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Abstract

The Machine Recognition of Crystallization Outcomes (MARCO) initiative has
assembled roughly half a million annotated images of macromolecular crystallization
experiments from various sources and setups. Here, state-of-the-art machine learning
algorithms are trained and tested on different parts of this data set. We find that more
than 94% of the test images can be correctly labeled, irrespective of their experimental
origin. Because crystal recognition is key to high-density screening and the systematic
analysis of crystallization experiments, this approach opens the door to both industrial
and fundamental research applications.

1 Introduction

X-ray crystallography provides the atomic structure of molecules and molecular
complexes. These structures in turn provide insight into the molecular driving forces for
small molecule binding, protein-protein interactions, supramolecular assembly and other
biomolecular processes. The technique is thus foundational to molecular modeling and
design. Beyond the obvious importance of structure information for understanding and
altering the role of biomolecules, it also has important industrial applications. The
pharmaceutical industry, for instance, uses structures to guide chemistry as part of a
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“predict first” strategy [1], employing expert systems to reduce optimization cycle times
and more effectively bring medicine to patients. Yet, despite decades of methodological
advances, crystallizing molecular targets of interest remains the bottleneck of the entire
crystallography program in structural biology.

Even when crystallization is facile, it is microscopically rare; for macromolecules it is
also uncommon [2H5]. Experimental trials typically involve: (i) mixing a purified sample
with chemical cocktails designed to promote molecular association, (ii) generating a
supersaturated solution of the desired molecule via evaporation or equilibration, and
(iii) visually monitoring the outcomes, before (iv) optimizing those conditions and
analyzing the resultant crystal with an X-ray beam. One hopes for the formation of a
crystal instead of non-specific (amorphous) precipitates or of nothing at all. In order to
help run these trials, commercial crystallization screens have been developed; each
screen generally contains 96 formulations designed to promote crystal growth. Whether
these screens are equally effective or not [5,/6] remains debated, but their overall yield is
in any case paltry. Typically fewer than 5% of crystallization attempts produce useful
results (with a success rate as low as 0.2% in some contexts [7]).

The practical solution to this hurdle has been to increase the convenience and
number of crystallization trials. To offset the expense of reagents and scientist time,
labs routinely employ industrial robotic liquid handlers, nanoliter-size drops, and record
trial outcomes using automated imaging systems [5},8-11]. Hoping to compensate for
the rarity of crystallization, commercially available systems readily probe a large area of
chemical space with minimal sample volume with a throughput of ~ 1000 individual
experiments per hour.

While liquid handling is readily automated, crystal recognition is not. Imaging
systems may have made viewing results more comfortable than bending over a
microscope, but crystallographers still manually inspect images and/or drops, looking
for crystals or, more commonly, conditions that are likely to produce good crystals when
optimized. This human cost makes crystal recognition a key experimental bottleneck
within the larger challenge of crystallizing biomolecules [7]. A typical experiment for a
given sample includes four 96-well screens at two temperatures, i.e., 768 conditions (and
can have up to twice that [12]). Assuming that it takes 2 seconds to manually scan a
droplet (and noting that the scans have to be repeated, as crystallization is time
dependent), simply looking at a single set of 96 trials over the lifetime of an experiment
can take the better part of an hour (This estimate is based on personnal communication
with five experienced crystallographers at GlaxoSmithKline: 2 seconds/observation x 8
observations x 96 wells. Note that current technology can automatically store and
image plates at about 3 min/plate). For the sake of illustration, the U.S. Structural
Science group at GlaxoSmithKline performs ~ 1200 96-well experiments per year. If the
targeted observation schedule were rigorously followed, the group would spend a quarter
of the year staring at drops, of which the vast majority contains no crystal. Recording
outcomes and analyzing the results of the 96 trials would further increase the time
burden. Current operations are already straining existing resources, and the approach
simply does not scale for proposed higher-density screening [10].

Crystal growth is also sufficiently uncommon that the tolerance for false negatives is
almost nil. Yet most crystallographers are misguided in thinking that they themselves
would never miss identifying a crystal given an image containing an crystal, or indeed
miss a crystal in a droplet viewed directly under a microscope [13]. In fact, not only do
crystallographers miss crystals due to lack of attention through boredom, they often
disagree on the class an image should be assigned to. An overall agreement rate of
~ 70% was found when the classes assigned to 1200 images by 16 crystallographers were
compared [13]. (When considering only crystalline outcomes, agreement rose to ~ 93%.)
Consistency in visual scoring was also considered by Snell et al. when compiling a
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~ 150,000 image dataset [14]. They found that viewers give different scores to the same
image on different occasions during the study, with the average agreement rate for scores
on a control set at the beginning and middle of the study being 77%, rising to 84% for
the agreement in scores between the middle and end of the study. Crystallographers
also tend to be optimistically biased when scoring their own experiments |15]. A better
use of expert time and attention would be to focus on scientific inquiry.

An algorithm that could analyze images of drops, distinguish crystals from trivial
outcomes, and reduce the effort spent cataloging failure, would present clear value both
to the discipline and to industry. Ideally, such an algorithm would act like an
experienced crystallographer in:

e recognizing macromolecular crystals appropriate for diffraction experiments;

e recognizing outcomes that, while requiring optimization, would lead to crystals for
diffraction experiments;

e recognizing non-macromolecular crystals;

e ignoring technical failures;

e identifying non-crystalline outcomes that require follow up;
e being agnostic as to the imaging platform used;

e being indefatigable and unbiased;

e occurring in a time frame that does not impede the process;
e learning from experience.

Such an algorithm would further reduce the variance in the assessments, irrespective of
its accuracy. A high-variance, manual process is not conducive to automating the
quality control of the system end-to-end, including the imaging equipment. Enhanced
reproducibility enables traceability of the outcomes, and paves the way for putting in
place measurable, continuous improvement processes across the entire imaging chain.

Automated crystallization image classifications that attempt to meet the above
criteria have been previously attempted. The research laboratories that first automated
crystallization inspection quickly realized that image analysis would be a huge problem,
and concomitantly developed algorithms to interpret them [16H19]. None of these
programs was ever widely adopted. This may have been due in part to their dependence
on a particular imaging system, and to the relatively limited use of imaging systems at
the time. Many of the early image analysis programs further required very time
consuming collation of features and significant preprocessing, e.g., drop segmentation to
locate the experimental droplet within the image. To the best of our knowledge, there
was also no widespread effort to make a widely available image analysis package in the
same way that that the diffraction oriented programs have been organized, e.g., the
CCP4 package [20].

Can a better algorithm be constructed and trained? In order to help answer this
question, the Machine Recognition of Crystallization Outcomes (MARCO) initiative
was set up [21]. MARCO assembled a set of roughly half a million classified images of
crystallization trials through an international collaboration with five separate
institutions. Here, we present a machine-learning based approach to categorize these
images. Remarkably, the algorithm we employ manages to obtain an accuracy exceeding
94%, which is even above what was once thought possible for human categorization.
This suggests that a deployment of this technology in a variety of laboratory settings is
now conceivable. The rest of this paper is as follows. Section [2] describes the dataset and
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Table 1. Breakdown of data sources and imaging technology per institution
contributing to MARCO.

Institution Technical Setup # of Images
Bristol-Myers Squibb Formulatrix Rock Imager (FRI) 8719
CSIRO Sitting drop, FRI, Rigaku Minstrel [2223] 15933
HWMRI Under oil, Home system [14] 79632
GlaxoSmithKline Sitting drop, FRI 83126
Merck Sitting drop, FRI 305804

the scoring scheme, Sec. [3| describes the machine-learning model and training procedure,

Secs. [4] and [f] describe and discuss the results, respectively, and Sec. [6] briefly concludes.

2 Material and Methods

Image Data

The MARCO data set used in this study contains 493,214 scored images from five
institutions (See Table [I] [21]). The images were collected from imagers made from two
different manufacturers (Rigaku Automation and Formulatrix), which have different
optical systems, as well as by the in-house imaging equipment built at the
Hauptman-Woodward Medical Research Institute (HWMRI) High-Throughput
Crystallization Center (HTCC). Different versions of the setups were also used — some
Rigaku images are collected with a true color camera, some are collected as greyscale
images. The zoom extent varies, with some imagers set up to collect a field-of-view
(FOV) of only the experimental droplet, and some set for the FOV to encompass a
larger area of the experimental setup. The Rigaku and Formulatrix automation imaged
vapor diffusion based experiments while the HTCC system imaged microbatch-under-oil
experiments. A random selection of 50,284 test images was held out for validation.
Images in the test set were not represented in the training set. The precise data split is
available from the MARCO website [21].

Labeling

Images were scored by one or more crystallographers. As the dataset is composed of
archival data, no common scoring system was imposed, nor were exemplar images
distributed to the various contributors. Instead, existing scores were collapsed into four
comprehensive and fairly robust categories: clear, precipitate, crystal, and other. This
last category was originally used as a catchall for images not obviously falling into the
three major classes, and came to assume a functional significance as the classification
process was further investigated. Examination of the least classifiable five percent of
images indeed revealed many instances of process failure, such as dispensing errors or
illumination problems. These uninterpretable images were then labelled as “other”
during the rescoring, which added an element of quality control to the overall

process [24].

Relabeling

After a first baseline system was trained (see Sec. , the 5% of the images that were
most in disagreement with the classifier (independently of whether the image was in the
training or the test set), were relabeled by one expert, in order to obtain a systematic
eye on the most problematic images.
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Because no rules were established and no exemplars were circulated prior to the 142
initial scoring, individual viewpoints varied on classifying certain outcomes. For 143
example, the bottom 5% contained many instances of phase separation, where the 144
protein forms oil droplets or an oily film that coats the bottom of the crystallization 145
well. Images were found to be inconsistently scored as “clear”, “precipitate”, or “other” 14
depending on the amount and visibility of the oil film. This example highlights the 147
difficulty of scoring experimental outcomes beyond crystal identification. A more 148

serious source of ambiguity arises from process failure. Many of the problematic images 19
did not capture experimental results at all. They were out of focus, dark, overexposed, 150
dropless, etc. Whatever labeling convention was initially followed, for the relabeling the 1
“other” category was deemed to also diagnose problems with the imaging process. 152

A total of 42.6% of annotations for the images that were revisited disagreed with the 1
original label, suggesting somewhat high (1 to 2%) label noise in this difficult fraction of 15
the dataset. For a fraction of this data, multiple raters were asked to label the images  1ss

independently and had an inter-rater disagreement rate of approximately 22%. The 156
inherent difficulty of assigning a label to a small fraction of the images is therefore 157
consistent with the results of Ref. [13]. Table [2 shows the final image counts after 158
relabeling. 150

Table 2. Data distribution. Final number of images in the dataset for each category
after collapsing the labels and relabeling.

Number of images
Label Training | Validation

Crystals 56,672 6632

Precipitate | 212,541 23,892

Clear 148,861 16760

Other 24,856 3,000
3 Machine Learning Model 160
The goal of the classifier here is to take an image as an input, and output the 161
probability of it belonging to each of four classes (crystals, precipitate, clear, other) (see 1
Fig. . The classifier used is a deep Convolutional Neural Network (CNN). CNNs, 163
originally proposed in Ref. [25], and their modern ‘deep’ variants (see, e.g., Refs. [26L27] 1
for recent reviews), have proven to consistently provide reliable results on a broad 165
variety of visual recognition tasks, and are particularly amenable to addressing data-rich 1
problems. They have been, for instance, state of the art on the very competitive 167
ILSVRC image recognition challenge [28] since 2012. 168

This approach to visual perception has been making unprecedented inroads in areas e
such as medical imaging [29] and computational biology [30], and have also shown to be o
human-competitive on a variety of specialized visual identification [31}/32]. The chosen
classifier is thus well suited for the current analysis. 172

Model Architecture s

The model is a variation on the widely-used Inception-v3 architecture [35], which was 1
state of the art on the ILSVRC challenge around 2015. Several more recent alternatives 17s
were tried, including Inception-ResNet-v2 [36], and automatically generated variants of 17

NASNet [37], but none yielded any significant improvements. An extensive 177
hyperparameter search was also conducted using Vizier [38], also without providing 178
significant improvement over the baseline. 179
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Fig 1. Conceptual Representation of a Convolutional Neural Network. A
CNN is a stack of nonlinear filters (three filter levels are depicted here) that
progressively reduce the spatial extent of the image, while increasing the number of
filter outputs that describe the image at every location. On top of this stack sits a
multinomial logistic regression classifier, which maps the representation to one
probability value per output class (Crystals vs. Precipitate vs. Clear vs. Others). The
entire network is jointly optimized through backpropagation [33], in general by means of
a variant of stochastic gradient descent [34].

The Inception-v3 architecture is a complex deep CNN architecture described in
detail in Ref. [35] as well as the reference implementation [39]. We only describe here
the modifications made to tailor the model to the task at hand.

Standard Inception-v3 operates on a 299x299 square image. Because the current
problem involves very detailed, thin structures, it is plausible to assume that a larger
input image may yield better outcomes. We use instead 599x599 images, and compress
them down to 299x299 using an additional convolutional layer at the very bottom of the
network, before the layer labeled Conv2d_1a_3x3 in the reference implementation. The
additional convolutional layer has a depth (number of filters) of 16, a 3 x 3 receptive
field (it operates on a 3 x 3 square patch convolved over the image) and a stride of 2 (it
skips over every other location in the image to reduce the dimensionality of the feature
map). This modification improved classification absolute accuracy by approximately
0.3%. A few other convolutional layers were shrunk compared to the standard
Inception-v3 by capping their depth as described in Table |3] using the conventions from
the reference implementation.

Table 3. Limits applied to layer depths to reduce the model complexity. In
each named layer of the deep network — here named after the conventions of the
reference implementation — every convolutional subblock had its number of filters
reduced to contain no more than these many outputs.

Layer Max depth
Conv2d_4a_3x3 144
Mixed_6b 128
Mixed_6¢c 144
Mixed_6d 144
Mixed_6e 96
Mixed_7a 96
Mixed_7b 192
Mixed_7c 192

While these parameters are exhaustively reported here to ensure reproducibility of
the results, their fine tuning is not essential to maximizing the success rate, and was
mainly motivated by improving the speed of training. In the end, it was possible to
train the model at larger batch size (64 instead of 32) and still fit within the memory of
a NVidia K80 GPU (see more details in the training section below). Given the large
number of examples available, all dropout [40] regularizers were removed from the
model definition at no cost in performance.

Data Preprocessing and Augmentation

The source data is partitioned randomly into 415990 training images and 47062 test
images.
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Fig 2. Classifier Accuracy. Accuracy on the training and validation sets as a
function of the number of steps of training. Training halts when the performance on the
evaluation set no longer increases (‘early stopping’). As is typical for this type of
stochastic training, performance increases rapidly at first as large training steps are
taken, and slows down as the learning rate is annealed and the model fine-tunes its
weights.

The training data is generated dynamically by taking random 599x599 patches of the
input images, and subjecting them to a wide array of photometric distortions, identical
to the reference implementation:

e randomized brightness (£ 32 out of 255),

e randomized saturation (from 50% to 150%),
e randomized hue (£ 0.2 out of 0.5),

e randomized contrast (from 50% to 150%).

In addition, images are randomly flipped left to right with 50% probability, and, in
contrast to the usual practice for natural scenes which don’t have a vertical symmetry,
they are also flipped upside down with 50% probability. Because images in this dataset
have full rotational invariance, one could also consider rotations beyond the mere 90°,
180°, 270° that these flips provide, but we didn’t attempt it here, as we surmise the
incremental benefits would likely be minimal for the additional computational cost.
This form of aggressive data augmentation greatly improves the robustness of image
classifiers, and partly alleviates the need for large quantities of human labels.

For evaluation, no distortion is applied. The test images are center cropped and
resized to 599x599.

Training

The model is implemented in TensorFlow [41], and trained using an asynchronous
distributed training setup [42] across 50 NVidia K80 GPUs. The optimizer is
RmsProp [43], with a batch size of 64, a learning rate of 0.045, a momentum of 0.9, a
decay of 0.9 and an epsilon of 0.1. The learning rate is decayed every two epochs by a
factor of 0.94. Training completed after 1.7M steps (Fig. [2]) in approximately 19 hours,
having processed 100M images, which is the equivalent of 260 epochs. The model thus
sees every training sample 260 times on average, with a different crop and set of
distortions applied each time. The model used at test time is a running average of the
training model over a short window to help stabilize the predictions.

4 Results

Classification

The original labeling gave rise to a model with 94.2% accuracy on the test set.
Relabeling improved reported classification accuracy by approximately 0.3% absolute,
with the caveat that the figures are not precisely comparable since some of the test
labels changed in between. The revised model thus achieves 94.5% accuracy on the test
set for the four-way classification task. It overfits modestly to the training set, reaching
just above 97% at the early-stopping mark of 1.7M steps. Table |4 summarizes the
confusions between classes. Although the classifier does not perform equally well on
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Table 4. Confusion Matrix. Fraction of the test data that is assigned to each class
based on the posterior probability assigned by the classifier. For instance, 0.8% of
images labeled as Precipitate in the test set were classified as Crystals.

True Predictions
Label Crystals | Precipitate | Clear Other
Crystals 91.0% 5.8% 1.7% 1.5%
Precipitate 0.8% 96.1% 2.3% 0.7%
Clear 0.2% 1.8% 97.9% | 0.2%
Other 4.8% 19.7% 5.9% | 69.6%

Table 5. Standard Deviation of the predictions across data sources. Note in
particular the large variability in the consistency of the label ’Other’ across datasets,
which leads to comparatively poor selectivity of that less well-defined class.

True Predictions
Label Crystals | Precipitate | Clear | Other
Crystals 5% 4% 1% 1%
Precipitate 2% 4% 1% 2%
Clear 1% 3% 5% 1%
Other 7% 15% 6% | 21%

images from the various datasets, the standard deviation in performance from one set to
another is fairly small, about 5% (see Table [5]), compared to the overall performance of
the classifier.

The classifier outputs a posterior probability for each class. By varying the
acceptance threshold for a proposed classification, one can trade precision of the
classification against recall. The receiver operating characteristic (ROC) curves can be
seen in Fig. B]

Validation

At CSIRO C3 a workflow [44] has been set up which uses a variation of the analysis tool
from DeepCrystal [45] to analyze newly collected crystallisation images and to assign
either no score, ‘crystal’ score or ‘clear’ score. A total of 37,851 images were collected in
Q1 2018 and assigned a human score by a C3 user were used as an independent dataset
to test the MARCO tool. Within this dataset, 9746 images had been identified as
containing crystals. The current, DeepCrystal tool (which assigns only ‘crystal’ or ‘clear
scores) was found to have an overall accuracy rate of 74%, while the MARCO tool has
90%. Although this retrospective analysis doesn’t allow for a direct comparison of the
ROC, the precision, recall and accuracy of the two tools all favor the MARCO tool, as
shown in table 6. The precision achieved by MARCO on this dataset is also very similar
to that seen for the CSIRO images in the training data.

)

Table 6. Validation at C3 Precision, recall and accuracy from an independent set of
images collected after the MARCO tool was developed. The 38K images of sitting drop
trials were collected between January 1 and March 30, 2018 on two Formulatrix Rock

Imager (FRI) instruments.

DL tool Precision | Recall | Accuracy
DeepCrystal 0.4928 0.4520 0.7391
MARCO 0.7777 0.8663 0.9018
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Fig 3. Receiver Operating Characteristic Curves. (Q) Percentage of the
correctly accepted detection of crystals as a function of the percentage of incorrect
detections (AUC: 98.8). 98.7% of the crystal images can be recalled at the cost of less
than 19% false positives. Alternatively, 94% of the crystals can be retrieved with less
than 1.6% false positives. (B) Percentage of the correctly accepted detection of
precipitate as a function of the percentage of incorrect detections (AUC: 98.9). 99.6% of
the precipitate images can be recalled at the cost of less than 25% false positives.
Alternatively, 94% of the precipitates can be retrieved with less than 3.4% false
positives.

Fig 4. Sample heatmaps for various types of images. (A) Crystal: the classifier
focuses on some of the angular geometric features of individual crystals (arrows). (B)
Precipitate: the classifier lands on the precipitate (arrows). (C) Clear: The classifier
broadly samples the image, likely because this label is characterized by the absence of
structures rather than their presence. Note the slightly more pronounced focus on some
darker areas (circle and arrows) that could be confused for crystals or precipitate.
Because the ‘Others’ class is defined negatively by the the image being not identifiable
as belonging to the other three classes, heatmaps for images of that class are not
particularly informative.

Pixel Attribution

We visually inspect to what parts of the image the classifier learns to attend by
aggregating noisy gradients of the image with respect to its label on a per-pixel basis.
The SmoothGrad [46] approach is used to visualize the focus of the classifier. The
images in Fig. [] are constructed by overlaying a heat map of the classifier’s attention
over a grayscale version of the input image.

Note that saliency methods are imperfect and do not in general weigh faithfully all
the evidence present in an image according to their contributions to the decision,
especially when the evidence is highly correlated. Although these visualizations paint a
simplified and very partial picture of the classifier’s decision mechanisms, they help
confirm that it is likely not picking up and overfitting to cues that are irrelevant to the
task.

Inference and Availability

The model is open-sourced and available online at [47]. It can be run locally using
TensorFlow or TensorFlow Lite, or as a Google Cloud Machine Learning [48] endpoint.
At time of writing, inference on a standard Cloud instance takes approximately 260ms
end-to-end per standalone query. However, due to the very efficient parallelism
properties of convolutional networks, latency per image can be dramatically cut down
for batch requests.

5 Discussion

Previous attempts at automating the analysis of crystallisation images have employed
various pattern recognition and machine learning techniques, including linear
discriminant analysis [49,/50], decision trees and random forests |51H53], and support
vector machines [19[54]. Neural networks, including self-organizing maps, have also been
used classify these images [16,/55], with the most recent involving deep learning [56].
However, all previous approaches have required a consistent set of images with the same
field of view and resolution, in order to identify the crystallization droplet in the
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well [22], and thereby restrict the analysis. Various statistical, geometric or textural
features were then extracted, either directly from the image or from some transformation
of the region of interest, to be used as variables in the classification algorithms.

The results from various studies can be difficult to compare head-to-head because
different groups present confusion matrices with the number of classes ranging from 2 to
11, only sometimes aggregating results for crystals/crytalline materials. There is also a
tradeoff between the number of false negatives and the number of false positives. Yet
most report classification rates for crystals around 80-85% even in more recent
work [8l|53}[57], in which missed crystals are reported with much lower rates. This
advance comes at the expense of more false positives. For example, Pan et al. report
just under 3% false negatives, but almost 38% false positives [54].

As the trained algorithms are specific to a set of images, they are also restricted to a
particular type of crystallisation experiment. Prior to the curation of the current
dataset, the largest set of images (by far) came from the Hauptman-Woodward Medical
Research Institute HTCC [14]. This dataset, which contains 147,456 images from 96
different proteins but is limited to experiments with the microbatch-under-oil technique,
has been used in a number of studies [56}/58]. Most notably, Yann et al. used a deep
convolutional neural network that automatically extracted features, and reported a
correct classification rates as high as 97% for crystals and 96% for non-crystals.
Although impressive, these results were however obtained from a curated subset of
85,188 clean images, i.e., images with class labels on which several human experts
agreed [56]. In order to validate our approach, we retrained our model to perform the
same 10-way classification on that subset of the data alone without any tuning of the

model’s hyperparameters and achieved 94.7% accuracy, compared to the reported 90.8%.

In this context, the current results are especially remarkable. A crystallographer can

classify images of experiments independently of the systems used to create those images.

They can view an experiment with a microscope or look at a computer image and reach
similar conclusions. They can look at a vapor diffusion experiment or a
microbatch-under-oil setup and, again, asses either with confidence. Here, we show that
this can be accomplished equally well, if not better, using deep CNNs. A benchtop
researcher can classify many images, especially if they relate to a project that has been
years in the making. For high-throughput approaches, however, that task becomes
challenging. The strength of computational approaches is that each image is treated like
the previous one, with no fatigue. Classification of 10,000 images is as consistent as
classification of one. This advance opens the door for complete classification of all
results in a high-throughput setting and for data mining of repositories of past image
data.

Another remarkable aspect of our results is that they leverage a very generic
computer vision architecture originally designed for a different classification problem —
categorization of natural images — with very distinct characteristics. For instance, one
can presume that the global geometric relationships between object parts would play a
greater role in identifying a car or a dog in an image, compared to the very local,
texture-like features involved in recognizing crystal-like structures. Yet no particular
specialization of the model was required to adapt it to the widely differing visual
appearances of the samples originating from different imagers. This convergence of
approaches toward a unified perception architecture across a wide range of computer
vision problems has been a common theme in recent years, further suggesting that the
technology is now ready for wide adoption for any human-mediated visual recognition
task.
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6 Conclusion

In this work, we have collated biomolecular crystallization images for nearly half a
million of experiments across a large range of conditions, and trained a CNN on the
labels of these images. Remarkably, the resulting machine-learning scheme was able to
recapitulate the labels of more than 94% of a test set. Such accuracy has rarely been
obtained, and has no equal for an uncurated dataset. The analysis also identified a
small subset of problematic images, which upon reconsideration revealed a high level of
label discrepancy. This variability inherent to using human labeling highlights one of
the main benefits of automatic scoring. Such accuracy also make conceivable
high-density screening.

Enhancing the imaging capabilities by including UV or SONICC results, for instance,
could certainly enrich the model. But several research avenues could also be pursued
without additional laboratory equipment. In particular, it should be possible to leverage
side information that is currently not being used.

e The four-way classification scheme used is a distillation of 38 categories which are
present in the source data. While these categories are presumed to be somewhat
inconsistent across datasets, they could potentially provide an additional
supervision signal.

e Because one goal of this classifier is to be able to generalize across datasets, it
would be worthwhile to investigate the contribution of techniques that have been
designed to specifically reduce the effect of domain shift across data sources on
the classification outcomes [59.(60].

e Each crystallization experiment records a series of images taken over times. Using
the timecourse information could enhance the success rate of the classifier [61].

Note in closing that the current study focused on crystallization as an outcome,
which is but a small fraction of the protein solubility diagram. Patterns of precipitation,
phase separation, and clear drops, also provide information as to whether and where
crystallization might occur. The success in identifying crystals, precipitate and clear can
be thus also be used to accurately chart the crystallization regimes and to identify
pathways for optimization [58.[62/63]. The application of this approach to large libraries
of historical data may therefore reveal patterns that guide future crystallization
strategies, including novel chemical screens and mutagenesis programs.

Acknowledgments

We acknowledge discussions at various stages of this project with I. Altan, S. Bowman,
R. Dorich, D. Fusco, E. Gualtieri, R. Judge, A. Narayanaswamy, J. Noah-Vanhoucke,
P. Orth, M. Pokross, X. Qiu, P. F. Riley, V. Shanmugasundaram, B. Sherborne and
F. von Delft. PC acknowledges support from National Science Foundation Grant

no. NSF DMR-1749374.

References

1. Harrison S, Lahue B, Peng Z, Donofrio A, Chang C, Glick M. Extending ‘predict
first’ to the design make-test cycle in small-molecule drug discovery. Future Med
Chem. 2017;9:533-536.

2. McPherson A. Crystallization of Biological Macromolecules. Cold Spring Harbor:
CSHL Press; 1999.

PLOS

11/]15}

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373



@PLOS | susmission

3. Chayen NE. Turning protein crystallisation from an art into a science. Curr Opin
Struct Biol. 2004;14(5):577-583.

4. Fusco D, Charbonneau P. Soft Matter Perspective on Protein Crystal Assembly.
Colloids Surf B: Biointerfaces. 2016;137:22-31.

5. Ng JT, Dekker C, Reardon P, von Delft F. Lessons from ten years of
crystallization experiments at the SGC. Acta Cryst D. 2016;72:224-235.

6. Fazio VJ, Peat TS, Newman J. Lessons for the future. Methods Mol Biol.
2015;1261:141-156.

7. Newman J, Bolton EE, Muller-Dieckmann J, Fazio VJ, Gallagher DT, Lovell D,
et al. On the need for an international effort to capture, share and use
crystallization screening data. Acta Cryst F. 2012;68(3):253-258.

8. Kotseruba Y, Cumbaa CA, Jurisica I. High-throughput protein crystallization on
the World Community Grid and the GPU. J Phys Conf Ser. 2012;341(1):012027.

9. Newman J. One plate, two plates, a thousand plates. How crystallisation changes
with large numbers of samples. Methods. 2011;55(1):73 — 80.

10. Zhang S, Gerard CJJ, Ikni A, Ferry G, Vuillard LM, Boutin JA, et al.
Microfluidic platform for optimization of crystallization conditions. J Cryst Growth.
2017:472:18 — 28.

11. Thielmann Y, Koepke J, Michel H. The ESFRI Instruct Core Centre Frankfurt:
Automated high-throughput crystallization suited for membrane proteins and more.
J Struct Funct Genomics. 2012;13(2):63-69.

12. Snell EH, Lauricella AM, Potter SA, Luft JR, Gulde SM, Collins RJ, et al.
Establishing a training set through the visual analysis of crystallization trials. Part
IT: crystal examples. Acta Cryst D. 2008;64(11):1131-1137.

13. Wilson J. Automated Classification of Images from Crystallisation Experiments.
In: Perner P, editor. Advances in Data Mining. Applications in Medicine, Web
Mining, Marketing, Image and Signal Mining. Springer Berlin Heidelberg;. p.
459-473.

14. Snell EH, Luft JR, Potter SA, Lauricella AM, Gulde SM, Malkowski MG, et al.
Establishing a training set through the visual analysis of crystallization trials. Part
I: 150 000 images. Acta Cryst D. 2008;64(11):1123-1130.

15. Hargreaves D. Private communication;.

16. Spraggon G, Lesley SA, Kreusch A, Priestle JP. Computational analysis of
crystallization trials. Acta Cryst D. 2002;58(11):1915-1923.

17. Cumbaa C, Jurisica I. Automatic Classification and Pattern Discovery in
High-throughput Protein Crystallization Trials. J Struct Funct Genomics.
2005;6(2):195-202.

18. Kawabata K, Saitoh K, Takahashi M, Asama H, Mishima T, Sugahara M, et al.
Evaluation of protein crystallization state by sequential image classification. Sensor
Rev. 2008;28(3):242-247.

19. Buchala S, Wilson JC. Improved classification of crystallization images using
data fusion and multiple classifiers. Acta Cryst D. 2008;64(8):823-833.

PLOS

12/[15)



@PLOS | susmission

20. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al.
Overview of the CCP4 suite and current developments. Acta Cryst D.
2011;67(4):235-242.

21. MAchine Recognition of Crystallization Outcomes (MARCO); 2017. Available at
https://marco.ccr.buffalo.edu/. The snapshot of the MARCO database used
for this study has been archived at
https://ubir.buffalo.edu/xmlui/handle/10477/77793.

22. Vallotton P, Sun C, Lovell D, Fazio VJ, Newman J. DropllT, an improved image
analysis method for droplet identification in high-throughput crystallization trials.
J Appl Crystallogr. 2010;43(6):1548-1552.

23. Rosa N, Ristic M, Marshall B, Newman J. Keeping Crystallographers App-y.
Acta Cryst F;submitted.

24. Mele K, Li R, Fazio VJ, Newman J. Quantifying the quality of the experiments
used to grow protein crystals: the iQC suite. Journal of Appl Cryst.
2014;47(3):1097-1106.

25. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al.
Backpropagation applied to handwritten zip code recognition. Neural computation.
1989;1(4):541-551.

26. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436.

27. Rawat W, Wang Z. Deep convolutional neural networks for image classification:
A comprehensive review. Neural Comput. 2017;29(9):2352-2449.

28. Berg A, Deng J, Fei-Fei L. Large scale visual recognition challenge (ILSVRC);
2010. Available from: http://www.image-net.org/challenges/LSVRC.

29. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A
survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88.

30. Angermueller C, Parnamaa T, Parts L, Stegle O. Deep learning for
computational biology. Mol Syst Biol. 2016;12(7):878.

31. Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, et al. Grader
variability and the importance of reference standards for evaluating machine
learning models for diabetic retinopathy. arXiv:171001711 [esCV]. 2017;(preprint).

32. Liu Y, Gadepalli K, Norouzi M, Dahl GE, Kohlberger T, Boyko A, et al.
Detecting cancer metastases on gigapixel pathology images. arXiv:170302442
[csCV]. 2017;(preprint).

33. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by
back-propagating errors. Nature. 1986;323(6088):533.

34. Bottou L. Large-scale machine learning with stochastic gradient descent. In:
Proceedings of COMPSTAT’2010. Springer; 2010. p. 177-186.

35. Szegedy C, Vanhoucke V, IToffe S, Shlens J, Wojna Z. Rethinking the inception
architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition; 2016. p. 2818-2826.

36. Szegedy C, loffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet and
the impact of residual connections on learning. arXiv:160207261 [csCV].
2017;(preprint).

PLOS

13/]15


https://marco.ccr.buffalo.edu/
https://ubir.buffalo.edu/xmlui/handle/10477/77793
http://www.image-net.org/challenges/LSVRC

@PLOS | susmission

37. Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for
scalable image recognition. arXiv:170707012 [csCV]. 2017;(preprint).

38. Golovin D, Solnik B, Moitra S, Kochanski G, Karro J, Sculley D. Google vizier:
A service for black-box optimization. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM; 2017. p.
1487-1495.

39. Silberman N, Guadarrama S. TensorFlow-Slim image classification model library;
2017. Available from:
https://github.com/tensorflow/models/tree/master/research/slim.

40. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout:
A simple way to prevent neural networks from overfitting. J Mach Learn Res.
2014;15(1):1929-1958.

41. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al.. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems; 2015. Available from:
https://www.tensorflow.org.

42. Dean J, Corrado G, Monga R, Chen K, Devin M, Mao M, et al. Large scale
distributed deep networks. In: Advances in neural information processing systems;
2012. p. 1223-1231.

43. Tieleman T, Hinton G. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine
learning. 2012;4(2):26-31.

44. Watkins C. C4, C3 Classifier Pipeline. vl. CSIRO. Software Collection.; 2018.
Available from: https://doi.org/10.4225/08/5a97375e6c0aa.

45. DeepCrystal; 2017. Available from: http://www.deepcrystal. com.

46. Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M. SmoothGrad: Removing
Noise by Adding Noise. arXiv:170603825 [csLG]|. 2017;(preprint).

47. Vanhoucke V. Marco repository in TensorFlow Models; 2018. Available from:
http://github.com/tensorflow/models/tree/master/research/marco.

48. Google Cloud Machine Learning Engine; 2018. Available from:
https://cloud.google.com/ml-engine.

49. Cumbaa CA, Lauricella A, Fehrman N, Veatch C, Collins R, Luft J, et al.
Automatic classification of sub-microlitre protein-crystallization trials in 1536-well
plates. Acta Cryst D. 2003;59(9):1619-1627.

50. Saitoh K, Kawabata K, Asama H, Mishima T, Sugahara M, Miyano M.
Evaluation of protein crystallization states based on texture information derived
from greyscale images. Acta Cryst D. 2005;61(7):873-880.

51. Bern M, Goldberg D, Stevens RC, Kuhn P. Automatic classification of protein
crystallization images using a curve-tracking algorithm. J Appl Cryst.
2004;37(2):279-287.

52. Liu R, Freund Y, Spraggon G. Image-based crystal detection: a machine-learning
approach. Acta Cryst D. 2008;64(12):1187-95.

53. Cumbaa CA, Jurisica I. Protein crystallization analysis on the World Community
Grid. J Struct Funct Genomics. 2010;11(1):61-69.

PLOS

14/[15)


https://github.com/tensorflow/models/tree/master/research/slim
https://www.tensorflow.org
https://doi.org/10.4225/08/5a97375e6c0aa
http://www.deepcrystal.com
http://github.com/tensorflow/models/tree/master/research/marco
https://cloud.google.com/ml-engine

@PLOS | susmission

54. Pan S, Shavit G, Penas-Centeno M, Xu DH, Shapiro L, Ladner R, et al.
Automated classification of protein crystallization images using support vector
machines with scale-invariant texture and Gabor features. Acta Cryst D.
2006;62(3):271-279.

55. Po MJ, Laine AF. Leveraging genetic algorithm and neural network in
automated protein crystal recognition. In: Proceedings of the 30th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society,
EMBS’08 - ”Personalized Healthcare through Technology”; 2008. p. 1926-1929.

56. Yann MLJ, Tang Y. Learning Deep Convolutional Neural Networks for X-Ray
Protein Crystallization Image Analysis. In: Thirtieth AAAI Conference on
Artificial Intelligence; 2016.

57. Hung J, Collins J, Weldetsion M, Newland O, Chiang E, Guerrero S, et al.
Protein crystallization image classification with elastic net. In: SPIE Medical
Imaging. vol. 9034. SPIE;. p. 14.

58. Fusco D, Barnum TJ, Bruno AE, Luft JR, Snell EH, Mukherjee S, et al.
Statistical Analysis of Crystallization Database Links Protein Physico-Chemical
Features with Crystallization Mechanisms. PLoS ONE. 2014;9(7):e101123.

59. Ganin Y, Lempitsky V. Unsupervised domain adaptation by backpropagation. In:
International Conference on Machine Learning; 2015. p. 1180-1189.

60. Bousmalis K, Trigeorgis G, Silberman N, Krishnan D, Erhan D. Domain
separation networks. In: Advances in Neural Information Processing Systems; 2016.
p. 343-351.

61. Mele K, Lekamge BMT, Fazio VJ, Newman J. Using Time Courses To Enrich the
Information Obtained from Images of Crystallization Trials. Cryst Growth Des.
2014;14(1):261-269.

62. Snell EH, Nagel RM, Wojtaszcyk A, O’Neill H, Wolfley JL, Luft JR. The
application and use of chemical space mapping to interpret crystallization screening
results. Acta Cryst D. 2008;64(12):1240-1249.

63. Altan I, Charbonneau P, Snell EH. Computational crystallization. Arch Biochem
Biophys. 2016;602:12-20.

PLOS

1515



	Introduction
	Material and Methods
	Machine Learning Model
	Results
	Discussion
	Conclusion

