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Abstract

Water occupies typically 50% of a protein crystal, and thus significantly contributes
to the diffraction signal in crystallography experiments. Separating its contribution
from that of the protein is, however, challenging because most water molecules are not
localized, and are thus difficult to assign to specific density peaks. The intricateness
of the protein-water interface further compounds this difficulty. This information has,
therefore, not often been used to study biomolecular solvation. Here, we develop a
methodology to surmount in part this difficulty. More specifically, we compare the
solvent structure obtained from diffraction data for which experimental phasing is
available to that obtained from constrained molecular dynamics (MD) simulations. The
resulting spatial density maps show that commonly used MD water models are only
partially successful at reproducing the structural features of biomolecular solvation.
The radial distribution of water is captured with only slightly higher accuracy than
its angular distribution, and only a fraction of the water molecules assigned with high
reliability to the crystal structure are recovered. These differences are likely due to
shortcomings of both the water models and the protein force fields. Despite these
limitations, we nevertheless achieve to infer protonation states of some of the side

chains utilizing MD-derived densities.

1 Introduction

Water is not only a medium for biological processes, but an active participant.! It mediates

23 and enables the enzymatic

interactions between proteins and small-molecule inhibitors,
transfer of a proton to a protein residue.* Moreover ice-binding proteins alter the ordering
of water around them, affecting ice nucleation.® A reliable physico-chemical description of
water in the vicinity of biomolecules is thus needed both to properly solvate these complex
objects and to comprehend their function. Yet, despite continued advances to our micro-
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scopic understanding of the properties of bulk water,%® including its many phases and



hydrophobicity, 12 our grasp of biomolecular solvation still markedly lags behind.'*'* The in-
tricate interplay between the mosaic of hydrophobic and hydrophilic surface residues, steric
hindrance, and side-chain dynamics requires a careful balance of the various intermolecular
interactions in order for a structurally accurate description of solvation to emerge. Standard
water models, which are rigid, non-polarizable and parameterized to reproduce a standard
set of bulk properties, attempt to do just that®!® (Figure 1), but it is unclear how they fare
at solvating biomolecules.'® The lack of reliable experimental information about solvation

has thus far rendered this problem intractable.
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Figure 1: Typical water models used in biomolecular simulations vary mostly in the number
of point charges they use to capture intermolecular interaction. All include charges at the
hydrogen positions and a Lennard-Jones potential on the oxygen atom, but (a) three-site
models contain an additional point charge on the oxygen atom (e.g., SPC!'" and SPC/E!8),
while (b) four-site models use a virtual site (V) (e.g., TIP4P, with? and without Ewald
summation, and TIP4P/20052!), and (c) five-site models split the charge between two virtual
sites (e.g., TIP5P??). Although six-site models also exist, they are not commonly used.

A possible experimental headway into this problem comes from protein crystallography.

Protein crystal unit cells contain a significant fraction of water (between 26% and 90%

23,24)

by volume with an average around 50% , hence the inhomogeneous distribution of the

25227 peutron,?® or electron.?*3° The

solvent impacts the diffracting radiation — be it X-ray,
phase problem of crystallography actually makes the accurate reconstruction of water density
profile an essential component of most protein structure determinations.?’ Full structure
factors — amplitude and phase — are needed to determine atomic densities within a unit cell,
yet only amplitudes can typically be measured directly. Even when some of the phases can
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be gleaned from multiple intensity measurements or molecular replacemen many phase



values can still go missing. Phases must thus be obtained by iteratively refining the unit cell
description and the phase estimates. Because all atoms, i.e. both the macromolecule and
the solvent, contribute to all structure factors, an accurate model of the solvent structure is
required for this iterative refinement. Obtaining the structure of the protein chain therefore
requires a careful treatment of water density fluctuations.

However, the description of the unit cell structure from refinement is far from perfect.

The extent of the mismatch is commonly quantified by R-factors,

> | Fobs(k) = Frnoda (k)|
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where Fyps(k) and Foqe(k) are the experimentally observed and model structure factor am-
plitudes, respectively, from the set S of observed reflections k, where k = 27n is a vector con-
taining the Miller indices of the reflection *. Even for the highest-quality protein structures,
R-factors average 15%, which is an order of magnitude larger than for small molecules.??
Although part of the difference is attributable to experimental noise, the weaker agreement
between model and experiment is more generally ascribed to the limited sophistication of
the structural model of the unit cell content,?* and especially of the solvent.?¥35 The wa-
ter model used for structural refinement is assembled from the sum of (i) localized crystal
water molecules and (ii) delocalized bulk water regions. A solvent model that improves
the description of the water structure should increase agreement between model and data,
and ultimately improve the quality of the protein structures obtained crystallographically.
Whether molecular dynamics (MD) simulations, which allow a continuum of description be-

tween (i) and (ii), can complement the diffraction data®® and thus improve the description

*If the set S contains all the measured structure factors, the resulting R-factor is Ryorx- As a measure of
overfitting, crystallographers also calculate Rp e 22 by choosing S to be a small set of structure factors that are
not included in any stage of structure determination, including refinement. Note that in the crystallography
literature the vector k is conventionally written without the factor of 27, and an extra 2w then appears in
the Fourier transform (see Eq. 2).



of biomolecular solvation is largely unexplored.
In this work, we make an attempt in this direction by comparing the MD and refinement-

b3-substituted mannose binding protein

derived hydration structure of a single protein, a Y
(PDB ID: 1YTT).?* Like Burling et al., who previously studied this protein to probe the
surrounding water structure, we choose this system because its X-ray structure was deter-
mined from multi-wavelength anomalous diffraction (MAD) and a full set of experimental
phases was experimentally extracted. This rare occurrence enables us to determine the ex-
perimental solvent density profile unbiased by the refinement process. This comparison also
allows for benchmarking the water models used in MD simulations. From a methodological
standpoint, our comparison relies on an ergodic-like hypothesis that the signal from diffrac-
tion techniques is spatially averaged over the configurations of water in the various unit cells,
and thus can be recovered by averaging over water configurations obtained from long MD
trajectories of a single unit cell. In the following, we first describe the test protein (Sec. 2.1),
the water models used in the study (Sec. 2.2), as well as the MD simulation (Sec. 2.3), and

comparison (Sec. 2.4), and protonation schemes (Sec. 2.5) before detailing the results of our

analysis in Section 3.

2 Methods

This section presents the technical aspects of the experimental system and of the MD simu-

lations as well as the solvent density analysis scheme.

2.1 Protein and Setup

We study the Yb3-substituted mannose binding protein (PDB ID: 1YTT) solved by MAD
phasing up to a resolution of 1.8A3* from a crystal with space group symmetry P2;2,2;.%7
The unit cell contains four protein dimers related by symmetry operations, and thus to-

tals eight protein copies (see SI). The model deposited in the Protein Data Bank (PDB)



nearly two decades ago had Ryo = 0.185 and Rygee = 0.206,%® but methodological advances

9 (version phenix-dev-2405) have allowed us to make substantial

achieved since by Phenix?
improvements to the structural refinement and to update the assigned crystal waters. The
biochemical reasonableness of the resulting structure was nevertheless verified by MolPro-
bity.*? No crystal waters were found to clash with protein atoms and all were at a reasonable
hydrogen bonding distance from other crystal waters. Careful examination of the local dif-
ference density maps, however, led us to manually remove six water molecules that resulted
in an excess electron density compared to the experimental data. Keeping the remain-
ing 254 crystal waters per protein in place, an additional iteration of structural refinement
gave Ryon = 0.159 and Rge. = 0.183. The robustness of this result to experimental and
refinement noise indicates that the final structure is slightly overfitted but nevertheless a
reasonable starting point for this study (see SI).

From the set of optimal structure factors obtained from the refinement process, the

electron density at each point r within the unit cell can formally be computed as,
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where v is the volume of the unit cell. However, because F(0) cannot be extracted ex-
perimentally — it is coincident with the transmitted beam — the density profile can only
be determined up to an unknown constant, p, and the sum is truncated at high k once

experimental peaks become unresolvable (see ST*!).

2.2 Water Models

The water models considered in molecular simulations are: (i) SPC,'" (ii) SPC/E,® (iii)
TIP3P,'? (iv) TIP4P' with Ewald summation®T, (v) TIP4P/2005,2! and (vi) TIP5P?? (see
Fig. 1). The first five have three planar charges (TIP4P and TIP4P /2005 have a negative

fThroughout this paper, we refer to TIP4P with Ewald summation as TIP4P.



charge off the oxygen atom), while the sixth has four tetrahedrally-distributed charges. All
overestimate the gas phase dipole moment of water, in order to treat some of the many-body
contributions in condensed phases in an effective way.® SPC and SPC/E, unlike TIP3P,
have an O-H bond length and a H-O-H bond angle that differs from the gas phase water
geometry for a similar reason. The charge distribution in SPC/E also effectively takes into
account the polarization correction to the energy.!® Note that the only difference between
TIP4P and TIP4P /2005 is that their parameters were optimized to match different sets of
thermodynamic properties.

These models describe bulk water with varying degrees of success. For instance, TIP4P
is better than SPC and TIP3P at reproducing the structure of the gas phase dimer as well as
the water density, enthalpy of vaporization, and peak structure of the oxygen-oxygen radial
distribution function.!® TIP5P reproduces the oxygen-oxygen radial distribution function
even better than TIP4P,*? while TIP4P /2005 reproduces better the phase diagram of water
than any other models of this type.?! Although Vega and Abascal, judged TIP4P /2005 to
be generally superior, their analysis mainly highlighted that all of such models result from
compromises. Whether similar distinctions between these models exist for the structure of

water near a protein surface, however, has not yet been tested.

2.3 Molecular Dynamics Simulations

The numerical solvent density profile was extracted from molecular dynamics simulations.
Systems are initialized by first placing copies of the crystal structure (obtained in Sec. 2.1)
of the protein following the crystal symmetry, within a simulation box that has the same
dimensions as the crystal unit cell (see SI). Preserving the protein within its unit cell rather
than solvating it within a larger simulation box more closely captures the confinement condi-
tions within the crystal as well as the impact of protein-protein interfaces on water ordering.
This choice, however, also introduces computational difficulties. In particular, sampling con-

figurations near protein-protein interfaces can be sluggish, and tuning the water density in



confinement is nontrivial. Errors in the latter may result in a water activity that is quite
different from that of a crystal grown in an experimental cocktail . In order to minimize
the impact of both of these problems on the water density profile we run four simulations,
each containing a different three-protein dimer copy subset of the unit cell. The absence of
a protein dimer copy both accelerates sampling and endogenously introduces a reservoir of
solvent that brings its activity near that of the bulk. Note that because only seven protein
surface atoms (out of 1769) per chain lie at the interface of four protein dimers, the impact
of this removal on the analysis of the solvent structure should be negligible. Water initial-
ization is done by the solvate module in Gromacs, which results in a water density within
the bulk region of the simulation box that deviates at most by 1% from its standard value,
1.00 g/mL, at temperature T=298K. Higo and Nakasako have found that the ionic strength
does not noticeably affect the structure of water within the unit cell,*® therefore our simu-
lations use 0.05M NaCl, which is within the typical range of ionic strengths encountered in
crystallization experiments.

The protonation states of side chains were at first automatically assigned by Gromacs“°
(version 5.1.2), based on the hydrogen-bonding network analysis of the software package.”
In order to assess the impact of protonation on the surrounding water structure, we also
generated variants with opposite protonation states for histidines, glutamates, lysines, and
aspartates (see Sec. 2.5).

The protein chain was modeled using the Amber99sb biomolecular force field.*® Param-
eters for Yb3* ions, which are not defined in this force field, were constructed from the
Lennard-Jones parameters for sodium ions, which has a similar ionic radius, but a charge of
+3. Although this crude treatment cannot fully capture the rich coordination chemistry of a
transition metal ion, only a small subset of nearby surface atoms are affected by this choice.

MD simulations were then run with various restraints. To minimize possible deviations

from the experimentally-refined protein model, carbon and nitrogen atoms on the backbone

#We assume that only water and small ions are present in the crystallization cocktail. In practice, other
additives are often included. 4344



were kept immobile (restrained), while oxygens were allowed to move, as their position does
not affect the overall protein backbone shape. Yb™ ions were also restrained, in order not
to bias the simulation results with the approximate parameters described above. In order to
facilitate the sampling of water configurations near the protein surface, heavy atoms (i.e. all
protein atoms except hydrogens) in the side chains as well as backbone oxygen atoms were
constrained harmonically with a force constant of 1000 kJ nm~—2 mol ™!, which is found to
be weakest restraint that prevents side chains from changing conformation over the course
of the simulations. Although these constraints slightly bias the final water density, they are
required for a reliable comparison of the resulting MD water density with the experimentally
observed density. Hydrogen atoms, water molecules and ions were allowed to move freely.
The simulations were thermostatted at 298 K. Although the crystallographic data was
obtained at 110K upon flash freezing the crystal sample, we assume that the unit cell con-
figuration at the crystallization temperature was preserved by this quench ¥ and energy
minimization has but a marginal impact on the structure. Amorphous water at that tem-
perature in the protein crystal is indeed glassy.? The strong confinement experienced by
water in the crystal is expected to leave water in a low-density amorphous (LDA) ice®® with
a structure similar to that of liquid water from which it was quenched. (Neutron diffraction !
results suggest that the local spatial distribution around a given water molecule in LDA is
closely related to that of the liquid phase.) We thus here assume that at distances com-
parable to the size of the solvent cavities in the protein unit cell, the amorphous structure
of water closely resembles that of room-temperature liquid water. This temperature is also

d, 17192122 anqd facilitates

optimal for the protein force fields and water models that were use
the sampling of solvent configurations (see SI).
We optimize the sampling frequency and computational time by first equilibrating the

systems for 30 ns, and then saving configuration snapshots every 3 ns. This provides a total

§The crystallization temperature for this protein was not reported but most structures deposited in the
PDB are crystallized at room temperature,® and a lack of experimental details suggests that an atypical
experimental procedure is unlikely.



1°951) " As a consistency check, we

of 40 fairly well decorrelated solvent configurations (see S
compare the water distribution surrounding a given protein atom with that of its symmetric
counterparts by computing the real-space correlation coefficients around these atoms (as

detailed in section 2.4). Less than 6% of the surface atoms were found to have a sampling

error larger than 10%, which suggests that a thorough sampling was achieved.

2.4 Analyzing the Solvent Structure

Electron density maps are extracted from the MD simulations by averaging over the atomic
densities obtained from the individual snapshots, and also from the diffraction dataset, us-
ing the Computational Crystallography Toolbox (CCTBX) library,®? upon which Phenix is
based. This algorithm uses a three-dimensional grid that spans the unit cell, with a grid
spacing that is roughly one fourth of the maximum resolution of the dataset (see SI®?). The
contribution of water to the overall MD electron density, psolvent(T), is then estimated (using
a standard Phenix routine), by centering an isotropic Gaussian on the positions of oxygen
atoms, with a standard deviation determined by the given atomic B-factor (see SI).

In order to reconstruct the solvent density from the set of simulation boxes that contain
only parts of the unit cell (see Sec. 2.3), we use the density information about protein-protein
interfaces from the simulation box that contains the relevant copies of the protein dimer. In
other words, we select the protein dimer copy that contains the given atom, and the two
neighboring protein dimer copies that are closest to that atom. The densities are joined by
first partitioning the unit cell, such that each grid point is assigned to the protein atom that
is closest to it (considering the refined protein coordinates), and then by copying the density
within the partition associated with each atom.

We compare the spatial distribution of water around protein atoms in both experimental
and simulated systems using the grid described above. Because the nitrogens and carbons
in the backbone are kept immobile, the protein structure in the various MD snapshots only

differ from that of the refined structure in its side-chain positions. The radial distribution
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functions (RDF), which capture the average solvent density profile as a function of distance
from a protein heavy atom, offers the lowest-order correction to the bulk solvent description
near an interface.’® For a subset of atoms A and the grid described above, it is computed
following a scheme similar to that of Lin and Pettitt. For an atom ¢ € A, let y; be the set
of grid points assigned to that atom, and X = U;c4x; be the set of grid points assigned to

atoms in A. Then,

> > pp) Olp(p)]
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(3)

ga(r) =

where p is a grid point, p(p) is the electron density at that grid point, x} is the subset of x;
that contains grid points r + Ar away from atom ¢, © is the Heaviside function, and psolvent
is the average electron density in the solvent region. The chosen shell thickness, Ar = 0.3A,
is only slightly smaller than the grid spacing derived from the maximal resolution of the
protein data, dy, = 1.8A, which ensures that a statistically sufficiently number of grid
points is captured within each shell, without overly coarsening the data.

RDFs are obtained both for separate sets of surface N, O, and C atoms and for individual
surface atoms, in both cases considering only surface atoms that are well localized, i.e., with
|x:| > 500 and B; < 24A° (the B-factor of atom ), which roughly corresponds to a mean-
squared displacement of 0.3A, and follows the definition used in Ref. 34. We discard surface
atoms that are within 6A of Yb** ions due to the strong Fourier ripples that surround them
(see SI). For the sets of surface N, O, and C atoms, an average radial correlation coefficient of
the RDFs are computed for 2.4A < r < 6A away from the protein atoms. For r < 2.4A it is
not possible to deconvolute protein and solvent contributions to the observed electron density,
whereas for r > 6A statistical noise and diffraction artifacts dominate because less than 2%
of the grid points fall beyond that distance. The correspondence between the RDFs from

experimental and MD-generated densities is assessed by the Pearson correlation coefficient. °®
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For individual surface atoms, we construct the set of RDFs, {(g; mp(7), gi.obs(r)) } forall i € A,
and all radial bins. The Pearson correlation coefficient of this set of ordered pairs is also
computed. In order to compare the radial position of a given peak in the RDFs, its 95%
confidence interval is estimated by drawing 1000 perturbed RDFs according to the error
margin in each radial bin.

Because RDFs average out information about the orientation of water molecules, we
also consider angular distribution functions (ADFs), which depend on the hydrogen bond
network in each configuration, and thus encode three-body and higher-order correlations.
Only grid points within the first solvation shell, i.e., for 2.4A < r < 4.8A, are considered
for this computation. The heavy atom is placed at the origin, and then the orientation of
each point around this atom is determined using spherical coordinates, (6, ¢), with the axis

orientations following the PDB conventions,®”

> pp) Ol —m|Blry — 7]

(6.0) = pEXi(1g:10)
,}/’L<¢7 ) Z @[’Fp _ Tl]@[TQ _ 'Fp] Y

pEXi(14,10)

(4)

where 7, gives the distance from the grid point to the heavy atom, x;(ls, Iy) is the set of
grid points assigned to i and are oriented such that ¢ € [¢ — Ap/2,¢ + Ap/2] and 6 €
[0 —A0/2,0+A0/2]. We set Ap = A = 7/30, which corresponds to an arc-length of 0.25A
at 2.4A, and 0.5A at 4.8A, comparable to the radial binning of the RDF. The comparison
between the angular distribution functions in experiments and simulations is also done using
the Pearson correlation coefficient of I'ops (7, @, 8) = 7i0bs(@, 0) and 'y (4, ¢, 0) = vimp (0, 0),
considering only cases in which both quantities are nonzero.

The real-space distribution of the water density combines information about both the ra-
dial and angular components. It thus provides an overall comparison of the solvent structure.
Using the three-dimensional grid on which the electron density is calculated, we consider cor-

relations between each grid point within 2.4A < r < 6A of a surface atom. Because grid
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points are roughly 0.4A apart, the resulting coarsening is similar to that of both the RDF
and the ADF, allowing for a meaningful comparison between their correlation coefficients.
The discrepancy between the real-space simulation and experimental maps is also measured
separately for the first solvation shell and for protein-protein contacts. Note that the latter
are defined as the grid points at least 2.4A and at most 3.0A away from a pair of N or O
atoms situated on different protein dimer copies.

Because the real-space distribution of water is calculated by averaging over exact electron
densities calculated from MD snapshots, the peak shapes and locations are affected by the
precise motion of the water molecules. In order to compare the water density peak locations,
we eliminate the role of water density widths and shapes by selecting only peaks that appear
above a given threshold density, py,. We additionally deconstruct the solvent density by
focusing exclusively on crystal waters, which by definition are associated with an observed
local electron density well above experimental noise. This comparison thus deconvolutes the
role of peak shape from that of peak location in assessing the density profile. Following Higo
and Nakasako, we define a prediction Apeq(pm) and a recall Aye(pin) score. The former
yields the fraction of crystal waters that are within a distance smaller than the water radius,
i.e., ~1.4A, of an MD peak above the threshold, while the latter gives the fraction of MD

peaks above the threshold that are within ~1.4A of a crystal water,
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where Pyp is the set of MD peaks, Pow is the set of crystal waters, p(r,) is the density
that corresponds to peak «, with w(r) = ©(1.4 — r) the overlap function defined in terms of

the Heaviside © function, |r, — rg| is the distance between the MD peak a and the crystal
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water 3, and |Pow| is the total number of crystal waters in the refined protein structure. In
other words, Apreq is the true positive rate, while A,ecan is the true negative rate. Note that
to assess the structural significance of the measured signal, we further compute these scores
with a random distribution of crystal waters with the same number density in the solvent
region. This null model results in a constant Apeda(pn) = 0.1, and a A,ec(pwn) that steadily
decays from 0.2 as py, increases, both values being well below the level of the measured
signal.

Finally, we compare the experimental and MD densities in reciprocal space by generating
a model of the protein unit cell that combines the simulated density with the protein model
(see SI®®). Comparing the resulting Ryo of this model with that of the original protein
model determines whether or not the simulated densities improve the agreement with the
experimental data. For this analysis, we estimate the error in the Ry, values due to
measurement errors to be one part in ten thousand (95% confidence interval, see SI). This
analysis can also be performed by partitioning the set of reflections into different resolution
bins and calculating Ry for each. Because higher resolution bins correspond to more
structured parts of the unit cell, such as the protein atoms and ordered water molecules
around the protein surface, while lower resolution bins correspond to regions with flatter
electron density, such as the bulk solvent,?® this analysis provides insight into the regions of

MD-generated solvent density that better agree with experimental data.

2.5 Inferring Protonation States

The solvent distribution is a reflection of its environment. Given sufficiently accurate solva-
tion information, it should thus be possible to determine the protonation state of a residue.
To test this hypothesis, different MD simulations were run for alternative side-chain proto-
nation states, and the resulting water density was compared with the experimental density.
The default Gromacs protonation states for a subset of histidine, glutamate, aspartate and

lysine residues were inverted in different simulations. The default and inverted protonation
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states for the residue types we study are summarized in Table 1. For glutamates, aspartates
and lysines, the residues to be (de)protonated were chosen, such that: (i) they have one
surface side chain oxygen or nitrogen; (ii) they are at least 6A away from another residue
chosen for protonation analysis in the same simulation to avoid interference between the
solvent distribution of one residue with the other; and (iii) do not neighbor a Yb*" ion
and thus are not affected by the approximations to its force field. We further verify that
the water density in the vicinity of these examples is well sampled by making sure that all
the surrounding water molecules decorrelate in at most ~ 1 ns, and that observations are
consistent for all four protein dimer copies. This whole set of simulations was run with the
TIP4P water model.

Table 1: Default vs inverted protonation states

residue default inverted
Ny protonated N, protonated
s or or
histidine N, protonated N4 protonated
charge: 0 charge: 0
lysine N¢ has 3 protons | N¢ has 2 protons
charge: +1 charge: 0
both Ogs; and Ogse | either Og; or Ogo
aspartate deprotonated has 1 proton
charge: -1 charge: 0
both O, and O, | either O, or O
glutamate deprotonated has 1 proton
charge: -1 charge: 0

3 Results and Discussion

In this section, the experimental and MD solvent information is used to assess the quality
of the MD description first by comparing density profiles, and second by using standard
crystallographic observables. The potential to infer the protonation state of residues from

MD solvent density is also examined.
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3.1 Real-Space Comparison of Water Densities

The RDF, which is a quintessential quantity in liquid state theory,®® has been utilized as
main observable by most prior studies of macromolecular solvation.34%55%60 Some of these
have even attempted to reconstruct protein hydration from RDFs alone.?>*%% It is therefore
a natural starting point for our evaluation.

Comparing the RDF for different atom types and water models reveals that the various
descriptions qualitatively agree with one another (Fig. 2). In particular, a clear first sol-
vation shell is noted, and hints of a second shell can be gleaned, although the number of
available grid points beyond 6A is too small to obtain a reliable profile of that shell. Be-
cause of experimental noise and artifacts, such as Fourier ripples (see SI), it is difficult to
determine whether the first peak position of the various simulation models match that of
the experimental RDF. The first peak positions of all water models, however, agree with
each other within the error margin, with the exception of TIP5P for surface oxygens, for
which the peak is pushed further out. For nitrogens and oxygens, the peak amplitude is
significantly higher in simulations than in experiment. One might be tempted to ascribe
the sensitivity of this feature to the choice of B-factor for water. Some water molecules
are indeed less localized than others, especially near fairly mobile surface protein atoms.
Hence, no single B can reliably describe all water molecules. The fact that neither nitrogens
(B = 20.2A2) nor oxygens (B = 18.7A2) have significantly higher average B-factors than
carbons (B = 19.3A2) does not rule out this possibility, as B-factors are unreliable estimates
of thermal motion in protein crystals.! It is also possible that the peak intensity could be
weakened by experimental noise and artifacts (see SI).

The overall shape of the RDF should nevertheless be insensitive to these effects. The
Pearson correlation coefficients between the averaged RDFs of surface N, O, and C atoms
reveal that the water density in the vicinity of surface oxygens and carbons is more accu-
rately reproduced than around nitrogens (dashed lines in Fig. 3a). However, the radial

correlation coefficients of RDF's for individual atoms (solid lines in Fig. 3a) suggest that the
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Figure 2: Averaged RDFs for surface (a) N, (b) O, and (¢) C atoms, from different water
models. Results obtained from different water models agree well with each other, as well as
with the experimental RDF's.

distributions around oxygens are significantly worse. The radial distribution of water around
individual oxygen atoms appears to depend more sensitively on the chemical environment
than around nitrogens and carbons. We also conclude that the distribution of water around
each atom is far from universal. Efforts to reconstruct water density using averaged radial
distribution functions — as was previously attempted®® — therefore have serious shortcom-
ings. Interestingly, all water models perform identically within the estimated error, for both
average and regular radial correlation coefficients. We get back to this point below.

Angular correlation coefficients are generally slightly lower than their radial counterparts.
This effect is consistent with the latter being a higher-order structural feature. One might
nonetheless expect that a model parameterized to more accurately reproduce the subtle ori-
entational order of the various bulk water crystal phases,?! such as TIP4P /2005, or a model
like TIP5P, which explicitly treats tetrahedral point charges, to improve the description of
ADFs. Neither TIP5P nor TIP4P /2005, however, perform significantly better than the other
water models, including TIP4P.

Angular correlation coefficients are generally larger for nitrogens and oxygens than for
carbons, which is particularly interesting. The orientation of water molecules around surface
nitrogens and oxygens indeed mostly results from direct hydrogen bonding, while that of wa-
ter molecules around carbons are affected by their interplay with the broader hydrogen-bond

network and are thus less constrained by the protein force field. The resulting hydrophobic-
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ity is structurally more subtle to capture, which likely explains why water models struggle
to capture this effect (Fig. 3b). Water models that account more accurately for many-body
correlations in water, such as E3B% and E3B2,% might improve the orientational descrip-
tion of water in these systems. Direct tests, however, are not immediately possible because
these models have not yet been parameterized for macromolecular solvation.

Because it contains higher-order structural information, the real-space distribution gener-
ally gives rise to significantly lower correlations than either the radial or the angular correla-
tion coefficients (Fig. 3). While water models capture the radial distribution of water around
carbons equally well as around nitrogens, they rank last in spatial correlation coefficients.
This is consistent with their poor performance describing angular correlations. Similarly,
models reproduce the angular distribution around oxygens as well as around nitrogens, but

perform worse for real-space correlations.
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Figure 3: (a) Radial (solid) and averaged radial (dashed), (b) angular, and (c) real-space
correlation coefficients for surface N (blue), O (red) and C (yellow) atoms. Real-space
correlation coefficients for first-layer (green) and contact waters (black) are also given in (c).
Error bars denote 95% confidence intervals. The lines connecting the data points are solely
a guide for the eye and have no physical meaning.

To gain further insight into the aspects of water models that increase their propensity to
capture water structure around biomolecules, we compare the spatial distribution of water

in different regions of space. We first calculate real-space correlations separately for contact
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and first-layer waters. Correlations for the first shell are consistent with the overall real-
space correlations for surface N, O, and C. Beyond the first layer, errors get amplified by
structural imprecisions in the first layer, a situation further worsened by the reduced number
of grid points in that region of space. Protein-protein contacts, by contrast, show fairly good
structural agreement. This likely results from the surface atoms in these regions being much
less mobile than elsewhere, and from steric constraints there playing a larger role in dictating
the solvent structure. The position and orientation of water molecules in protein contacts

are thus likely less sensitive to water model and protein force field parametrizations.

TIP5SP
TIP4P/2005

0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 4: Prediction (solid) and recall scores (dashed), as defined in Eq. (5). At low threshold
densities, too many MD peaks are identified, resulting in a high recall score but a low
prediction score. As the threshold increases, MD peaks with stronger signals persist, which
at high densities predict roughly 70% of the crystal waters. However, the recall scores fall as

the density increases, suggesting that a significant fraction of crystal waters do not overlap
with an MD peak.

We next consider the recall and prediction scores (Eq. (5)) of the MD peak locations with
the assigned crystal waters. At low threshold densities many MD peaks are identified and a
high fraction of crystal waters are recovered, although only a few of these MD peaks are near
crystal waters. As py, increases, the number of MD peaks decreases, but a greater fraction
of the remaining ones overlap with crystal waters, decreasing the rate of false negatives.
This encouragingly suggests that the strongest predictions (and interactions) of the MD

model correlate with crystal waters with reasonably high accuracy (70%). The recall scores,
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however, fall steadily with increasing py,, and thus many crystal waters are not predicted by
MD simulations. In other words, a low true positive rate is obtained. For all water models,
the highest Ajeq and Ayec is ~ 0.7. The discrepancy between MD and experiments is thus
not purely due to imprecisions in the MD description of the shape and width of the density
peaks, but also in their location. Some of this error is likely attributable to the protein force
fields, as the location of high density peaks in the MD density are affected by the average

positions of the nearby protein atoms throughout the simulation.

3.2 Reciprocal Space

The agreement between MD and experiments is assessed in reciprocal space by first com-
bining MD densities with the refined PDB coordinates of the protein without the crystal
waters. If MD simulations were to reproduce water densities reasonably well, the resulting
Ryork would be less than that of the refined PDB model. Yet for the best water model (SPC)
we obtain Ryox = 0.208, which is significantly higher than Ry. = 0.159 obtained for the
refined protein model (Fig. 5). The difference in Ryoy is also greater at higher resolution,
suggesting that highly ordered solvent regions are not adequately captured. If we instead
consider the entire solvent region to have a flat electron density, Ryonx = 0.219, which is
about 1% worse than the best water model. Note that this increase is orders of magnitude
larger than the estimated error in Ryoy (see SI). Hence, although the MD models contain
some information about the water density within the unit cell, a significant fraction of it is
inaccurate.

To check whether MD simulations capture solvent structure that is complementary to
that of the crystal waters assigned from the experimental data, we combine MD densities with
the refined PDB coordinates, including crystal waters. (The MD electron density of crystal
waters is thus removed.) This strategy reduces Ryox for water models to Ryoi = 0.162,
which is an improvement over the previous scheme yet still appreciably higher than the

refined model Ryoc = 0.159. The gap between Ry values at lower resolutions at least is
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then closed.

It is important to note that Ry at high resolution is affected not only by the water
density around each protein atom, but also by the average protein atom positions in the MD
simulation being slightly different from that of the refined protein structure. Although refined
coordinates are used for this analysis, the water density is affected by the slightly perturbed
protein atom locations throughout the MD simulations, resulting in possible overlaps between

the solvent density and refined atom positions.
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Figure 5: Ry in different resolution bins for the original model (EXP, black), and for
models constructed by combining MD densities with the protein model. The overall Ry is
as given in the legend. Dashed lines correspond to Ry for models with the refined crystal
waters combined with the MD density.

Retaining crystal waters in the refined protein structure results in substantially lower
Ryork at high resolution than the MD density results alone. This strategy thus yields results
comparable to the original protein model, but as resolution decreases, Ry becomes signifi-
cantly worse than for the original protein model, which once again confirms that the refined
model describes the electron density in the unit cell more accurately than the MD solvent

density.
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3.3 Inferring Protonation States

A complication that hinders the improvement of the solvent description in the analysis of
X-ray diffraction experiments is that hydrogens, which are surrounded by relatively small
electron clouds, cannot be detected unless a remarkably high diffraction resolution, i.e., bet-
ter than roughly 0.7-1.0A, is achieved. Although the position of many of the hydrogens on the
protein chain can be inferred based on an elementary description of bonding (partly explain-
ing the success of structure validation tools, such as MolProbity®°), side chain protonation
states can remain somewhat ambiguous, as do the positions of side chain hydrogens with a
rotational degree of freedom. This problem is especially acute for side chains that contribute
to an enzymatic pathway? or to protein-protein interactions, % such as salt-bridges. %7 Pre-
diction servers have thus been developed to infer pK, values and titration curves of individual
side chains, based on the electrostatic properties of neighboring residues. %% Other software
packages rely on less involved algorithms to assign protonation states. For instance, MolPro-
bity picks the most suitable protonation state and hydrogen atom position that minimizes

46 analyses the hydrogen bonding network around it.*” Yet because

clashes, while Gromacs
the presence or absence of protons affects the solvent distribution around these sites, probing
the solvent distribution around such residues should allow one to determine their protonation
state more systematically.

The preceding analysis suggests that reconstructing the solvent density, and hence pre-
dicting every density peak, is not possible using existing water models. We are nevertheless
encouraged by the fact that MD simulations reproduce a significant fraction of the high
intensity peaks associated with crystal waters. It may thus be possible to infer protonation
states by comparing the overlap between MD peaks and crystal water, if changing the pro-
tonation state of a residue gives rise to or eliminates such high intensity peaks in the MD
solvent density.

In most cases considered here, either residues have insufficient solvent exposure to con-

duct the analysis, no significant difference in solvation is observed, or both sets of density
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patterns are similarly mismatched with the refined structure. Despite this, a few examples
for which inverting the protonation state of a residue significantly affects the surrounding

water distribution can be found.

Figure 6: Comparison of water density distribution for simulations that contain different
protonation states for (a) LYS 145 in chain A (the blue blob is behind the water and does
not overlap it), (b) ASP 200 in chain A, (¢) GLU 130 in chain B, and (d) GLU 218 in
chain A. The water density from the default protonation state simulations are shown in blue
wireframe, and the alternate protonation state simulations are shown in red wireframe. For
all snapshots the isosurfaces are contoured at 0.88 e~/ A° Crystal waters (CW) from the
refined protein structure are denoted with red spheres.

Removing one of the three protons of the default +1 charged LYS 145 in chain B results
in a slightly better overlap with two crystal waters (CW), labeled CW1 and CW2 in Figure
6a. There is, however, a third crystal water, CW3, within hydrogen bonding distance to
the nitrogen that is unexplained by either protonation state. Although this lysine residue
is relatively well localized and its average position does not deviate from that in the refined
structure, MD models completely miss CW3. In addition, both protonation states result in
an MD peak with the same orientation as the crystal waters, because removing a proton

does not drastically change the geometry of the remaining two hydrogens. The MD peaks in
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the deprotonated case are, however, pushed away from the protein, likely due to the altered
charge distribution in the residue. We conclude that a neutral lysine with two protons at
this position leads to a water density that is more consistent with the experimental density,
although with caveats.

The case of ASP 200 in chain A is slightly more complicated. The MD peak resulting
from the protonated case agrees better with CW1, compared to the peak resulting from the
simulation in which the residue is unprotonated (Fig. 6b). However, two crystal waters
(CW2 and CW3) overlap only with high intensity peaks in the density obtained with the
standard protonation state. It is therefore likely that this residue is not protonated, but it
is unclear why the protonated case better explains the CW1 peak.

For both GLU 130 in chain B and GLU 218 in chain A, the unprotonated case gives
better agreement between MD peaks and crystal waters. Protonating the former results in
a loss of an MD peak that overlaps the crystal water (Fig. 6c¢). Similarly, protonating GLU
218 in chain A results in the loss of an MD peak that overlaps CW1, but retains those on
CW2 and CW3 (Fig. 6d). This is likely because CW3 is still within hydrogen bonding
distance to the residue, and CW2 is within hydrogen bonding distance to CW3. However,
the disappearance of the density peak on CW1 is unexpected because the protonated oxygen
could still form a hydrogen bond to a water at that location.

While these results are encouraging, their robustness with respect to protein atom po-
sitions remains untested. The location of high density peaks in the MD density is likely
affected by both the equilibrium position of protein atoms and the degree to which they are
localized. In the case of CW1 near GLU 218 in chain A, for instance, the MD-density peak
on CW1 might be missing in the protonated case (even though a water molecule at this
location would be within hydrogen bonding distance), because other water molecules might
be forming a more stable hydrogen bond network nearby. In addition, the success of these
inferences ultimately depends on our ability to reliably reconstruct the water density around

proteins by MD simulations. Using this method to detect protonation states thus relies on
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being well above the noise inherent to the structural analysis.

4 Conclusion

Using a protein with a high-quality dataset from X-ray crystallography, we have attempted
to extract complementary information about water structure in protein crystals from diffrac-
tion data and MD simulations. This work improved upon earlier efforts in a few different
ways. (1) We used a simulation box equivalent to the protein unit cell, containing multiple
protein copies in order to capture water structure in the protein-protein interfaces. (ii) We
ran significantly longer simulations, which enabled the solvent configurations to be ergodi-
cally sampled. (iii) We used reference diffraction data,®! for which experimental phases is
available. Thanks to these advances, it was possible for us to compare more detailed as-
pects of the water structure and to explore the role solvent structure plays around titratable
residues.

Comparison of experimental and MD densities in real space revealed that although water
models are relatively good at capturing the radial distribution of water near the protein
surface, they struggle to predict angular distributions and are somewhat deficient at re-
constructing the overall water density. The relatively poor distribution of water around
carbons, in particular, suggests that the structural consequences of hydrophobic effect are
inadequately captured by these models. Remarkably, all water models we considered were
found to behave rather similarly at the structural level.

Although MD water models are insufficient for reconstructing biomolecular hydration
with a precision sufficient to conduct structural refinement, they nonetheless capture the
position of a fraction of the crystal waters. In optimal hydration circumstances, these models
may thus help assign protonation states to some of the protein side chains. The robustness
of these predictions with respect to the choice of parameters, including the protein force field

and the protonation state of the nearby residues, is untested, but these findings nevertheless
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suggest MD simulations can provide information complementary to what is available from
X-ray crystallography. It may further be possible to devise refinement schemes that utilize
this information to improve biomolecule structure quality, similar to some already existing
schemes. 5970

Our results suggest that it may be necessary to add more features to the common wa-
ter models in order to reconstruct accurately the solvent structure around biomolecules.
A re-parametrization of the existing models taking into account properties pertaining to
protein-water interactions might improve the description of these interactions. Such a re-
parametrization may not, however, adequately capture both bulk and interfacial water prop-
erties at once. A single, fixed dipole moment might indeed not be able to capture the behavior
of water in both of these regions.” Considering more complex models that include polar-

™ might provide a more robust starting point.

izability® or include three-body interactions,
To model a process that depends sensitively on the position of water molecules, it might
be preferable to consider even higher-accuracy models of water that include ab initio de-

™ may eventually

scriptions. The use of models such as those based on quantum mechanics
become computationally tractable, allowing for a refinement process in which simulations

are run at each refinement step.
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