
uavEE:
A Modular, Power-Aware Emulation Environment

for Rapid Prototyping and Testing of UAVs
Mirco Theile∗, Or D. Dantsker∗, Richard Nai∗, Marco Caccamo∗,

∗University of Illinois at Urbana-Champaign, USA, {mircot, dantske1, rnai2, mcaccamo}@illinois.edu

Abstract—State of the art design and testing of avionics for
unmanned aircraft is an iterative process that involves many
test flights, interleaved with multiple revisions of the flight man-
agement software and hardware. To significantly reduce flight
test time and software development costs, we have developed
a real-time UAV Emulation Environment (uavEE) using ROS
that interfaces with high fidelity simulators to simulate the
flight behavior of the aircraft. Our uavEE emulates the avionics
hardware by interfacing directly with the embedded hardware
used in real flight. The modularity of uavEE allows the integra-
tion of countless test scenarios and applications. Furthermore,
we present an accurate data driven approach for modeling of
propulsion power of fixed-wing UAVs, which is integrated into
uavEE. Finally, uavEE and the proposed UAV Power Model have
been experimentally validated using a fixed-wing UAV testbed.

I. INTRODUCTION

In recent years, we have seen an uptrend in the popularity
of Unmanned Aerial Vehicles (UAVs) driven by the desire to
apply these aircraft to areas such as precision farming, infras-
tructure and environment monitoring, surveillance, surveying
and mapping, search and rescue missions, weather forecasting,
and more. All the mentioned application scenarios require
the design of UAVs that carry a high performance embedded
computer system, which run flight management and mission
critical software. The developement and testing of avionics for
unmanned aircraft is an iterative process that involves many
test flights and multiple revisions of software and hardware.

While the long term goal of this research is the design
and development of a solar-powered, long-endurance UAV
for real-time on-board data processing [1, 2], we now present
our work to develop a modular, power-aware UAV Emulation
Environment (uavEE). The uavEE uses high fidelity simulators
to simulate the flight behavior of the aircraft. It emulates
the avionics hardware by providing a ROS based control
flow interface between the hardware and the simulator (FS
One R©[3, 4, 5] or X-Plane[6]).

We introduce a step-wise prototyping process that allows
the user of uavEE to first focus on the software development
and testing, followed by hardware integration and emulation,
drastically improving debugging efforts. The cheap and quick
deployment in the emulation environment saves hours at the
field, dramatically increasing the success rate of autonomous
flight tests. The system level diagram in Figure 1 presents a
few of the possibilities that the highly modular uavEE can
offer. We briefly describe the possibilities that arise when
integrating fault modeling into the emulation environment. In

Real-World

Mission

Sensors
Flight

Sensors

Simulation

Fault

Modeling

Power

Modeling

Fig. 1: A system level diagram of the UAV Emulation Envi-
ronment (uavEE).

this work we focus on power modeling, since it is a crucial
element for long-endurance solar-powered flight.

The power on a UAV is consumed by its propulsion subsys-
tem, actuators, and avionics, as well as mission components.
Even for an efficient sailplane, the propulsion power consump-
tion takes the majority of the energy. Therefore, the integrated
power model focuses on the propulsion power. Previous works
have separately looked at aircraft power modeling [7, 8, 9, 10,
11, 12] and propulsion system modeling [13, 14, 15, 16, 17]
with varying degrees of assumptions, and simulation for flight
control purposes [4, 18, 19, 20]. In contrast to the existing
literature we present a data driven approach. We use a physical
model of the propulsion power, which is fully derived in [21],
and use the non-linearities as kernel functions of a linear
regression algorithm. This way we can easily train the power
model with flight data and then use the linear parameters
for power estimation of future flights. For this approach no
aerodynamic parameters of the airplane are needed which
accelerates the modeling process. We validate the proposed
power model by means of flight experiment using a highly
accurate data acquisition system [22]. To the best of our
knowledge, this is the first accurate and portable data driven
approach for modeling of the propulsion power of fixed-wing
aircraft.

In summary, the main contributions of this work are:

1) Development of a real-time UAV Emulation Environ-
ment (uavEE) that interfaces with an existing high-
fidelity flight simulator to simulate flight dynamics and
emulate the avionics hardware;

2) Integration of an accurate UAV power model using a
novel data driven approach based on non-linearities of
a physical model of the aircraft;

3) Experimental validation of the uavEE integrated with
the proposed power model using a fixed-wing UAV
testbed, which has a 1.59 m wingspan and a mass of
3.92 kg.

The uavEE has already been instrumental for the research
activity of this group on UAVs by allowing for rapid testing
and debugging of autopilot and path planning software. In
the case of developing our autopilot, uavAP, more than 90%
of autopilot software bugs hidden in the avionics software
were discovered by flying the avionics computer within the
emulation environment, dramatically cutting both the time and
cost of development. The UAV emulation environment has also
been used multiple times as an educational tool for student
class projects on UAVs, and therefore we have released it
as open source1. The emulation software can also be inter-
faced with other flight simulators (e.g. FlightGear, Gazebo) at
minimal porting cost by exporting the same communication
interface that is used with FS One R©and X-Plane.

The paper is structured as follows: In Section II, we describe
the Emulation Environment and the hardware and software
used for modeling and testing. In Section III, we describe
our data driven power model approach, which we evaluate
alongside uavEE with an example flight in Section IV. In
Section V we conclude the paper and give an outlook for
future work.

II. EMULATION ENVIRONMENT

In this section we describe our Emulation Environment for
rapid prototyping of Unmanned Aerial Vehicles (uavEE). The
Emulation Environment consists of an embedded hardware, a
Robot Operating System (ROS) based ground-station running
on a Linux machine, and a simulator. The goal of the emulation
environment is to imitate real flying conditions as closely
as possible to let the embedded hardware (it is running the
autopilot in real flight) think that it is actually flying. The
hardware and software setup and interfaces for the real flight
as well as the simulated flight are shown in Figure 2. The
graphic uses a coloring scheme to classify the state in which
the components are used:

• Yellow: Only used in real flight. Inactive or disconnected
in the emulation.

• Blue: Only used in the emulation. Inactive or discon-
nected in real flight.

• Green: Used in both, real flight and emulation.

1The executable of FS One augmented with an emulation interface needs
to be purchased under proper software license by the company (InertiaSoft)
that sells the flight simulator.
uavEE: https://github.com/theilem/uavEE.git
uavAP: https://github.com/theilem/uavAP.git

This section is structured as follows: First we describe the
embedded hardware and the software architecture on it. Af-
terwards we give an introduction into the ROS environment
followed by a description of the hardware and software inte-
gration. To conclude, we present a simplification of the uavEE
to allow even faster prototyping of autopilot software.

A. Embedded Hardware

The embedded hardware used in emulation is the same
embedded hardware that is used to control the aircraft in real
flight, which is the Al Volo FC+DAQ [23]. The software and
interface schematics is depicted on the embedded hardware
side of Figure 2. In real flight, the Emulation Interface is
inactive and the Al Volo backend is active. The backend
collects sensor information and sends them through an API to
the autopilot. The autopilot calculates the appropriate control
based on a prior set mission and returns an actuation command
through the API. The backend takes the actuation command
and sends it to the actuators to control the aircraft. During
this process the autopilot is continuously sending status in-
formation through a radio interface to a ground-station for
monitoring. Additionally the ground-station can utilize the
same radio link to send commands to the autopilot.

In this setup the goal of the emulation environment is to
imitate the functionality of the Al Volo backend as closely
as possible to ensure that the autopilot is oblivious about
whether it is in a simulation or not. Therefore, in emulation,
the emulation interface performs the exact same task as the
backend except that it uses a link to the autopilot interface in
the ROS environment for sensor and actuation data.

The autopilot software that is used is custom designed and
is described in section IV. However, it is conceivable that the
modularity and abstraction of the interfaces in the emulation
environment allow the usage of other embedded hardware and
autopilot software with minimal porting efforts.

B. ROS Environment

To support the embedded hardware and the autopilot in real
flight as well as in emulation a ground-station is needed for
continuous monitoring of the aircraft status and for mission
command. Our ground-station is part of a ROS environment,
as visualized on the left side of Figure 2, which enables more
features than only a ground station user interface (UI).

First described in [24], ROS is an open source robot
operating system. It supports the design and programming
of nodes for specific functionality and allows communication
among them through ROS topics. Every node has the ability
to publish messages to, or subscribe on messages from a
topic which creates a runtime connection between publisher
and subscriber. Additionally nodes can offer services to other
nodes. Messages on topics are usually used for periodic
data exchange and services for aperiodic requests. Further
information, installation manuals, and tutorials can be found
in [25].

1) Real Flight and Emulation: During real flight, the
autopilot status information is sent to the Radio Com node
which distributes the information in the ROS environment. The
Ground Station UI node displays a graphical representation of

Autopilot API

AlVolo Backend

Emulation Interface

Sensor Data

Actuation

Simulation
Interface

Autopilot
Interface

Power Modeling
(optional)

Ground Station UI Radio Com

Trajectory

Sensor Data

Sensor Data

Actuation

Power Data

Power Prediction

Autopilot Status

Mission Commands

Fault Modeling
(optional)

Sensor Data

Actuation

Sensing†/Actuation

Radio Com†

Simulator
Sensing/

Actuation†

Sensors and Actuators† indicates optionally altered for fault modeling

Emulation

Real Flight

Both

Color Legend

ROS Environment Embedded Hardware

Fig. 2: Full setup schematics showing uavEE setup as well as real flight setup.

the status information. Besides displaying status information,
the ground station can send user commands to the autopilot
through the Radio Com node by calling a ROS service. These
commands can include the tuning of parameters, the selection
of missions, or override settings, etc.

In emulation, this setup is extended by a simulation interface
and an autopilot interface node. The simulation interface com-
municates with a flight simulator to retrieve simulated sensor
data. This data is passed to the autopilot interface, which
forwards it to the embedded hardware. The actuation response
from the autopilot is received in the autopilot interface and sent
through the simulation interface back to the flight simulator.

Figure 2 shows that for the real flight setup, the ROS
Environment is only connected to a radio interface to receive
status information from and send commands to the autopilot
on the embedded hardware. The embedded hardware is then
connected to actual aircraft sensors and actuators to retrieve
sensor data and perform control. In the emulation setup, the
radio link is shortcut by a direct link, which does not effect
the autopilot or the Radio Com node.

For power awareness, we use a high-fidelity simulator, FS
One R© [4, 5]. FS One R© uses a full-flight-envelope 6-DOF
aerodynamics model, created using component-build up and
strip methods, and a fourth-order Runge-Kutta integration
scheme to perform real-time flight simulation at 400 Hz.
The simulator offers a large variety of aircraft, which allows
the possibility to select an aircraft very similar to the actual
testbed aircraft. The simulation leads to highly realistic flight
data which is important for accurate power modeling. The
downside of using FS One R© is that the software runs on
standard Windows machines, which leads to another inter-
device communication in the setup. In contrast, the interface
with X-Plane is based on a plug-in that directly creates a
ROS node from the simulator. The benefit is that X-Plane
and the ROS Environment of uavEE can run on the same
device. However, X-Plane and most high fidelity simulators
require significant computation, thus they might need to run on
a separate machine. Therefore, the selection of the simulator

has to be made dependent on the available hardware.

As before for the embedded hardware, the modularity of the
emulation environment allows for the usage of most simulators
with little to no porting efforts, as long as the simulators
provide an interface for sensor data and actuation commands.

The physical setup of the emulation environment consists of
a Windows computer running the FS One R© simulator which is
connected via RS232-Serial to a Linux computer running the
ROS environment. The Linux computer is connected via two
RS232-Serial links to the embedded board, the aforementioned
Al Volo FC+DAQ. The embedded hardware runs a two core
Atom 500 MHz processor with 1GB of LPDDR3 RAM. The
software used for the emulation environment is our uavEE and
for the autopilot is our uavAP, which are both open source
available (link in the Introduction).

2) Power and Fault Modeling: The main reason for utiliz-
ing the ground station ROS environment for the emulation is
that it allows for adding additional nodes enabling countless
possibilities for simulation scenarios, two of which are power
and fault modeling. For fault modeling, the sensor data from
the simulator can be manipulated to simulate sensor failures
or sensor spoofing. Furthermore, the actuation command can
be altered, which can simulate actuator failures. Altering the
radio communication can test the resilience against third party
attacks in the radio link. The fault modeling is out of scope
but will be addressed in future work.

The power modeling node in the ROS environment has
two functionalities. The first is to estimate the current power
consumption based on the sensor data and forward this infor-
mation through the autopilot interface to the autopilot. In real
flight the Al Volo backend provides power information to the
autopilot using on-board power sensors. To have this infor-
mation available in the emulation environment a power model
is needed. Supplying the autopilot with power information is
therefore a emulation-only function of the power modeling
ROS node. The second functionality is to predict the power
consumption of a given trajectory ahead of the flight. The
power prediction is out of scope for this paper as we aim to

first describe the basic power-aware emulation environment,
which estimates power consumption based on inertial aircraft
data. The power model is derived and explained in section III.

C. Simulation Environment

For rapid prototyping of the autopilot software it can be
suboptimal to need to deploy the software on the embedded
hardware to test it. Therefore, the emulation environment
supports the direct deployment of the autopilot on the ground-
station machine. The configurable autopilot interface node can
be set up to start the autopilot process and use the API to
communicate with it, similar to the embedded hardware side
in Figure 2. If the ground station computer can be used to
program the autopilot this direct deployment allows fast testing
and debugging.

In this setup the autopilot software is deployed on a
desktop machine rather than the embedded hardware making
the emulation environment a simulation environment since
the autopilot is only simulated and the actual embedded
hardware is not used. After a few quick iterations in testing
and debugging, the autopilot software can then be deployed on
the embedded hardware e.g. to test its real-time behavior and
the tasks’ schedule on the embedded hardware. This step-wise
testing process drastically improves the speed of debugging by
looking at one problem at a time.

III. POWER MODELING

To integrate power-awareness into uavEE we take use of
the power model derived in [21]. The power flowing from the
battery to the propulsion system can be modeled with

Pbat =
Ki

ηmηp

cos2 γ

v cos2 φ
+

Kp

ηmηp
v3 +

m

ηmηp
(g sin γ + a)v (1)

To simlify this equation we combine the physical and aerody-
namical parameters to write

Pbat = A
cos2 γ

v cos2 φ
+Bv3 + C(g sin γ + a)v (2)

in which the only variables are γ as the vertical climb angle,
φ the roll angle, v the total velocity and a the forward
acceleration of the UAV. To find the parameters for a given
aircraft we use machine learning techniques.

A. Regression with Kernel

A typical linear regression for multiple input and single
output (MISO) linearly maps input values to the output value.
This can be represented with

y = wx (3)

where y is the output value, x are the input values, and w is
the prior unknown weight vector. Using linear regression these
weights are found by minimizing a quadratic cost function
over training data. If we have non-linear dependencies between
our output and input values we cannot directly use this method.
If the non-linearity is known, we can, however, use the so
called “Kernel Trick” to create a linear regression. In short,

we can map our actual input values Θ with kernel functions
f to x which is then linearly mapped to y, which results in:

y = wf(Θ) (4)

In the case of the power model our input vector is defined as

Θ = [γ, φ, v, a]T (5)

After compressing the constant factors in (1), which resulted
in (2), we can write the weight vector as

w = [A,B,C] =

[
Ki

ηmηp
,
Kp

ηmηp
,
m

ηmηp

]
(6)

the kernel functions as

f(Θ) =

[
cos2 γ

v cos2 φ
, v3, (g sin γ + a)v

]T
(7)

and Pbat being y. Any solver for regression, e.g. Matlab, can
approximate w given a set of training data for Θ and y.

B. Training and Testing

To select training data we need to take a look at the
assumptions that are made in the derivation of the power
model. The first assumption is that we can neglect the angle of
attack α, which offsets the actual climb angle from the aircraft
pitch angle. If this assumption does not hold for the training
data, a wrong relation between climb and power is learned.
An example of this can be seen in Figure 3. Here the bad
training data is coming from stalled gliding flights, where the
aircraft climbs for a short time and then stalls. Since the motor
is not engaged the regression assumes that only little power is
needed to climb, or to fly in general. Therefore, this training
set leads to an underestimation of the power consumption. The
good training set was taken from two 400s flights with low
angle of attack.

Additionally, the velocity v in the regression model is air-
speed. If GPS speed is used and there is wind, the dependency
towards velocity will be wrong. Therefore, if no pitot tube for
airspeed measurement is available, it is advisable to train the
model on windless flights.

Testing is not as vulnerable to these two assumptions since
the effects of angle of attack and wind usually average out
over time. Therefore, the estimation of the total consumed
propulsion energy, which is the cumulated estimated propul-
sion power consumption, remains accurate.

IV. EVALUATION

In this section we validate the proposed power model by
comparing estimated with measured energy consumption, fol-
lowed by a detailed comparison of the estimated and measured
power consumption given an autonomously flown trajectory.
Afterwards, a comparison between real and emulated flights
shows the accuracy of the emulation environment as well as
the applicability of the power model in emulation. First we
describe the hardware and software used for the evaluation.

A. Hardware and Software

The hardware used for the actual flight is split into aero-
dynamic hardware, the aircraft itself, the computational hard-
ware, and sensor and actuation management.

0 10 20 30 40 50 60 70 80 90 100
Time t [s]

0

100

200

300

400

500

600

P
ro

pu
ls

io
n

P
ow

er
 P

ba
t [W

]
Measured Power
Bad Training Data
Good Training Data

Fig. 3: Comparison of power estimation to measured power
using good and bad training data sets.

Fig. 4: Completed flight-ready aircraft.

1) Aircraft: A fixed-wing trainer-type radio control aircraft,
which was built for previous avionics development [26, 27,
28], was used for the evaluation. The aircraft built was a
Great Planes Avistar Elite [29], which has a 1.59 m wingspan
and a mass of 3.92 kg. The aircraft has the following control
surfaces: 2 ailerons (roll), 2 flaps, 1 elevator (pitch), and 1
rudder (yaw). The completed flight-ready aircraft is shown in
Figure 4 and its specifications can be found in [27].

2) Avionics: The aircraft was instrumented with an Al Volo
FC+DAQ 400 Hz flight computer and data acquisition sys-
tem [23], which incorporated the open source uavAP autopilot.
Our custom designed uavAP autopilot, mentioned in section II,
deployed onto an Al Volo FC+DAQ is based on a modular
and configurable framework. The framework allows the easy
integration of different planning and control algorithms. For
detailed information about uavAP, the interested reader is
directed to the GitHub page found in the Introduction.

B. Power Model Evaluation

In order to evaluate the power model we first look at
the modeled total consumed propulsion energy over a full
flight. For this validation the regression model was trained on
two 400s flights from shortly after take-off to shortly before
landing, to eliminate ground effect disturbances2. The trained
model is then tested on a third flight. The resulting measured
and estimated energy consumption are shown in Figure 5. It

2The resulting weights are w = [1130.97, 0.01353, 6.3444]

0 50 100 150 200 250 300 350 400
Time t [s]

0

10

20

30

40

50

60

70

C
on

su
m

ed
 P

ro
pu

ls
io

n
E

ne
rg

y
[K

J]

Measured
Modeled

Fig. 5: Comparison of consumed propulsion energy measure-
ment to estimation using the regression model.

can be seen that all disturbances during the flight average out
and that the power model perfectly estimates the consumed
energy at the end of the flight.

We will now go into detail and look at the estimated power
from the 100s to 200s ticks. Figure 6 shows the trajectory,
the power consumption and the total consumed energy of
the extract. For now we focus on the red and blue lines.
In the power Figures 6b and 6c the red lines show power
measurements during the flight. The blue lines show the
estimations of the power model using inertial and GPS data
from the flight. It can be seen that for the given trajectory,
which contains turns, climbs, and straight lines the power
estimation is nearly congruent to the measured power. The
difference in the beginning can be explained by an offset angle
of attack due to wind.

C. Emulation Validation

Since the power model yields highly accurate results, when
applying it on the measured inertial data, we can use it to
show the applicability of the emulation environment. For this
a similar aircraft is flown in the emulation environment, using
the same embedded hardware and the same autopilot settings.
The resulting trajectory can be compared to the real flight
trajectory in Figure 6a. It shows that the trajectory-following-
behavior in uavEE is similar to real flight.

The trained power model is applied on the inertial data
coming from the simulator. The resulting power and energy
curves can be seen in Figures 6b and 6c, respectively. It can
be seen that the power consumption data of the simulator
is less noisy than the measured power. The overestimation
during the last two turns can be linked to a tail-wind in the
real flight. As explained before, when looking at the total
energy consumption these disturbances cancel out which we
can observe in Figure 6c. The graph shows that for this specific
extract of the trajectory we have a slight overestimation of the
consumed energy in the simulator. However, the results of the
power model applied in uavEE is very similar to the real flight
and shows that uavEE has the capability to accurately estimate
power and energy consumption.

0

100

200

300

400

500

600

0

100

200

300

400

500

600

100

120

140

160

 − Experimental
 − Simulated

Northing (m)Easting (m)

A
lt

it
u

d
e

(m
)

Start

End

(a) Comparison of aircraft path for experimental (red) and simulated flight (green) results. The airplane is plotted at 6x scale and every 2
seconds.

0 10 20 30 40 50 60 70 80 90 100
Time t [s]

0

100

200

300

400

500

600

P
ro

pu
ls

io
n

P
ow

er
 P

ba
t [W

]

Measured
Modeled
Simulated

(b) Comparison of propulsion power from experimental
measured (red), experimental modeled (blue), and simu-
lated (green) results.

0 10 20 30 40 50 60 70 80 90 100
Time t [s]

0

2

4

6

8

10

12

14

16

C
on

su
m

ed
 P

ro
pu

ls
io

n
E

ne
rg

y
[K

J]

Measured
Modeled
Simulated

(c) Comparison of propulsion energy consumed from ex-
perimental measured (red), experimental modeled (blue),
and simulated (green) results.

Fig. 6: Evaluation of power model comparing experimental to simulated results for circuit maneuver performed with the Avistar
unmanned aircraft

V. CONCLUSION AND FUTURE WORK

We described and evaluated uavEE, our modular, power-
aware emulation environment for UAVs. The uavEE creates a
connection between high fidelity flight simulators and autopi-
lot software running on embedded hardware. The step-wise
prototyping process introduced allows the user of uavEE to
first focus on the software development and testing, followed
by hardware integration and emulation, drastically reducing
debugging efforts. The cheap and quick deployment in the
emulation environment saves hours in the field, dramatically
increasing the success rate of autonomous flight tests.

The modularity of the emulation environment, the uavEE, as
well as the autopilot, the uavAP, create a highly customizable
solution for the development of embedded software for any
aircraft, not limited to fixed wing. Using fault modeling, the
autopilot can be tested regarding robustness and cyber-security,
which is becoming ever more important. The integration of
our accurate power model allows power-aware autopilots to be
tested in uavEE. The data driven approach of the power model
is easy to use and allows for fast integration of other aircraft.

Together with the power model, uavEE opens up the benefits
of emulation to countless long-endurance flight applications,
including solar UAVs.

The evaluation of uavEE was performed with actual flight
testing using the same embedded Al Volo hardware and uavAP
autopilot software and showed that the resulting flight path,
as well as the measured and modeled power data, are highly
similar. Since the software for uavEE, as well as the uavAP, is
available as open source, other research and education groups
can benefit from this powerful tool.

Using the work presented in the paper we can further
develop a long endurance solar UAV. For this we need power-
aware path planning and control algorithms, which we can
rapidly test in the uavEE. Extending the power model to
incorporate mission power estimation will allow us to develop
planning algorithms to take into account the computational
power of the on-board data processing tasks. Furthermore
using the fault modeling possibilities of uavEE we can assess
the autopilot for safety regarding failures as well as third party
attacks. For this, uavAP can be extended to use robust control,
e.g. L1 adaptive control [30].

ACKNOWLEDGMENTS

The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) under
grant number CNS-1646383. Any opinions, findings, and
conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views
of the NSF.

We would like to thank Prof. Renato Mancuso and Andrew
Louis for their help with flight testing, ground station, devel-
opment, and emulation environment development.

REFERENCES

[1] Real Time and Embedded System Laboratory, University
of Illinois at Urbana-Champaign, “Solar-Powered Long-
Endurance UAV for Real-Time Onboard Data Process-
ing,” http://rtsl-edge.cs.illinois.edu/UAV/, Accessed Mar.
2018.

[2] O. D. Dantsker, M. Theile, M. Caccamo, and R. Man-
cuso, “Design, Development, and Initial Testing of
a Computationally-Intensive, Long-Endurance Solar-
Powered Unmanned Aircraft,” AIAA Paper 2018-4217,
AIAA Applied Aerodynamics Conference, Atlanta,
Georgia, Jun. 2018.

[3] InertiaSoft, Inc, “FS One RC Flight Simulator,”
http://www.fsone.com/, Accessed Oct. 2017.

[4] M. S. Selig, “Real-time flight simulation of highly ma-
neuverable unmanned aerial vehicles,” Journal of Air-
craft, vol. 51, no. 6, pp. 1705–1725, Nov.-Dec. 2014.

[5] M. Selig, “Modeling propeller aerodynamics and slip-
stream effects on small uavs in realtime,” AIAA Atmo-
spheric Flight Mechanics Conference, Toronto, Ontario,
Canada, Aug. 2010.

[6] Laminar Research, “X-Plane 11,” http://www.x-
plane.com/, Accessed Mar. 2018.

[7] J. S. Lee and K. H. Yu, “Optimal path planning of
solar-powered uav using gravitational potential energy,”
IEEE Transactions on Aerospace and Electronic Systems,
vol. 53, no. 3, pp. 1442–1451, June 2017.

[8] C. Grano-Romero, M. Garca-Jurez, J. F. Guerrero-
Castellanos, W. F. Guerrero-Snchez, R. C. Ambrosio-
Lzaro, and G. Mino-Aguilar, “Modeling and control of
a fixed-wing uav powered by solar energy: An electric
array reconfiguration approach,” in 2016 International
Conference on Power Electronics, June 2016, pp. 52–57.

[9] X. Gao, Z. Hou, Z. Guo, J. Liu, and X. Chen, “Energy
management strategy for solar-powered high-altitude
long-endurance aircraft,” Energy Conversion and Man-
agement, vol. 70, no. Supplement C, pp. 20 – 30, 2013.

[10] S. Hosseini, R. Dai, and M. Mesbahi, “Optimal path
planning and power allocation for a long endurance solar-
powered uav,” in 2013 American Control Conference,
Jun. 2013, pp. 2588–2593.

[11] B. B. Lee, P. Park, C. Kim, S. Yang, and S. Ahn, “Power
managements of a hybrid electric propulsion system for
uavs,” Journal of Mechanical Science and Technology,
vol. 26, no. 8, pp. 2291–2299, Aug 2012.

[12] J. Ostler and W. Bowman, “Flight testing of small,
electric powered unmanned aerial vehicles,” ser. U.S. Air
Force T&E Days Conferences. American Institute of
Aeronautics and Astronautics, Dec 2005, 0.

[13] D. Karabetsky, “Solar rechargeable airplane: Power sys-
tem optimization,” in 2016 4th International Conference
on Methods and Systems of Navigation and Motion
Control (MSNMC), Oct 2016, pp. 218–220.

[14] H. B. Park, J. S. Lee, and K. H. Yu, “Flight evaluation
of solar powered unmanned flying vehicle using ground
testbed,” in 2015 International Conference on Control,
Automation and Systems, Oct 2015, pp. 871–874.

[15] P. Lindahl, E. Moog, and S. R. Shaw, “Simulation,
design, and validation of an uav sofc propulsion system,”
IEEE Transactions on Aerospace and Electronic Systems,
vol. 48, no. 3, pp. 2582–2593, July 2012.

[16] J. B. Bradt and M. S. Selig, “Propeller performance data
at low reynolds numbers,” in AIAA Aerospace Sciences
Meeting, Orlando, Florida, Jan. 2011.

[17] J. K. Shiau, D. M. Ma, C. W. Chiu, and J. R. Shie, “Op-
timal sizing and cruise speed determination for a solar-
powered airplane,” AIAA Journal of Aircraft, vol. 47,
no. 2, pp. 622–629, Mar 2010.

[18] W. Khan and M. Nahon, “Modeling dynamics of agile
fixed-wing uavs for real-time applications,” in 2016 In-
ternational Conference on Unmanned Aircraft Systems
(ICUAS), Jun. 2016, pp. 1303–1312.

[19] E. N. Johnson and S. Mishra, “Flight simulation for
the development of an experimental uav,” AIAA Paper
2002-4975, AIAA Modeling and Simulation Technolo-
gies Conference, Monterey, California, Aug. 2002.

[20] FlightGear Flight Simulator, “FlightGear,”
http://www.flightgear.org, Accessed Oct. 2017.

[21] O. D. Dantsker, M. Theile, and M. Caccamo, “A high-
fidelity, low-order propulsion power model for fixed-
wing electric unmanned aircraft,” AIAA/IEEE Electric
Aircraft Technologies Symposium, Jul. 2018.

[22] O. D. Dantsker, G. K. Ananda, and M. S. Selig, “GA-
USTAR Phase 1: Development and Flight Testing of the
Baseline Upset and Stall Research Aircraft,” AIAA Paper
2017-4078, AIAA Applied Aerodynamics Conference,
Denver, Colorado, Jun. 2017.

[23] Al Volo LLC, “Al Volo: Flight Systems,” http://
www.alvolo.us, Accessed Mar. 2018.

[24] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-source
robot operating system,” in 2009 ICRA workshop on open
source software, Kobe, Japan, vol. 3, no. 2, p. 5.

[25] Open Source Robotics Foundation, “Robot Operating
System,” http://www.ros.org, Accessed Jan. 2018.

[26] R. Mancuso, O. D. Dantsker, M. Caccamo, and M. S.
Selig, “A low-power architecture for high frequency sen-
sor acquisition in many-DOF UAVs,” in Cyber-Physical
Systems (ICCPS), 2014 ACM/IEEE International Confer-
ence on, Apr. 2014, pp. 103–114.

[27] O. D. Dantsker, R. Mancuso, M. S. Selig, and M. Cac-
camo, “High-frequency sensor data acquisition system
(sdac) for flight control and aerodynamic data collection
research on small to mid-sized uavs,” in AIAA Applied
Aerodynamics Conference, Atlanta, Georgia, June 2014.

[28] O. D. Dantsker, A. V. Loius, R. Mancuso, M. Caccamo,
and M. S. Selig, “Sdac-uas: A sensor data acquisition
unmanned aerial system for flight control and aero-
dynamic data collection,” in AIAA Infotech@Aerospace
Conference, Kissimee, Florida, Jan 2015.

[29] Hobbico, Inc., “Great planes avis-

tar elite .46 advanced trainer rtf,”
http://www.greatplanes.com/airplanes/gpma1605.html,
Accessed Oct. 2013.

[30] N. Hovakimyan and C. Cao, L1 adaptive control theory:
guaranteed robustness with fast adaptation. SIAM-
Society for Industrial and Applied Mathematics, 2010,
vol. 21.

