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Abstract Sediments recovered at Integrated Ocean Drilling Program (IODP) Site C0020, in a fore-arc
basin offshore Shimokita Peninsula, Japan, include numerous coal beds (0.3–7 m thick) that are associated
with a transition from a terrestrial to marine depositional environment. Within the primary coal-bearing unit
(�2 km depth below seafloor) there are sharp increases in magnetic susceptibility in close proximity to the
coal beds, superimposed on a background of consistently low magnetic susceptibility throughout the
remainder of the recovered stratigraphic sequence. We investigate the source of the magnetic susceptibility
variability and characterize the dominant magnetic assemblage throughout the entire cored record, using
isothermal remanent magnetization (IRM), thermal demagnetization, anhysteretic remanent magnetization
(ARM), iron speciation, and iron isotopes. Magnetic mineral assemblages in all samples are dominated by
very low-coercivity minerals with unblocking temperatures between 350 and 5808C that are interpreted to
be magnetite. Samples with lower unblocking temperatures (300–4008C), higher ARM, higher-frequency
dependence, and isotopically heavy d56Fe across a range of lithologies in the coal-bearing unit (between
1925 and 1995 mbsf) indicate the presence of fine-grained authigenic magnetite. We suggest that iron-
reducing bacteria facilitated the production of fine-grained magnetite within the coal-bearing unit during
burial and interaction with pore waters. The coal/peat acted as a source of electron donors during burial,
mediated by humic acids, to supply iron-reducing bacteria in the surrounding siliciclastic sediments. These
results indicate that coal-bearing sediments may play an important role in iron cycling in subsiding peat
environments and if buried deeply through time, within the subsequent deep biosphere.

1. Introduction

Iron cycling is thought to be an important component within the deep biosphere and the microbial pro-
cesses and iron phase transformations occurring within deep sedimentary sequences remain an area of
active investigation [e.g., Lovley and Chapelle, 1995; D’Hondt et al., 2004; Riedinger et al., 2010]. Rock mag-
netic studies of buried petroleum hydrocarbon systems indicate iron oxide and sulfide precipitation associ-
ated with these deposits [e.g., McCabe et al., 1987; Sassen et al., 1989; Elmore et al., 1997]. However, iron
cycling and authigenic magnetic mineral assemblages in deeply buried coal systems are less understood.
Peat precursors to coal formation are host to active iron cycling during early burial [e.g., Altschuler et al.,
1983; Holmer et al., 1994; Steinmann and Shotyk, 1997], but after burial, coal beds are generally considered
devoid of bioavailable iron [Strapoć et al., 2011]; however, coal bed methane production may be influenced
by iron availability [€Unal et al., 2012]. Application of rock magnetic techniques to scientific drilling records
can provide insight into iron cycling within subsiding peat/coal sequences, and the evolution of authigenic
iron oxides and sulfides in these systems during burial.
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Rock magnetic properties of sedimentary sequences can reveal information about the composition and
grain size of magnetic mineral assemblages, which often facilitates the interpretation of depositional and/or
diagenetic processes [Verosub and Roberts, 1995; Liu et al., 2012; Roberts, 2015]. In marine deposits, common
magnetic minerals include (titano)magnetite (Fe3–xTixO4), hematite (Fe2O3), goethite (FeOOH), greigite
(Fe3S4), and pyrrhotite (Fe7S8). Each of these minerals is suggestive of different depositional and/or diage-
netic conditions and each can be identified using common rock magnetic techniques. For instance, detrital
iron oxides like (titano)magnetite, hematite, and goethite are often formed on continents and then trans-
ported to marine sediments via fluvial [e.g., Canfield, 1997], eolian [e.g., Robinson, 1986; Bloemendal et al.,
1993; Mahowald et al., 2005; Fan et al., 2006], and ice-rafted debris [e.g., Hall and King, 1989; Richter et al.,
2001] transport. Fine-grained authigenic magnetite can also be produced directly by magnetotactic bacteria
in deep marine and coastal environments [e.g., Kirschvink and Chang, 1984; Karlin et al., 1987; Roberts et al.,
2011]. In anoxic sediments, magnetic iron oxides are common and subject to dissolution and replacement
by pyrite [e.g., Canfield and Berner, 1987; Karlin, 1990; Canfield et al., 1992; Poulton et al., 2004; Garming et al.,
2005; Riedinger et al., 2005]. Iron sulfides like greigite and pyrrhotite form as an intermediate step during
pyrite formation in anoxic environments [e.g., Sweeney and Kaplan, 1973; Furukawa and Barnes, 1995; Nere-
tin et al., 2004] and are generally indicative of sulfur-limiting conditions, such as those present in gas
hydrate-bearing settings [e.g., Housen and Musgrave, 1996; Larrasoa~na et al., 2006, 2007; Musgrave et al.,
2006; Fu et al., 2008; Kars and Kodama, 2015]. Microbial reduction of amorphous ferric iron oxides in anoxic
environments often results in the precipitation of extracellular magnetite [Lovley et al., 1987]. Additionally,
crystalline magnetic Fe(III)-bearing oxides, such as hematite, goethite, and magnetite, may directly serve as
a source of Fe(III) electron acceptors for iron-reducing bacteria [e.g., Arnold et al., 1988; Lovley, 1991a; Kostka
and Nealson, 1995; Byrne et al., 2015].

Often, marine sediments contain multiple populations of detrital magnetic minerals that record sources and
diagenetic processes that affect the preserved magnetic mineral assemblage [e.g., Larrasoa~na et al., 2007;
Just et al., 2012; Ludwig et al., 2013; Kars and Kodama, 2015]. Magnetic mineral diagenesis, however, is gen-
erally influenced by depositional setting. For example, in marine environments, the diffusion of seawater
sulfate into near-seafloor sediments serves as an electron acceptor for sulfate reduction, and this increases
the potential for the formation of pyrite and/or greigite. Similarly, iron oxides are also consumed by reaction
with hydrogen sulfide or microbial iron reduction. In contrast, in freshwater environments, where sulfate
concentrations are typically 2–3 orders of magnitude lower, iron is a more prevalent electron acceptor
[Nealson and Saffarini, 1994].

In this study, we use the rock magnetic properties to characterize ferrimagnetic mineral phases within a
deeply buried (1.2–2.5 km) interval of sediment recovered by the D/V Chikyu in an ocean drilling record
(IODP Hole C0020A) in the Hidaka Trough offshore Shimokita Peninsula, Japan (Figure 1). Within this record,
we utilize magnetic susceptibility, coercivity, unblocking temperature, iron speciation, and iron isotopic
measurements to identify dominant magnetic mineral assemblages and discuss their origin, while also eval-
uating their potential role in iron and carbon cycling during burial at this site in association with the subsur-
face coal beds [Inagaki et al., 2015].

2. Geological Setting

IODP Site C0020A (Figure 1) is located in a fore-arc basin formed as a result of the subduction of the Pacific
plate beneath northeast Honshu [Von Huene et al., 1982; Sacks and Suyehiro, 2003]. Fore-arc basin subsi-
dence offshore Shimokita has been occurring since the Cretaceous, and through time the interaction
between subsidence and eustatic sea level change has significantly modified the continental margin depo-
sitional environment [Von Huene et al., 1982]. Rates of fore-arc subsidence in northeast Honshu since the
Miocene correspond to changes in regional plate boundary dynamics [Regalla et al., 2013]. The late Oligo-
cene to early Miocene sediments within the basin record a broad transition in the depositional environment
from a terrestrial to marginal marine setting and the sediments from the Neogene to present represent a
marginal marine to open marine transition [Arthur et al., 1980; Von Huene et al, 1982]. Previous drilling dur-
ing Deep Sea Drilling Project Legs 56, 57, and 58 and Ocean Drilling Program (ODP) Leg 186 along the
Japan Trench offshore northern Honshu (seaward of IODP Site C0020A) revealed Cretaceous to Holocene
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sediments primarily composed of hemipelagic clay containing lithic fragments, siliceous/calcareous micro-
fossils, volcanic ash/pumice, and turbidites [Arthur et al., 1980].

3. Site C0020 Lithostratigraphy

The cores recovered onboard the D/V Chikyu at IODP Site C0020 are subdivided into four main lithostrati-
graphic units that are defined from macroscopic and microscopic description of core cuttings and sediment
cores. The sediments in these strata record a transition from a late Oligocene/early Miocene terrestrial wet-
land environment to a Pleistocene marine continental slope sedimentary environment (Figure 2) [Expedition
337 Scientists, 2013; Phillips et al., 2016]. Unit I (636.5–1256.5 mbsf; late Pliocene to Miocene) is composed of
diatom-rich silty clay consistent with a continental slope hemipelagic environment. No cores were recov-
ered from Unit I and all descriptions were made from cuttings. Unit II (1256.5–1826.5 mbsf; Miocene) com-
prises lithified silty shale, siltstone, sandstone, and unconsolidated sand. Observations of Cruziana
ichnofacies and symmetric wave-formed ripples, along with an increase in glauconite and plant material,
suggest the transition to a continental shelf and nearshore environment within Unit II [Expedition 337 Scien-
tists, 2013]. Lignite fragments were observed in cuttings in Unit II between 1526.5 and 1546.5 mbsf and
downhole logging identified three coal beds, ranging from 0.3 to 0.9 m in thickness suggesting a nearshore
environment [Expedition 337 Scientists, 2013]. Unit III (1826.5–2046.5 mbsf; early Miocene to late Oligocene)
contains numerous coal beds interbedded with sandstones (some cemented), siltstones, and coaly shale
with common authigenic siderite nodules (1–9 cm thick). These coal beds range from 0.3 to 7.3 m in thick-
ness and comprise low-maturity lignite to subbituminous coal, increasing in maturity with depth [Gross
et al., 2015]. Geochemical and petrological analyses of Unit III coal indicate a shift from peat deposited in a

Figure 1. Bathymetric map with the location of Site C0020A along with the location of previous Deep Sea Drilling Project (DSDP) drilled
during the International Phase of Ocean Drilling (IPOD Sites 438, 439, 584) and industry holes (Miti Sanriku Oki, Hachinohe Oki, Kuji Oki)
drilled offshore Shimokita. Inset shows plate tectonic configuration and plate motions. Open arrows indicate plate motions, pink arrows
indicate modern warm currents, and the blue arrow indicates modern cold currents. Modified from Expedition 337 Scientists [2013].
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freshwater, neutral-to-slightly-acidic environment at the bottom of Unit III to a brackish, and alkaline envi-
ronment at the top of Unit III [Gross et al., 2015]. Dark-colored, organic-rich mm-scale laminations occur
within sandstone and siltstone within Unit III. Flaser and lenticular bedding, cross-bedding, and extensive
bioturbation present within Unit III suggest a nearshore to estuarine/intertidal environment [Expedition 337
Scientists, 2013]. Unit IV (2046.5–2466 mbsf; early Miocene) is comprised of silty shale, sandstone, and silt-
stone, with common siderite nodules (1–3 cm thickness). Fluctuations between fine and coarse-grained
beds suggest tidal flats and channels within a fluviodeltaic system [Expedition 337 Scientists, 2013]. Unit IV is
mostly devoid of coal beds, except for a 0.9 m thick coal bed with a pyrite vein at 2448 mbsf, near the bot-
tom of the hole.

There are cm-scale increases in volume-specific magnetic susceptibility (j, SI) (see section 4.2) in Unit III
between 1919 and 1970 mbsf (Figure 2). The increases in j, up to 975 3 1026 SI from a background of
15.5 6 31.9 3 1026 SI occur in sediments adjacent to, but rarely within, the massive coal beds. The increases
in j within this interval occur over intervals that are several-to-tens of cm thick and often are associated
with intervals containing dark, organic-rich laminations (Figure 3). There is an additional sharp increase in j
in Unit II at 1599.0–1599.16 mbsf associated with a coarse-grained gravel interval containing rounded peb-
bles and cobbles of igneous rock [Expedition 337 Scientists, 2013].

4. Methods

4.1. Sample Preparation
Onboard D/V Chikyu, bulk sediment and rock samples between 10 and 20 cm3 were sampled for magnetic
analyses either from working half sections or whole round core sections from microbiology sampling [see
Expedition 337 Scientists, 2013], flushed with nitrogen and vacuum-sealed. No samples were collected from
drill cuttings. The working half samples were chosen based on the downhole pattern in shipboard j meas-
urements and to be representative of recovered lithologies. Whole round samples were recovered at regular
intervals down core. Samples were stored at sea and shipped at 28C, and then stored in the laboratory at

Figure 2. Shipboard measurements of (a) volume-specific magnetic susceptibility, (b) coal thickness, (c) depositional environment, and (d)
biostratigraphic age for IODP Hole C0020A. (e) Expanded view of shipboard measurements of volume-specific magnetic susceptibility in
Unit III with a simplified stratigraphic column of Unit III (f). Data from Expedition 337 Scientists [2013] with updated biostratigraphy from
Phillips et al. [2016].
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2208C. Six additional samples were sampled from archived sediment cores after Expedition 337. A 1 cm3

subsample was cut from within each sample and measured for mass-specific magnetic susceptibility (v, m3

kg21), isothermal remanent magnetization (IRM) acquisition, and three-axis thermal demagnetization analy-
sis. Semiconsolidated samples were wrapped in aluminum foil before IRM analysis to prevent loss of mate-
rial during heating. In total, 144 discrete samples were analyzed for magnetic susceptibility and IRM analysis
at the University of New Hampshire. To better constrain magnetic mineralogies, a subset of 10 samples that
span a range of magnetic susceptibilities and represent all three cored lithostratigraphic units were further
characterized at the Institute for Rock Magnetism, University of Minnesota. To constrain magnetic mineral
compositions and grain size, diagnostic Curie temperature transitions at high temperature, the frequency
dependence of magnetic susceptibility (vfd, %) and anhysteretic remanent magnetization (ARM, Am2 kg21)
were measured. In addition, three samples from high j sandstones in Unit III were prepared as thin sections
and analyzed with an electron microprobe at the University of Texas at Austin.

For sequential iron extraction analyses, sediment samples were taken after contamination screening from
whole round cores designated for microbiology analyses [see also Expedition 337 Scientists, 2013; Glombitza
et al., 2016]. Sample splits were collected under anoxic conditions in a glove box, sealed in airtight bags
under N2 atmosphere, and stored (and shipped) frozen until further processing for geochemical analyses. A
total of 47 samples were measured for total and extractable iron at the University of California at Riverside.
Of these 47 samples, 41 were taken adjacent to whole round samples collected for magnetic analyses to
allow for comparison of geochemical and magnetic records.

4.2. Magnetic Susceptibility
Magnetic susceptibility provides a general measure of the magnetic mineral concentration in sediments,
regardless of grain size or composition. Here we report two variations of magnetic susceptibility. Both
volume-specific and mass-specific magnetic susceptibility measurements were conducted using a Barting-
ton MS2 magnetic susceptibility meter calibrated to water. Volume-specific susceptibility (j) is reported
from shipboard measurements conducted using a Bartington MS2C meter mounted on a Geotek whole
round multisensor core logger. j is a dimensionless ratio of an induced magnetization (M, here normalized

Figure 3. Shipboard measurements of magnetic susceptibility next to linescan core photos for two intervals within Unit III: (a) 1937.45–
1937.95 mbsf in core 17R-2, (b) 1940.15–1940.84 mbsf in core 17R-5. These spikes in magnetic susceptibility occur in multiple lithologies
but often occur within intervals containing organic-rich laminations. Typical background magnetic susceptibility throughout the hole is
<100 (SI 3 1026).
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to volume in units of Am21) to the applied field (H, also in units of Am21) and is reported here in SI
units. Mass-specific magnetic susceptibility (v, m3 kg21) is related to the volume susceptibility by the
following expression: v 5 j/q where q is the density of the sample. v was measured on all discrete core
samples using a Bartington MS2B in low-frequency (LF) mode by recording the average of three
measurements.

The frequency dependence of magnetic susceptibility (vfd) was determined for the subset of 10 samples
that capture the range in magnetic susceptibility (both j and v). In-phase magnetic susceptibility was mea-
sured at low-frequency (465 Hz) and high-frequency (4650 Hz) susceptibility was measured in an alternating
current field of 300 Am using a MAGNON variable frequency susceptibility meter at the Institute for Rock
Magnetism. The reported vfd values are percentages, where vfd 5 [(v465Hz – v4650Hz)/v465Hz] 3 100 [Dearing
et al., 1996].

4.3. Remanent Magnetization
Remanent magnetization is the relict magnetization of a material that exists in the absence of an applied
field and reflects the sum of all magnetizations acquired over the history of the material. Remanent magne-
tization was measured in three positions using an HSM2 SQUID spinner magnetometer or a 2G 755 super-
conducting rock magnetometer at the UNH Paleomagnetism Laboratory. Prior to any manipulation of
remanence with applied laboratory fields, each sample was measured for natural remanent magnetization
(NRM), which represents permanent magnetization acquired by sediments during deposition in the Earth’s
magnetic field. Subsequently, samples were subjected to stepwise acquisition of IRM. IRM varies from NRM
in that the magnetizing field is produced using laboratory instruments and is often much stronger (by
orders of magnitude) than the Earth’s magnetic field. IRM was imparted using an ASC IM-10 impulse mag-
netizer over sixteen steps from background to 1.1 T (see supporting information Table S1), and measured
after each step. An induced magnetic field of 1.1 T is sufficient to approximately reach saturation IRM (SIRM)
for lower coercivity minerals like magnetite, titanomagnetite, greigite, and pyrrhotite, but not for hematite
or goethite. 1.1 T was sufficient to reach saturation in all samples from Hole C0020A. Coercivity was approxi-
mated from the IRM acquisition curves using a linear acquisition plot [Kruiver et al., 2001] to obtain B1/2, the
field that imparts one-half of SIRM. A backfield IRM of 2100 and 2300 mT, in the opposite direction of the
acquisition curve, were applied for the calculation of an S ratio (S100 and S300) [e.g., Verosub and Roberts,
1995; Quinton et al., 2011],

S
xmT 5

IRM2xMT
SIRM

:

This approach allows for the determination of whether a magnetic assemblage is dominated by low coer-
civity (e.g., titanomagnetite and greigite) or high coercivity (e.g., goethite and hematite) minerals. Samples
were not demagnetized prior to IRM acquisition; however, NRM is a small fraction of IRM in the vast majority
of samples (�2% in noncoal lithologies). Coal samples with low IRM were excluded from S-ratio and B1/2 cal-
culations. After acquisition of IRM at 1.1 T along a primary axis, fields of 400 and 120 mT were imparted at
right angles to the primary axis [Lowrie, 1990]. We refer to IRM along the 1.1 T, 400 mT, and 120 mT axes as
the hard, medium, and soft axes, respectively. Samples were then stepwise thermally demagnetized using
an ASC TD48-SC magnetically shielded oven from room temperature to 6808C over 21 steps (see supporting
information Table S2).

Measurements of anhysteretic remanent magnetization (ARM) were conducted on the same 10 samples
measured for vfd, using a 2G Enterprises 760-R SQUID magnetometer with track system and inline ARM at
the Institute for Rock Magnetism. ARM was acquired in a peak alternating field of 100 mT in the presence of
a DC bias field of 0.05 mT. For these same 10 samples, an IRM of 100 mT was imparted using a pulse magne-
tizer and measured immediately afterward using the 2G magnetometer.

4.4. Curie Temperature Measurements
Different specimens from the same subset of 10 samples analyzed for ARM and vfd were measured for Curie
temperatures using a high-temperature Geofyzika KLY-2 KappaBridge AC Susceptibility Bridge. For each
sample, v was monitored during heating from room temperature to 7008C and then back to 508C. Replicates
of each sample were run in either ambient atmosphere or under argon atmosphere.
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4.5. Iron Speciation and Isotope Analyses
Samples from a range of lithologies across Units II, III, and IV were analyzed for sequentially extracted iron
at the University of California, Riverside. To determine the fractions of amorphous Fe-(oxyhydr)oxides, crys-
talline Fe-oxides (e.g., hematite and goethite), and magnetite in the sediment a three-step chemical extrac-
tion method was applied, using ascorbate (Feasc), dithionite (Fedith), and oxalate (Feoxa), respectively [e.g.,
Ferdelman, 1988; Kostka and Luther, 1994; Poulton and Canfield, 2005; Raiswell et al., 2010]. Each extraction
step was carried out under anoxic conditions; frozen wet samples splits were taken in an anoxic (N2) glove
box. Each solution was deoxygenated with N2 (for >30 min) prior to transfer into the glove box and subse-
quent addition to the sample. Extraction steps were performed in sequential order according to the follow-
ing procedure: (1) ascorbate solution at pH 7.5 for 24 h, (2) dithionite at pH 4.8 for 2 h, and (3) oxalate a pH
3.2 for 6 h. Samples were agitated on a shaking table at room temperature during each extraction step.
After centrifugation the supernatant was removed, and residues were washed with deoxygenated ultrapure
water between each extraction step. The extracted iron from each phase was analyzed via a quadrupole
inductively coupled plasma-mass spectrometer (ICP-MS; Agilent 7500c) upon dilution with 0.3M nitric acid,
and reproducibility was monitored using an in-house mixed mineral standard. The reproducibility of this
extraction method was determined to be better than 9%. To determine the water content, a separate fresh
sample split was taken at the same time as the split for the Fe sequential extraction scheme and dried at
508C. All Fe content data are reported on a dry sediment basis.

The highly reactive Fe pool in sediments (FeHR) is considered the part of FeT that is readily reactive with H2S
on timescales of 103–104 years. FeHR is operationally defined through carefully calibrated sequential extrac-
tion protocols [e.g., Raiswell et al., 1994; Kostka and Luther, 1994; Raiswell and Canfield, 1998; Poulton and
Canfield, 2005] and includes all three sequentially extracted Fe pools measured in this study as well as pyrite
Fe (Fepy). We calculated the Fepy fraction by converting previously measured chromium-reducible sulfur
(CRS) concentrations [Glombitza et al., 2016] using pyrite stoichiometry FeS2. Standard ascorbate extraction
has been shown to target amorphous Fe-(oxyhydr)oxides as well as less-crystalline Fe-carbonates [Tessier
et al., 1979; Kostka and Luther, 1994]. Poulton and Canfield [2005], however, have shown that a 24 h extrac-
tion at room temperature, as performed here, may be ineffective at extracting the crystalline forms of sider-
ite and ankerite.

Total digestions for Fe (FeT) and Al were performed on approximately 100 mg of dry sediment applying a
multiacid total digestion procedure (hydrofluoric acid, HF; hydrochloric acid, HCl; and nitric acid, HNO3). Iron
isotope compositions were determined on total iron and easily HCl-extractable iron phases. The latter were
extracted using a cold 0.5 M HCl solution for 1 h (modified after Kostka and Luther [1994]), which leaches Fe
from amorphous oxyhydr(oxides), ferrihydrite, Fe-monosulfides, Fe-carbonate, and some Fe from alumino-
silicates (e.g., chlorite and glauconite), but not crystalline Fe-oxides or pyrite.

Sample solutions were purified for iron isotopes analysis following a standard anion-exchange chromatog-
raphy method [e.g., Severmann et al., 2006]. In brief, a sample aliquot from total digests or HCl extracts were
transferred to 6 M HCl and loaded onto �200 ml Bio-Rad AG1X8 anion exchange resin. The sample matrix
was removed with a 5 ml 6 M HCl rinse. Iron was eluted with 2 ml 0.5 M HCl, evaporated and redigested by
adding a few drops of concentrated HNO3. Purified Fe samples were measured via a multi collector-ICP-MS
(MC-ICP-MS, ThermoScientific NeptunePlus) at Rutgers University. Samples were introduced into the MC-
ICP-MS through an Apex desolvating nebulizer as 100 ppb solutions in 2% nitric acid and Fe isotopes were
measured in medium resolution mode following the method of Arnold et al. [2004]. For correction of instru-
mental mass bias, a copper solution of known isotope composition (NIST-976 copper isotope standard) was
added at the same concentration to the purified sample solution. In addition, the Fe isotope standard refer-
ence material IRMM-014 was measured before and after each two sample measurements. Precision and
accuracy were monitored by measuring a geological standard reference material of known isotope compo-
sition (shale SDO-1, USGS), as well as a solution of IRMM-014 that had been spiked with purified 54Fe isotope
spike to lower its isotope composition by 1& [see Arnold et al., 2004]. Fe isotope compositions are reported
in standard delta notation (d56Fe 5 ([56Fe/54Fesample]/[56Fe/54Festandard] – 1) 3 1000) relative to average igne-
ous rock, which has an isotope composition of d56Fe 5 0 6 0.05& [Beard et al., 2003]. The Fe isotope refer-
ence standard IRMM-014 has a d56Fe of 20.09& on this scale. The average external precision for replicate
chemical processing and isotope analysis of five samples was 0.08& (2-SD) for d56Fe. SDO-1 was measured
as 0.06 6 0.12& (n 5 5) and 54Fe-spiked IRMM-14 was measured as 1.04 6 0.10& (n 5 13).
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4.6. Electron Microprobe Analysis
Three samples from 1937.655, 1941.085, and 1955.90 mbsf within high v intervals in Unit III were prepared
as thin sections and subjected to electron microprobe analysis (EMPA) for the elements Fe, Ti, Al, Mn, Cr,
and S in an attempt to directly measure iron oxide or iron sulfide composition. EMPA measurements were
performed using a JEOL 8200 Superprobe at the University of Texas at Austin Electron Microbeam Labora-
tory and calibrated with ilmenite, chromite, and celestite. Each of these samples was collected from high
magnetic susceptibility intervals to maximize the likelihood of measuring an individual grain of titanomag-
netite. EMPA was conducted using a 15 kV beam with a beam width of 5 mm. Results were generated as
weight percent (wt %) oxide and converted to the percent of each element using the atomic weight of
each element. Samples were first probed with energy-dispersive X-ray spectrometry (EDS) to view an
approximate composition and then probed with the wavelength-dispersive X-ray spectrometry (WDS) for
quantitative analysis.

5. Results

5.1. Magnetic Susceptibility
Laboratory v closely matches the relative changes in the downcore record observed from the shipboard j
measurements suggesting little to no alteration of the magnetic mineral assemblage after core collection/
sampling (Figure 4 and supporting information Table S3). The Pearson correlation coefficient between these
two data sets is 0.93. LF v ranges from 27.7 to 265.6 3 1028 kg/m3 (mean: 18.3 3 1028 kg/m3, median:
9.0 3 1028 kg/m3). vfd ranges from 2.2 to 12.3%, and notably increases in samples with higher v (Figure 4).
Measurements of vfd in high v samples of Unit III approach the theoretical maximum for ferrimagnetic
materials (�15%) [Dearing et al., 1996].

5.2. IRM Acquisition and Backfield IRM
All samples show acquisition curves typical of low-coercivity minerals reaching SIRM below 200 mT
(Figure 5). Likewise, the soft axis (120 mT) contains the dominant fraction of IRM after three-axis magnetiza-
tion. B1/2 ranges between 23 and 98 mT (mean: 48 mT), with the highest coercivities in Unit II at approxi-
mately 1500 mbsf and decreasing in Unit III (Figure 6). S300 varies from 0.76 to 1.04 with a mean of 0.92. S100

and S300 are lower in Units II and IV compared to Unit III (Figure 6).

NRM intensity follows trends in magnetic susceptibility ranging from 0.3 to 68,600 mA/m (median: 12 mA/m)
(Figure 6). Similarly, SIRM follows a pattern similar to v and ranges from 31 to 221,100 mA/m (median:
1262 mA/m). SIRM/v ratios are elevated in a substantial portion of samples in Unit II, and several samples
in Units III and IV (Figure 6).

5.3. Thermal Demagnetization
Thermal demagnetization removed all IRM by 5808C or below in all samples, and in all samples the primary
carrier of IRM was the Z (soft) axis throughout demagnetization. Demagnetization curves in samples from
Unit II, Unit III between 1920–1925 and 1995–2002 mbsf, and in Unit IV are characterized by a linear
decrease to 5808C (Figure 5a). Samples between 1925 and 1973 mbsf have demagnetization curves in
which soft IRM decreases overall to 5808C but with a pronounced decrease between 275 and 3508C (Figures
5b and 5c). In the interval 1979–1993 mbsf, demagnetization curves decrease linearly from room tempera-
ture to 350–4008C (Figure 5d). The fraction of soft IRM lost between 0 and 3508C and 275 and 3508C
increases in Unit III. There is a pronounced increase in the fraction of soft IRM lost below 350–4008C at
depths between 1925 and 1973 mbsf (Figures 6 and 7 and supporting information Figure S1). Between
1979 and 1993 mbsf, and at 1826, 2110, 2307, 2309, and 2463 mbsf, there is an enhanced fraction of soft
IRM lost between 0 and 3508C but no distinct drop at 2758C. The shift in unblocking temperature is
observed in all siliciclastic lithologies in the coal-bearing unit, and not driven by changes in depositional
environment.

5.4. Anhysteretic Remanent Magnetization
Ten samples measured for ARM range from 8.6 3 1026 to 1.07 3 1023 Am2/kg. The highest ARM values are
in Unit III (average: 3.8 3 1024 Am2/kg) compared to Units II and IV (average: 5.5 3 1025 Am2/kg) (Figure 6
and supporting information Figure S1 and Table S4). ARM/IRM ratios are relatively consistent throughout
the record (0.01–0.11) with one high value in Unit III (0.58).
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5.5. Curie Temperature Measurements
All measurements for Curie temperature show an increase in v when heated above 3008C and then a rapid
removal of v below 6008C (supporting information Figure S2 and Table S5). The increase in v is observed in
samples both under open atmosphere and argon, but in some cases is reduced under argon. The increase
in v is generally most pronounced in samples from Unit III and IV.

5.6. Iron Speciation and Isotope Compositions
Total Fe concentrations were lowest, and variability highest, in the coal bearing Unit III (average FeT

2.3 6 1.5 wt %, Figures 6 and 7 supporting information Table S6). The low concentrations and high variabil-
ity of Fe are also reflected in the FeT/Al ratios (average FeT/Al 0.3 6 0.16) in this unit. In Units II and IV, con-
centrations are in the range typical for continental margin sediments (average FeT 3.5 6 0.8 wt %) with FeT/
Al ratios (0.41 6 0.08) closely resembling that of average continental crust (0.44) [Taylor and McLennan,
1985]. Low FeT and FeT/Al in Unit III coincide with low sulfur concentrations [Glombitza et al., 2016] and low
FeHR concentrations.

Feasc is largely absent throughout all three units (supporting information Table S6 and Figure S3) with con-
centrations below detection limit (2 mg/kg) except for two samples that are <50 mg/kg. Previous mineral-
ogical investigations of sediments from Unit III and Unit IV have shown the presence of siderite, which was

Figure 4. (a) Correlation of shipboard volume-specific magnetic susceptibility (j) from multisensor core logging (MSCL) and postcruise
MS2 mass-specific low-frequency magnetic susceptibility measurements (v). Correlation between data indicates little to no alteration to
the magnetic mineral assemblage since sampling. (b) Zoomed-in view of the lower magnetic susceptibility samples. (c) Correlation of ship-
board and postcruise MAGNON measurements. (d) Relationship of vfd to v. Frequency dependence increases in the high magnetic suscep-
tibility samples of Unit III.
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not revealed specifically by our
extraction technique, but was likely
extracted along with magnetite in
the oxalate extraction, with less
crystalline forms extracted during
the dithionite extraction. This dis-
crepancy suggests that our Feasc

leach did not extract the Fe-
carbonates present in these two
units, and we therefore assume that
any crystalline siderite was primarily
extracted during the oxalate treat-
ment. Further, given the age of the
sediments (>20 Ma) any amor-
phous or more labile Fe would have
undergone reduction or been con-
verted to more crystalline Fe oxides.
The dithionite treatment, which
specifically targets crystalline Fe
oxides such as lepidocrocite, goe-
thite, and hematite, recovered only
little Fedith (0.03 6 0.03 wt %) in all
three units (supporting information
Table S6 and Figure S3). In Units II
and IV Fedith made up on average
4.4% of the FeHR pool, whereas in
Unit III the relative proportion of
Fedith in the FeHR pool reached up
to 30% despite the absolute con-
centrations remaining low.

Consistent with rock magnetic data,
significant magnetite (extracted as
Feoxa) was present in most layers
sampled (Figures 6 and 7 support-
ing information Figure S3). An
exception was three samples near
the top of Unit III where Feoxa was
�0.01 wt %. Near the base of Unit

III, in contrast, Feoxa reached maximum concentrations of up to 1.36 wt %, comprising up to 95% of the FeHR

pool. Coal-bearing Unit III had the lowest Fepy concentrations (average 0.1 wt %) and relative proportion (aver-
age 35% of FeHR). Fepy concentrations and relative proportion were highest in Unit II, where it was the domi-
nant fraction of FeHR in 6 out of 11 samples. In Unit IV, Feoxa was on average the dominant fraction although
for one sample Fepy made up 90% of FeHR.

Iron isotope compositions were only measured in samples from Unit III. The cold 0.5M HCl leach was used
as an approximation to measure the isotope composition of the reactive Fe pool (Fe0.5M HCl). Although
previous calibrations of the HCl extractions have been shown to be ineffective in leaching Fe from pyrite
or magnetite, Fe0.5M HCl concentrations exceeded FeHR concentrations in all samples, confirming that
Fe0.5M HCl includes significant amounts of Fe from alumino-silicates such as chlorite and glauconite. Iron
isotope compositions for coal beds in Unit III (total organic carbon or TOC> 40 wt %) were clearly ele-
vated in both FeT and Fe0.5M HCl fractions with d56FeT of 10.99 6 0.74& and d56Fe0.5M HCl of
10.71 6 0.79&. Iron isotope compositions in the remaining samples from Unit III were less variable and
d56Fe values of 10.07 6 0.14& for FeT and 20.14 6 0.26& for Fe0.5M HCl, which is closer to the isotope
composition of average igneous rocks.

Figure 5. Example IRM and thermal demagnetization results showing increase in the
fraction of IRM loss between 275 and 3508C (blue band) in the coal-bearing part of
Unit III. All samples show low-coercivity and saturation by 200 mT. (a) Samples in Units
II, IV, and the upper portion of Unit III away from the coals show a relatively linear
decrease in IRM to 5808C. (b–d) Within Unit III near the coals (between 1930 and 1995
mbsf) the fraction of IRM lost between 275 and 3508C increases. The shift in unblock-
ing temperature is observed in all siliciclastic lithologies in the coal-bearing unit, and
not driven by changes in depositional environment.
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5.7. Electron Microprobe Analysis
Within the three high magnetic susceptibility sand/sandstone samples collected from Unit III for EMPA, all
opaque/high backscatter minerals analyzed with EDS showed peaks that were suggestive of ilmenite, pyrite,
rutile, apatite, or siderite. Very few grains showed EDS peaks suggestive of magnetite, and these were gen-
erally in grains that were too small for analysis. WDS analysis of grains large enough for analysis confirmed
the dominant presence of ilmenite and pyrite, with minor rutile (supporting information Table S7). All grains
that were suspected to be (titano)magnetite were less than 5 mm and produced poor WDS results (40–60
wt % total elemental content) that contained considerable Si and Al content suggesting the beam over-
lapped from high-backscatter potential iron oxide grains to the surrounding low-backscatter grains of
quartz and clays due to the small grain size of the target grains.

6. Discussion

6.1. Magnetic Mineral Assemblage
Results of IRM acquisition (low-coercivity) and unblocking temperatures (5808C) suggest a magnetic mineral
assemblage dominated by detrital magnetite for most samples in Unit II and Unit IV. Our measurements
show little evidence for contribution from hematite, goethite, greigite, or pyrrhotite to the magnetic mineral
assemblage. All samples at Site C0020A saturated below 200 mT suggesting low-coercivity minerals domi-
nate the magnetic properties reported here. Plots of SIRM/v and B1/2 are consistent with titanomagnetite
for all samples but three (Figure 8). Two samples in Unit II and one sample in Unit III show high SIRM/v ratios
typical of magnetic iron sulfides [Dekkers, 1988; Roberts, 1995; Dekkers et al., 2000]. However, these samples
do not show a characteristic unblocking temperature for greigite or pyrrhotite [Lowrie, 1990; Roberts, 1995].
These samples possibly represent a minor component of authigenic mineral formation associated with

Figure 6. Key down core rock magnetic and geochemical results. (a) Magnetic susceptibility, (b) frequency dependence of magnetic susceptibility, isothermal remanent magnetization
(IRM) at 1.1 T, and natural remanent magnetization (c) fraction of soft isothermal remanent magnetization (IRM) removed during thermal demagnetization (0–350 and 275–3508C),
(d) anhysteretic remanent magnetization (ARM) and ARM/IRM ratios, (e) 2100 and 2300 mT S-ratios (f) coercivity (B1/2), (g) IRM at 0.9T/v, range of magnetite, magnetitic iron sulfides,
and mixed magnetite and magnetic iron sulfides from Larrasoa~na et al. [2006]. Chromium-reducible sulfur (CRS) [Glombitza et al., 2016], (h) d34S of the CRS fraction [Glombitza et al.,
2016], (i) highly reactive (FeHR) and total (FeT) iron, (j) Fe/Al ratios (vertical green bar represents average continental Fe/Al) (0.44) [Taylor and McLennan, 1985] and oxalate-extractable iron
as a fraction of FeHR (i) coal-bed thickness [Expedition 337 Scientists, 2013], and (k) total organic carbon (TOC) and headspace methane [Expedition 337 Scientists, 2013].
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diagenesis of marine sediments [Larrasoa~na et al., 2007] or rapid burial of detrital pyrrhotite [Horng and Rob-
erts, 2006].

Samples in Unit III that show a significant portion of soft IRM with an unblocking temperature at approxi-
mately 3508C are consistent with the demagnetization of magnetic iron sulfides, maghemite, or (titano)-
magnetite (either fine-grained magnetite or TM30 titanomagnetite). However, a few samples have SIRM/v
and B1/2 that are consistent with at least a partial greigite or pyrrhotite component [Peters and Dekkers,
2003] but do not correspond to samples with a 3508C unblocking temperature. Additional measurements of
v after long exposure to oxygen (approximately 2 years) do not show a decrease relative to the shipboard

measurements, indicating that authi-
genic magnetic iron sulfides vulnerable
to oxidation are not likely a significant
component. A magnetic mineral assem-
blage with a large, metastable mag-
netic iron sulfide component would
likely experience a loss in v after pro-
longed exposure to oxygen [Hunger
and Benning, 2007]. EMPA analysis indi-
cated that iron sulfides present in Unit
III are dominantly pyrite, which gener-
ally is characterized by very low mag-
netic susceptibility [Waters et al., 2008].

IRM acquisition and v results are con-
sistent with the dominant presence
of magnetite but a possible minor
maghemite (c-Fe2O3) component can-
not be ruled out. Maghemetization of

Figure 7. Detailed view of down core rock magnetic and geochemical results for the key coal-bearing interval of record shown in Figure 6. (a) Magnetic susceptibility, (b) frequency depen-
dence of magnetic susceptibility, (c) fraction of soft IRM removed during thermal demagnetization (0–350 and 275–3508C), (d) ARM and ARM/IRM ratios, (e) chromium-reducible sulfur (CRS)
[Glombitza et al., 2016], (f) d34S of the CRS fraction [Glombitza et al., 2016], (g) highly reactive (FeHR), HCl-extractable (FeHCl) and total (FeT) iron, (h) Fe/Al ratios (vertical green bar represents aver-
age continental Fe/Al) [Taylor and McLennan, 1985] and oxalate-extractable iron as a fraction of FeHR, (i) d56Fe of total (d56FeT) and HCl-extractable (d56FeHCl) iron, vertical purple bar represents
average igneous d56Fe from Beard et al. [2003], and (j) total organic carbon (TOC) and headspace methane [Expedition 337 Scientists, 2013]. Shaded horizontal bars indicate coal intervals.

Figure 8. Crossplot of SIRM/v and B1/2 for all samples from Units II, III, and IV. Min-
eral ranges from Peters and Dekkers [2003].

Geochemistry, Geophysics, Geosystems 10.1002/2017GC006943

PHILLIPS ET AL. AUTHIGENIC MAGNETITE OFFSHORE SHIMOKITA 2087



titanomagnetite can occur in oxygenated sediments, but is a more common component in pelagic set-
tings where low sedimentation rates yield long exposure times to oxygenated bottom waters [Smirnov
and Tarduno, 2000; Xu et al., 1997]. In this record, sediments from nonwetland environments were likely
exposed to oxygenated bottom waters, but due to high sedimentation rates (�100 m/Ma over the entire
hole) [Phillips et al., 2016] and high TOC throughout Site C0020 (up to 50 wt % in coal layers) [Expedition
337 Scientists, 2013], magnetite, probably of detrital origin, was likely buried quickly into anoxic
conditions.

In our record, magnetite is the mineral most likely associated with the �300–4008C unblocking tempera-
ture, due to its decreased grain size compared to the background coarser-grained magnetite with an
unblocking temperature of �5808C, close to the Curie temperature. The unblocking temperature of magne-
tite can deviate from the Curie temperature decreasing below 5758C in cases where the particle size is less
than 50 nm [Dunlop, 1973a; Winklhofer et al., 1997]. Our Curie temperature measurements show an increase
in v due to alteration at 300–3508C and a rapid decrease below 6008C. Our results show a consistent behav-
ior in Curie temperature measurements in both types of samples with unblocking temperatures of 580 and
300–4008C. In Unit III, between 1925 and 1975 mbsf demagnetization curves suggest that there is a mix of
detrital and authigenic magnetite, while between 1975 and 2000 mbsf the magnetic mineral assemblage
may be dominated by authigenic magnetite. Increased ARM in Unit III (Figure 6) also suggests fine-grained
magnetite is present. Increased vfd in Unit III indicates the increased presence of superparamagnetic mag-
netite at room temperature suggesting magnetite grains <30 nm [Dunlop, 1973b]. In summary, rock mag-
netic measurements suggest detrital magnetite composes the primary magnetic mineral assemblage
throughout C0020A with an additional fine-grained secondary phase (authigenic) of magnetite with lower
unblocking temperatures within Unit III.

6.2. Depositional Environment
In our data set, there is no clear change in magnetic mineralogy or magnetic susceptibility that is associ-
ated with a particular major change in lithology (supporting information Figure S4). Sandstone/sand
samples have an average v of 18.9 3 1028 m3 kg21, siltstone 26.8 3 1028 m3 kg21, and shale 15.7 3

1028 m3 kg21. The ultimate source for detrital magnetite at Site C0020A is most likely from weathering
of rocks within northern Honshu. Subangular fragments were commonly observed within Unit III [Expedi-
tion 337 Scientists, 2013] indicating minimal transport from source to deposition. Titanomagnetite is a
common constituent in volcanic rocks [Akimoto and Katsura, 1959; Sakuyama and Nesbitt, 1986; Hoshi
and Teranishi, 2007; Ohba et al., 2007; Suzuki, 2008], magnetite-series granitic rocks [Takagi, 2004], and
hornfels facies metamorphic rocks [Tsusue, 1962] from Honshu. Magnetite has also been observed as the
primary detrital magnetic mineral in the Nankai accretionary complex [Kanamatsu et al., 2012; Zhao
et al., 2013; Kars and Kodama, 2015] and Japan Sea [Razjigaeva and Naumova, 1992; Vigliotti, 1997].
Paleomagnetic studies of sediments from DSDP and ODP sites in the Japan Trench and fore-arc basin
show stable magnetic remanance [Hall and Smeltzer, 1980; Niitsuma, 1986; Kanamatsu and Niitsuma,
2004], but do not directly address magnetic mineral assemblage. The titanomagnetite-dominant mag-
netic mineral assemblage at C0020A is consistent with sites and lithologic sources around the Japanese
margin.

Magnetite has a density (5.20 g/cm3) nearly double that of quartz (2.65 g/cm3) [Sch€on, 2004], and commonly
shows hydraulic sorting in beach and fluvial environments [e.g., Slingerland and Smith, 1986; Komar, 1989].
The anomalous increases in v (to �100–400 3 1028 kg/m3) are similar to the range observed in modern
titanomagnetite placer deposits (�50–2000 3 1028 kg/m3) [Badesab et al., 2012]. However, the presence of
fine-grained SP magnetite and the fact that increases in v also occur in fine-grained rocks at Site C0020 sug-
gest placer sorting is not the cause of the observed increases in v.

The increases in magnetic susceptibility within Unit III are likely a result of additional authigenic precipita-
tion of magnetite rather than a rapid additional influx of detrital magnetite. Given the high sedimentation
rate of site C0020, cm-scale intervals of high magnetic susceptibility likely do not correspond to changes in
provenance. These cm-scale increases in magnetic susceptibility occur in multiple lithologies: sand, silt-
stone, and shale, but only in the coal-bearing unit and often associated with organic-rich laminations. In
addition, the high v samples correspond to increased vfd suggesting an increase of superparamagnetic fine-
grained material within high v intervals.
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6.3. Biogeochemical Implications
We suggest that in the terrestrial/estuarine sediments of Unit III, the presence of ultrafine magnetite result-
ing in lower unblocking temperatures, increased ARM, and increased vfd is the result of authigenic magne-
tite formation during early burial. Iron reduction of Fe(III) present in amorphous iron oxides under anoxic
conditions can result in the extracellular production of ultrafine-grained magnetite [Lovley et al., 1987]. In
addition, magnetosome formation by magnetotactic bacteria can also be a biogenic source of fine-grained
magnetite [e.g., Blakemore, 1982; Kirschvink and Chang, 1984; Bazylinski et al., 1988; Devouard et al., 1988;
Bazylinski and Frankel, 2004]. Experimental investigations of magnetosomes in magnetotactic bacteria have
shown that there is no detectable Fe isotope fractionation in intracellular magnetite [Mandernack et al.,
1999]. The heavy d56FeT values in Unit III therefore suggest that the fine-grained authigenic magnetite was
formed dominantly extracellularly as a by-product of dissimilatory Fe reduction.

Magnetic properties further support a dominantly extracellular origin of magnetite in the coal-bearing Unit
III. While magnetotactic bacteria typically produce magnetite within the single-domain range, iron reducers
like Geobacter metallireducens facilitate the production of both single-domain- and superparamagnetic-
sized magnetites [Moskowitz et al., 1989, 1993]. Multiyear experiments demonstrate that Fe-reducing bacte-
ria can produce superparamagnetic to multidomain-sized magnetite [Abrajevitch et al., 2016]. Intervals of
high v in Unit III are often associated with laminated sediments, suggesting benthic anoxia at the time of
deposition, which would favor anoxic extracellular production rather than magnetotactic production at the
nitrogenous to ferruginous transition. Extracellular production of magnetite under anoxic conditions by G.
metallireducens can produce higher magnetite output per biomass compared to magnetotactic bacteria
[Lovley, 1991a, 1991b]. High vfd values in Unit III indicate a greater abundance of superparamagnetic mag-
netite, which in turn suggests the presence of extracellular magnetite. In either case, iron reduction plays an
important role, either by directly contributing to magnetite formation or by supplying Fe(II) that diffuses to
the nitrogenous-ferruginous transition zone [e.g., Froelich et al., 1979; Canfield and Thamdrup, 2009; Roberts,
2015].

Precipitation of authigenic magnetite due to degradation of hydrocarbons has been widely observed [e.g.,
McCabe et al., 1987; Elmore and Crawford, 1990; Elmore et al., 1997] and can result in increases in magnetic
susceptibility [e.g., Saunders et al., 1991; Hall and Evans, 1995; Mewafy et al., 2011; Atekwana et al., 2014;
P�erez-P�erez et al., 2016]. In a similar process, we suggest that coal deposits can promote the authigenic pre-
cipitation of magnetite. As we discuss below, the depositional/diagenetic setting and previously observed
microbial communities suggest that iron reduction has played a major role within Unit III and contributed
to authigenic magnetite formation.
6.3.1. Iron Reduction and Sulfur Limitation
The depositional environment along with associated geochemical and microbiological characterization sug-
gests Unit III is an interval that is able to host iron-reducing bacteria during burial. Iron is the most abundant
electron acceptor in freshwater settings [Nealson and Saffarini, 1994]. Phylogenetic analysis of 16S rRNA
indicates an increased presence of Firmicutes and Proteobacteria phylum bacteria within Units III and IV
[Inagaki et al., 2015], a phylum that includes iron-reducing bacteria [Li et al., 2011; Hori et al., 2015]. The low-
sulfur terrestrial/estuarine environment of Unit III [Expedition 337 Scientists, 2013] and terrestrial microbial
communities within this unit [Inagaki et al., 2015] suggest a limited role for sulfate reduction, thus alteration
of magnetic minerals is not likely affected by reaction with hydrogen sulfide. Although some sulfur is pre-
sent within this interval and pyrite was observed, CRS decreases within Unit III relative to Units II and IV (Fig-
ure 6) [Glombitza et al., 2016]. The decrease in CRS concentrations suggests low sulfate reduction rates and
muted iron sulfide precipitation, consistent with limited sulfate availability within a brackish-to-freshwater
environment. Highly enriched d34S of CRS in Unit III (median: 126.9&, maximum: 145.6&) further indicates
an increasingly smaller and therefore 34S-enriched sulfate reservoir, where sulfate reduction was fueled by
sulfate that was regenerated in a cryptic sulfur cycle [Glombitza et al., 2016] (Figures 6 and 7). Under sulfate-
limiting conditions, and in the presence of Fe(III) from Fe-oxides or glauconite, sulfide may be partially reoxi-
dized to sulfate to maintain slow sulfate-reducing metabolism that does not generate substantial sulfide
minerals.

The common occurrence of authigenic siderite nodules throughout Units III and IV [Expedition 337 Scientists,
2013] also indicates a diagenetic environment where microbial Fe reduction was a significant metabolic
pathway during organic carbon burial. Substantial alteration during the heating step for Curie temperature
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measurements of Unit III sediments (supporting information Figure S2) is consistent with alteration of sider-
ite to magnetite and maghemite during heating [Pan et al., 1999, 2000, 2002]. Laboratory experiments and
equilibrium calculations by Bell et al. [1987] suggest that magnetite formation is favored under more alka-
line conditions, siderite formation is favored under more acidic conditions, and both magnetite and siderite
would be present at pH 7.0 if H2S is not present. The upward transition from a neutral-to-acidic, freshwater
environment to alkaline, brackish environment in Unit III [Gross et al., 2015] are consistent with our observa-
tions of authigenic magnetite that overly and overlap with the abundant siderite nodules in the base of
Unit III and in Unit IV [Expedition 337 Scientists, 337]. The Fe(II) produced via iron reduction is available to
react with bicarbonate within the methanic zone when H2S is not present [Berner, 1981; Maynard, 1982;
Postma, 1982] or in an environment in which rates of iron reduction are greater than sulfate reduction [Pye
et al., 1990]. Fe(III)-reducing bacteria can produce microbially derived siderite as a direct by-product of dis-
similatory iron reduction [Lovley and Phillips, 1986; Mortimer and Coleman, 1997]. The decrease in CRS within
siliciclastic sediments of Unit III [Expedition 337 Scientists, 2013; Glombitza et al., 2016] indicates sulfur limita-
tion and an environment in which the sink for Fe(II) produced during iron reduction are siderite or magne-
tite rather than pyrite. Overall, geochemical and mineralogical observations from Site C0020 suggest that
the terrestrial to marine transition Unit III provided a diagenetic environment favorable for microbial mag-
netite formation.

Magnetite is typically low or absent in anoxic coastal margin sediments for two reasons: (1) In marine sedi-
ments where sulfate concentrations are relatively high, bacterial sulfate reduction usually dominates over
microbial Fe reduction, suppressing authigenic magnetite formation. (2) Magnetite of detrital origin dis-
solves during burial in the presence of H2S [e.g., Canfield and Berner, 1987; Karlin, 1990]. A slight decrease in
S100 and increase in B1/2 in the marine Unit II relative to Units III and IV (Figures 6e and 6f) may indicate any
minor presence of high coercivity minerals resistant to H2S dissolution (hematite and goethite) become
more concentrated in sulfidic sediments as low coercivity magnetite is preferentially removed [e.g., Garming
et al., 2005]. With increasing burial depth magnetite and other crystalline Fe oxides are replaced by pyrite or
its precursor greigite. Previous studies have shown that greigite formed during sulfidization may contribute
to late stage remanence acquisition long after the original deposition [Rowan and Roberts, 2006]; however,
we found little evidence for the presence of greigite. IRM@0.9/v values possibly suggestive of a minor pres-
ence of magnetic iron sulfides are largely restricted to Unit II (Figure 6g). Magnetite concentrations of up to
1.36 wt % in Unit III suggest that either magnetite has been added or that detrital magnetite has escaped
sulfidization during burial diagnesis.

Collectively the rock magnetic, Fe isotope, and Fe speciation data suggest that the coal-bearing Unit III has
undergone postdepositional diagenetic alteration that has led to the removal or replacement of the original
mineral assemblage. FeT and FeHR are markedly decreased in Unit III, but the large variability in FeT/Al rang-
ing between 0.11 and 0.61 in this unit suggests that Fe has been removed from some intervals, and added
to others, during burial diagenesis. Bulk Fe isotope data are consistent with this interpretation: a shift in
d56FeT cannot be achieved by internal redistribution of reactive Fe into different minerals during early dia-
genesis. Elevated d56FeT values of up to 2& can only be achieved through significant loss of light Fe or
addition of heavy Fe. All except one sample with d56FeT> 0.3& are associated with FeT/Al values that are
significantly below the detrital baseline (supporting information Figure S5), suggesting that loss of FeHR was
the primary control on bulk Fe isotope compositions. The Fe isotope compositions for the 0.5M HCl extrac-
tions show a trend very similar to the bulk isotope values (Figure 7). The slightly lower d56Fe0.5M HCl values,
closer to the detrital baseline, confirm that this extraction likely included significant Fe from silicates while
at the same time being ineffective at dissolving other phases of the FeHR pool that may have a heavier iso-
tope composition. The increase in d56FeT at the base of Unit III corresponds to a shift from a mixed detrital
and authigenic magnetite (a pronounced drop in soft IRM from 275 to 3508C superimposed on a slower
drop from 0 to 5758C) to mostly authigenic magnetite (linear decrease in soft IRM from 0 to 3508C). Where
authigenic magnetite composes a higher fraction of total magnetite, the near-zero d56Fe values from igne-
ous magnetite contribute less to masking the heavy d56Fe composition of authigenic magnetite.

Vertical fluid advection, such as during groundwater fluid flow, has been shown to alter the remanant mag-
netization [Rowan and Roberts, 2006] as well as the Fe isotope composition [Rouxel et al., 2008] of the origi-
nal mineral assemblage. Low-salinity groundwater may stimulate microbial Fe-oxide reduction as well as
oxidative precipitation of Fe-oxides. The low CRS concentrations in Unit III suggest the lack of pyrite
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precipitation and/or the removal of pyrite through oxidation that could occur through alteration by ground-
water. Magnetite that is produced during microbial Fe reduction typically has a heavy isotope composition
[Johnson et al., 2005], while the pore water Fe(II) that is being generated during redox recycling will be iso-
topically light [Severmann et al., 2006]. Rouxel et al. [2008] have observed a wide range (–2 to 11.5&) in the
FeHR isotope composition of sediments that have been affected by groundwater alteration in a subterra-
nean estuary. Although the sediments in Unit III only show near-detrital or positive d56FeT values it is likely
that alteration was caused by a similar combination of processes. These processes may include dissolution
of the original mineral assemblage, conversion of Fe-oxide to authigenic magnetite and potentially also for-
mation of new authigenic mineral phases such as glauconite and siderite. We propose that the combined
effect of these processes was the observed decrease in FeT and FeHR, variable FeT/Al, ratios and heavy FeT

and Fe0.5M HCl isotope compositions.
6.3.2. Peat/Lignite As Source of Electron Donors
The presence of fine-grained biogenic magnetite occurs over a broad interval containing numerous coal
beds, and coal may serve as an important source of organic substrates to the surrounding sediments.
Coal can serve as a bioreactor in which complex coal macerals are degraded into simple, more labile
molecules (e.g., acetate, H2, and CO2) that become mobile as electron donors that can fuel methanogen-
esis [Strapoć et al., 2008, 2011]. Peat prior to coal formation is a major source of dissolved organic carbon
(DOC) into underlying sediments as well [Dalva and Moore, 1991]. During burial and through early coalifi-
cation, the peat/lignite intervals at Site C0020 were a likely source of DOC to the surrounding low TOC
sediments. Lignite within Unit III promotes methanogenesis and H2 production [Inagaki et al., 2015] and
H2 can serve as an electron donor for iron-reducing bacteria commonly found in estuaries [Caccavo
et al., 1992]. Within the C0020A sediments, average TOC of coal is 41 wt % while mudrocks, siltstone, and
sandstone have 1.4, 0.43, and 0.26 wt %, respectively, [Expedition 337 Scientists, 2013]. Most coal beds
within Unit III have little to no ferrimagnetic fraction, and likely had little Fe(III) present, thus presenting
a physical separation between electron donors and electron acceptors necessary to fuel dissimilatory
iron reduction. These coal beds are interbedded among siliciclastic sediments including massive fine-to-
medium sand layers in the upper half of Unit III indicating an adjacent proximity of high-permeability
sediments, initially (during early burial) likely to contain Fe(III) oxides, directly adjacent to a DOC and CH4

sources.

In addition to the lignite as a source of electron donors, humic acids can facilitate iron reduction [Lovley
et al., 1996; Lovley and Blunt-Harris, 1999; Kappler et al., 2004; Kl€upfel et al., 2014]. Humic acids comprise a sig-
nificant fraction of lignite [e.g., Ibarra and Juan, 1985; Gonzalez-Vila, 1992, 1994; Cavani et al., 2003; Allard,
2006] and can transfer electrons to iron oxides during acetate oxidation, alleviating the necessity of direct
contact between Fe(III)-reducing bacteria and iron oxides [Lovley et al., 1996]. The presence of peat/lignite
in the subsiding environment at Site C0020A likely acted as a significant source of humic acids in the DOC
to the surrounding sediments, thus enhancing iron reduction within intervals in pore water contact with
the peat/coal intervals (Figure 9). Maximum methane content occurs within the coal beds (Figures 6 and 7)
[Expedition 337 Scientists, 2013], including production by present-day methanogenesis [Inagaki et al., 2015].
Methane oxidation may be coupled to iron reduction [Konhauser et al., 2005; Thauer and Shima, 2008; Beal
et al., 2009; Segarra et al., 2013; Riedinger et al., 2014], suggesting methane exported from peat/lignite as a
potential electron donor for iron reduction. Although both Units III and IV were deposited within a brackish/
freshwater environment, only Unit III has numerous coal beds that can allow for a considerable source of
humic acids and methane to the Fe(III)-bearing sediments. The presence of numerous coal beds in Unit III
can explain why fine-grained authigenic magnetite is present in this unit, but not in Unit IV.

Within Unit III, the presence of unconsolidated sands suggests that fluid connectivity between coal beds
and the surrounding sediments is maintained, but may be increasingly constricted with depth. Porosity
decreases with depth from >0.8% at the top of overlying Hole C9001C to an average of 0.26% in Unit III
[Aoike, 2007; Expedition 337 Scientists, 2013]. Within carbonate-cemented intervals of Unit III, porosity is fur-
ther reduced to <0.15%. The decrease in porosity with depth due to compaction and diagenetic cements
almost certainly limits permeability, thus impeding the connection between magnetite-sourced electron
acceptors and coal-sourced electron donors. This presumed decrease in permeability, along with the
decrease in cell concentration with depth [Inagaki et al., 2015], suggests that the maximum rates for iron
reduction likely occurred during shallow burial and declined with further burial depth.
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6.3.3. Potential for Continued Iron Reduction in the Deep Biosphere
As we discuss above, electron donors and Fe(III) electron acceptors were likely more readily available dur-
ing early burial; however, the presence of indigenous terrestrial microbial communities within Unit III [Ina-
gaki et al., 2015] suggests the possibility that there may be continued iron reduction at depth, albeit at
low rates. If iron reduction continues within the modern buried coal bed it is likely not a dominant pro-
cess. Elevated H2 concentrations at Site C0020 [Inagaki et al., 2015] are consistent with observations that
H2 concentrations are lowest in sediments dominated by Fe(III) reduction and highest in those dominated
by methanogenesis [Lovley and Goodwin, 1988; Lovley et al., 1994], suggesting that methanogenesis is a
dominant process.

Iron may play a role in the deep biosphere as a potential source of Fe(III) for iron reduction, possibly cou-
pled to methane oxidation [Riedinger et al., 2014]. Although iron reduction is thermodynamically more
favorable than sulfate reduction and methanogenesis [Froelich et al., 1979], Fe(III)-bearing iron oxides can
persist during burial of sediments through the sulfidic and methanic zones [e.g., Kasten et al., 1998; Riedinger
et al., 2005]. While the original depositional environment for Unit III is likely to have been rich in Fe(III)
oxides, the lack of ascorbate extractable iron suggests that this source of Fe(III) has been depleted. Fe(III) is
relatively immobile within a crystalline structure, and the presence of Fe(II) can limit the accessibility of
Fe(III) thus limiting the bioavailability of magnetite Fe(III) for iron reducers [Roden and Zachara, 1996; Roden
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Figure 9. Schematic diagram illustrating the role that organic-rich peat/coal beds may play in promoting microbial iron reduction in
the surrounding siliciclastic sediments of Unit III during burial. The coal can serve as an electron donor to the Fe(III) electron acceptors in
the surrounding sediments via export of methane, DOC, and hydrogen, causing the formation of magnetite at the highest rate during
early burial. With continued burial, depletion of amorphous iron oxides along with decreasing microbial activity and permeability likely
slowed the rate of iron reduction. In the modern sequence, magnetite may be the main source of Fe(III) potentially available for iron
reduction.
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and Urrutia, 1999]. However, Fe(III) and Fe(II) within magnetite have been shown to be bioavailable to both
iron-reducing and iron-oxidizing bacteria, respectively [Byrne et al., 2015].

Despite its crystalline structure, the presence of magnetite as the dominant magnetic mineral in the Site
C0020A record suggests this mixed-valence iron oxide is a potential source of Fe(III) for present iron reduc-
tion in sediments offshore Shimokita within the deep biosphere. Reduction of magnetite-bound Fe(III) as an
electron acceptor and magnetite dissolution have been observed in modern cultures of iron-reducing bac-
teria, and are shown to be energetically favorable under pH conditions typical of freshwater [Kostka and
Nealson, 1995; Hori et al., 2015]. In modern cultures of iron reducing bacteria with glucose or lactate as elec-
tron donors, magnetite loss occurs at rate on the order of 1029 to 1027 mmol h21 cell21 [Nealson and Saffar-
ini, 1994; Kostka and Nealson, 1995]. This rate of magnetite dissolution would consume all magnetite at Site
C0020 over a period of tens of thousands to several million years. The fact that magnetite, even ultrafine
magnetite, has remained the dominant magnetic mineral in these sediments since the Miocene, suggests
that if magnetite is a source of Fe(III), iron reduction is proceeding at extremely low rates potentially limited
by the accessibility of electron donors.

Other possible Fe(III)-bearing minerals present at Site C0020 include glauconite and smectite-group clays.
Glauconite was commonly observed in smear slides in cores from Unit II and IV but was less common in
Unit III [Expedition 337 Scientists, 2013]. Glombitza et al. [2016] suggest Fe(III) in glauconite may drive slow
rates of sulfate recycling at Site C0020A. Clay mineralogy has not been characterized at C0020A, but smec-
tite clay minerals are abundant in late Oligocene-early Miocene sediments at DSDP sites further offshore
northern Honshu [Chamley et al., 1986]. Iron-reducing bacteria (as well as sulfate-reducing bacteria and
methanogens) have been shown to reduce Fe(III)-bearing clay minerals (e.g., nontronite) [e.g., Kostka et al.,
1999; Dong et al., 2009; Pentr�akov�a et al., 2013]. Furthermore, humic acids can stimulate the reduction of
Fe(III)-bearing clays [Liu et al., 2017]. Characterization of clay mineralogy at Site C0020 may further help elu-
cidate the role of iron reduction in the deep biosphere.

7. Summary and Conclusions

We investigated changes in magnetic mineral assemblages and iron speciation across a transition in
depositional and diagenetic environments at IODP Hole C0020A in order to identify the source of anoma-
lous increases in magnetic susceptibility associated with a unit containing 0.3–7.3 m thick coal beds. Mag-
netic assemblages throughout the core are dominated by low-coercivity magnetite. In this record, cm-
scale magnetic susceptibility increases are associated with organic-rich laminations in sandstone, silt-
stone, and shale lithologies within Unit III, a nearshore-to-intertidal coal-bearing depositional sequence.
In Units II and IV, the linear loss of low-coercivity IRM during thermal demagnetization to 5808C suggests
the presence of magnetite. Within the primary coal bearing intervals of Unit III (1925–1975 mbsf and
1979–1993 mbsf) partial or complete loss of low-coercivity IRM by 350–4008C indicates a secondary mag-
netite assemblage with a lower unblocking temperature due to decreased grain size. ARM and frequency
dependence measurements support the presence of fine-grained SD and ultrafine SP magnetite. Meas-
urements of d56Fe from total iron extractions also indicate the precipitation of authigenic magnetite. This
phase of fine-grained magnetite is likely formed as extracellular precipitates during iron reduction. Inter-
pretation of our rock magnetic record in the context of geochemical and microbiological results from
IODP Expedition 337 [Expedition 337 Scientists, 2013; Inagaki et al., 2015; Gross et al., 2015] suggest that
the depositional/diagenetic environment in which we observe fine-grained magnetite is conducive to
microbial iron reduction. Peat/lignite in Unit III likely served as a source of electron donors (e.g., CH4 and
H2) for iron reduction. Beginning early after deposition in this nearshore environment, microbial iron
reduction most likely resulted in precipitation of authigenic magnetite by consumption of amorphous
iron oxides. The proximity of the coalbeds as a source of electron acceptors and humic acid electron shut-
tles further enhanced iron reduction in Unit III. This process of microbial iron reduction may continue to
occur with deeper burial and could continue today in the deep biosphere off Shimokita but at reduced
rates due decreased microbial activity, reduced permeability, and the presence of only crystalline sources
of Fe(III). Overall, these results suggest that peat/coal can facilitate iron reduction and magnetite forma-
tion in subsiding sediments.
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