators in order to minimize the

expected cost of serving demand, while respecting generation

and transmission capacity constraints—an optimization prob-

lem that belongs to the class of security-constrained optimal

power flow problems. We consider an optimization model that

consists of two stages: day-ahead (DA) and real-time (RT). In

the day-ahead stage, the ISO determines an initial dispatch of

generators subject to uncertainty in certain system variables,

e.g., the supply that will be available from renewable energy

resources in real-time. Day-ahead scheduling decisions are

critical, as certain generators (e.g., nuclear and coal) have

ramping constraints that limit the extent to which they can

adjust their power output in real-time. Accordingly, such

ramp-constrained generators must be scheduled to produce

well in advance of the delivery time, and, therefore, prior

to the realization of certain a priori uncertain variables, e.g.,

wind power availability. In the real-time stage, all a priori

uncertain variables are realized, and the ISO is given a

recourse opportunity to adjust its DA schedule to balance the

system at minimum cost. The ramping constraints dictate the

extent to which each generator can adjust its power output

around its day-ahead set-point in real-time. Essentially, the

calculation of a DA schedule that minimizes the expected

cost of generation—subject to optimal recourse in real-time—

entails the solution of a robust optimization problem with

recourse. We provide a precise formulation of this problem

in Section III.
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A. AC Power Flow Model

We consider a power transmission network described by an

undirected graph G := (V, E). The set of vertices V := [n]
index the transmission buses, and the set of edges E ⊆ V ×V
index the transmission lines between buses. We assume that

(j, i) ∈ E if and only if (i, j) ∈ E .

The AC power flow equations are formulated according to

Kirchhoff’s voltage and current laws, which relate bus power

injections to voltages [30]. We denote by Y ∈ Cn×n the bus

admittance matrix, s ∈ Cn the vector of complex (net) bus

power injections (generation minus demand), and v ∈ Cn

the vector of complex bus voltages. The AC power balance

equations are given by

si = vHSiv, (1)

where Si := Y Heie
T
i for all i ∈ V . For each line (i, j) ∈ E ,

we denote by sij ∈ C the complex power flow from bus i to

bus j. It satisfies

sij = vHSijv, (2)

where Sij := eie
T
i (ŷij/2−[Y ]ij)

H+eje
T
i [Y ]Hij for all (i, j) ∈

E . Here, ŷij ∈ C represents the total shunt admittance of line

(i, j).
We require that the following constraints be enforced. The

first set of constraints limit the range of acceptable voltage

magnitudes at each bus i ∈ V ,

vmin
i ≤ |vi| ≤ vmax

i ,

where vmin
i ∈ R and vmax

i ∈ R denote lower and upper

limits, respectively, on the voltage magnitude of bus i. We

also consider active power flow capacity constraints on the

transmission lines. Namely, for each transmission line (i, j) ∈
E , the active power flow from bus i to bus j is required to

satisfy

−`max
ij ≤ vHPijv ≤ `max

ij .

Here, we define Pij := (Sij + SH
ij )/2, and let `max

ij ∈ R

denote the active power flow capacity of transmission line

(i, j). We note that—within the framework of this paper—it

is also possible to accommodate transmission line constraints

that limit the magnitude of the current flowing through a line,

as these also give rise to quadratic inequality constraints in

the vector of complex bus voltages. The treatment of apparent

power flow constraints, however, is beyond the scope of the

present paper, as these amount to quartic inequality constraints

in the vector of complex bus voltages.

B. Uncertainty Model

All of the ‘uncertain’ quantities appearing in this paper are

described according to the random vector ξ, which is defined

according to the probability space (Rk,B(Rk),P). Here, the

Borel σ-algebra B(Rk) is the set of all events that are assigned

probabilities by the measure P. We denote the first and second-

order moments of ξ by

µ := E[ξ] and M := E[ξξT ],

where E[·] denotes the expectation operator with respect to

P. Adopting a standard notational convention, we will use

ξ (normal face) to denote realizations taken by the random

vector ξ (bold face). We assume throughout the paper that the

support of the random vector ξ is nonempty, compact, and

representable as

Ξ := {ξ ∈ Rk | ξ1 = 1, ξTWjξ ≥ 0, j ∈ [`]}. (3)

Here, each matrix Wj ∈ Rk×k is defined according to

Wj :=

[
ωj wT

j

wj −ΩT
j Ωj

]
, (4)

where ωj ∈ R, wj ∈ Rk−1, and Ωj ∈ Rnj×(k−1) for some

nj ∈ N. It is important to note that the representation of

the support in (3) is general enough to describe any subset

of the hyperplane {ξ ∈ Rk | ξ1 = 1} that is defined

according to a finite intersection of arbitrary half spaces and

ellipsoids. We will occasionally refer to the support set Ξ
as the ‘uncertainty set’ associated with the random vector ξ.

Naturally, the particular specification of the uncertainty set will

depend on the specific nature of the uncertain quantities that

the random vector ξ is meant to capture, e.g., the maximum

active power that a wind generator is able to produce at a

node.

Some remarks regarding our uncertainty model are in order.

First, the requirement that ξ1 = 1 for all ξ ∈ Ξ is for notational

convenience, as it allows one to represent affine functions of

(ξ2, . . . , ξk) as linear functions of ξ. Second, it is important

to emphasize that all of the results contained in this paper

depend on the probability distribution of the random vector

ξ only through its support, mean, and second-order moment.

No additional information about the distribution is required.

The following mild technical assumption is assumed to hold

throughout the paper.

Assumption 1. There exists ξ ∈ Ξ such that ξTWjξ > 0 for

all j ∈ [`].

The assumption that the support set Ξ admits a strictly

feasible point will prove useful to the derivation of our

subsequent theoretical results, as it ensures that Ξ spans all

of Rk. This, in turn, guarantees that the second-order moment

matrix M is positive definite and invertible. We refer the reader

to [31, Prop. 2] for a proof of this claim.

C. Generator and Load Models

Load Model: The real-time demand for power at each bus

i ∈ V is assumed to be fixed and known. We denote it by

di ∈ C.

Generator Model: For ease of exposition, we assume

throughout the paper that there is at most a single generator

at each bus i ∈ V . We consider a generator model in which

the real-time (RT) supply of power, as determined by the ISO,

is allowed to depend on the realization of the random vector

ξ. Hence, we denote the power produced by generator i in

real-time by gi(ξ), where gi ∈ L2
k,1 is a recourse function

determined by the ISO for each generator i. The cost incurred
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by each generator i for producing gi(ξ) is assumed to be linear

in the active power produced. It is defined as

αiRe{gi(ξ)}, i ∈ V,

where αi ≥ 0 denotes the marginal cost of real power

generation at bus i ∈ V .

We consider a generator model in which the power capacity

available to each generator in real-time is allowed to be

uncertain day-ahead. Namely, the power produced by each

generator i ∈ V in real-time must satisfy

g
i
(ξ) ≤ gi(ξ) ≤ gi(ξ), i ∈ V. (5)

Here, g
i
∈ L2

k,1 and gi ∈ L2
k,1 denote lower and upper bounds

on the power produced by generator i in real-time. Such a

model is general enough to describe apriori uncertainty in

renewable power supply, as well as unscheduled generator

outages. We assume that the random generation capacities

satisfy

gmin
i ≤ g

i
(ξ) ≤ gi(ξ) ≤ gmax

i , i ∈ V.

Here, gmin
i ∈ C and gmax

i ∈ C denote the nameplate

minimum and maximum capacities of generator i, respectively.

The corresponding vectors are denoted by g(ξ), g(ξ), gmin,

and gmax.

In practice, generators have ramping constraints that limit

the extent to which they can adjust their power production in

real-time. We model the limited ramping capability of each

generator i according to the following pair of constraints

rmin
i ≤ gi(ξ)− g0i ≤ rmax

i , i ∈ V, (6)

where rmin
i ∈ C and rmax

i ∈ C represent the ramp-down

and ramp-up limits, respectively, associated with generator

i. Here, g0i ∈ C denotes generator i’s day-ahead (DA)

dispatch, also determined by the ISO. The DA dispatch of

each generator is required to satisfy its nameplate generation

capacity constraints given by

gmin
i ≤ g0i ≤ gmax

i , i ∈ V. (7)

Example 1 (Generator types). The generator model that we

consider in this paper captures a wide range of generator types.

We provide several important examples below. Let g0i be a DA

dispatch level satisfying (7). Generator i is said to be:

• Completely inflexible (e.g., nuclear) if its RT power output

is restricted to

gi(ξ) = g0i .

• Completely flexible (e.g., gas, oil) if its RT power output

is restricted to

gmin
i ≤ gi(ξ) ≤ gmax

i .

• Intermittent (e.g., wind, solar) if its RT power output is

restricted to

g
i
(ξ) ≤ gi(ξ) ≤ gi(ξ).

We state the following technical assumption, which requires

that the RT generation capacities exhibit a linear dependence

on the random vector ξ. Assumption 2 is required to hold for

the remainder of the paper.

Assumption 2. There exist matrices G ∈ Cn×k and G ∈
Cn×k such that g(ξ) = Gξ and g(ξ) = Gξ.

III. ROBUST AC OPTIMAL POWER FLOW

Building on the previously defined models, we formulate the

robust AC optimal power flow (RAC-OPF) problem as follows.

minimize E

[
n∑

i=1

αiRe{gi(ξ)}

]
(8)

subject to g0 ∈ Cn, g ∈ L2
k,n, v ∈ L2

k,n

gmin
i ≤ g0i ≤ gmax

i , i ∈ V

g
i
(ξ) ≤ gi(ξ) ≤ gi(ξ), i ∈ V





∀ ξ∈Ξ.

rmin
i ≤ gi(ξ)− g0i ≤ rmax

i , i ∈ V

gi(ξ)− v(ξ)HSiv(ξ) = di, i ∈ V

vmin
i ≤ |vi(ξ)| ≤ vmax

i , i ∈ V

|v(ξ)HPijv(ξ)| ≤ `max
ij , (i, j) ∈ E

As previously described, the RAC-OPF problem amounts to

a two-stage robust optimization problem with recourse. The

single-period formulation of RAC-OPF that we consider is

similar in structure to the single-period formulations studied

in [10], [19], [21], [32]. We briefly summarize the timing and

structure of the decision variables and constraints of the RAC-

OPF problem.

• The first-stage (day-ahead) decisions entail the determi-

nation of a DA generator dispatch g0 ∈ Cn subject to

optimal recourse in the second stage, which will adjust

the DA dispatch given a realization of the random vector

ξ.

• In the second-stage (real-time), the random vector ξ is

realized, and the ISO is given a recourse opportunity to

adjust its DA generator dispatch to balance the system

at minimum cost. The second-stage decision entails the

determination of the RT generator dispatch g ∈ L2
k,n and

the RT bus voltages v ∈ L2
k,n.

• All decisions must be jointly determined in such a manner

as to (i) minimize the expected cost of generation, and (ii)

guarantee that all system constraints are satisfied given

any realization ξ ∈ Ξ of the random vector ξ in real-

time, i.e., robust constraint satisfaction.

Remark 1 (Minimax formulation). While the formulation of

the RAC-OPF problem in (8) entails minimizing the expected

cost of generation, the computational methods and theoretical

results developed in Sections IV-V can be generalized to ac-

commodate a minimax formulation of the RAC-OPF problem,

which entails minimizing the maximum (worst-case) cost of

generation:

max
ξ∈Ξ

{
n∑

i=1

αiRe{gi(ξ)}

}
. (9)
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The resulting minimax formulation of the RAC-OPF problem

under the objective function (9) can be equivalently reformu-

lated to resemble (8) by putting it in its epigraph form.

A. Concise Formulation of RAC-OPF

It will be convenient to our analysis in the sequel to

work with a more concise representation of the RAC-OPF

problem. We do so by first eliminating the RT generator

dispatch variables g ∈ L2
k,n through their direct substitution

according to the nodal power balance equations. Second, by

redefining the DA generator dispatch g0 ∈ Cn as a real vector

x := [Re{g0}
T , Im{g0}

T ]T , one can rewrite problem (8) more

compactly in the following form:

minimize E
[
v(ξ)HA0v(ξ)

]
(P)

subject to x ∈ R2n, v ∈ L2
k,n

v(ξ)HAiv(ξ) + bTi x ≤ cTi ξ, i ∈ [m], ∀ ξ ∈ Ξ

Ex ≤ f,

where m := 10n + 2|E|. We remark that in the above

reformulation of problem (8), we have eliminated the constant

term
∑n

i=1 αiRe{di} from the objective function as this does

not affect the optimal solution of the RAC-OPF problem. It

is straightforward to construct the matrices E ∈ R4n×2n,

f ∈ R4n, Ai ∈ Hn (i = 0, . . . ,m), bi ∈ R2n (i = 1, . . . ,m),

and ci ∈ Rk (i = 1, . . . ,m) given the underlying problem data

specified in the RAC-OPF problem (8). We refer the reader to

Appendix A for their specification.

Remark 2 (Eliminating quadratic equality constraints). We

remark that the formulation of the original RAC-OPF problem

(8) assumes that there is adjustable generation at every bus

in the power transmission network. The advantage of this

rather limiting assumption is that it enables the elimination

of all nodal power balance equality constraints in the equiv-

alent reformulation of the RAC-OPF problem given by P .

The ability to eliminate these nonconvex quadratic equality

constraints will be essential to the convex inner approximation

technique developed in Section IV-B. In Appendix B, we

provide an alternative formulation of the RAC-OPF problem

to accommodate the treatment of more general power systems

in which load shedding is permitted at non-generator (load)

buses, where any reduction in load is penalized according

to the value of lost load (VOLL). We refer the reader to

Section VI for several numerical case studies, which assess

the extent to which the allowance of load shedding manifests

in an actual reduction in load under the dispatch policies

proposed in this paper. Finally, we note that the approximation

technique proposed in this paper cannot be applied to power

systems with transmission buses that have neither adjustable

generation or load.

IV. CONVEX INNER APPROXIMATION OF RAC-OPF

Problem P is computationally intractable, in general, as it

is both infinite-dimensional and nonconvex. The nonconvexity

is due, in part, to the feasible set, which is defined by a

number of indefinite quadratic inequality constraints in the

vector of complex bus voltages. The infinite-dimensionality

of the optimization problem P derives from both the infinite-

dimensionality of the recourse decision variables, and the

infinite number of constraints due to the infinite cardinality of

the uncertainty set Ξ. In what follows, we develop a systematic

approach to approximate problem P from within by a finite-

dimensional semidefinite program, and provide a sufficient

condition under which the resulting inner approximation is

guaranteed to have a nonempty feasible region. The proposed

method for approximation centers on the restriction of the

infinite-dimensional space of recourse policies to those which

are linear in the random vector ξ.

A. Affine Recourse Policies

As the initial step in the derivation of a tractable inner

approximation to problem P , we first restrict the functional

form of the recourse decision variables (i.e., the complex bus

voltages) to be linear in the random vector ξ.2 That is to say,

we require that

v(ξ) = V ξ, (10)

where V ∈ Cn×k. This restriction to affine recourse policies

gives rise to the following optimization problem PI, which

stands as an inner approximation to the original problem P .

minimize tr(MV HA0V ) (PI)

subject to x ∈ R2n, V ∈ Cn×k

ξTV HAiV ξ + bTi x ≤ cTi ξ, i ∈ [m], ∀ ξ ∈ Ξ

Ex ≤ f.

We have used linearity of the expectation and trace operators,

and the invariance of trace under cyclic permutations to

massage the original objective function to obtain

E[ξTV HA0V ξ] = E[tr(ξξTV HA0V )] = tr(E[ξξT ]V HA0V ).

The resulting problem PI amounts to a semi-infinite, non-

convex quadratically constrained quadratic program.3 More

specifically, the restriction to affine recourse policies yields

an optimization problem that has finite-dimensional decision

variables. However, Problem PI remains to be computationally

intractable, as it requires the satisfaction of infinitely many

constraints due to the continuous structure of the uncertainty

set Ξ. We address this issue in Lemma 1 by employing weak

duality to obtain a sufficient set of finitely many constraints.

Such an approximation of the infinite constraint set can also

be derived through a direct application of the so-called S-

procedure [33]. We state Lemma 1 without proof, as it follows

directly from Proposition 6 in [31].

2We note that this restriction on the functional form of the complex bus
voltages implies a quadratic dependency of the nodal power generation levels
on the random vector ξ. That is to say, gi(ξ) = ξTV HSiV ξ+ di for each
node i ∈ V .

3A semi-infinite program is an optimization problem with an infinite
number of constraints, and finitely many decision variables.
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Lemma 1. Let P ∈ Hk, q ∈ Rk, r ∈ R, and Q := (e1q
T +

qeT1 )/2. Consider the following two statements:

(i) ξTPξ + qT ξ + r ≤ 0 for all ξ ∈ Ξ,

(ii) ∃ λ ∈ R` with λ ≤ 0 and P+Q+re1e
T
1 −

∑̀
j=1

λjWj � 0,

where Wj is as defined in (4). For any ` ∈ N, it holds that

(ii) implies (i). If ` = 1, then (i) and (ii) are equivalent.

Using Lemma 1, one can approximate the infinite constraint

set of problem PI from within by finitely many matrix inequal-

ity constraints. More precisely, a direct application of Lemma

1 to each of the quadratic constraints in problem PI gives rise

to the following finite-dimensional optimization problem:

minimize tr(MV HA0V ) (PII)

subject to x ∈ R2n, V ∈ Cn×k, Λ ∈ Rm×`

V HAiV − Ci + (bTi x)e1e
T
1 −

∑̀

j=1

[Λ]ijWj � 0,

∀ i ∈ [m],

Ex ≤ f,

Λ ≤ 0,

where we define Ci := (e1c
T
i + cie

T
1 )/2 for each i ∈ [m].

Remark 3. We remark that Λ ∈ Rm×` is a decision variable

in problem PII, which emerges from the application of Lemma

1 to the robust inequality constraints in problem PI . It follows

from Lemma 1 that problem PII is an inner approximation to

problem PI, in general; and is equivalent to problem PI when

` = 1.

B. Convexifying the Inner Approximation

Problem PII is a finite-dimensional inner approximation to

the original problem P . It, however, remains to be nonconvex,

because of the indefinite quadratic functions appearing in

both the objective and the inequality constraints. In what

follows, we develop a method to convexify problem PII from

within by replacing each indefinite quadratic function with a

majorizing convex quadratic function. We state the resulting

convex program, which approximates PII from within, in

Proposition 1.

The proposed method is based on the decomposition of

an indefinite quadratic function as the difference of convex

functions, i.e., the sum of a convex quadratic function and

a concave quadratic function. We construct a convex global

overestimator of the original indefinite quadratic function by

linearizing the concave function at a point.4 More precisely,

for each matrix Ai, define the decomposition

Ai = A+
i +A−

i ,

where A+
i � 0 and A−

i � 0 denote the positive semidefinite

and negative semidefinite parts of Ai, respectively. Using

4In Section IV-C, we provide a method to select the point around which
the linearization is constructed in order to guarantee that the resulting convex
feasible set is nonempty.

this matrix decomposition, define the function Hi : C
n×k ×

Cn×k → Hk according to

Hi(V,Z) := V HA+
i V + ZHA−

i V + V HA−

i Z − ZHA−

i Z,

for each i ∈ [m]. The first term of Hi is the convex

component of the original quadratic function V HAiV . The

remaining terms represent the linearization of the concave

component at a point Z. Consequently, for any matrix Z, the

function Hi(V,Z) is matrix convex in V .5 The following result

highlights two important properties of Hi. Its can be found in

Appendix B-A in the online version [29] of this paper

Lemma 2. Let Z ∈ Cn×k. For each i ∈ [m], it holds that

(i) V HAiV � Hi(V,Z), ∀ V ∈ Cn×k,

(ii) tr(MV HAiV ) ≤ tr(MHi(V,Z)), ∀ V ∈ Cn×k.

Property (i) provides a way of approximating the nonconvex

feasible set of problem PII from withing by a convex set.

Property (ii), on the other hand, provides way of majorizing the

nonconvex objective of problem PII with a convex function.

In Proposition 1, we employ these approximations to specify a

convex program whose optimal solution is guaranteed to be a

feasible solution for the original problem P . Its proof follows

directly from Lemma 2. We, therefore, omit it for the sake of

brevity.

Proposition 1. Let V0 ∈ Cn×k, and suppose that (x, V ,Λ) is

an optimal solution for the following convex program:

minimize tr(MH0(V, V0)) (PIII(V0))

subject to x ∈ Rp, V ∈ Cn×k, Λ ∈ Rm×`

Hi(V, V0)− Ci + (bTi x)e1e
T
1 −

∑̀

j=1

[Λ]ijWj � 0,

∀ i ∈ [m],

Ex ≤ f,

Λ ≤ 0.

Define the function v ∈ L2
k,n according to v(ξ) = V ξ. Then

(x, v) is a feasible solution for the original problem P .

We note that problem PIII(V0) can be equivalently refor-

mulated as a semidefinite program using Schur’s complement.

We refer the reader to Appendix C in the online version [29]

of this paper for the details of this reformulation.

C. Guaranteeing Nonemptiness of the Inner Approximation

In order to convexify the RAC-OPF problem according to

the method developed in Section IV-B, one has to select a

matrix V0 ∈ Cn×k, which yields an inner approximation

PIII(V0) with a nonempty feasible set. In what follows, we

develop a method to compute such a matrix. The method

we propose entails the calculation of a day-ahead dispatch

g0 ∈ Cn, which is guaranteed to be feasible for the RAC-OPF

problem without requiring adjustment (recourse) in real-time.

In order to do so, we must first characterize the guaranteed

5A function f : Cn×k → Hk is said to be matrix convex if for all matrices
X,Y and 0 ≤ θ ≤ 1, we have f(θX+(1−θ)Y ) � θf(X)+(1−θ)f(Y ).
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Inflexible Gen. Intermittent Gen. Flexible Gen. Load Buses

Parameters Units 1 2 3 4 5 6 7 8 9

αi $/MW 30 0 0 0 0 0 50 50 –

Re{di} MW 0 0 0 100 0 125 0 0 90

Im{di} MVAR 0 0 0 35 0 50 0 0 30

Re{gmax
i } MW 200 30 30 30 30 30 250 270 –

Im{gmax
i } MVAR 300 † † † † † 300 300 –

Re{gmin
i } MW 10 0 0 0 0 0 10 10 –

Im{gmin
i } MVAR -300 † † † † † -300 -300 –

Re{rmax
i } = −Re{rmin

i } MW 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ –

Im{rmax
i } = −Im{rmin

i } MVAR 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ –

Bus index (per [34]) 2 4 6 7 8 9 1 3 5

TABLE I: (WSCC 9-bus system). Specification of each generator’s location, marginal cost, and constraint parameters. The †
symbol indicates that the corresponding value in the table is determined by equation (16).

range of available power supply at each bus. For each bus

i ∈ V , this amounts to the specification of upper and lower

limits γmax
i ∈ C and γmin

i ∈ C, such that

g
i
(ξ) ≤ γmin

i ≤ γmax
i ≤ gi(ξ), ∀ ξ ∈ Ξ.

We specify these limits according to

γmin
i = max

ξ∈Ξ

(
Re{g

i
(ξ)}

)
+ jmax

ξ∈Ξ

(
Im{g

i
(ξ)}

)
,

γmax
i = min

ξ∈Ξ

(
Re{gi(ξ)}

)
+ jmin

ξ∈Ξ

(
Im{gi(ξ)}

)
.

(11)

It is important to note that the limits γmin
i and γmax

i can be

efficiently calculated, as the optimization problems in (11)

are convex quadratically constrained quadratic programs. This

follows from the assumed linearity of the objective function

in ξ (cf. Assumption 2), and the definition of Ξ as the finite

intersection of ellipsoids and half spaces (cf. Eq. (3)).

Using these conservative generation limits, a day-ahead

dispatch that is guaranteed to be feasible for the RAC-OPF

problem can be calculated by solving the following (deter-

ministic) zero-recourse AC-OPF problem.

minimize

n∑

i=1

αiv
H

(
Si + SH

i

2

)
v (12)

subject to v ∈ Cn

γmin
i − di ≤ vHSiv ≤ γmax

i − di, i ∈ V,

vmin
i ≤ |vi| ≤ vmax

i , i ∈ V,

− `max
ij ≤ vHPijv ≤ `max

ij , (i, j) ∈ E .

The following result shows that any feasible solution to the

zero-recourse AC-OPF problem (12) can be used to construct

a matrix V0 that is guaranteed to induce a convex inner

approximation PIII(V0) of the RAC-OPF problem with a

nonempty feasible region. The proof of Proposition 2 can be

found in Appendix B-B of the online version of this paper

[29].

Proposition 2. Let v0 ∈ Cn be a feasible solution to (12), and

define a matrix V0 := v0e
T
1 . It follows that the optimization

problem PIII(V0) has a nonempty feasible region.

Several comments are in order. First, it is important to note

that, despite being deterministic, the zero-recourse AC-OPF

problem (12) is nonconvex and computationally intractable,

in general. However, there are many off-the-shelf optimization

routines (e.g., Matpower [35]) that are effective in producing

feasible solutions to problem (12). Second, it is also crucial to

emphasize that Proposition 2 is only useful if the zero-recourse

AC-OPF problem (12) is in fact feasible. A necessary condi-

tion for the feasibility of problem (12) is that γmin
i ≤ γmax

i

for every generator i ∈ V . This condition is clearly satisfied

by conventional generators with ‘firm’ real-time generation

capacities, i.e., g
i
(ξ) = gmin

i and gi(ξ) = gmax
i for all ξ ∈ Ξ.

This condition is also satisfied by intermittent generators

whose real-time active power supply can be fully ‘curtailed’,

i.e., Re{g
i
(ξ)} = 0 for all ξ ∈ Ξ. Such an assumption of

curtailable supply is reasonable for modern-day wind and solar

power facilities. We refer the reader to Section VI-A for a

specific example of curtailable intermittent generation. It is

also important to note that the assumption that intermittent

generators be curtailable is necessary, as problem (12) may

become infeasible for power systems with intermittent gen-

erators whose real-time supply is uncertain in day-ahead and

cannot be curtailed in real-time, i.e., g
i
(ξ) = gi(ξ) for all

ξ ∈ Ξ.

V. SEQUENTIAL CONVEX APPROXIMATION METHOD

In what follows, we describe a recursive method that builds

upon our previous development to generate a sequence of

cost-improving convex inner approximations to the RAC-

OPF problem. Let v0 ∈ Cn be a feasible solution to the

zero-recourse AC-OPF problem (12), and define the matrix

V0 := v0e
T
1 . Consider a recursion of the form

(xt+1, Vt+1,Λt+1) ∈ argmin
(x,V,Λ)∈F(Vt)

tr(MH0(V, Vt)). (13)

Here, F(Vt) denotes the feasible set of problem PIII(Vt),
which is parameterized by the matrix Vt. The recursive

algorithm (13) can be interpreted as a successive con-

vex majorization-minimization method. An optimal solution

(xt, Vt) associated with each step t of the recursive method can

be mapped to a feasible solution (xt, vt(ξ)) of the RAC-OPF

problem (8), where vt(ξ) = Vtξ is an affine recourse policy
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Inflexible Gen. Intermittent Gen. Flexible Gen. Load Buses

Parameters Units 1 7 2 3 4 5 6 8 9 10 11 12 13 14

αi $/MW 30 30 0 0 0 0 0 50 50 50 – – – –

Re{di} MW 0 21.7 87.8 0 9.0 3.5 13.5 94.2 11.2 0 7.6 29.5 6.1 14.9

Im{di} MVAR 0 12.7 -3.9 0 5.8 1.8 5.8 19 7.5 0 1.6 16.6 1.6 5

Re{gmax
i } MW 100 100 30 30 30 30 30 80 50 40 – – – –

Im{gmax
i } MVAR 10 50 † † † † † 40 24 24 – – – –

Re{gmin
i } MW 0 0 0 0 0 0 0 0 0 0 – – – –

Im{gmin
i } MVAR 0 -40 † † † † † 0 -6 -6 – – – –

Re{rmax
i } = −Re{rmin

i } MW 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ – – – –

Im{rmax
i } = −Im{rmin

i } MVAR 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ – – – –

Bus index (per [36]) 1 2 4 7 10 11 13 3 6 8 5 9 12 14

TABLE II: (IEEE 14-bus system). Specification of each generator’s location, marginal cost, and constraint parameters. The †
symbol indicates that the corresponding value in the table is determined by equation (16).

in ξ. Proposition 3 establishes two important properties of the

recursive method. The recursive method is (i) guaranteed to

yield a nonempty convex inner approximation to the RAC-OPF

problem at each step in the recursion, and is (ii) guaranteed

to generate a sequence of feasible dispatch policies for the

RAC-OPF problem with nonincreasing costs. The proof of

Proposition 3 can be found in Appendix B-C in the online

version [29] of this paper.

Proposition 3. Let v0 ∈ Cn be a feasible solution to the

zero-recourse AC-OPF problem (12), and define the matrix

V0 := v0e
T
1 . Let {xt, Vt,Λt}

∞
t=1 denote the sequence of

solutions generated by the recursion in (13). The following

properties hold for each step t of the recursion.

(i) Nonemptiness: F(Vt) 6= ∅.

(ii) Cost montonicity: tr(MV H
t A0Vt) ≤ tr(MV H

t−1A0Vt−1).

We also remark that it is possible to establish convergence

of the recursive method (13) to a stationary point of the

nonconvex problem PII using existing techniques from the

literature [37], [38].

VI. CASE STUDY

We now illustrate the effectiveness of the proposed opti-

mization method on the WSCC 9-bus [34] and IEEE 14-

bus [36] test systems with different levels of renewable re-

source penetration and uncertainty. We refer the reader to the

aforementioned references for the complete specification and

single-line diagrams of the test systems considered. All mod-

ifications made to the original WSCC 9-bus and IEEE 14-bus

test systems are summarized in Tables I and II, respectively.

Additionally, for each test system considered, we permit load

shedding at non-generator buses (i.e., load buses), where a

reduction in load relative to the specified level is penalized

according to the value of lost load (VOLL).6 We set the VOLL

equal to $4,000/MWh.

6We refer the reader to Appendix B for a complete specification of the
RAC-OPF problem with load-shedding.

A. Renewable Generator Model

The real-time generating capacity of renewable generators

i ∈ {2, . . . , 6} represents the only source of uncertainty in

the power system being considered. Accordingly, we set the

dimension of the random vector to k = 6, and let the ith

element of the random vector ξ represent the maximum active

power available to generator i in real-time. In other words,

Re{g
i
(ξ)} = 0 and Re{gi(ξ)} = ξi, (14)

for i = 2, . . . , 6. It will be convenient to our numerical

analyses in the sequel to express the random vector ξ as an

affine function of a zero-mean random vector δ that is uni-

formly distributed over a unit ball. We define this relationship

according to

ξ := µ+ σδ,

where the random vector δ is assumed to have support

∆ := {δ ∈ Rk | δ1 = 0, ‖δ‖2 ≤ 1}.

It follows that the random vector ξ has support given by

Ξ =
{
ξ ∈ Rk | ξ − µ ∈ σ∆

}
.

Here, µ ∈ Rk and σ ∈ R+ represent location and scale pa-

rameters, respectively. In the following study, we set µi = 15
MW for each renewable generator i ∈ {2, . . . , 6}. Quali-

tatively, the larger the scale parameter σ, the larger the a

priori uncertainty in the real-time generating capacity of the

renewable generators. The location and scale parameters are

chosen in such a manner as to ensure that ξi respects the

nameplate active power capacity limits for each renewable

generator i specified in Table I. We also require that µ1 = 1
to maintain consistency with our original uncertainty model

in Section II-B. Finally, under the assumption that δ has a

uniform distribution, it is straightforward to show that the

random vector ξ has a second-order moment matrix given by

M = µµT +

(
σ2

k + 1

)[
0

Ik−1

]
.

Renewable energy resources, like wind and solar, employ

power electronic inverters, which can produce and absorb reac-

tive power. The limits on the maximum and minimum amount
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Fig. 1: The top (bottom) row of figures is associated with the WSCC 9-bus (IEEE 14-bus) test system. Figures (a)-(b) depict

the expected generation cost (red star) and empirical confidence intervals incurred by the affine dispatch policy returned by

the recursive algorithm (13) versus the scale parameter σ. The empirical confidence intervals are estimated using 10,000

independent realizations of the underlying random vector ξ. The box depicts the interquartile range, while the lower and

upper whiskers extend to the 5% and 95% quantiles, respectively. Figures (c)-(d) plot (as colored dashed lines) the expected

generation cost (for σ = 7.5) incurred at each step of the recursive algorithm (13) for five randomly generated initial conditions

V0. The solid black line represents the expected cost trajectory returned by the recursive algorithm given the initial condition

V0 generated by the zero-recourse AC-OPF problem (12). Figures (e)-(f) depict the empirical confidence intervals for the total

active power load that is shed at non-generator buses under the affine dispatch policy returned by algorithm (13) versus the

scale parameter σ. The empirical confidence intervals are generated using 10,000 independent realizations of the random vector

ξ for each value of σ. The box depicts the interquartile range, while the lower and upper whiskers of the confidence intervals

extend to the minimum and maximum values of the total active power load shed.

of reactive power that can be injected by a renewable generator

are determined by its inverter’s apparent power capacity, which

we denote by smax
i ∈ R+ for each renewable generator i. It

follows that the real-time complex power injection of each

renewable generator i must satisfy a capacity constraint of the

form

|gi(ξ)| ≤ smax
i . (15)

As the slight oversizing of a renewable generator’s appar-

ent power rating is standard in practice, we set smax
i =

1.05Re{gmax
i } for each renewable generator i. In order to

ensure that Assumption 2 is satisfied, we enforce a more

conservative form of the real-time apparent power capacity

constraint (15) by setting the real-time reactive power limits

for each renewable generator i according to

Im{gi(ξ)} = −Im{g
i
(ξ)}

= inf
ξ∈Ξ

√
(smax

i )2 − ξ2i

=
√
(smax

i )2 − (µi + σ)2.

(16)

For simplicity, we also fix the nameplate reactive power

limits of each renewable generator according to Im{gmax
i } =

Im{gi(ξ)} and Im{gmin
i } = Im{g

i
(ξ)}. The reactive power

limits specified in (16) determine the range of reactive power

injections that is guaranteed to be available to a renewable

generator in real-time, regardless of the active power supplied.

Using the real-time active and reactive power capacity limits

specified in (14) and (16), respectively, it is straightforward to

construct matrices G,G ∈ Cn×k such that Assumption 2 is

satisfied.

Finally, it is worth noting that the conservative generation

limits (γmin
i , γmax

i ) defined in (11) admit closed-form expres-

sions for the system being considered. They are given by

γmin
i = 0 − j

√
(smax

i )2 − (µi + σ)2,

γmax
i = (µi − σ) + j

√
(smax

i )2 − (µi + σ)2.
(17)
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B. Numerical Analyses and Discussion

We begin by examining the sensitivity of the generation cost

incurred under the affine recourse policies that we propose

to uncertainty in renewable supply. We do so by varying the

scale parameter σ from 0 to 15 in increments of 1.5, while

keeping all other problem parameters fixed. It is worth noting

that for σ = 0, there is no a priori uncertainty in the renewable

supply, and the RAC-OPF problem (8) reduces to the zero-

recourse AC-OPF problem (12). In addition, for σ = 0, we

are able to verify that the solutions we compute are in fact

optimal solution by using the semidefinite relaxation of the

AC-OPF problem described in [7]. For each value of σ that

we consider, we calculate an affine recourse policy according

to the recursive algorithm specified in Eq. (13).7 We initialize

the recursion with a feasible solution to the zero-recourse AC-

OPF problem (12), which we compute using the Matpower

interior point solver [35]. The recursive algorithm terminates

when either one of the two following conditions hold: (i) the

difference between the optimal values of successive iterations

is less than 10−4, or (ii) the total number of iterations exceeds

500.

We plot the expected generation cost (and empirical confi-

dence intervals) incurred by the affine dispatch policy returned

by algorithm (13) versus the scale parameter σ for the 9-

bus and 14-bus systems in Figures 1(a) and 1(b), respectively.

First, notice that, for each test system, the expected generation

cost increases monotonically with the scale parameter. Such

behavior is to be expected, as larger values of σ correspond to

larger uncertainty sets Ξ. It is also worth noting the ‘spread’

in the cost distribution induced by the dispatch policies that

we compute also increases with σ. That is to say, renewable

energy resources with a large variance in their real-time

generating capacity will result in a larger variance in total

generating costs. Such behavior is a consequence of the risk

neutrality inherent to the expected cost criterion that we treat

in this paper.

We examine the convergence behavior of the recursive

algorithm (13) for the 9-bus and 14-bus test systems in Figures

1(c) and 1(d), respectively. For each system, we set σ = 7.5
and plot (as dashed lines) the expected generation cost incurred

at each step of the recursive algorithm (13) for five randomly

generated initial conditions V0.8 In both Figures 1(c) and 1(d),

the solid black lines represent the expected cost trajectory

returned by the recursive algorithm given the initial condition

V0 generated by the zero-recourse AC-OPF problem (12)

under the true marginal-cost parameters specified in Tables

I and II. It is interesting to note that the recursive algorithm

converges to the same optimal value regardless of the initial

condition. Additionally, the numerical results in Figures 1(c)-

(d) are consistent with the guarantees of Proposition 3, which

7All numerical analyses were carried out in Matlab and semidefinite
programs were solved using SDPT3 [39]. The machine used to to solve the
problems has a 3.1GHz Intel dual-core with 16GB of RAM.

8We initialize the recursive algorithm (13) with randomly generated ma-
trices V0 by solving the zero-recourse AC-OPF problem (12) with with ran-
domly generated marginal-cost parameters {αi}. Specifically, the generators’
marginal-cost parameters {αi} are sampled independently and uniformly at
random from the interval [0, 50].

ensures that the recursive algorithm (13) will yield a sequence

of feasible dispatch policies with nonincreasing costs. We also

note that each iteration for the 9-bus (14-bus) system took

11.67 seconds (130.4 seconds) to complete on average.

In Figures 1(e) and 1(f), we plot empirical confidence

intervals for the total active power load that is shed at non-

generator buses under the affine dispatch policy returned by

algorithm (13) versus the scale parameter σ for the 9-bus

and 14-bus systems, respectively. The confidence intervals are

generated using 10,000 independent realizations of the random

vector ξ for each value of σ. The lower and upper whiskers of

the confidence intervals extend to the minimum and maximum

values of the total active power load shed. For the 9-bus

system, the affine dispatch policy never sheds active power

load, as depicted in Figure 1(e). That is to say, the allowance

of load shedding does not result in any reduction of load under

the affine dispatch policies that we compute. For the 14-bus

system, we empirically observe that only a small percentage

of total active power load is shed under the affine dispatch

policies that we compute. In particular, the total active power

load shed never exceeds 0.16% of the total active power load

at non-generator buses. Lastly, we remark that for both the 9-

bus and 14-bus systems, we empirically observe that the affine

dispatch policy never sheds reactive power load.

VII. CONCLUSION

In this paper, we formulate the robust AC optimal power

flow (RAC-OPF) problem as a two-stage robust optimization

problem with recourse. Under the assumption that there is

adjustable generation or load at every bus in the power trans-

mission network, we provide a technique to construct a convex

inner approximation of RAC-OPF in the form of a semidefinite

program. In particular, the inner approximation is obtained

by: (i) restricting the set of admissible recourse policies to

be affine in the uncertain variables, (ii) approximating the

semi-infinite constraint set by a sufficient set of finitely-many

constraints, and (iii) approximating the indefinite quadratic

constraints by majorizing convex quadratic constraints. Its

solution yields an affine recourse policy that is guaranteed to

be feasible for RAC-OPF. In addition, we provide an iterative

optimization algorithm that generates a sequence of feasible

affine recourse policies with nonincreasing costs.

There are several interesting directions for future research.

First, affine recourse policies are likely to be suboptimal for the

RAC-OPF problem. Thus, it would be interesting to investigate

the design of convex relaxations for RAC-OPF to enable the

tractable calculation of lower bounds on the optimal value of

RAC-OPF. Such lower bounds can, in turn, be used to bound

the suboptimality incurred by the feasible affine policies pro-

posed in this paper. Second, the convex inner approximation

technique developed in this paper relies explicitly on the rather

limiting assumption that there is adjustable generation or load

at every bus in the power transmission network. In order to

accommodate the treatment of more general power systems,

it will be important to relax this assumption, while preserving

the robust feasibility guarantees developed in this paper. It

would also be of interest to extend the techniques developed
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in this paper to accommodate discrete decision variables (e.g.,

unit commitment decisions) in the RAC-OPF problem.
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APPENDIX A

CONCISE REFORMULATION OF RAC-OPF

Define matrices Φi,Ψi ∈ Hn, for all i ∈ V , and a matrix

E ∈ R4n×2n as follows:

Φi :=
Si + SH

i

2
, Ψi :=

Si − SH
i

j2
, E :=

[
I2n −I2n

]T
.

In addition, let f ∈ R4n be a vector given by

f :=
[
Re{gmax}T Im{gmax}T − Re{gmin}T − Im{gmin}T

]T
.
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The RAC-OPF problem (8) can be reformulated as follows:

minimize E

[
n∑

i=1

αiv(ξ)
HΦiv(ξ)

]
+

n∑

i=1

αiRe{di}

subject to (18)

x ∈ R2n, v ∈ L2
k,n

v(ξ)HΦiv(ξ) ≤ Re{eTi G− die
T
1 }ξ, i ∈ V

v(ξ)H(−Φi)v(ξ) ≤ Re{die
T
1 − eTi G}ξ, i ∈ V





∀
ξ
∈
Ξ
.

v(ξ)HΨiv(ξ) ≤ Im{eTi G− die
T
1 }ξ, i ∈ V

v(ξ)H(−Ψi)v(ξ) ≤ Im{die
T
1 − eTi G}ξ, i ∈ V

v(ξ)HΦiv(ξ)− eTi x ≤ Re{rmax
i − di}e

T
1 ξ, i ∈ V

v(ξ)H(−Φi)v(ξ) + eTi x ≤ Re{di − rmin
i }eT1 ξ, i ∈ V

v(ξ)HΨiv(ξ)− eTn+ix ≤ Im{rmax
i − di}e

T
1 ξ, i ∈ V

v(ξ)H(−Ψi)v(ξ) + eTn+ix ≤ Im{di − rmin
i }eT1 ξ, i ∈ V

v(ξ)Heie
T
i v(ξ) ≤ (vmax

i )2eT1 ξ, i ∈ V

v(ξ)H(−eie
T
i )v(ξ) ≤ −(vmin

i )2eT1 ξ, i ∈ V

v(ξ)HPijv(ξ) ≤ `max
ij eT1 ξ, (i, j) ∈ E

v(ξ)H(−Pij)v(ξ) ≤ `max
ij eT1 ξ, (i, j) ∈ E

Ex ≤ f.

APPENDIX B

RAC-OPF WITH LOAD SHEDDING

In what follows, we provide an alternative formulation of the

RAC-OPF problem, which allows for load shedding at non-

generator buses in the power network. Here, a reduction in load

relative to the nominal demand level is penalized according to

a suitably chosen value of lost load (VOLL).9

In order to develop this generalization of the RAC-OPF

problem, we first require some additional notation. Let VG ⊆
V denote the subset of buses connected to generators, and

define VL := V \ VG as the subset of non-generator buses.

Also, let nG := |VG| and nL := |VL| denote the number

of generator and non-generator buses, respectively. Define the

complex load that is shed at each non-generator bus i ∈ VL

by λi(ξ), where λi ∈ L2
k,1 is a recourse function determined

by the ISO for each load i ∈ VL. The power balance equation

at each non-generator bus i ∈ VL can therefore be expressed

as

λi(ξ)− v(ξ)HSiv(ξ) = di.

Finally, letting β ∈ R+ denote the VOLL, we arrive at the

following reformulation of the RAC-OPF problem with load

9For example, the current VOLL used within the Midcontinent Independent
System Operator (MISO) markets is $3,500/MWh [40].

shedding:

minimize E

[
∑

i∈VG

αiRe{gi(ξ)}+ β
∑

i∈VL

Re{λi(ξ)}+ Im{λi(ξ)}

]

subject to g0 ∈ CnG , g ∈ L2
k,nG

, v ∈ L2
k,n, λ ∈ L2

k,nL

gmin
i ≤ g0i ≤ gmax

i , i ∈ VG

g
i
(ξ) ≤ gi(ξ) ≤ gi(ξ), i ∈ VG





∀ ξ ∈ Ξ.

rmin
i ≤ gi(ξ)− g0i ≤ rmax

i , i ∈ VG

gi(ξ)− v(ξ)HSiv(ξ) = di, i ∈ VG

vmin
i ≤ |vi(ξ)| ≤ vmax

i , i ∈ VG

|v(ξ)HPijv(ξ)| ≤ `max
ij , (i, j) ∈ E

0 ≤ λi(ξ) ≤ di, i ∈ VL

λi(ξ)− v(ξ)HSiv(ξ) = di, i ∈ VL

APPENDIX C

TABLE OF WIDELY-USED VARIABLES AND SYMBOLS

Var/Symb Space Description

n N number of network buses

m N number of constraints of RAC-OPF

k N ambient dimension of uncertainty set Ξ

` N number of ellipsoids describing Ξ

G = (V, E) – graph describing the power network

V – set of vertices indexing the transmission buses

E – set of edges indexing the transmission lines

Y Cn×n bus admittance matrix

ξ – random vector

ξ Rk a realization of the random vector ξ

Ξ – support of the random vector ξ

µ Rk first-order moment of ξ

M Rk×k second-order moment of ξ

`max
ij R active power flow capacity of transmission line (i, j)

αi R+ marginal cost of active power generation at bus i

β R+ value of lost load (VOLL)

v L2
k,n

real-time bus voltage phasor

g0i C day-ahead dispatch of generator i

gi L2
k,1

real-time dispatch of generator i

gmax
i C nominal maximum capacity of generator i

gmin
i C nominal minimum capacity of generator i

gi L2
k,1

real-time maximum capacity of generator i

g
i

L2
k,1

real-time minimum capacity of generator i

di C real-time demand at bus i

rmin
i C ramp-down limit of generator i

rmax
i C ramp-up limit of generator i

γmax
i C guaranteed maximum available power supply at bus i

γmin
i C guaranteed minimum available power supply at bus i
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