

1 **Quorum sensing controls *Vibrio cholerae* multicellular**
2 **aggregate formation**

3

4 Matthew Jemielita^a, Ned S. Wingreen^a, and Bonnie L. Bassler^{a,b,1}

5 ^a Department of Molecular Biology, Princeton University, Princeton, NJ 08544

6 ^b Howard Hughes Medical Institute, Chevy Chase, MD 20815

7 ¹ To whom correspondence should be addressed. Email: bbassler@princeton.edu.

8

9

10

11

12

13

14

15

16

17

18

19

20 **ABSTRACT**

21 Bacteria communicate and collectively regulate gene expression using a process called quorum
22 sensing (QS). QS relies on group-wide responses to signal molecules called autoinducers. Here, we show
23 that QS activates a new program of multicellularity in *Vibrio cholerae*. This program, which we term
24 aggregation, is distinct from the canonical surface-biofilm formation program, which QS represses.
25 Aggregation is induced by autoinducers, occurs rapidly in cell suspensions, and does not require cell-
26 division, features strikingly dissimilar from those characteristic of *V. cholerae* biofilm formation.
27 Extracellular DNA limits aggregate size, but is not sufficient to drive aggregation. A mutagenesis screen
28 identifies genes required for aggregate formation, revealing proteins involved in *V. cholerae* intestinal
29 colonization, stress response, and a protein that distinguishes the current *V. cholerae* pandemic strain
30 from earlier pandemic strains. We suggest that QS-controlled aggregate formation is important for *V.*
31 *cholerae* to successfully transit between the marine niche and the human host.

32

33

34

35

36

37

38

39

40

41 **INTRODUCTION**

42 Quorum sensing (QS) is a cell-cell communication process that bacteria use to orchestrate
43 collective behaviors. QS relies on the production, release, and group-level detection of molecules called
44 autoinducers (reviewed in Papenfort and Bassler, 2016). At low cell density, when autoinducer
45 concentration is low, QS promotes gene expression programs that benefit individual bacteria. At high cell
46 density, when autoinducer concentration exceeds the threshold required for detection, QS drives gene
47 expression programs beneficial to the community.

48 *Vibrio cholerae* is the etiological agent of the disease cholera. In *V. cholerae*, QS controls virulence
49 factor production and biofilm formation (Hammer and Bassler, 2003; Miller et al., 2002; Papenfort and
50 Bassler, 2016; Zhu and Mekalanos, 2003; Zhu et al., 2002) (Figure 1). *V. cholerae* relies on two major
51 autoinducers: CAI-1, an intra-genus-specific autoinducer (Higgins et al., 2007; Kelly et al., 2009; Miller et
52 al., 2002), and AI-2, an autoinducer broadly conserved across bacteria and used for inter-species
53 communication (Chen et al., 2002; Schauder et al., 2001). The CAI-1 and AI-2 receptors are CqsS and
54 LuxPQ, respectively (Bassler et al., 1994; Miller et al., 2002; Neiditch et al., 2005). In the absence of
55 autoinducer, CqsS and LuxPQ act as kinases funneling phosphate through an integrator protein, LuxU, to
56 LuxO, the shared response regulator protein (Freeman and Bassler, 1999). Phosphorylated LuxO activates
57 transcription of genes encoding four small RNAs: Qrr1-4 (Lenz et al., 2004). Qrr1-4 activate translation of
58 AphA and repress translation of HapR, respectively the master low-cell-density (LCD) and master high-
59 cell-density (HCD) QS regulators (Lenz et al., 2004; Rutherford et al., 2011). Thus, at LCD, AphA is made
60 and HapR is not, and *V. cholerae* cells act as individuals (Figure 1A). When bound to their cognate
61 autoinducers, which occurs at HCD, CqsS and LuxPQ switch from acting as kinases to acting as
62 phosphatases, dephosphorylating LuxO, via LuxU. Dephosphorylated LuxO is inactive, so transcription of
63 *qrr1-4* does not occur. In the absence of the Qrr sRNAs, activation of AphA translation ceases and HapR

64 translation is no longer repressed. Thus, HapR is made and AphA is not, and *V. cholerae* cells engage in
65 group behaviors (Figure 1B). Two other QS receptors, CqsR and VpsS, with unknown ligands, also convey
66 information into the QS circuit via LuxU (Jung et al., 2015; Shikuma et al., 2009).

67 In *V. cholerae*, QS controls the formation of surface-bound multicellular communities called
68 biofilms (Hammer and Bassler, 2003; Teschler et al., 2015; Zhu and Mekalanos, 2003). Specifically, AphA
69 promotes and HapR represses the production of four components required for biofilm formation: vibrio
70 polysaccharide (VPS) and three matrix proteins, RbmA, Bap1, and RbmC (Hammer and Bassler, 2003; Yang
71 et al., 2010; Yildiz et al., 2001). The result of this regulatory arrangement is that *V. cholerae* forms biofilms
72 at LCD and disperses from them at HCD (Miller et al., 2002; Singh et al., 2017; Teschler et al., 2015).
73 Extracellular DNA (eDNA) also contributes to *V. cholerae* biofilm formation (Seper et al., 2011). eDNA
74 levels are regulated by the activity of two extracellular nucleases: Xds and Dns, the latter of which is
75 repressed at HCD by HapR (Blokesch and Schoolnik, 2008).

76 The lifecycle of *V. cholerae* requires transitions between the marine environment and the human
77 host (Almagro-Moreno et al., 2015). In both niches, biofilm formation and dispersal appear to occur.
78 Specifically, in the marine environment, *V. cholerae* associates with chitin, a major component of transient
79 nutrient sources such as marine snow (Huq et al., 1983; Pruzzo et al., 2008; Yawata et al., 2014). To
80 successfully adapt to the disappearance of marine snow upon consumption, *V. cholerae* must be able to
81 transition between the surface-associated state and the planktonic state. Infections in humans occur
82 when contaminated water or food containing planktonic and/or aggregates of *V. cholerae* cells is ingested.
83 Early in human infection, *V. cholerae* cells, after passaging through the stomach, transit from the lumen
84 of the small intestine through the mucosal layer to the epithelial surface (Almagro-Moreno et al., 2015).
85 Both motility and chemotaxis are reported to play roles in this process suggesting that cells exist in the
86 planktonic state as they make this transition (Camilli, 2005; Liu et al., 2008). At the epithelial surface, *V.*
87 *cholerae* represses motility, forms surface microcolonies, and activates its virulence program (Almagro-

88 Moreno et al., 2015; Matson et al., 2007; Millet et al., 2014; Watnick et al., 1999). Virulence factors
89 including the toxin-coregulated pilus (TCP) and cholera toxin (CT) are produced at LCD. CT causes the
90 severe diarrhea characteristic of the disease cholera (Matson et al., 2007). Later in infection, at HCD, HapR
91 represses virulence factor production (Miller et al., 2002; Zhu et al., 2002), and HapR, together with RpoS,
92 launches a mucosal escape program (Nielsen et al., 2006). Specifically in the case of QS, HapR activates
93 expression of *hapA*, encoding the HapA mucinase, reported to contribute to the host-escape process
94 (Booth et al., 1983; Silva et al., 2003; Zhu et al., 2002). *V. cholerae* is shed back into the environment either
95 as planktonic cells or as multicellular aggregates (Faruque et al., 2006; Nelson et al., 2007).

96 Elegant work has defined the mechanisms underlying *V. cholerae* biofilm formation on surfaces
97 (Absalon et al., 2011; Berk et al., 2012; Fong et al., 2017, 2010; Watnick et al., 1999; Yan et al., 2016),
98 however, relatively little attention has been paid to whether *V. cholerae* forms communities in the
99 absence of surfaces. To our knowledge, two exceptions are studies of pilus-mediated autoagglutination
100 by either TCP in the Classical biotype of *V. cholerae* or by the DNA-uptake pilus (or, Chitin-regulated pilus,
101 ChiRP) in strain A1552 of the El Tor *V. cholerae* biotype (Adams et al., 2018; Kirn et al., 2000; Taylor et al.,
102 1987). Given that the known lifecycle of *V. cholerae* includes stages in which the bacteria are not surface-
103 associated, we explored whether *V. cholerae* forms communities in the absence of a surface with a focus
104 on the role of QS in the process. We find that *V. cholerae* indeed forms communities in liquid. We call
105 these non-surface-associated *V. cholerae* communities “aggregates” to distinguish them from the familiar
106 *V. cholerae* biofilms which grow on surfaces.

107 Mutant analyses demonstrate that components required for *V. cholerae* surface-associated
108 biofilm formation are not required for aggregate formation. Moreover, aggregates form in the HCD QS-
109 state, require the HCD master regulator HapR, and can be driven by the addition of exogenous QS
110 autoinducers. By contrast, surface-associated biofilm formation occurs in the LCD QS-state, is repressed
111 by HapR, and the HCD QS-state is anti-correlated with surface-biofilm formation (Hammer and Bassler,

112 2003; Singh et al., 2017). We show that aggregation occurs independently of cell growth, again
113 distinguishing this process from surface-associated biofilm formation. We demonstrate that eDNA plays
114 a structural role in aggregate formation, but that eDNA alone is not sufficient to induce aggregation. A
115 genetic screen to identify components required for *V. cholerae* aggregate formation revealed genes
116 including ones involved in stress response to nutrient limitation, phosphate acquisition from eDNA, and,
117 notably, a gene unique to the current pandemic strain of *V. cholerae*. Combined, these results suggest
118 that aggregation may be a strategy employed by *V. cholerae* to survive under starvation conditions, and
119 this program may also contribute to the pandemic potential of the current *V. cholerae* biotype.
120 Investigating *V. cholerae* aggregation may provide insight into how the bacterium successfully transitions
121 between its different niches as well as reveal general mechanisms underlying non-surface-dependent
122 multicellular community formation.

123 **RESULTS**

124 ***V. cholerae* forms multicellular aggregates in the HCD QS-state**

125 As part of its natural lifecycle, *V. cholerae* must repeatedly transition between surfaces and the
126 liquid phase. We wondered if, analogous to what occurs on surfaces, *V. cholerae* forms multicellular
127 communities in liquid and, if so, what role QS plays, if any. To explore these possibilities, cultures of wild-
128 type (WT), low-cell-density QS-locked (LCD-locked), and high-cell-density QS-locked (HCD-locked) *V.*
129 *cholerae* strains were grown overnight under conditions of gentle shear in lysogeny broth (LB)
130 supplemented with 10 mM of Ca²⁺ to approximate the oceanic calcium concentration (Kierek and Watnick,
131 2003a). We generated strains “locked” in the LCD and HCD QS modes by introducing single amino acid
132 substitutions in LuxO at residue 61, the site of phosphorylation (Freeman and Bassler, 1999; Hurley and
133 Bassler, 2017). LuxO D61E is a phospho-mimetic and LuxO D61A cannot be phosphorylated. Thus, *V.*
134 *cholerae* cells carrying *luxO D61E* and *luxO D61A* are locked in the LCD and HCD QS-states, respectively.

135 For imaging purposes, we introduced constitutively expressed fluorescent reporter constructs onto the
136 chromosomes of these strains and the strains described below. The fluorescent proteins are: mKO,
137 mKate2, and mTFP1.

138 The LCD-locked strain formed clusters in liquid at 22 h (Figure 2A). We anticipated this result
139 because LCD-locked *V. cholerae* cells are in a constitutive biofilm-forming state (Hammer and Bassler,
140 2003). However, to our surprise, the HCD-locked strain also formed multicellular communities in liquid.
141 Moreover, these aggregates were larger and morphologically distinct from the LCD-locked clusters (Figure
142 2B). The WT strain produced aggregates morphologically similar to those formed by the HCD-locked strain
143 (Figure 2C). Our finding that multicellular communities are produced by WT *V. cholerae* at HCD and by the
144 HCD-locked QS strain is unexpected because on surfaces, HCD-locked *V. cholerae* cells do not form
145 biofilms (Hammer and Bassler, 2003). For the remainder of this text, we refer to the communities that
146 form in the LCD QS-state in liquid as clusters, the large multicellular communities that form in the HCD
147 QS-state in liquid as aggregates, and communities that form on surfaces as surface-biofilms. The terms
148 aggregates and biofilms are both used, sometimes interchangeably, in the literature. Other terms are used
149 to describe more specific examples of bacterial aggregation (e.g., flocculation, co-aggregation, auto-
150 aggregation, and autoagglutination) (Bieber et al., 1998; Chiang et al., 1995; Flemming and Wingender,
151 2010; Rickard et al., 2003). We emphasize that we are using the term “aggregates” simply to distinguish
152 this program from the *V. cholerae* surface-biofilm program.

153 **HCD-QS aggregates are *VpsL*-independent**

154 Essential for formation of *V. cholerae* surface-biofilms is vibrio polysaccharide (VPS), a component
155 of the extracellular matrix (Fong et al., 2010; Teschler et al., 2015). We assessed whether VPS is also
156 required for the formation of aggregates by deleting *vpsL*, a gene required for VPS production (Fong et
157 al., 2010). The $\Delta vpsL$ LCD-locked *V. cholerae* strain failed to form clusters (Figure 2D), demonstrating that

158 VPS, in addition to driving the formation of surface-biofilms, also contributes to cluster formation in liquid.
159 However, the $\Delta vpsL$ HCD-locked strain and the $\Delta vpsL$ WT strain formed aggregates similar to those made
160 by the two parent strains possessing *vpsL* (Figure 2D). Thus, VPS is dispensable for aggregate formation in
161 liquid. In the remainder of the experiments reported here, unless explicitly stated otherwise, all strains
162 harbor the $\Delta vpsL$ mutation in order to distinguish aggregate formation from the *VpsL*-dependent surface-
163 biofilm program. Aggregate formation does not require initial growth on a surface nor is it a consequence
164 of our sampling protocol (Figure 2-figure supplement 1), and aggregates are finite sized (Figure 2-figure
165 supplement 2, Supplemental Movie 1).

166 VPS-independent biofilms have been reported previously in *V. cholerae* O139 strain M010.
167 Specifically, in medium supplemented with oceanic Ca^{2+} levels, genes related to O-antigen synthesis (*wbfF*
168 and *wbfR*) were found to be involved in development of VPS-independent surface-biofilms (Kierek and
169 Watnick, 2003b, 2003a). The strain we use here, *V. cholerae* El Tor O1 C6706str2, belongs to a different
170 serogroup than *V. cholerae* O139 strain M010 (Blokesch and Schoolnik, 2007; Thelin and Taylor, 1996).
171 The growth conditions that we use for aggregate formation include oceanic Ca^{2+} levels, so we examined
172 whether *wbfF* and *wbfR* played any role in the process we are studying. We deleted the homologs of *wbfF*
173 (*vpsN*, *vc0936* 29% amino acid similarity) and *wbfR* (*asnB*, *vc0991*, 26% amino acid similarity). Figure 2-
174 figure supplement 3 shows that both the $\Delta vpsL$ $\Delta vpsN$ HCD-locked and the $\Delta vpsL$ $\Delta asnB$ HCD-locked
175 mutants form aggregates as effectively as the $\Delta vpsL$ HCD-locked strain. Thus, *vpsN* and *asnB* do not
176 contribute to the aggregation process we report here. We also note that *V. cholerae* O139 strain M010 is
177 a natural variant that is locked in a LCD QS-state because of a mutation in *hapR* (Joelsson et al., 2006).
178 Again, this feature is consistent with our current finding that it is the HCD-locked strain, not the LCD-
179 locked strain, that forms the aggregates we are investigating. We also considered the possibility that Ca^{2+}
180 ions could play a signaling role in aggregate formation. To investigate this notion, we deleted *carR*, which
181 encodes the Ca^{2+} responsive two-component response regulator, CarR (Bilecen and Yildiz, 2009). Removal

182 of *carR* had no effect on aggregate formation in the $\Delta vpsL$ HCD-locked strain (Figure 2-figure supplement
183 3). Lastly, the type IV TCP pilus and the chitin-regulated ChiRP pilus, respectively, contribute to
184 autoagglutination in liquid in Classical *V. cholerae* strains and to autoaggregation in El Tor *V. cholerae*
185 strain A1552 (Adams et al., 2018; Kirn et al., 2000). There is one additional known type IV pilus in *V.*
186 *cholerae*, the mannose-sensitive haemagglutinin (MSHA) pilus (Watnick et al., 1999), although no role
187 associated with autoagglutination has been reported. Nonetheless, to be thorough, we deleted the major
188 pilin subunits for all three pili. Specifically, we deleted *tcpA*, *pilA*, and *mshA* for TCP, ChiRP, and MSHA,
189 respectively, all in the $\Delta vpsL$ HCD-locked strain. No loss of aggregation occurred in any case (Figure 2-
190 figure supplement 4). Thus, the aggregate formation process that we are studying here does not require
191 these major components identified previously to control formation of multicellular communities of *V.*
192 *cholerae* either on surfaces or in liquid.

193 **Aggregation dynamics are rapid**

194 We explored the kinetics of aggregate formation to compare the process to cell-division-driven
195 surface-biofilm formation (Yan et al., 2016). Starting 16 h after inoculation, we sampled and imaged liquid
196 suspensions containing the *V. cholerae* strains used in Figure 2D. We selected the 16 h time point to begin
197 the analysis because prior to that time point, all strains under study exist largely as planktonic cells. We
198 sampled at 3 h intervals for 9 additional hours. The $\Delta vpsL$ LCD-locked strain showed no aggregation for
199 the entire 25 h of analysis (Figure 2E-H,Q). At 16 h, both the $\Delta vpsL$ WT and the $\Delta vpsL$ HCD-locked strains
200 consisted of planktonic single cells and some small clusters. However, there were no aggregates (Figure
201 2I,M,Q,R). Aggregation occurred by 19 h in the $\Delta vpsL$ WT strain and there was up to a 3 h delay in
202 aggregation for the $\Delta vpsL$ HCD-locked strain. In both cases, once initiated, aggregation occurred rapidly
203 before reaching a steady state (Figure 2J-L,N-P). Indeed, quantitation shows that, following the rapid onset
204 of aggregation (at T = 19 h for the $\Delta vpsL$ WT strain and at T = 22 h for the $\Delta vpsL$ HCD-locked strain), only
205 modest changes occur in volume fraction occupied by aggregates (Figure 2Q) and in aggregate size

206 distribution (Figure 2R) from T = 22-25 h. As a control, we show that WT cells exhibit similar aggregation
207 kinetics as the $\Delta vpsL$ WT strain (Figure 2-figure supplement 5).

208 To more precisely define the timing of aggregate development, we imaged the $\Delta vpsL$ HCD-locked
209 strain every 30 min during the key 19 to 22 h window (Figure 2-figure supplement 6). We found that onset
210 to completion of aggregation occurs within a 30 min period. Importantly, the rapidity of aggregate
211 formation precludes a process in which cell division drives aggregate growth. Rather, aggregation must
212 be driven by a change that causes existing cells to adhere and form aggregates. In support of this view,
213 growth of a mixture of equal numbers of the $\Delta vpsL$ HCD-locked strain constitutively expressing either
214 *mKate2* or *mTFP1* resulted in aggregates containing both red- and teal-colored cells (Figure 2-figure
215 supplement 7). Again, in line with our argument that this is a new community formation process, the non-
216 clonal nature of aggregate formation is distinct from the well-established, strictly-clonal *V. cholerae*
217 surface-biofilm formation program (Nadell et al., 2015).

218 **Exogenous supplementation of QS autoinducers induces aggregation**

219 Our finding that aggregation occurs in the $\Delta vpsL$ HCD-locked strain but not in the $\Delta vpsL$ LCD-
220 locked strain implies that the process is QS-controlled. Thus, we predicted that the accumulation of QS
221 autoinducers, which occurs as *V. cholerae* naturally transitions from the LCD to the HCD QS-state, should
222 induce aggregation. To test this prediction, we required strains that only detect one specific autoinducer
223 and that cannot produce that autoinducer. In such strains, the autoinducer can be supplied exogenously
224 and the response quantified. Based on this logic, we constructed two different strains (see Figure 1). One
225 strain lacks the CAI-1 synthase, CqsA, and the AI-2 receptor, LuxQ, and thus responds exclusively to CAI-
226 1. The second strain lacks the AI-2 synthase, LuxS, and the CAI-1 receptor, CqsS, and thus responds
227 exclusively to AI-2. As noted in the introduction, *V. cholerae* has two other QS receptors, VpsS and CqsR,
228 which funnel information into the QS circuit, and which detect unknown autoinducers (Jung et al., 2015);

229 Shikuma et al., 2009). To ensure that none of the effects we measured are a consequence of the two
230 unknown ligands, we deleted the *cqsR* and *vpsS* genes encoding their receptors. Our CAI-1-responsive
231 strain is $\Delta cqsA \Delta luxQ \Delta vpsS \Delta cqsR \Delta vpsL$. Our AI-2-responsive strain is $\Delta luxS \Delta cqsS \Delta vpsS \Delta cqsR \Delta vpsL$.

232 At T = 0 h, we added CAI-1 (5 μ M) to the CAI-1-responsive strain and AI-2 (1 μ M together with 100
233 μ M boric acid) to the AI-2-responsive strain. These are saturating concentrations for each autoinducer.
234 We assessed aggregation formation at 22 h. Administration of either CAI-1 or AI-2 to the respective
235 autoinducer-responsive strain drove aggregation, whereas no aggregation occurred in samples to which
236 a solvent control was supplied (Figure 3A). Additionally, autoinducer driven aggregation should require
237 the cognate receptor to be present to transduce the QS information into the cell. Indeed, the autoinducers
238 had no effect on aggregation if the strain to which CAI-1 or AI-2 was added lacked CqsS or LuxQ,
239 respectively (Figure 3-figure supplement 1). Lastly, the presence or absence of *vpsL*, *vpsS*, and *cqsR* did
240 not influence responsiveness to exogenously supplied autoinducers (Figure 3-figure supplement 2).

241 To define the temporal response window for autoinducers to trigger aggregation, we used the
242 above CAI-1-responsive strain as our test case. We focused on the role of CAI-1 because it is the stronger
243 of the two *V. cholerae* autoinducers (Miller et al., 2002). Pilot experiments showed that CAI-1
244 supplementation at or after 16 h could not promote aggregation. Thus, we supplemented cultures with 5
245 μ M CAI-1 at one-hour intervals from 3-8 h. At T = 22 h, we measured aggregation (Figure 3B, black bars).
246 CAI-1 addition between 3-6 h promoted aggregation, whereas from 7 h onward, CAI-1 had no effect on
247 aggregation. Addition of CAI-1 at late times did not simply delay the onset of aggregation: at T = 46 h,
248 cultures to which CAI-1 had been added at 7-8 h still showed no aggregation (Figure 3-figure supplement
249 3). Importantly, cells in our analyses remain capable of detecting and controlling established QS-regulated
250 genes in response to late-time CAI-1 supplementation. Specifically, the CAI-1-responsive strain harboring
251 the QS-controlled luciferase genes produced maximal light at T = 22 h, independent of the time point (0

252 h, 3-8 h) at which CAI-1 was supplied (Figure 3B, gray bars). Combined, these data show that extracellular
253 autoinducers trigger aggregation in *V. cholerae*, albeit only within a specific temporal window, while
254 canonical autoinducer-triggered QS-behaviors are not subject to such temporal restriction. Under our
255 growth conditions, T = 7 h, after which the aggregation phenotype becomes impervious to autoinducer
256 supplementation, roughly corresponds to when the cells enter stationary phase. We consider stationary-
257 phase-specific factors that could play roles in the aggregation in the Discussion.

258 **Aggregation is HapR dependent**

259 The architecture of the *V. cholerae* QS circuit predicts three possible mechanisms by which QS
260 could promote aggregation at HCD: AphA could repress aggregation at LCD, HapR could promote
261 aggregation at HCD, or the Qrr sRNAs could control aggregation independently of AphA and HapR (Figure
262 1). To define the QS path to aggregate formation, we constructed strains lacking *hapR* and/or *aphA* in
263 both the $\Delta vpsL$ LCD-locked and $\Delta vpsL$ HCD-locked strains and measured aggregation at 22 h.

264 There was no difference in aggregation between the $\Delta vpsL$ HCD-locked strain and the $\Delta vpsL$
265 $\Delta aphA$ HCD-locked strain (Figure 3C,D,K). Thus, AphA does not control aggregate formation, eliminating
266 the first possibility. By contrast, deletion of *hapR* in the $\Delta vpsL$ HCD-locked strain led to a complete loss of
267 aggregation (Figure 3E,K), with levels of aggregation comparable to a $\Delta vpsL$ LCD-locked strain (Figure 3G,
268 K). Thus, HapR is required for aggregation, showing that the second possibility is correct. Indeed, epistasis
269 analysis demonstrates that the phenotype of the $\Delta vpsL \Delta aphA \Delta hapR$ HCD-locked mutant strain was
270 identical to that of the $\Delta vpsL \Delta hapR$ HCD-locked mutant (Figure 3E,F,K).

271 We performed the analogous experiments in the $\Delta vpsL$ LCD-locked set of strains. When *hapR* was
272 absent, no aggregation occurred (Figure 3I,K). We note that deletion of *aphA* in the $\Delta vpsL$ LCD-locked
273 strain led to a modest increase in aggregation (Figure 3H), but one that remains below the threshold for
274 detection by our segmentation protocol (Figure 3K). AphA represses transcription of *hapR* (Rutherford et

275 al., 2011). Thus, the $\Delta vpsL \Delta apha$ LCD-locked strain has elevated HapR levels, and our genetic analysis
276 above shows that HapR promotes aggregation. AphA regulation of *hapR* could account for the minor
277 increase in aggregation evident in Figure 3H. Aggregation does not occur in the $\Delta vpsL \Delta apha \Delta hapR$ LCD-
278 locked strain, (Figure 3J,K), which is consistent with any AphA regulation of aggregation occurring through
279 HapR. To confirm the role of HapR in aggregation, we complemented the $\Delta vpsL \Delta hapR$ HCD-locked strain
280 with a chromosomal copy of *hapR* that we introduced at the *lacZ* locus. At T = 22 h the $\Delta vpsL \Delta hapR$
281 *lacZ:P_{hapR}-hapR* HCD-locked strain exhibited a comparable level of aggregation to the $\Delta vpsL$ HCD-locked
282 strain (Figure 3-figure supplement 4). We conclude that HapR is the main QS activator of aggregation.
283 Above, we mentioned that a third regulatory possibility was that the Qrr sRNAs control aggregation
284 independently of AphA and HapR. Our experiments here show that HapR is essential for aggregation,
285 eliminating this final option.

286 **Extracellular DNA contributes to aggregation**

287 To determine structural components of aggregates, we first took a candidate approach using the
288 logic that genes encoding such components must be regulated by HapR at HCD. A promising candidate is
289 *Dns*, one of two *V. cholerae* extracellular nucleases. HapR represses *dns* at HCD (Blokesch and Schoolnik,
290 2008). The other extracellular nuclease is *Xds*, is not known to be HapR-controlled. Both nucleases
291 contribute to the surface-biofilm program (Seper et al., 2011). We reasoned that at HCD, HapR repression
292 of *dns*, coupled with low or no *Xds* activity, would promote eDNA production potentially contributing to
293 aggregation.

294 To explore the role of eDNA in aggregate formation, we constructed mutants lacking both *xds* and
295 *dns* in $\Delta vpsL$ LCD-locked and $\Delta vpsL$ HCD-locked strains. We analyzed these two strains, along with the
296 parent $\Delta vpsL$ LCD-locked and $\Delta vpsL$ HCD-locked strains over time. At 16 and 19 h, as discussed above, the
297 $\Delta vpsL$ HCD-locked strain consisted primarily of planktonic cells and a small number of clusters (Figure 4A).

298 All other strains consisted of exclusively planktonic cells (Figure 4A). At 22 h, both the $\Delta vpsL$ HCD-locked
299 and the $\Delta vpsL \Delta xds \Delta dns$ HCD-locked strains formed aggregates (Figure 4A,B,D), however the average
300 aggregate size was larger in the $\Delta vpsL \Delta xds \Delta dns$ HCD-locked strain than in the $\Delta vpsL$ HCD-locked strain
301 (Figure 4F). Because the $\Delta vpsL \Delta xds \Delta dns$ HCD-locked strain formed aggregates that were larger than the
302 imaging field of view used for the above experiments, in panel 4F, we estimated the aggregate size of
303 these strains by computing the cross-sectional area of all aggregates within an entire microtiter dish. The
304 $\Delta vpsL$ LCD-locked and $\Delta vpsL \Delta xds \Delta dns$ LCD-locked strains exhibited no aggregation (Figure 4A,C,E).
305 Individual deletion of *xds* or *dns* in the $\Delta vpsL$ HCD-locked strain also resulted in aggregation (Figure 4-
306 figure supplement 1A), with *Dns* contributing more than *Xds* to overall aggregate size (Figure 4-figure
307 supplement 1B). These relative effects parallel those reported for *Xds* and *Dns* in surface-biofilm
308 formation (Seper et al., 2011). Unlike for the $\Delta vpsL$ HCD-locked strain, aggregates of the $\Delta vpsL \Delta xds \Delta dns$
309 HCD-locked strain continued to enlarge, precluding an accurate assessment of aggregate size after T = 22
310 h. To verify the role of extracellular nucleases, we complemented the $\Delta vpsL \Delta xds \Delta dns$ HCD-locked strain
311 by introducing a chromosomal copy of *dns* at the *lacZ* locus to restore the stronger of the two extracellular
312 nucleases. The $\Delta vpsL \Delta xds \Delta dns \text{ lacZ:}P_{dns}\text{-}dns$ HCD-locked strain produced smaller aggregates than the
313 $\Delta vpsL \Delta xds \Delta dns$ HCD-locked strain (Figure 4-figure supplement 2). We conclude that extracellular DNases
314 function to limit overall aggregate size but they do not control aggregation timing.

315 Curiously, no aggregation occurred in the $\Delta vpsL \Delta xds \Delta dns$ LCD-locked strain. We expected eDNA
316 levels to be elevated in this strain because it lacks extracellular nucleases responsible for eDNA
317 degradation, and, based on the above results with the $\Delta vpsL \Delta xds \Delta dns$ HCD-locked strain, the presence
318 of eDNA influences aggregation. We measured the eDNA content in all four strains at 22 h, and indeed,
319 the concentrations of eDNA in the $\Delta vpsL \Delta xds \Delta dns$ LCD-locked and $\Delta vpsL \Delta xds \Delta dns$ HCD-locked strains
320 are equivalent and, moreover, elevated ~4-fold and 10-fold compared to the $\Delta vpsL$ HCD-locked and $\Delta vpsL$

321 LCD-locked strains, respectively (Figure 4G). These data show that, by itself, accumulation of eDNA is not
322 sufficient to drive aggregation.

323 We confirmed that eDNA is present in aggregates by imaging the $\Delta vpsL$ HCD-locked, and $\Delta vpsL$
324 $\Delta xds \Delta dns$ HCD-locked strains grown to 22 h followed by addition of the cell-impermeant nucleic acid stain
325 TOTO-1. In the $\Delta vpsL$ HCD-locked strain, patches of eDNA were present in aggregates (Figure 4H, arrow;
326 Supplementary Movie 2) and a stronger eDNA signal could be visualized in the $\Delta vpsL \Delta xds \Delta dns$ HCD-
327 locked strain (Figure 4I, arrow; Supplementary Movie 3). In both strains, we also identified dead cells
328 (bright puncta; Figure 4H,I; Supplementary Movies 2-3). To further test the contribution of eDNA, we
329 supplied 100 Kunitz units/mL DNase I to strains at T = 0 h. Because the quantity of DNase I required for
330 experiments such as those in Figure 4A, which are carried out in 2 mL volumes, is prohibitive, we
331 modified our protocol for this analysis to enable use of small volumes. DNase I treatment reduced
332 aggregation in the $\Delta vpsL \Delta xds \Delta dns$ HCD-locked strain but had little effect on the $\Delta vpsL$ HCD-locked strain
333 (Figure 4-figure supplement 3). The timing of aggregation was altered in microtiter-dish-grown cells,
334 hence the difference in the assayed time point. This result supports the conclusion from above that eDNA
335 contributes to, but is not sufficient for aggregate formation. Combined, the data in Figure 4 show that
336 eDNA levels are modulated through the activity of two extracellular nucleases, and eDNA, in turn, plays a
337 role in *V. cholerae* aggregate formation in the HCD QS-mode. However, the lack of aggregate formation
338 in the $\Delta vpsL \Delta xds \Delta dns$ LCD-locked strain, in the face of elevated eDNA levels, coupled with the finding
339 that complete loss of aggregation does not occur upon complementation with *dns* or exogenous DNase I
340 supplementation argues that there must be additional components required for *V. cholerae* aggregate
341 formation.

342 **A genetic screen to identify components required for *V. cholerae* aggregation**

343 We developed a screen to uncover genes involved in *V. cholerae* aggregate formation by
344 exploiting a readily assayable plate-based phenotype that correlated with aggregation in liquid. On agar
345 plates, $\Delta vpsL$ HCD-locked and $\Delta vpsL$ LCD-locked colonies formed opaque and translucent colonies,
346 respectively (Figure 5A,B). Variability in *V. cholerae* colony opacity has been previously reported
347 (Finkelstein et al., 1992, 1997; Lankford, 1960), but to our knowledge, has not been linked to aggregation.
348 Analogous colony phenotypes are well known in other species of *vibrio*, including *Vibrio parahaemolyticus*
349 and *Vibrio alginolyticus*, and in those organisms, opacity/translucence are QS-regulated and related to
350 capsule synthesis (Chang et al., 2009; Enos-Berlage and McCarter, 2000; Enos-Berlage et al., 2005).
351 Germane to our study is that the $\Delta vpsL$ HCD-locked *V. cholerae* strain, which is proficient for aggregation,
352 forms opaque colonies, while deletion of *hapR* results in translucent colonies, which correlates with the
353 loss of the ability to aggregate (Figure 5C).

354 We reasoned that mutagenesis of the $\Delta vpsL$ HCD-locked *V. cholerae* strain followed by screening
355 for translucent colonies could reveal genes involved in aggregation. We used Tn5 to randomly mutagenize
356 the $\Delta vpsL$ HCD-locked strain as well as a $\Delta vpsL$ *lacZ:P_{hapR}-hapR* HCD-locked strain. We used the *hapR*
357 merodiploid to avoid identifying insertions in *hapR*, which we knew would cause a translucent phenotype.
358 Our rationale for also screening in the strain with only a single copy of *hapR* was because, although we
359 were attracted to the idea of eliminating *hapR* mutants, we were concerned that, since QS is involved in
360 aggregate formation, overproduction of HapR could mask potential phenotypes. We screened ~25,000
361 mutants in each case. Both screens were successful and yielded overlapping sets of genes. In the strain
362 containing only a single copy of *hapR*, we used PCR to identify and eliminate from analysis mutants with
363 transposon insertions in *hapR*. Following this procedure, we identified a total of 49 colonies exhibiting
364 translucent phenotypes (from both screens). We successfully identified the transposon insertion locations
365 in 45 of the mutants revealing 18 unique loci. We carried out a secondary screen to determine if disruption
366 of the candidate genes, beyond conferring the translucent phenotype, altered aggregation in liquid.

367 Mutations in 12 of the 18 identified loci led to strains displaying greatly diminished aggregation (Table 1
368 reports all of the genes and from which screen they were obtained). We validated these observations by
369 engineering deletions of the candidate genes in the $\Delta vpsL$ HCD-locked strain and assaying for defects in
370 aggregation at 22 h, a time point by which the $\Delta vpsL$ HCD-locked parent strain consistently formed
371 aggregates. We confirmed that aggregation is diminished or eliminated in all of the mutant strains (Figure
372 5D). We identified multiple insertions in the operons encoding components of the TCA cycle – the
373 succinate and 2-oxoglutarate dehydrogenase complexes (*vc2091-vc2087; sdhC, sdhD, sdhA, sdhB, and*
374 *sucA*) and the flagellar basal body (*vc2200-vc2198; flgBCD*). We deleted one representative gene (*sdhC*
375 and *flgC*), to confirm the phenotype. Additionally, two of the insertions identified in our screen are located
376 in intergenic regions between divergently transcribed operons (*vca0125/vca0127* and *vca0175/vca0176*).
377 Our attempts to delete the *vca0125/vca0127* region were unsuccessful so we could not verify the role in
378 aggregation. In the case of the *vca0175/vca0176* region, we individually deleted *vca0175* and *vca0176*,
379 and determined that *vca0175*, which has no known function, is the gene responsible for the aggregation
380 defect. While investigating the mechanisms by which the genes identified in our screen regulate
381 aggregation is beyond the scope of this work, we lay out possible roles below.

382 **DISCUSSION**

383 Here, we demonstrate the existence of an aggregation process in *V. cholerae* that is independent
384 of the known surface-biofilm program. Aggregation occurs in liquid and is rapid, suggesting that cell
385 division is not required. Aggregate formation occurs when *V. cholerae* cells are in a HCD QS-state, a QS-
386 regulation pattern opposite to that for surface-biofilm formation which occurs when cells are in a LCD QS-
387 state (Hammer and Bassler, 2003; Zhu and Mekalanos, 2003). Aggregate formation is promoted by
388 exogenous autoinducers, although only during a limited temporal window. HapR, the master regulator of
389 HCD QS-behavior, is required for aggregate formation. eDNA is present in aggregates, contributes to

390 overall aggregate size, and two extracellular nucleases, Xds and Dns are involved. eDNA is not, however,
391 sufficient to drive aggregate formation. Genes involved in stress response, phosphate uptake from eDNA,
392 genes of unknown function including a gene, *vc0175*, that distinguishes the current seventh pandemic El
393 Tor biotype from the previous Classical biotype are all required for aggregate formation. The identification
394 of *cpdB*, which is involved in phosphate acquisition from eDNA (McDonough EmilyKate et al., 2016), and
395 our demonstration of Xds- and Dns-driven regulation of eDNA production in aggregates, suggests that
396 eDNA acquisition from the environment may be important for aggregate-associated cells.

397 There is a growing recognition that bacteria form multicellular aggregates in liquid, a state that,
398 relative to individual planktonic cells, can confer fitness benefits including increased antibiotic resistance
399 and improved surface-colonization relative to planktonic cells (Kragh et al., 2016, 2018; Schleheck et al.,
400 2009). Bacterial aggregation can be modulated by factors including QS-state, eDNA, ions, and cationic
401 polymers (Chandler et al., 2009; Das et al., 2014; Laganenka et al., 2016; Perez-Soto et al., 2018).
402 Combined, these findings begin to argue that bacteria exhibit multicellular behaviors in the liquid-phase
403 that are not captured by studies of surface-bound bacterial communities.

404 We propose a model for how aggregate formation could be instrumental in the two major *V.*
405 *cholerae* habitats -- the human host and the marine environment -- as well as during transitions between
406 them. We consider each niche in turn. First, *V. cholerae* aggregation during infection: formation of
407 multicellular communities occurs during human infection (Teschler et al., 2015). Filtration that removes
408 aggregates and copepod-associated bacteria, but not planktonic cells, reduced the efficacy of *V. cholerae*
409 human infections (Colwell et al., 2003; Huq et al., 2010). Deletion of *vps* genes, which eliminates surface-
410 biofilm formation *in vitro*, also reduced colonization in a mouse model of cholera disease (Fong et al.,
411 2010). *V. cholerae* exists as planktonic cells and in debris-attached aggregates in stool samples obtained
412 from human subjects, (Faruque et al., 2006; Nelson et al., 2007). These observations suggest that the
413 ability of *V. cholerae* to form multicellular communities (in liquid and on surfaces) is part of its infection

414 and dispersal process. During infection, following colonization of the surface of the intestinal epithelium,
415 *V. cholerae* grows to abundance, enters stationary phase, and then triggers a mucosal escape program,
416 which depends on both the stationary-phase alternative sigma factor RpoS and the HCD QS-master
417 regulator HapR (Nielsen et al., 2006). These steps enable reentry of *V. cholerae* cells into the intestinal
418 lumen. We propose that it is in this final stage of the infection cycle, after cells reenter the intestinal
419 lumen, that aggregation occurs because two conditions are met: the cells are in stationary phase and in
420 the HCD QS-state. We speculate that formation of aggregates allows *V. cholerae* a superior mechanism,
421 possibly by protecting aggregate-associated cells from chemical insults or by increasing intestinal transit
422 rates, to survive passage through the small intestine and reentry into the marine environment, where *V.*
423 *cholerae* is immediately faced with a limited nutrient supply (Kamp et al., 2013). Moreover, aggregates
424 may determine the rate at which *V. cholerae* passages through the intestine: work in larval zebrafish, a
425 model amenable to live imaging, has shown that bacterial aggregates are commonly found in the intestinal
426 lumen and increased aggregation is correlated with elevated rates of bacterial expulsion from the
427 intestine (Jemielita et al., 2014; Logan et al., 2018; Wiles et al., 2016).

428 In support of this model, we note that half of the genes (*flgC*, *varS*, *sdhC*, *tolB*, *sspA*, and *pnp*)
429 identified here as required for aggregation have previously been shown to be involved in *V. cholerae*
430 colonization, mucosal penetration, or dissemination from the host (Kamp et al., 2013; Liu et al., 2008;
431 Merrell et al., 2002). Live imaging in mice also shows that multicellular *V. cholerae* communities are
432 present on epithelial surfaces and, moreover, these communities are clonal, while non-clonal aggregates
433 are found in the intestinal lumen (Millet et al., 2014). This finding is consistent with the observation that
434 VPS-dependent surface-biofilms are clonal (Nadell et al., 2015), while we show here that aggregates are
435 non-clonal (Figure 2-figure supplement 7). Additionally, our screen identified that the *vc0175* gene,
436 located within the VSP-I region, is required for aggregate formation. VSP-I and VSP-II are two genomic
437 islands that distinguish the currently dominant biotype, El Tor, from the Classical biotype (Dziejman et al.,

438 2002). The El Tor biotype has supplanted the Classical biotype as the primary cause of the pandemic
439 disease cholera. Prior to the acquisition of these genomic islands, along with the El Tor CTX prophage and
440 several additional point mutations, the El Tor *V. cholerae* biotype caused infections in humans, but lacked
441 pandemic potential (Hu et al., 2016). Possibly, the ability to robustly form aggregates contributes to the
442 current dominance of the El Tor biotype by making either host infection or host dispersal more productive
443 or by increasing environmental persistence. Future work in animal models is required to test these
444 hypotheses.

445 Now we turn to *V. cholerae* aggregation in its other habitat: the marine environment. Aggregation
446 could promote environmental persistence of *V. cholerae* by providing a mechanism for the rapid
447 formation of multicellular communities under conditions of nutrient deprivation. Supporting this idea, our
448 screen identified genes (*sspA*, *varS*, *sdhC*, *lexA*, *lrp*, *pnp*) with known roles in stress response or response
449 to changes in carbon metabolism (Brinkman et al., 2003; Butala et al., 2009; Lenz et al., 2005; Merrell et
450 al., 2002; Romeo, 2002; Tsou et al., 2011). With respect to the environment, aggregate formation might
451 provide insight into conditionally viable environmental cells (CVEC, related to viable but not culturable
452 cells, VBNC) which are clumps of dormant environmental *V. cholerae* isolates that resist culturing except
453 under very specific conditions (Alam et al., 2007; Faruque et al., 2006; Kamruzzaman et al., 2010). Non-
454 clonal aggregate formation (Figure 2-figure supplement 7) may also provide *V. cholerae* a multicellular
455 lifestyle amenable to horizontal gene transfer (HGT). The VPS-dependent surface-biofilm program likely
456 cannot foster genetic diversity because, as mentioned above, *V. cholerae* surface-biofilms are clonal
457 (Nadell et al., 2015). Expression of the genes encoding the competence machinery required for HGT is
458 activated at HCD and in the presence of chitin (Blokesch and Schoolnik, 2008; Meibom et al., 2005). We
459 suggest that aggregation could aid in the colonization of chitin surfaces and/or provide an alternative
460 route to HGT. Finally, formation of *V. cholerae* aggregates during stationary phase has parallels to the
461 spore-formation program in *Myxococcus xanthus* (Shimkets, 1999). Specifically, both processes occur

462 under conditions of starvation and require population-level collective behavior to foster community-level
463 benefits. Additionally, in the case of *V. cholerae*, aggregation might provide ecological advantages such as
464 promoting environmental dissemination and concentrating biomass, for example, by altering the
465 buoyancy of the community which could aid in movement through the water column. To reap these
466 putative environmental benefits, *V. cholerae* must successfully confront associated challenges such as the
467 emergence of cheaters that do not contribute to aggregate formation but nonetheless obtain the public
468 good(s) the aggregate provides. We speculate that aggregation is driven by surface adhesins that
469 additionally serve in self/non-self kin-recognition (Smukalla et al., 2008), which can defend communities
470 against free-riders. Kin-recognition in *V. cholerae* can occur via the pilins TcpA and PilA (Adams et al., 2018;
471 Kirn et al., 2000; Taylor et al., 1987). While the aggregation process that we report does not depend on
472 either of these pili (Figure 2-figure supplement 4), *V. cholerae* may deploy additional, as-yet undiscovered,
473 kin-recognition systems to control its community diversity in aggregates. Curiously, our screen identified
474 genes required for aggregate formation, but it did not yield genes that encode obvious structural
475 components required for *V. cholerae* aggregation. We are currently focused on identifying structural
476 genes and on defining the mechanism underlying aggregate assembly. We anticipate that deeper
477 understanding will provide insight into whether the aggregation program is specific to *V. cholerae* or is
478 more broadly conserved among bacteria. Specifically, structural genes involved in *V. cholerae* aggregation
479 could play analogous roles in other bacterial species. Additional studies in species known to aggregate
480 should reveal if this is the case.

481 We have identified three relevant timescales for the aggregation program: the time at which *V.*
482 *cholerae* commits to the aggregation program (7 h), the time by which aggregate formation occurs (by 22
483 h), and the timeframe over which aggregation occurs (<30 min). We discuss these three timescales in turn.

484 1. At 7 h, a time shortly before *V. cholerae* cultures enter stationary phase under our conditions,
485 *V. cholerae* cells become refractory to the addition of autoinducers and commit to one of two

486 developmental programs: the formation of aggregates, following a subsequent long delay, or to
487 continuation as planktonic cells. We argue that this timepoint serves as a developmental checkpoint
488 employed by *V. cholerae* to verify the execution of the optimal, cell-density-dependent, strategy for
489 survival during stationary phase. For example, aggregation, a process whose kinetics must necessarily be
490 driven by the encounter rate between bacteria in solution, will progress more efficiently when the cell
491 density is high compared to when cell density is low.

492 2. By 22 h, *V. cholerae* undergoes the entire process of aggregation. Strikingly, the time by which
493 aggregation occurs (22 h) is 15 hours after the timepoint at which, from the context of QS signals, the cells
494 have committed to this program. This quiescent period may provide *V. cholerae* a temporal window in
495 which it can abort the aggregation program if, for example, new nutrient sources become available. The
496 genes that we identified in our screen were assayed for their contributions to aggregate formation at T =
497 22 h, and thus the possibility exists that they affect aggregation kinetics by delaying the onset of aggregate
498 formation.

499 3. The process of aggregation occurs within 30 min. This timeframe is far more rapid than the
500 formation of mature *V. cholerae* surface-biofilms, a process that can take up to 20 h under laboratory
501 conditions (Yan et al., 2016). The rapidity of the aggregation process indicates that the underlying
502 mechanism may be analogous to mechanisms driving aggregation in colloidal systems. For example,
503 changes in the zeta potential on the cell surface may lead to aggregation (Babick, 2016). Alternatively,
504 surface-exposed molecules may act as polymer brushes hindering aggregation until changes in the
505 extracellular environment cause adjacent surfaces to entangle (Chen et al., 2017). By exploiting such
506 physical processes, *V. cholerae* may be able to form aggregates in a rapid and metabolically efficient
507 manner.

508 In conclusion, we have demonstrated a QS-controlled program of aggregation in *V. cholerae* that
509 occurs in liquid and is independent of the surface-biofilm program. Further study of the formation of these
510 multicellular communities may yield insight into the natural lifecycle of *V. cholerae*, cooperative strategies
511 employed by *V. cholerae* to survive in its markedly different environmental niches, and broader
512 mechanistic principles employed by bacteria that enable rapid multicellular community building to defend
513 against predators or other harmful environmental factors, or that enable the collective to survive
514 starvation.

515 **MATERIAL AND METHODS**

516 **Bacterial strains and reagents**

517 All *V. cholerae* strains used here were derived from a streptomycin-resistant variant of the wild-
518 type O1 El Tor Biotype C6706str2 (Thelin and Taylor, 1996). *Escherichia coli* strain S17-1 λ pir was used for
519 cloning. Antibiotics, when appropriate, were used at the following concentrations: ampicillin, 100 mg/L;
520 kanamycin 100 mg/L; polymyxin B, 50 u/L; streptomycin, 500 mg/L. Tetracycline was used at 10 mg/L for
521 strain construction and at 1 mg/L for plasmid maintenance. X-Gal was used at 50 mg/L. Chemical
522 syntheses of CAI-1 and AI-2 have been previously described (Higgins et al., 2007; Semmelhack et al., 2005).
523 Strains are listed in Supplementary Table 1.

524 **DNA manipulation and strain construction**

525 Standard molecular cloning techniques were used for plasmid construction (Sambrook et al.,
526 1989). Primers are listed in Supplementary Table 2. Chromosomal alterations in *V. cholerae* were
527 performed using allelic exchange with pKAS32 (Skorupski and Taylor, 1996) or MuGENT (multiplex
528 genome editing by natural transformation) (Dalia et al., 2014a). When using pKAS32, DNA fragments >1
529 kB upstream and downstream of the genomic region to be deleted were amplified via PCR, fused using

530 overlap extension PCR (OE-PCR) (Ho et al., 1989), and subsequently inserted into pKAS32 using ligation or
531 Gibson assembly (Gibson et al., 2009). For MuGENT, approximately 3 kB regions upstream and
532 downstream of the genomic region to be deleted were amplified via PCR. OE-PCR was subsequently used
533 to fuse these fragments upstream and downstream of a DNA fragment encoding a Kan^R cassette. The
534 resulting product was provided to naturally competent *V. cholerae* cells grown on shrimp shells, as
535 previously described (Dalia et al., 2014b, 2014a). Following selection and isolation of colonies on lysogeny
536 broth (LB) plates containing both kanamycin and polymyxin B, the deletion was verified by PCR. For
537 experiments in Figure 4-figure supplement 2, we used MuGENT for mutagenesis and co-transformed cells
538 with a selectable marker at a neutral locus, *vc1807:Kan^R*, and a DNA fragment containing *lacZ:P_{dns}-dns*.
539 Transformants were selected on LB plates containing kanamycin, polymyxin B, and X-Gal. *mKate2*
540 (Shcherbo et al., 2007), *mTFP1* (Ai et al., 2006), or *mKO* (Karasawa et al., 2004) genes, each driven by *pTac*,
541 were inserted onto the *V. cholerae* chromosome at the *lacZ* site, as previously described (Nadell et al.,
542 2015).

543 **Aggregate formation**

544 All growth media was filter sterilized (pore size: 0.22 μ m). *V. cholerae* strains were grown
545 overnight in LB (Fisher BioReagents, Pittsburgh, PA; Tryptone 10 g/L, yeast extract 5 g/L, and NaCl 10 g/L)
546 at 37°C with shaking (250 rpm). Cultures were back-diluted 1:100 in LB supplemented with 10 mM CaCl₂
547 (Kierek and Watnick, 2003b), and incubated at 37°C with shaking (250 rpm). After 1 h (approximate OD₆₀₀:
548 0.04), cultures were diluted 1:20 into 2 mL of LB + 10 mM Ca²⁺ in 20 mL Pyrex test tubes. Samples were
549 incubated in the outer ring of a rolling drum (New Brunswick, Edison, NJ; model # M1053-4004; 1 Hz) at
550 30°C. At designated time points, 150 μ L samples were removed from a fixed height within the culture and
551 deposited into wells of a No. 1.5 coverslip 96-well microtiter dishes (MatTek, Ashland, MA; part # P96G-
552 1.5-5-F). The samples were dispensed into the microtiter wells using a single-channel electronic pipette

553 (Eppendorf, Hamburg, Germany; Xplorer) set at the lowest possible aspiration and dispensation speed
554 (172 μ L/s). For aggregate formation in plastic-bottomed 24-well microtiter dishes, microplates were
555 mounted on an orbital shaker (IKA, Staufen im Breisgau, Germany; KS 260 Basic; 250 rpm) and the samples
556 were grown for 48 h at 30°C. The low surface-attachment assays used plastic-bottomed Corning Costar
557 24-well microtiter dishes (Corning, Corning, NY). Biological replicates are defined as aggregates derived
558 from an isolated, individual colony. Technical replicates refer to samples taken from independent bacterial
559 cultures.

560 **A genetic screen for factors promoting aggregation**

561 $\Delta vpsL$ HCD-locked and $\Delta vpsL$ *lacZ:P_{hapR}-hapR* HCD-locked *V. cholerae* strains were mutagenized
562 with Tn5 as previously described (Miller et al., 2002). Mutants were isolated on LB plates containing
563 kanamycin and polymyxin B (<200 colonies per plate). The colonies were grown at 37°C for ~16 h to ensure
564 that differences in colony opacity could be observed. Approximately 25,000 colonies were assessed in
565 each of the two mutagenesis screens. Changes in colony opacity were determined by comparing the
566 opacity of individual colonies to adjacent colonies on the same plate. All mutants exhibiting alterations in
567 colony opacity were purified and isolated by restreaking on plates containing kanamycin and polymyxin B.
568 Aggregate formation was subsequently assayed at 22 h, using the protocol described above. No antibiotics
569 were present in the growth medium for the aggregation assays. Transposon insertion sites were
570 determined using arbitrary PCR (Saavedra et al., 2017). Images of colony opacity were obtained after 24
571 h of growth of colonies on LB plates at 37°C using a stereomicroscope (Leica, Wetzlar, Germany; M125;
572 20X zoom) equipped with a Leica MC170 HD camera and using a gooseneck light source to provide oblique
573 sample illumination.

574 **Bioluminescence Assay**

575 *V. cholerae* cultures were grown using the above aggregate formation protocol and sampled at
576 the indicated time points. Bioluminescence and OD₆₀₀ were respectively measured using a Tri-Carb 2810
577 TR scintillation counter (PerkinElmer, Waltham, MA) and a DU800 spectrophotometer (Beckman Coulter,
578 Brea, CA). Prior to measuring OD₆₀₀, 1 mL of each culture was transferred to a 1.5 mL Eppendorf tube
579 containing small acid-washed glass beads (Sigma-Aldrich, St. Louis, MO; model # G8772; 425-600 μ m) and
580 samples were vigorously shaken for 10 min on a vortex mixer to break apart aggregates.

581 **Microscopy and image analysis**

582 Images were acquired with a Leica SP-8 point scanning confocal microscope equipped with a
583 tunable white-light laser (Leica; model # WLL2; excitation window = 470-670 nm). mTFP1 was excited with
584 a 442 nm continuous wave laser (Leica) and all other fluorophores were excited using the tunable white-
585 light laser. Emitted light was detected using hybrid GaAsP spectral detectors (Leica, HyD SP) and timed
586 gate detection was employed to minimize background signal. Aggregates were imaged using either a 10X
587 air objective (Leica, HC PL FLUOTAR; NA: 0.30) or a 63X water immersion objective (Leica, HC PL APO CS2;
588 NA: 1.20). All samples, unless specified otherwise, were imaged in the approximate center of the
589 microtiter well.

590 Aggregate number and size were quantified using the 10X air objective with a field of view of
591 1163x1163 μ m² (2048x2048 pixels²). A total sample volume of 100 μ m with a 2 μ m step size was imaged,
592 starting just above the coverslip surface. Resulting images were analyzed using custom software written
593 in MATLAB, which is provided in a code repository (<https://github.com/jemielita/aggregation.git>). In brief,
594 to obtain segmented images using the 10X air objective, an intensity-based segmentation algorithm was
595 applied to the 3D image stack followed by a minimum object size cutoff. To overcome sporadic under-
596 segmentation of adjacent aggregates, the convexity of aggregates was exploited. For all objects identified
597 in a single plane, the root-mean-squared deviation (RMSD) between the area and convex area of the

598 objects was computed. Subsequently, for all objects whose RMSD exceeded a cutoff, the shortest line
599 across opposite quadrants of the object was computed and used to bisect the initially over-segmented
600 object into two discrete objects. Following this procedure, 3D reconstructions of each aggregate were
601 assembled by connecting overlapping 2D regions. As necessary, the results of this segmentation protocol
602 were manually corrected. Within a given experiment, all parameters of the segmentation protocol were
603 kept fixed. An exception was made for the analysis of the $\Delta vpsL$ Δxds Δdns HCD-locked strain for which
604 the intensity threshold employed was lowered to properly segment the low-intensity distal (with respect
605 to the objective) side of large aggregates. All quantitative imaging data reported in this manuscript were
606 collected with the 10X air objective, with the exception of two datasets in Figure 3-figure supplement 2,
607 which were collected with the 63X water objective. The 63X water objective was used to quantify cluster
608 formation over a field of view of 1984x1984 μm^2 (1984x1984 pixels²). A total sample volume of 50 μm
609 with a 1 μm step size was imaged, starting just above the coverslip surface. To segment images obtained
610 with the 63X water immersion objective, analogous to what we describe above, an intensity-based
611 segmentation algorithm was used, followed by the application of an upper cluster size cutoff.

612 For experiments in which the cross-sectional aggregate area was measured, subregions of the
613 microtiter dish were imaged using the Leica Tile Scan module and an image of the full microtiter well was
614 computationally assembled. As above, an intensity-based segmentation algorithm was applied to the
615 resulting image, followed by a minimum object size cutoff.

616 We define the aggregate volume fraction as the sum of the volume of aggregates identified in the
617 imaged volume normalized by the total volume imaged. We define the average aggregate volume as the
618 effective average aggregate volume in which a bacterium is found: $\frac{\sum_{i=1}^N v_i \times v_i}{\sum_{i=1}^N v_i}$, where v is the volume of an
619 individual aggregate and N is the total number of aggregates identified within a sample. An identical
620 approach was used to define the average cluster size obtained using the 63X water objective and for

621 computing the average cross-sectional area. To compare the distribution of aggregate volumes or cross-
622 sectional areas generated by different strains, we used a two-sample Kolmogorov-Smirnov test on the
623 distribution of data pooled from all biological replicates. Aggregate volume fraction and average
624 aggregate size are reported as the mean \pm standard deviation (SD) for a minimum of three biological
625 replicates.

626 **eDNA quantification and staining**

627 To quantify bulk eDNA levels, 1 mL of cultures were transferred to 1.5 mL Eppendorf tubes
628 containing small acid-washed glass beads (Sigma-Aldrich, catalog # G8772; 425-600 μ m). Samples were
629 vigorously shaken for 10 min on a vortex mixer followed by centrifugation for 1 min at 15,000 rpm. The
630 clarified supernatants were filter sterilized (pore size: 0.22 μ m), and DNA was extracted using the standard
631 ethanol precipitation technique (Ausubel et al., 2002; Seper et al., 2011). Phase lock gel (Sigma-Aldrich,
632 Dow Corning high-vacuum grease, catalog # Z273554) was used during phenol extraction. eDNA content
633 was subsequently quantified using a NanoDrop One^C (ThermoFisher, Waltham, MA; catalog # ND-ONE-
634 W).

635 In DNase I supplementation experiments, cultures were prepared as described above and
636 aliquoted into glass-bottom 96-well microtiter dishes (MatTek) to a final volume of 100 μ L. The cultures
637 were grown in the microtiter dishes at 30°C on an orbital shaker (IKA, KS260; 350 rpm). DNase I (Sigma-
638 Aldrich, catalog # D5025) was added to samples at T = 0 at a concentration of 100 Kunitz units per mL
639 (Turnbull et al., 2016). Staining of eDNA was accomplished using the nucleic acid stain TOTO-1 iodide
640 (ThermoFisher, catalog # T3600; final concentration: 1 μ M). Staining of the samples in Figure 5D and
641 Figure 3-figure supplement 4 was accomplished using SYTO-9 (ThermoFisher, catalog # S34854; final
642 concentration: 2.2 μ M). When using either stain, samples were deposited, as above, into wells of No. 1.5

643 coverslip 96-well microtiter dishes to which the appropriate stain was subsequently added and gently
644 mixed.

645 **ACKNOWLEDGEMENTS**

646 We thank all members of the Bassler group and Howard Stone for fruitful discussions and critical feedback.
647 We particularly thank Jing Yan for providing plasmids and Amanda Hurley for assistance with plasmid and
648 strain construction. This work was supported by the Howard Hughes Medical Institute, the Max Planck
649 Society-Alexander von Humboldt Foundation, NSF Grant MCB-1713731, NIH Grant 2R37GM065859
650 (B.L.B.), NIH Grant R01GM082938 (N.S.W.), and NSF Grant PHY-1734030 (M.J.).

651

652 **BIBLIOGRAPHY**

653 Absalon, C., Dellen, K.V., Watnick, P.I., 2011. A Communal Bacterial Adhesin Anchors Biofilm and
654 Bystander Cells to Surfaces. *PLOS Pathogens* 7, e1002210. <https://doi.org/10.1371/journal.ppat.1002210>

655 Adams, D.W., Stutzmann, S., Stoudmann, C., Blokesch, M., 2018. DNA-uptake pilus of *Vibrio cholerae*
656 capable of kin-discriminated auto-aggregation. *bioRxiv* 354878. <https://doi.org/10.1101/354878>

657 Ai, H., Henderson, J.N., Remington, S.J., Campbell, R.E., 2006. Directed evolution of a monomeric, bright
658 and photostable version of *Clavularia* cyan fluorescent protein: structural characterization and
659 applications in fluorescence imaging. *Biochem. J.* 400, 531–540. <https://doi.org/10.1042/BJ20060874>

660 Alam, M., Sultana, M., Nair, G.B., Siddique, A.K., Hasan, N.A., Sack, R.B., Sack, D.A., Ahmed, K.U., Sadique,
661 A., Watanabe, H., Grim, C.J., Huq, A., Colwell, R.R., 2007. Viable but nonculturable *Vibrio cholerae* O1 in
662 biofilms in the aquatic environment and their role in cholera transmission. *PNAS* 104, 17801–17806.
663 <https://doi.org/10.1073/pnas.0705599104>

664 Almagro-Moreno, S., Pruss, K., Taylor, R.K., 2015. Intestinal Colonization Dynamics of *Vibrio cholerae*.
665 *PLOS Pathogens* 11, e1004787. <https://doi.org/10.1371/journal.ppat.1004787>

666 Ausubel, F., Brent, R., Kingston, R., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K., 2002. Short Protocols
667 in Molecular Biology, 5th ed.

668 Babick, F., 2016. Suspensions of Colloidal Particles and Aggregates, Particle Technology Series. Springer
669 International Publishing.

670 Bassler, B.L., Wright, M., Silverman, M.R., 1994. Sequence and function of LuxO, a negative regulator of
671 luminescence in *Vibrio harveyi*. *Mol. Microbiol.* 12, 403–412. <https://doi.org/10.1111/j.1365-2958.1994.tb01029.x>

673 Berk, V., Fong, J.C.N., Dempsey, G.T., Develioglu, O.N., Zhuang, X., Liphardt, J., Yildiz, F.H., Chu, S., 2012.
674 Molecular architecture and assembly principles of *Vibrio cholerae* biofilms. *Science* 337, 236–239.
675 <https://doi.org/10.1126/science.1222981>

676 Bilecen, K., Yildiz, F.H., 2009. Identification of a calcium-controlled negative regulatory system affecting
677 *Vibrio cholerae* biofilm formation. *Environ. Microbiol.* 11, 2015–2029. <https://doi.org/10.1111/j.1462-2920.2009.01923.x>

679 Bieber, D., Ramer, S.W., Wu, C.-Y., Murray, W.J., Tobe, T., Fernandez, R., and Schoolnik, G.K., 1998. Type
680 IV Pili, Transient Bacterial Aggregates, and Virulence of Enteropathogenic *Escherichia coli*. *Science* 280,
681 2114–2118.

682 Blokesch, M., Schoolnik, G.K., 2008. The Extracellular Nuclease Dns and Its Role in Natural Transformation
683 of *Vibrio cholerae*. *J. Bacteriol.* 190, 7232–7240. <https://doi.org/10.1128/JB.00959-08>

684 Blokesch, M., Schoolnik, G.K., 2007. Serogroup Conversion of *Vibrio cholerae* in Aquatic Reservoirs. *PLOS*
685 *Pathogens* 3, e81. <https://doi.org/10.1371/journal.ppat.0030081>

686 Booth, B.A., Boesman-Finkelstein, M., Finkelstein, R.A., 1983. *Vibrio cholerae* soluble
687 hemagglutinin/protease is a metalloenzyme. *Infect. Immun.* 42, 639–644.

688 Brinkman, A.B., Ettema, T.J.G., de Vos, W.M., van der Oost, J., 2003. The Lrp family of transcriptional
689 regulators. *Mol. Microbiol.* 48, 287–294. <https://doi.org/10.1046/j.1365-2958.2003.03442.x>

690 Butala, M., Zgur-Bertok, D., Busby, S.J.W., 2009. The bacterial LexA transcriptional repressor. *Cell. Mol.*
691 *Life Sci.* 66, 82–93. <https://doi.org/10.1007/s00018-008-8378-6>

692 Camilli, A., 2005. Going against the grain: chemotaxis and infection in *Vibrio cholerae*. *Nat. Rev. Microbiol.*
693 3, 611–620. <https://doi.org/10.1038/nrmicro1207>

694 Chandler, J.R., Duerkop, B.A., Hinz, A., West, T.E., Herman, J.P., Churchill, M.E.A., Skerrett, S.J., and
695 Greenberg, E.P., 2009. Mutational Analysis of *Burkholderia thailandensis* Quorum Sensing and Self-
696 Aggregation. *Journal of Bacteriology* 191, 5901–5909. <https://doi.org/10.1128/JB.00591-09>

697 Chang, C., Jin, X., Chaoqun, H., 2009. Phenotypic and genetic differences between opaque and translucent
698 colonies of *Vibrio alginolyticus*. *Biofouling* 25, 525–531. <https://doi.org/10.1080/08927010902964578>

699 Chen, W.-L., Cordero, R., Tran, H., Ober, C.K., 2017. 50th Anniversary Perspective: Polymer Brushes: Novel
700 Surfaces for Future Materials. *Macromolecules* 50, 4089–4113.
701 <https://doi.org/10.1021/acs.macromol.7b00450>

702 Chen, X., Schauder, S., Potier, N., Van Dorsselaer, A., Pelczer, I., Bassler, B.L., Hughson, F.M., 2002.
703 Structural identification of a bacterial quorum-sensing signal containing boron. *Nature* 415, 545–549.
704 <https://doi.org/10.1038/415545a>

705 Chiang, S.L., Taylor, R.K., Koomey, M., and Mekalanos, J.J., 1995. Single amino acid substitutions in the N-
706 terminus of *Vibrio cholerae* TcpA affect colonization, autoagglutination, and serum resistance. *Molecular*
707 *Microbiology* 17, 1133–1142. https://doi.org/10.1111/j.1365-2958.1995.mmi_17061133.x

708 Colwell, R.R., Huq, A., Islam, M.S., Aziz, K.M.A., Yunus, M., Khan, N.H., Mahmud, A., Sack, R.B., Nair, G.B.,
709 Chakraborty, J., Sack, D.A., Russek-Cohen, E., 2003. Reduction of cholera in Bangladeshi villages by simple
710 filtration. *PNAS* 100, 1051–1055. <https://doi.org/10.1073/pnas.0237386100>

711 Dalia, A.B., Lazinski, D.W., Camilli, A., 2014a. Identification of a Membrane-Bound Transcriptional
712 Regulator That Links Chitin and Natural Competence in *Vibrio cholerae*. *mBio* 5, e1028-13.
713 <https://doi.org/10.1128/mBio.01028-13>

714 Dalia, A.B., McDonough, E., Camilli, A., 2014b. Multiplex genome editing by natural transformation. *PNAS*
715 111, 8937–8942. <https://doi.org/10.1073/pnas.1406478111>

716 Das, T., Sehar, S., Koop, L., Wong, Y.K., Ahmed, S., Siddiqui, K.S., and Manefield, M., 2014. Influence of
717 Calcium in Extracellular DNA Mediated Bacterial Aggregation and Biofilm Formation. *PLOS ONE* 9, e91935.
718 <https://doi.org/10.1371/journal.pone.0091935>

719 Dziejman, M., Balon, E., Boyd, D., Fraser, C.M., Heidelberg, J.F., Mekalanos, J.J., 2002. Comparative
720 genomic analysis of *Vibrio cholerae*: Genes that correlate with cholera endemic and pandemic disease.
721 *PNAS* 99, 1556–1561. <https://doi.org/10.1073/pnas.042667999>

722 Enos-Berlage, J.L., Guvener, Z.T., Keenan, C.E., McCarter, L.L., 2005. Genetic determinants of biofilm
723 development of opaque and translucent *Vibrio parahaemolyticus*. Mol. Microbiol. 55, 1160–1182.
724 <https://doi.org/10.1111/j.1365-2958.2004.04453.x>

725 Enos-Berlage, J.L., McCarter, L.L., 2000. Relation of Capsular Polysaccharide Production and Colonial Cell
726 Organization to Colony Morphology in *Vibrio parahaemolyticus*. J. Bacteriol. 182, 5513–5520.
727 <https://doi.org/10.1128/JB.182.19.5513-5520.2000>

728 Faruque, S.M., Biswas, K., Udden, S.M.N., Ahmad, Q.S., Sack, D.A., Nair, G.B., Mekalanos, J.J., 2006.
729 Transmissibility of cholera: In vivo-formed biofilms and their relationship to infectivity and persistence in
730 the environment. PNAS, 6350–6355. <https://doi.org/10.1073/pnas.0601277103>

731 Finkelstein, R.A., Boesman-Finkelstein, M., Chang, Y., Häse, C.C., 1992. *Vibrio cholerae*
732 hemagglutinin/protease, colonial variation, virulence, and detachment. Infect. Immun. 60, 472–478.

733 Finkelstein, R.A., Boesman-Finkelstein, M., Sengupta, D.K., Page, W.J., Stanley, C.M., Phillips, T.E., 1997.
734 Colonial opacity variations among the choleraic *vibrios*. Microbiology 143, 23–34.
735 <https://doi.org/10.1099/00221287-143-1-23>

736 Flemming, H.-C., and Wingender, J., 2010. The biofilm matrix. Nature Reviews Microbiology 8, 623–633.
737 <https://doi.org/10.1038/nrmicro2415>

738 Fong, J.C., Rogers, A., Michael, A.K., Parsley, N.C., Cornell, W.-C., Lin, Y.-C., Singh, P.K., Hartmann, R.,
739 Drescher, K., Vinogradov, E., Dietrich, L.E., Partch, C.L., Yildiz, F.H., 2017. Structural dynamics of RbmA
740 governs plasticity of *Vibrio cholerae* biofilms. eLife 6, e26163. <https://doi.org/10.7554/eLife.26163>

741 Fong, J.C.N., Syed, K.A., Klose, K.E., Yildiz, F.H., 2010. Role of *Vibrio* polysaccharide (vps) genes in VPS
742 production, biofilm formation and *Vibrio cholerae* pathogenesis. Microbiology 156, 2757–2769.
743 <https://doi.org/10.1099/mic.0.040196-0>

744 Freeman, J.A., Bassler, B.L., 1999. A genetic analysis of the function of LuxO, a two-component response
745 regulator involved in quorum sensing in *Vibrio harveyi*. Mol. Microbiol. 31, 665–677.
746 <https://doi.org/10.1046/j.1365-2958.1999.01208.x>

747 Gibson, D.G., Young, L., Chuang, R.-Y., Venter, J.C., Iii, C.A.H., Smith, H.O., 2009. Enzymatic assembly of
748 DNA molecules up to several hundred kilobases. Nature Methods 6, 343–345.
749 <https://doi.org/10.1038/nmeth.1318>

750 Hammer, B.K., Bassler, B.L., 2003. Quorum sensing controls biofilm formation in *Vibrio cholerae*.
751 Molecular Microbiology 50, 101–104. <https://doi.org/10.1046/j.1365-2958.2003.03688.x>

752 Higgins, D.A., Pomianek, M.E., Kraml, C.M., Taylor, R.K., Semmelhack, M.F., Bassler, B.L., 2007. The major
753 *Vibrio cholerae* autoinducer and its role in virulence factor production. Nature 450, 883–886.
754 <https://doi.org/10.1038/nature06284>

755 Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K., Pease, L.R., 1989. Site-directed mutagenesis by overlap
756 extension using the polymerase chain reaction. Gene 77, 51–59. [https://doi.org/10.1016/0378-1119\(89\)90358-2](https://doi.org/10.1016/0378-1119(89)90358-2)

758 Hu, D., Liu, B., Feng, L., Ding, P., Guo, X., Wang, M., Cao, B., Reeves, P.R., Wang, L., 2016. Origins of the
759 current seventh cholera pandemic. *PNAS* 113, E7730–E7739. <https://doi.org/10.1073/pnas.1608732113>

760 Huq, A., Small, E.B., West, P.A., Huq, M.I., Rahman, R., Colwell, R.R., 1983. Ecological relationships
761 between *Vibrio cholerae* and planktonic crustacean copepods. *Appl. Environ. Microbiol.* 45, 275–283.

762 Huq, A., Yunus, M., Sohel, S.S., Bhuiya, A., Emch, M., Luby, S.P., Russek-Cohen, E., Nair, G.B., Sack, R.B.,
763 Colwell, R.R., 2010. Simple Sari Cloth Filtration of Water Is Sustainable and Continues To Protect Villagers
764 from Cholera in Matlab, Bangladesh. *mBio* 1, e00034-10. <https://doi.org/10.1128/mBio.00034-10>

765 Hurley, A., Bassler, B.L., 2017. Asymmetric regulation of quorum-sensing receptors drives autoinducer-
766 specific gene expression programs in *Vibrio cholerae*. *PLoS Genet* 13.
767 <https://doi.org/10.1371/journal.pgen.1006826>

768 Jemielita, M., Taormina, M.J., Burns, A.R., Hampton, J.S., Rolig, A.S., Guillemin, K., Parthasarathy, R., 2014.
769 Spatial and Temporal Features of the Growth of a Bacterial Species Colonizing the Zebrafish Gut. *mBio* 5,
770 e01751-14. <https://doi.org/10.1128/mBio.01751-14>

771 Joelson, A., Liu, Z., Zhu, J., 2006. Genetic and Phenotypic Diversity of Quorum-Sensing Systems in Clinical
772 and Environmental Isolates of *Vibrio cholerae*. *Infect Immun* 74, 1141–1147.
773 <https://doi.org/10.1128/IAI.74.2.1141-1147.2006>

774 Jung, S.A., Chapman, C.A., Ng, W.-L., 2015. Quadruple Quorum-Sensing Inputs Control *Vibrio cholerae*
775 Virulence and Maintain System Robustness. *PLOS Pathogens* 11, e1004837.
776 <https://doi.org/10.1371/journal.ppat.1004837>

777 Kamp, H.D., Patimalla-Dipali, B., Lazinski, D.W., Wallace-Gadsden, F., Camilli, A., 2013. Gene Fitness
778 Landscapes of *Vibrio cholerae* at Important Stages of Its Life Cycle. *PLoS Pathog* 9.
779 <https://doi.org/10.1371/journal.ppat.1003800>

780 Kamruzzaman, M., Udden, S.M.N., Cameron, D.E., Calderwood, S.B., Nair, G.B., Mekalanos, J.J., Faruque,
781 S.M., 2010. Quorum-regulated biofilms enhance the development of conditionally viable, environmental
782 *Vibrio cholerae*. *PNAS* 107, 1588–1593. <https://doi.org/10.1073/pnas.0913404107>

783 Karasawa, S., Araki, T., Nagai, T., Mizuno, H., Miyawaki, A., 2004. Cyan-emitting and orange-emitting
784 fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. *Biochem J* 381,
785 307–312. <https://doi.org/10.1042/BJ20040321>

786 Kelly, R.C., Bolitho, M.E., Higgins, D.A., Lu, W., Ng, W.-L., Jeffrey, P.D., Rabinowitz, J.D., Semmelhack, M.F.,
787 Hughson, F.M., Bassler, B.L., 2009. The *Vibrio cholerae* quorum-sensing autoinducer CAI-1: analysis of the
788 biosynthetic enzyme CqsA. *Nat Chem Biol* 5, 891–895. <https://doi.org/10.1038/nchembio.237>

789 Kierek, K., Watnick, P.I., 2003a. The *Vibrio cholerae* O139 O-antigen polysaccharide is essential for Ca^{2+} -
790 dependent biofilm development in sea water. *PNAS* 100, 14357–14362.
791 <https://doi.org/10.1073/pnas.2334614100>

792 Kierek, K., Watnick, P.I., 2003b. Environmental Determinants of *Vibrio cholerae* Biofilm Development. *Appl
793 Environ Microbiol* 69, 5079–5088. <https://doi.org/10.1128/AEM.69.9.5079-5088.2003>

794 Kirchberger, P.C., Unterweger, D., Provenzano, D., Pukatzki, S., Boucher, Y., 2017. Sequential displacement
795 of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in *Vibrio*
796 *cholerae*. *Scientific Reports* 7, 45133. <https://doi.org/10.1038/srep45133>

797 Kirn, T.J., Lafferty, M.J., Sandoe, C.M.P., Taylor, R.K., 2000. Delineation of pilin domains required for
798 bacterial association into microcolonies and intestinal colonization by *Vibrio cholerae*. *Molecular*
799 *Microbiology* 35, 896–910. <https://doi.org/10.1046/j.1365-2958.2000.01764.x>

800 Kragh, K.N., Hutchison, J.B., Melaugh, G., Rodesney, C., Roberts, A.E.L., Irie, Y., Jensen, P.Ø., Diggle, S.P.,
801 Allen, R.J., Gordon, V., et al., 2016. Role of Multicellular Aggregates in Biofilm Formation. *MBio* 7, e00237-
802 16. <https://doi.org/10.1128/mBio.00237-16>

803 Kragh, K.N., Alhede, M., Rybtke, M., Stavnsberg, C., Jensen, P.Ø., Tolker-Nielsen, T., Whiteley, M., and
804 Bjarnsholt, T., 2018. The Inoculation Method Could Impact the Outcome of Microbiological Experiments.
805 *Appl Environ Microbiol* 84. <https://doi.org/10.1128/AEM.02264-17>

806 Laganenka, L., Colin, R., and Sourjik, V., 2016. Chemotaxis towards autoinducer 2 mediates
807 autoaggregation in *Escherichia coli*. *Nature Communications* 7, 12984.
808 <https://doi.org/10.1038/ncomms12984>

809 Lankford, C.E., 1960. Factors of virulence of *Vibrio cholerae*. *Annals of the New York Academy of Sciences*
810 88, 1203–1212. <https://doi.org/10.1111/j.1749-6632.1960.tb20111.x>

811 Lenz, D.H., Mok, K.C., Lilley, B.N., Kulkarni, R.V., Wingreen, N.S., Bassler, B.L., 2004. The Small RNA
812 Chaperone Hfq and Multiple Small RNAs Control Quorum Sensing in *Vibrio harveyi* and *Vibrio cholerae*.
813 *Cell* 118, 69–82. <https://doi.org/10.1016/j.cell.2004.06.009>

814 Lenz, D.H., Miller, M.B., Zhu, J., Kulkarni, R.V., and Bassler, B.L., 2005. CsrA and three redundant small
815 RNAs regulate quorum sensing in *Vibrio cholerae*. *Molecular Microbiology* 58, 1186–1202.
816 <https://doi.org/10.1111/j.1365-2958.2005.04902.x>

817 Liu, Z., Miyashiro, T., Tsou, A., Hsiao, A., Goulian, M., Zhu, J., 2008. Mucosal penetration primes *Vibrio*
818 *cholerae* for host colonization by repressing quorum sensing. *PNAS* 105, 9769–9774.
819 <https://doi.org/10.1073/pnas.0802241105>

820 Logan, S.L., Thomas, J., Yan, J., Baker, R.P., Shields, D.S., Xavier, J.B., Hammer, B.K., Parthasarathy, R., 2018.
821 The *Vibrio cholerae* type VI secretion system can modulate host intestinal mechanics to displace gut
822 bacterial symbionts. *PNAS* 115, E3779–E3787. <https://doi.org/10.1073/pnas.1720133115>

823 Matson, J.S., Withey, J.H., DiRita, V.J., 2007. Regulatory networks controlling *Vibrio cholerae* virulence
824 gene expression. *Infect. Immun.* 75, 5542–5549. <https://doi.org/10.1128/IAI.01094-07>

825 McDonough EmilyKate, Kamp Heather, Camilli Andrew, 2016. *Vibrio cholerae* phosphatases required for
826 the utilization of nucleotides and extracellular DNA as phosphate sources. *Molecular Microbiology* 99,
827 453–469. <https://doi.org/10.1111/mmi.13128>

828 Meibom, K.L., Blokesch, M., Dolganov, N.A., Wu, C.-Y., Schoolnik, G.K., 2005. Chitin induces natural
829 competence in *Vibrio cholerae*. *Science* 310, 1824–1827. <https://doi.org/10.1126/science.1120096>

830 Merrell, D.S., Hava, D.L., Camilli, A., 2002. Identification of novel factors involved in colonization and acid
831 tolerance of *Vibrio cholerae*. *Molecular Microbiology* 43, 1471–1491. <https://doi.org/10.1046/j.1365-2958.2002.02857.x>

833 Miller, M.B., Skorupski, K., Lenz, D.H., Taylor, R.K., Bassler, B.L., 2002. Parallel Quorum Sensing Systems
834 Converge to Regulate Virulence in *Vibrio cholerae*. *Cell* 110, 303–314. [https://doi.org/10.1016/S0092-8674\(02\)00829-2](https://doi.org/10.1016/S0092-8674(02)00829-2)

836 Millet, Y.A., Alvarez, D., Ringgaard, S., von Andrian, U.H., Davis, B.M., Waldor, M.K., 2014. Insights into
837 *Vibrio cholerae* Intestinal Colonization from Monitoring Fluorescently Labeled Bacteria. *PLoS Pathog* 10,
838 e1004405. <https://doi.org/10.1371/journal.ppat.1004405>

839 Nadell, C.D., Drescher, K., Wingreen, N.S., Bassler, B.L., 2015. Extracellular matrix structure governs
840 invasion resistance in bacterial biofilms. *ISME J* 9, 1700–1709. <https://doi.org/10.1038/ismej.2014.246>

841 Neiditch, M.B., Federle, M.J., Miller, S.T., Bassler, B.L., Hughson, F.M., 2005. Regulation of LuxPQ receptor
842 activity by the quorum-sensing signal autoinducer-2. *Mol. Cell* 18, 507–518.
843 <https://doi.org/10.1016/j.molcel.2005.04.020>

844 Nelson, E.J., Chowdhury, A., Harris, J.B., Begum, Y.A., Chowdhury, F., Khan, A.I., LaRocque, R.C., Bishop,
845 A.L., Ryan, E.T., Camilli, A., Qadri, F., Calderwood, S.B., 2007. Complexity of rice-water stool from patients
846 with *Vibrio cholerae* plays a role in the transmission of infectious diarrhea. *PNAS* 104, 19091–19096.
847 <https://doi.org/10.1073/pnas.0706352104>

848 Nielsen, A.T., Dolganov, N.A., Otto, G., Miller, M.C., Wu, C.Y., Schoolnik, G.K., 2006. RpoS controls the
849 *Vibrio cholerae* mucosal escape response. *PLoS Pathog.* 2, e109.
850 <https://doi.org/10.1371/journal.ppat.0020109>

851 Papenfort, K., Bassler, B., 2016. Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria. *Nat Rev Microbiol* 14, 576–588. <https://doi.org/10.1038/nrmicro.2016.89>

853 Perez-Soto, N., Creese, O., Fernandez-Trillo, F., and Krachler, A.-M., 2018. Aggregation of *Vibrio cholerae*
854 by Cationic Polymers Enhances Quorum Sensing but Overrides Biofilm Dissipation in Response to
855 Autoinduction. *ACS Chem. Biol.* 13, 3021–3029. <https://doi.org/10.1021/acschembio.8b00815>

856 Pruzzo, C., Vezzulli, L., Colwell, R.R., 2008. Global impact of *Vibrio cholerae* interactions with chitin.
857 *Environmental Microbiology* 10, 1400–1410. <https://doi.org/10.1111/j.1462-2920.2007.01559.x>

858 Rickard, A.H., Gilbert, P., High, N.J., Kolenbrander, P.E., and Handley, P.S., 2003. Bacterial coaggregation:
859 an integral process in the development of multi-species biofilms. *Trends in Microbiology* 11, 94–100.
860 <https://doi.org/10.1021/acschembio.8b00815>

861 Romeo, T., 2002. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA
862 molecule CsrB. *Molecular Microbiology* 29, 1321–1330. <https://doi.org/10.1046/j.1365-2958.1998.01021.x>

864 Rutherford, S.T., van Kessel, J.C., Shao, Y., Bassler, B.L., 2011. AphA and LuxR/HapR reciprocally control
865 quorum sensing in *vibrios*. *Genes Dev.* 25, 397–408. <https://doi.org/10.1101/gad.2015011>

866 Saavedra, J.T., Schwartzman, J.A., Gilmore, M.S., 2017. Mapping Transposon Insertions in Bacterial
867 Genomes by Arbitrarily Primed PCR. *Current Protocols in Molecular Biology* 118, 15.15.1-15.15.15.
868 <https://doi.org/10.1002/cpmb.38>

869 Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular cloning: a laboratory manual. *Molecular cloning: a laboratory manual*.

871 Schleheck, D., Barraud, N., Klebensberger, J., Webb, J.S., McDougald, D., Rice, S.A., and Kjelleberg, S.,
872 2009. *Pseudomonas aeruginosa* PAO1 Preferentially Grows as Aggregates in Liquid Batch Cultures and
873 Disperses upon Starvation. *PLOS ONE* 4, e5513. <https://doi.org/10.1371/journal.pone.0005513>

874 Schauder, S., Shokat, K., Surette, M.G., Bassler, B.L., 2001. The LuxS family of bacterial autoinducers:
875 biosynthesis of a novel quorum-sensing signal molecule. *Molecular Microbiology* 41, 463-476.
876 <https://doi.org/10.1046/j.1365-2958.2001.02532.x>

877 Semmelhack, M.F., Campagna, S.R., Federle, M.J., Bassler, B.L., 2005. An Expedited Synthesis of DPD and
878 Boron Binding Studies. *Org. Lett.* 7, 569-572. <https://doi.org/10.1021/o1047695j>

879 Seper, A., Fengler, V.H.I., Roier, S., Wolinski, H., Kohlwein, S.D., Bishop, A.L., Camilli, A., Reidl, J., Schild, S.,
880 2011. Extracellular nucleases and extracellular DNA play important roles in *Vibrio cholerae* biofilm
881 formation. *Mol Microbiol* 82, 1015-1037. <https://doi.org/10.1111/j.1365-2958.2011.07867.x>

882 Shcherbo, D., Merzlyak, E.M., Chepurnykh, T.V., Fradkov, A.F., Ermakova, G.V., Solovieva, E.A., Lukyanov,
883 K.A., Bogdanova, E.A., Zaraisky, A.G., Lukyanov, S., Chudakov, D.M., 2007. Bright far-red fluorescent
884 protein for whole-body imaging. *Nat. Methods* 4, 741-746. <https://doi.org/10.1038/nmeth1083>

885 Shikuma, N.J., Fong, J.C.N., Odell, L.S., Perchuk, B.S., Laub, M.T., Yildiz, F.H., 2009. Overexpression of VpsS,
886 a Hybrid Sensor Kinase, Enhances Biofilm Formation in *Vibrio cholerae*. *J. Bacteriol.* 191, 5147-5158.
887 <https://doi.org/10.1128/JB.00401-09>

888 Shimkets, L.J., 1999. Intercellular Signaling During Fruiting-Body Development of *Myxococcus xanthus*.
889 *Annual Review of Microbiology* 53, 525-549. <https://doi.org/10.1146/annurev.micro.53.1.525>

890 Silva, A.J., Pham, K., Benitez, J.A., 2003. Haemagglutinin/protease expression and mucin gel penetration
891 in El Tor biotype *Vibrio cholerae*. *Microbiology* 149, 1883-1891. <https://doi.org/10.1099/mic.0.26086-0>

892 Singh, P.K., Bartalomej, S., Hartmann, R., Jeckel, H., Vidakovic, L., Nadell, C.D., Drescher, K., 2017. *Vibrio*
893 *cholerae* Combines Individual and Collective Sensing to Trigger Biofilm Dispersal. *Current Biology* 27, 3359-
894 3366.e7. <https://doi.org/10.1016/j.cub.2017.09.041>

895 Skorupski, K., Taylor, R.K., 1996. Positive selection vectors for allelic exchange. *Gene* 169, 47-52.
896 [https://doi.org/10.1016/0378-1119\(95\)00793-8](https://doi.org/10.1016/0378-1119(95)00793-8)

897 Smukalla, S., Caldara, M., Pochet, N., Beauvais, A., Guadagnini, S., Yan, C., Vinces, M.D., Jansen, A., Prevost,
898 M.C., Latgé, J.-P., Fink, G.R., Foster, K.R., Verstrepen, K.J., 2008. FLO1 is a variable green beard gene that
899 drives biofilm-like cooperation in budding yeast. *Cell* 135, 726-737.
900 <https://doi.org/10.1016/j.cell.2008.09.037>

901 Taylor, R.K., Miller, V.L., Furlong, D.B., Mekalanos, J.J., 1987. Use of phoA gene fusions to identify a pilus
902 colonization factor coordinately regulated with cholera toxin. PNAS 84, 2833–2837.

903 Teschler, J.K., Zamorano-Sánchez, D., Utada, A.S., Warner, C.J.A., Wong, G.C.L., Linington, R.G., Yildiz, F.H.,
904 2015. Living in the matrix: assembly and control of *Vibrio cholerae* biofilms. Nature Reviews Microbiology
905 13, 255–268. <https://doi.org/10.1038/nrmicro3433>

906 Thelin, K.H., Taylor, R.K., 1996. Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is
907 required for colonization by *Vibrio cholerae* O1 El Tor biotype and O139 strains. Infect. Immun. 64, 2853–
908 2856.

909 Tsou, A.M., Liu, Z., Cai, T., Zhu, J., 2011. The VarS/VarA two-component system modulates the activity of
910 the *Vibrio cholerae* quorum-sensing transcriptional regulator HapR. Microbiology 157, 1620–1628.
911 <https://doi.org/10.1099/mic.0.046235-0>

912 Turnbull, L., Toyofuku, M., Hynen, A.L., Kurosawa, M., Pessi, G., Petty, N.K., Osvath, S.R., Cárcamo-Oyarce,
913 G., Gloag, E.S., Shimoni, R., et al., 2016. Explosive cell lysis as a mechanism for the biogenesis of bacterial
914 membrane vesicles and biofilms. Nat Commun 7, 11220. <https://doi.org/10.1038/ncomms11220>

915 Watnick, P.I., Fullner, K.J., Kolter, R., 1999. A role for the mannose-sensitive hemagglutinin in biofilm
916 formation by *Vibrio cholerae* El Tor. J. Bacteriol. 181, 3606–3609.

917 Wiles, T.J., Jemielita, M., Baker, R.P., Schlomann, B.H., Logan, S.L., Ganz, J., Melancon, E., Eisen, J.S.,
918 Guillemin, K., Parthasarathy, R., 2016. Host Gut Motility Promotes Competitive Exclusion within a Model
919 Intestinal Microbiota. PLOS Biology 14, e1002517. <https://doi.org/10.1371/journal.pbio.1002517>

920 Yan, J., Sharo, A.G., Stone, H.A., Wingreen, N.S., Bassler, B.L., 2016. *Vibrio cholerae* biofilm growth
921 program and architecture revealed by single-cell live imaging. PNAS 113, E5337–5343.
922 <https://doi.org/10.1073/pnas.1611494113>

923 Yang, M., Frey, E.M., Liu, Z., Bishar, R., Zhu, J., 2010. The Virulence Transcriptional Activator AphA
924 Enhances Biofilm Formation by *Vibrio cholerae* by Activating Expression of the Biofilm Regulator VpsT.
925 Infect Immun 78, 697–703. <https://doi.org/10.1128/IAI.00429-09>

926 Yawata, Y., Cordero, O.X., Menolascina, F., Hehemann, J.-H., Polz, M.F., Stocker, R., 2014. Competition–
927 dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations.
928 PNAS 111, 5622–5627. <https://doi.org/10.1073/pnas.1318943111>

929 Yildiz, F.H., Dolganov, N.A., Schoolnik, G.K., 2001. VpsR, a Member of the Response Regulators of the Two-
930 Component Regulatory Systems, Is Required for Expression of vps Biosynthesis Genes and EPSETr-
931 Associated Phenotypes in *Vibrio cholerae* O1 El Tor. J. Bacteriol. 183, 1716–1726.
932 <https://doi.org/10.1128/JB.183.5.1716-1726.2001>

933 Zhu, J., Mekalanos, J.J., 2003. Quorum sensing-dependent biofilms enhance colonization in *Vibrio*
934 *cholerae*. Dev. Cell 5, 647–656.

935 Zhu, J., Miller, M.B., Vance, R.E., Dziejman, M., Bassler, B.L., Mekalanos, J.J., 2002. Quorum-sensing
936 regulators control virulence gene expression in *Vibrio cholerae*. PNAS 99, 3129–3134.
937 <https://doi.org/10.1073/pnas.052694299>

938 **TABLES**939 **Table 1: Genes that contribute to aggregation in *V. cholerae***

Gene locus	Annotation	<i>hapR</i> merodiploid/haploid
<i>vc0092</i>	LexA transcriptional repressor (<i>lexA</i>)	Merodiploid
<i>vc0175</i>	Deoxycytidylate deaminase-like protein, putative	Merodiploid
<i>vc0487</i>	Glucosamine-fructose-6-phosphate aminotransferase (<i>glmS</i>)	Merodiploid
<i>vc0576</i>	Stringent starvation protein A (<i>sspA</i>)	Merodiploid
<i>vc0647</i>	Polyribonucleotide nucleotidyltransferase (<i>pnp</i>)	Both
<i>vc1836</i>	Translocation protein (<i>tolB</i>)	Haploid
<i>vc1904</i>	Leucine-responsive transcriptional regulator (<i>lrpA</i>)	Merodiploid
<i>vc2091-vc2087</i>	Succinate and 2-oxoglutarate dehydrogenases (TCA cycle) (<i>sdhC</i> , <i>sdhD</i> , <i>sdhA</i> , <i>sdhB</i> , and <i>sucA</i>)	Both
<i>vc2200-vc2198</i>	Flagellar basal-body rod proteins (<i>flgBCD</i>)	Both
<i>vc2453</i>	Hybrid sensor histidine kinase VarS (<i>varS</i>)	Merodiploid
<i>vc2562</i>	2'3'cyclic phosphodiesterase (<i>cpdB</i>)	Haploid

940

941

942 **FIGURE CAPTIONS**

943 **Figure 1: Simplified *V. cholerae* quorum-sensing circuit**

944 The *V. cholerae* quorum sensing (QS) circuit. (A) At LCD, when autoinducer concentration is low, the
945 transmembrane receptors CqsS (green) and LuxPQ (blue) act as kinases and funnel phosphate to LuxO
946 through the intermediary protein LuxU. Phospho-LuxO activates transcription of genes encoding
947 regulatory RNAs called the Qrr sRNAs. The Qrr sRNAs activate translation of AphA and repress translation
948 of HapR. This condition promotes the LCD QS program, which includes expression of genes encoding
949 virulence factors and surface-biofilm formation. (B) At HCD, when autoinducers have accumulated, CAI-1
950 (green squares) and AI-2 (blue circles) bind to their respective cognate receptors, CqsS and LuxPQ.
951 Autoinducer binding converts the receptors into phosphatases that dephosphorylate and inactivate LuxO.
952 Therefore, the Qrr sRNAs are not produced. In the absence of the Qrr sRNAs, AphA translation is not
953 activated and HapR translation is not repressed. HapR represses the surface-biofilm and virulence
954 programs. HapR activates the aggregation process that occurs in liquid. Two other QS receptors, VpsS and
955 CqsR (both depicted in gray), with unknown ligands, also transduce QS information through LuxU.

956 **Figure 2: QS controls rapid, VpsL-independent aggregation of *V. cholerae* in liquid**

957 Aggregate formation of the LCD-locked (A), HCD-locked (B), and wild-type (WT) (C) *V. cholerae* strains
958 after 22 h of growth. Shown are representative cross-sections through samples. (A-C) The approximate
959 extents of individual aggregates are indicated with white outlines. Magnification: 63X, Scale bar: 50 μ M.
960 (D) Quantitation of total volume fraction, the total volume of the imaged region that is occupied by
961 aggregates (Material and Methods) within the imaged region for $\Delta vpsL$ LCD-locked, $\Delta vpsL$ HCD-locked,
962 and $\Delta vpsL$ WT strains after 22 h of growth. Representative cross-sections through the $\Delta vpsL$ LCD-locked
963 (E-H), $\Delta vpsL$ HCD-locked (I-L), and $\Delta vpsL$ WT (M-P) *V. cholerae* strains at 16, 19, 22, and 25 h. (E-P)
964 Magnification: 10X, Scale bar: 250 μ m. (Q) Quantitation of aggregate volume fraction. The data for T = 22

965 h are the same as those shown in Figure 2D. Triangle: $\Delta vpsL$ LCD-locked, circle: $\Delta vpsL$ HCD-locked, and
966 diamond: $\Delta vpsL$ WT. (R) Average cluster volume over time for the $\Delta vpsL$ HCD-locked (circle) and $\Delta vpsL$ WT
967 (diamond) strains. (D,Q,R) Quantitation of mean \pm SD (standard deviation), N=3 biological replicates.
968 Mean and SD were calculated using the untransformed data, not the log-transformed data, which results
969 in asymmetric error bars. All strains in all panels harbor the fluorescent *mKO* reporter constitutively
970 expressed from the chromosome.

971 **Figure 3: Exogenous autoinducers drive *V. cholerae* aggregation and HapR is required**

972 Quantitation of aggregate volume fraction at 22 h for the $\Delta vpsL$ HCD-locked, $\Delta vpsL$ LCD-locked, CAI-1-
973 responsive (+/- CAI-1), and AI-2-responsive (+/- AI-2 and boric acid) *V. cholerae* strains (A). Autoinducers
974 or solvent controls were added at the time of inoculation. Concentrations used: CAI-1: 5 μ M, AI-2: 1 μ M,
975 and boric acid: 100 μ M. (B) Quantitation of aggregate volume fraction (black bars) and bioluminescence
976 (gray bars) at 22 h for the CAI-1-responsive strain to which CAI-1 was added at T = 0 h and from 3-8 h at 1
977 h intervals. Also shown is bioluminescence quantified in a CAI-1-responsive strain harboring the cosmid
978 pBB1 which carries the *luxCDABE* genes. RLU denotes relative lights units, defined as counts/min mL⁻¹ per
979 OD₆₀₀. In (A,B), aggregate volume fraction was quantified in a strain harboring *mKO* constitutively
980 expressed from the chromosome; quantitation of mean \pm SD, N=3 biological replicates. Representative
981 cross-sections of the $\Delta vpsL$ HCD-locked (C), $\Delta vpsL$ $\Delta aphaA$ HCD-locked (D), $\Delta vpsL$ $\Delta hapR$ HCD-locked (E),
982 $\Delta vpsL$ $\Delta aphaA$ $\Delta hapR$ HCD-locked (F), $\Delta vpsL$ LCD-locked (G), $\Delta vpsL$ $\Delta aphaA$ LCD-locked (H), $\Delta vpsL$ $\Delta hapR$ LCD-
983 locked (I), and $\Delta vpsL$ $\Delta aphaA$ $\Delta hapR$ LCD-locked (J) *V. cholerae* strains following 22 h of growth. (C-J)
984 Magnification: 10X, Scale bar: 250 μ m. All strains harbor *mKO* constitutively expressed from the
985 chromosome. (K) Quantitation of aggregate volume fraction for samples in C-J. Shown are mean \pm SD, N=3
986 biological replicates. The $\Delta vpsL$ $\Delta aphaA$ LCD-locked strain appears to exhibit modest aggregation (panel H),

987 possibly due to AphA repression of *hapR* transcription (Rutherford et al., 2011), but the level of
988 aggregation is below the detection threshold employed in the segmenting analysis (panel K).

989 **Figure 4: Extracellular DNA contributes to *V. cholerae* aggregation**

990 Quantitation of aggregate volume fraction over time. Circle: $\Delta vpsL$ HCD-locked, triangle: $\Delta vpsL$ LCD-
991 locked, diamond: $\Delta vpsL \Delta xds \Delta dns$ HCD-locked, and square: $\Delta vpsL \Delta xds \Delta dns$ LCD-locked (A).
992 Representative cross-sections of the $\Delta vpsL$ HCD-locked (B), $\Delta vpsL$ LCD-locked (C), $\Delta vpsL \Delta xds \Delta dns$ HCD-
993 locked (D), $\Delta vpsL \Delta xds \Delta dns$ LCD-locked (E) *V. cholerae* strains following 22 h of growth. Magnification:
994 10X, Scale bar: 250 μ m. (F) Average aggregate cross-sectional area at T = 22 h for the $\Delta vpsL$ HCD-locked
995 and $\Delta vpsL \Delta xds \Delta dns$ HCD-locked strains. Statistical significance was determined with a two-sample
996 Kolmogorov-Smirnov test on pooled data (***= p<0.0005). (A-F) All strains harbor *mKO* constitutively
997 expressed from the chromosome. (G) Quantitation of total bulk eDNA content in $\Delta vpsL$ HCD-locked, $\Delta vpsL$
998 LCD-locked, $\Delta vpsL \Delta xds \Delta dns$ HCD-locked, and $\Delta vpsL \Delta xds \Delta dns$ LCD-locked strains following 22 h of
999 growth. Statistical significance was determined with a two-sample t-test (*= p<0.05, ***= p<0.0005, ns =
1000 not significant). (H) Cross-section through a representative culture of the $\Delta vpsL$ HCD-locked strain (red) to
1001 which the eDNA stain TOTO-1 (cyan) was added following 22 h of growth. (I) Cross-section through a
1002 representative culture of the $\Delta vpsL \Delta xds \Delta dns$ HCD-locked strain (red) to which the eDNA stain TOTO-1
1003 (cyan) was added following 22 h of growth. In (H,I), white arrows indicate regions of eDNA. Strains harbor
1004 *mKate2* constitutively expressed from the chromosome. Magnification: 63X, Scale bar: 25 μ m. Samples
1005 are representative of 3 biological replicates. (A,F,G) Quantitation of mean \pm SD, N=3 biological replicates.

1006 **Figure 5: Genes required for *V. cholerae* aggregation**

1007 Representative $\Delta vpsL$ HCD-locked (A, opaque), $\Delta vpsL$ LCD-locked (B, translucent), and $\Delta vpsL \Delta hapR$ HCD-
1008 locked (C, translucent) colonies grown on LB agar plates at 37°C for 24 h. (A-C) Scale bar: 5 mm. (D)
1009 Quantitation of aggregate volume fraction for $\Delta vpsL$ HCD-locked, $\Delta vpsL$ LCD-locked, and $\Delta vpsL$ HCD-locked

1010 strains carrying deletions in each of the genes identified in the screen (Table 1). Samples were stained
1011 with the nucleic acid stain SYTO-9. Quantitation of mean \pm SD, N \geq 3 biological replicates after 22 h of
1012 growth.

1013 **Figure 2-figure supplement 1: *V. cholerae* aggregates form in liquid**

1014 Aggregate formation in 24-well uncoated plates or in plates coated with a hydrogel layer that reduces cell
1015 attachment (designated Low-attachment). (A,B) $\Delta vpsL$ HCD-locked, (C,D) $\Delta vpsL$ LCD-locked, and (E,F) the
1016 *vpscW240R* hyper biofilm-former. (C,D) We note that $\Delta vpsL$ LCD-locked strains produce 'voids', which are
1017 regions containing few cells; we do not understand the underlying mechanism giving rise to these
1018 features. (A-D) Images taken of cells in liquid medium. (E,F) Images taken at the surface of the plate. (A-
1019 F) All strains harbor *mKO* constitutively expressed from the chromosome and are representative of 3
1020 biological replicates. Magnification: 10X, Scale bar: 250 μ M.

1021 **Figure 2-figure supplement 2: *V. cholerae* forms distinct aggregates**

1022 Representative cross-section following 22 h of growth of aggregates formed in liquid by the $\Delta vpsL$ HCD-
1023 locked *V. cholerae* strain that constitutively expresses fluorescent *mKO*, *mKate2*, or *mTFP1*. Strains were
1024 independently grown for 22 h until aggregates formed. Aggregates from each culture were mixed for 60
1025 s and then imaged. The cells carrying the different fluorescent reporters do not mix, but rather, form
1026 distinct aggregates. Magnification: 10X, Scale bar: 250 μ M.

1027 **Figure 2-figure supplement 3: Known Ca^{2+} -related genes do not contribute to *V. cholerae* aggregation**

1028 Quantitation of aggregate formation following 22 h of growth of the $\Delta vpsL$ HCD-locked, $\Delta vpsL$ LCD-locked,
1029 $\Delta vpsL$ $\Delta vpsN$ HCD-locked, $\Delta vpsL$ $\Delta asnB$ HCD-locked, and $\Delta vpsL$ $\Delta carR$ HCD-locked strains. Homologs of
1030 *VpsN* and *AsnB* (*WbfF* and *WbfR*, respectively) contribute to O-antigen and capsule synthesis, respectively,
1031 and therefore, respectively, promote and repress Ca^{2+} -dependent biofilm formation in *V. cholerae* O139

1032 (Kierek and Watnick, 2003a). CarR is the response regulator of the *V. cholerae* CarRS two-component
1033 system that responds to extracellular Ca^{2+} (Bilecen and Yildiz, 2009). Error bars are mean \pm SD (N=3
1034 biological replicates). All strains harbor *mKO* constitutively expressed from the chromosome.

1035 **Figure 2-figure supplement 4: Known pili genes do not contribute to *V. cholerae* aggregation**

1036 Quantitation of total aggregate volume fraction following 22 h of growth of the $\Delta vpsL$ HCD-locked, $\Delta vpsL$
1037 LCD-locked, $\Delta vpsL \Delta tcpA$ HCD-locked, $\Delta vpsL \Delta pilA$ HCD-locked, and $\Delta vpsL \Delta mshA$ HCD-locked *V. cholerae*
1038 strains. *tcpA*, *pilA*, and *mshA*, respectively, encode structural components of the toxin co-regulated (TCP),
1039 the chitin-regulated (ChiRP) pilus, and the mannose-sensitive haemagglutinin (MSHA). Error bars are
1040 mean \pm SD (N=3 biological replicates). All strains harbor *mKO* constitutively expressed from the
1041 chromosome.

1042 **Figure 2-figure supplement 5: WT and $\Delta vpsL$ strains display similar kinetics**

1043 Aggregate formation in WT *V. cholerae* at 16, 19, 22, and 25 h (A-D). Images are representative cross-
1044 sections of 3 biological replicates. Magnification: 10X, Scale bar: 250 μm . Strain harbors *mKO*
1045 constitutively expressed from the chromosome.

1046 **Figure 2-figure supplement 6: *V. cholerae* aggregate formation is rapid**

1047 Quantitation of total aggregate volume fraction in a $\Delta vpsL$ HCD-locked *V. cholerae* strain harboring *mKO*
1048 constitutively expressed from the chromosome. Three biological replicates were sampled every 30
1049 minutes from 19 h to 21 h. Error bars are mean \pm SD (N=2-3 technical replicates).

1050 **Figure 2-figure supplement 7: *V. cholerae* aggregate formation is non-clonal**

1051 Image of a representative cross-section through a *V. cholerae* aggregate following 22 h of growth. The
1052 white outline shows the approximate extent of the aggregate. The culture was inoculated at T = 0 h with

1053 a roughly equal mixture of the $\Delta vpsL$ HCD-locked strain constitutively expressing either *mTFP1* or *mKate2*
1054 from the chromosome. Magnification: 63X, Scale bar: 25 μ M.

1055 **Figure 3-figure supplement 1: Autoinducer supplementation drives *V. cholerae* aggregation via the**
1056 **cognate QS receptor**

1057 Quantitation of aggregate volume fraction at 22 h following inoculation of $\Delta vpsL$ HCD-locked, $\Delta vpsL$ LCD-
1058 locked, CAI-1-responsive, AI-2-responsive strains. Nothing was added to the parent control strains and
1059 CAI-1 (5 μ M), AI-2 (1 μ M, along with 100 μ M boric acid), or DMSO solvent was added at T = 0 h to both
1060 the CAI-1-responsive and AI-2-responsive strains. All strains harbor *mKO* constitutively expressed from
1061 the chromosome. All error bars are mean \pm SD (N=3 biological replicates).

1062 **Figure 3-figure supplement 2: Autoinducer supplementation drives *V. cholerae* aggregation in the**
1063 **presence of *vpsL*, *cqsR*, and *vpsS***

1064 Quantitation of aggregate size distribution for HCD-locked, LCD-locked, and $\Delta cqsA \Delta luxS$ *V. cholerae*
1065 strains supplemented with both CAI-1 (5 μ M) and AI-2 (1 μ M and 100 μ M boric acid), or DMSO as
1066 designated. All strains have the *vpsL*, *vpsS*, and *cqsR* genes present. LCD-locked and $\Delta cqsA \Delta luxS$ (without
1067 autoinducers) strains were quantified with a 63X water immersion objective, while HCD-locked and $\Delta cqsA$
1068 $\Delta luxS$ (with autoinducers) strains were quantified with a 10X air objective. All strains harbor *mKO*
1069 constitutively expressed from the chromosome. All error bars are mean \pm SD (N=3 biological replicates).

1070 **Figure 3-figure supplement 3: Late-time autoinducer supplementation does not delay the onset of**
1071 **aggregation**

1072 Quantitation of aggregate volume fraction at 46 h (samples are the same as in main text Figure 3B, grown
1073 for an additional 24 h) of the CAI-1-responsive strain to which CAI-1 was added at T = 0 h and from 3-8 h

1074 at 1 h intervals. All strains harbor *mKO* constitutively expressed from the chromosome. All error bars are
1075 mean \pm SD (N=3 biological replicates).

1076 **Figure 3-figure supplement 4: Complementation of *hapR* in aggregate formation**

1077 Quantitation of aggregate volume fraction at 22 h for $\Delta vpsL$ HCD-locked, $\Delta vpsL \Delta hapR$ HCD-locked, $\Delta vpsL$
1078 $\Delta hapR lacZ:P_{hapR}-hapR$ HCD-locked strains. All error bars are mean \pm SD (N=3 biological replicates).

1079 **Figure 4-figure supplement 1: *V. cholerae* aggregate size is controlled by both *Xds* and *Dns***

1080 (A) Quantitation of aggregate volume fraction at 22 h following inoculation of $\Delta vpsL$ HCD-locked, $\Delta vpsL$
1081 LCD-locked, $\Delta vpsL \Delta xds \Delta dns$ HCD-locked, $\Delta vpsL \Delta dns$ HCD-locked, $\Delta vpsL \Delta xds$ HCD-locked, $\Delta vpsL \Delta xds$
1082 Δdns LCD-locked, $\Delta vpsL \Delta dns$ LCD-locked, and $\Delta vpsL \Delta xds$ LCD-locked strains. (B) Quantitation of average
1083 aggregate cross-sectional area in $\Delta vpsL$ HCD-locked, $\Delta vpsL \Delta xds \Delta dns$ HCD-locked, $\Delta vpsL \Delta dns$ HCD-locked,
1084 and $\Delta vpsL \Delta xds$ HCD-locked strains at 22 h. $p < 0.005$ for comparison of pooled data from all conditions, as
1085 determined by a two-sample Kolmogorov-Smirnov test. In both panels, error bars are mean \pm SD (N=3
1086 biological replicates). All strains harbor *mKO* constitutively expressed from the chromosome. Estimates of
1087 average aggregate size in the $\Delta vpsL \Delta xds \Delta dns$ HCD-locked strain are a lower bound that is the
1088 consequence of imaging a limited field of view.

1089 **Figure 4-figure supplement 2: Complementation of *dns* in aggregate formation**

1090 Quantification of average aggregate cross-sectional area at $T = 22$ h for $\Delta vpsL$ HCD-locked, $\Delta vpsL \Delta xds$
1091 Δdns HCD-locked, and $\Delta vpsL \Delta xds \Delta dns lacZ:P_{dns}-dns$ HCD-locked strains. Strains additionally carry *vc1807*:
1092 *Kan*^R which was used during strain construction. Samples were stained with the nucleic acid stain SYTO-9.
1093 Error bars are mean \pm SD (N=3 biological replicates). Statistical significance was determined with a two-
1094 sample Kolmogorov-Smirnov test on pooled data (**= $p < 0.005$, ***= $p < 0.0005$).

1095 **Figure 4-figure supplement 3: DNase I supplementation reduces aggregate size in the $\Delta vpsL$ Δxds Δdns**

1096 **HCD-locked strain**

1097 Quantification of average aggregate cross-sectional area at T = 40 h for $\Delta vpsL$ HCD-locked and $\Delta vpsL$ Δxds
1098 Δdns HCD-locked strains grown in the presence or absence of DNase I (100 KU/ml). DNase I added at T =
1099 0 h. All error bars are mean \pm SD (N=3 biological replicates). All strains harbor *mKO* constitutively
1100 expressed from the chromosome. p<0.0005 for comparison of pooled data from all conditions, as
1101 determined by a two-sample Kolmogorov-Smirnov test.

1102 **Supplementary Movie 1: $\Delta vpsL$ HCD-locked *V. cholerae* aggregates**

1103 z-scan through a representative sample of aggregates formed by a $\Delta vpsL$ HCD-locked strain at T = 22 h.
1104 Data are the same as shown in Figure 2K. Magnification: 10X, Scale bar: 250 μ m. Strain harbors *mKO*
1105 constitutively expressed from the chromosome.

1106 **Supplementary Movie 2: eDNA in the $\Delta vpsL$ HCD-locked *V. cholerae* aggregate**

1107 z-scan through a representative aggregate of the $\Delta vpsL$ HCD-locked strain (red) to which the eDNA stain
1108 TOTO-1 (cyan) was added following 22 h of growth. The strain harbors *mKate2* constitutively expressed
1109 from the chromosome. Magnification: 63X, Scale bar: 25 μ m. Contrast independently adjusted in
1110 Supplementary Movies 2 and 3 to highlight different eDNA features.

1111 **Supplementary Movie 3: eDNA in the $\Delta vpsL$ Δxds Δdns HCD-locked *V. cholerae* aggregate**

1112 z-scan through a representative aggregate of the $\Delta vpsL$ Δxds Δdns HCD-locked strain (red) to which the
1113 eDNA stain TOTO-1 (cyan) was added following 22 h of growth. The strain harbors *mKate2* constitutively
1114 expressed from the chromosome. Magnification: 63X, Scale bar: 25 μ m. Contrast independently adjusted
1115 in Supplementary Movies 2 and 3 to highlight different eDNA features.

1116

1117 **FIGURE SUPPLEMENTS**

1118 • Figure 2-figure supplement 1: *V. cholerae* aggregates form in liquid

1119 • Figure 2-figure supplement 2: *V. cholerae* forms distinct aggregates

1120 • Figure 2-figure supplement 3: Known Ca^{2+} -related genes do not contribute to *V. cholerae*
1121 aggregation

1122 • Figure 2-figure supplement 4: Known pili genes do not contribute to *V. cholerae* aggregation

1123 • Figure 2-figure supplement 5: WT and $\Delta vpsL$ strains display similar kinetics

1124 • Figure 2-figure supplement 6: *V. cholerae* aggregate formation is rapid

1125 • Figure 2-figure supplement 7: *V. cholerae* aggregate formation is non-clonal

1126 • Figure 3-figure supplement 1: Autoinducer supplementation drives *V. cholerae* aggregation via
1127 the cognate QS receptor

1128 • Figure 3-figure supplement 2: Autoinducer supplementation drives *V. cholerae* aggregation in
1129 the presence of *vpsL*, *cqsR*, and *vpsS*

1130 • Figure 3-figure supplement 3: Late-time autoinducer supplementation does not delay the onset
1131 of aggregation

1132 • Figure 3-figure supplement 4: Complementation of *hapR* in aggregate formation

1133 • Figure 4-figure supplement 1: *V. cholerae* aggregate size is controlled by both Xds and Dns

1134 • Figure 4-figure supplement 2: Complementation of *dns* in aggregate formation

1135 • Figure 4-figure supplement 3: DNase I supplementation reduces aggregate size in the $\Delta vpsL \Delta xds$
1136 Δdns HCD-locked strain

1137

1138

1139 **SOURCE DATA FILES**

1140 • **Figure 2-Source Data 1**

1141 • **Figure 3-Source Data 1**

1142 • **Figure 4-Source Data 1**

1143 • **Figure 5-Source Data 1**

1144 • **Figure 2-figure supplement 3-Source Data 1**

1145 • **Figure 2-figure supplement 4-Source Data 1**

1146 • **Figure 2-figure supplement 6-Source Data 1**

1147 • **Figure 3-figure supplement 1-Source Data 1**

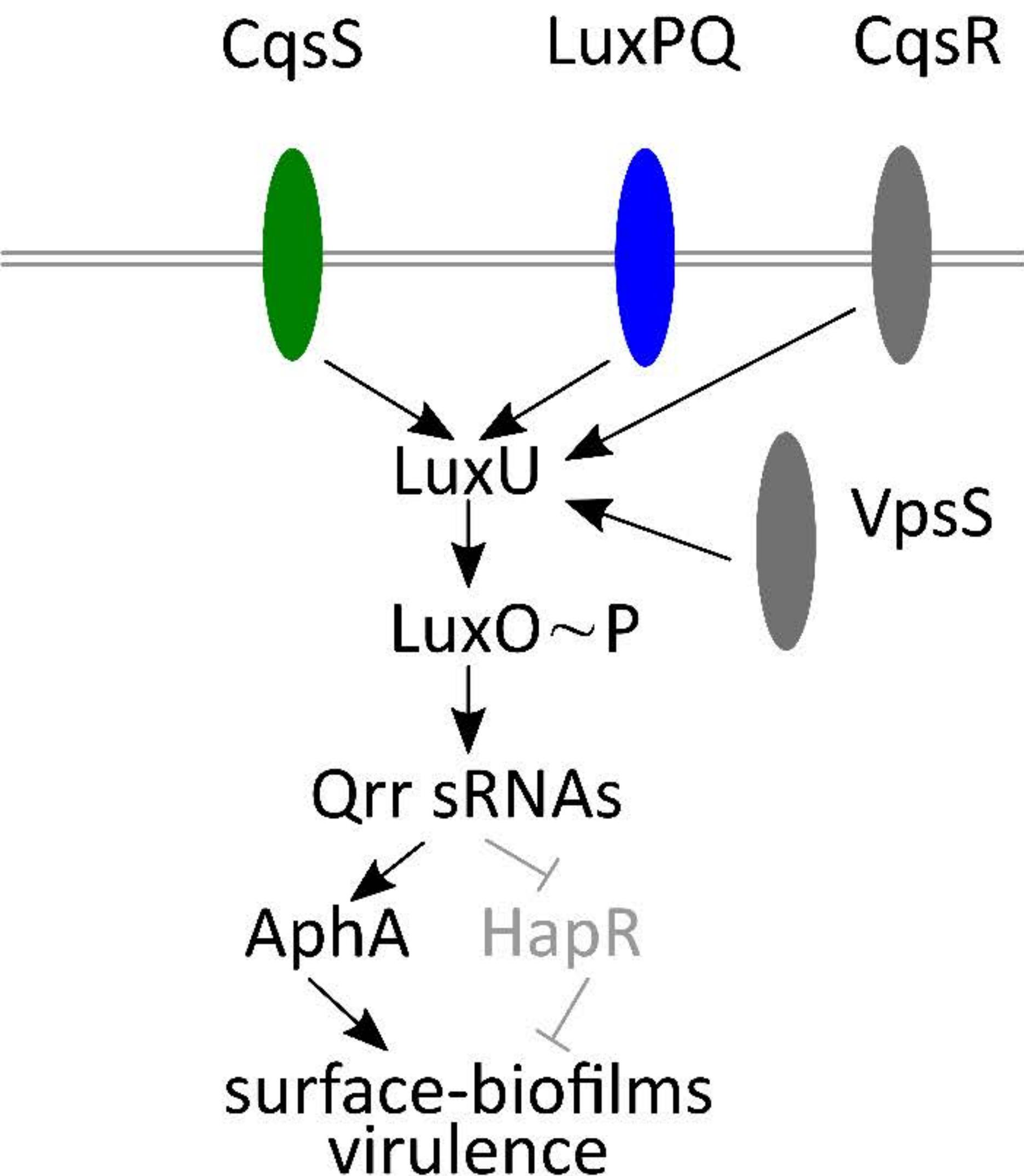
1148 • **Figure 3-figure supplement 2-Source Data 1**

1149 • **Figure 3-figure supplement 3-Source Data 1**

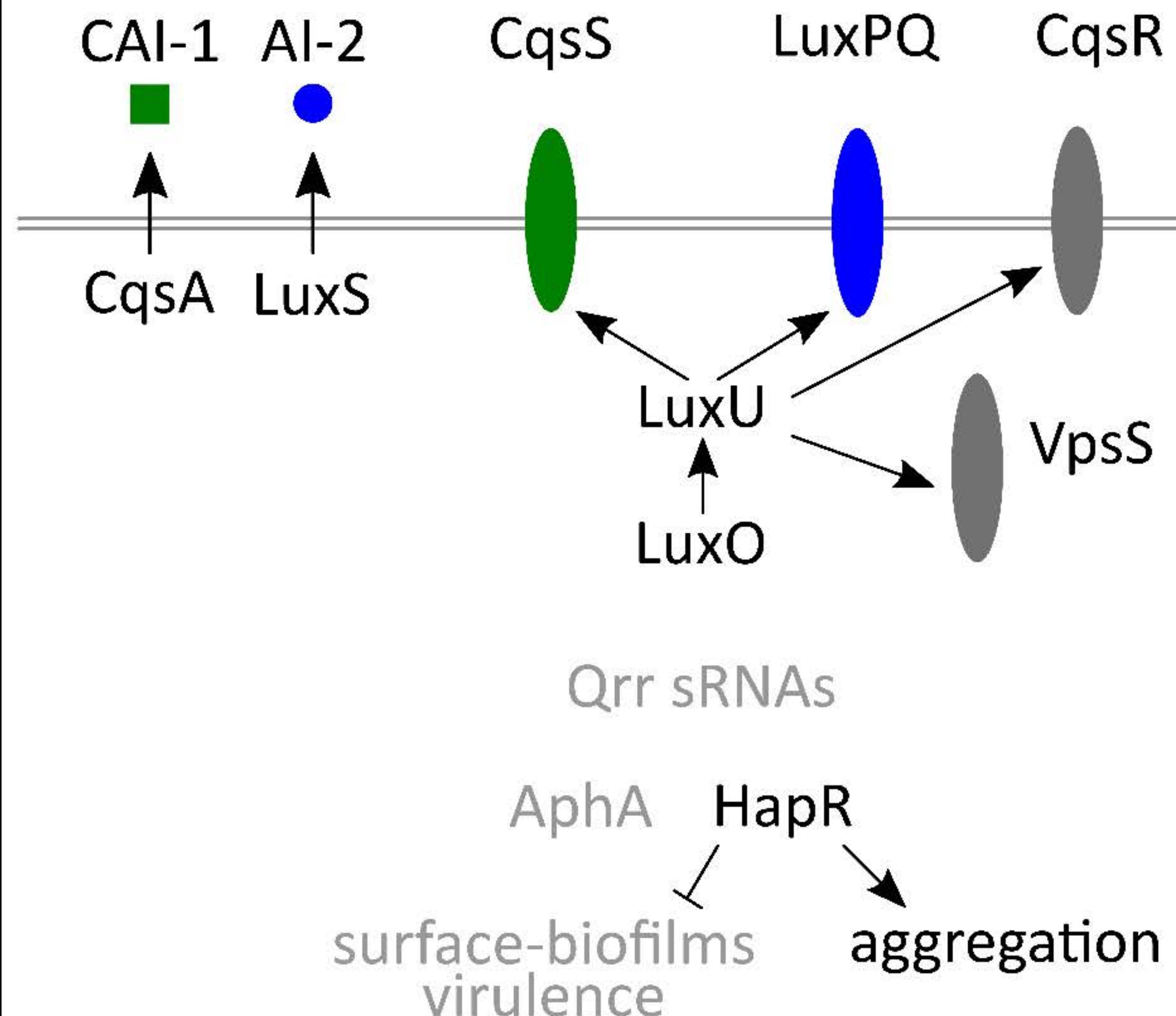
1150 • **Figure 3-figure supplement 4-Source Data 1**

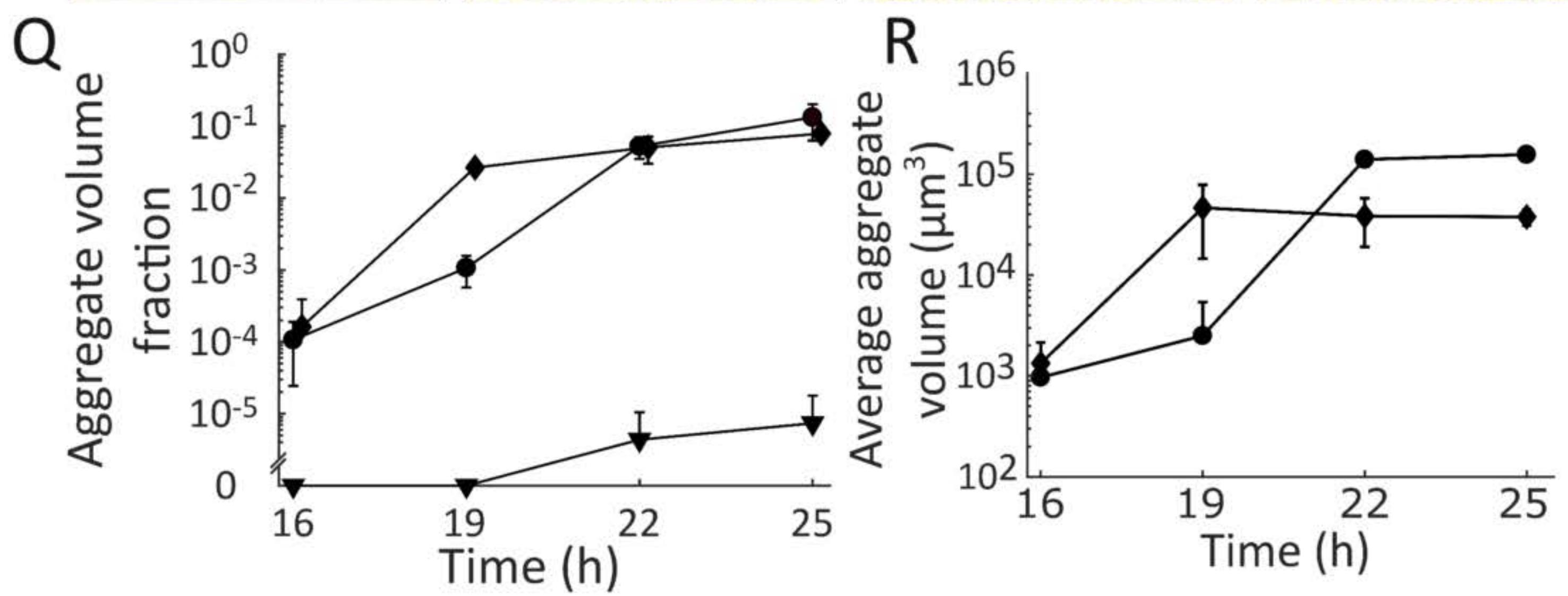
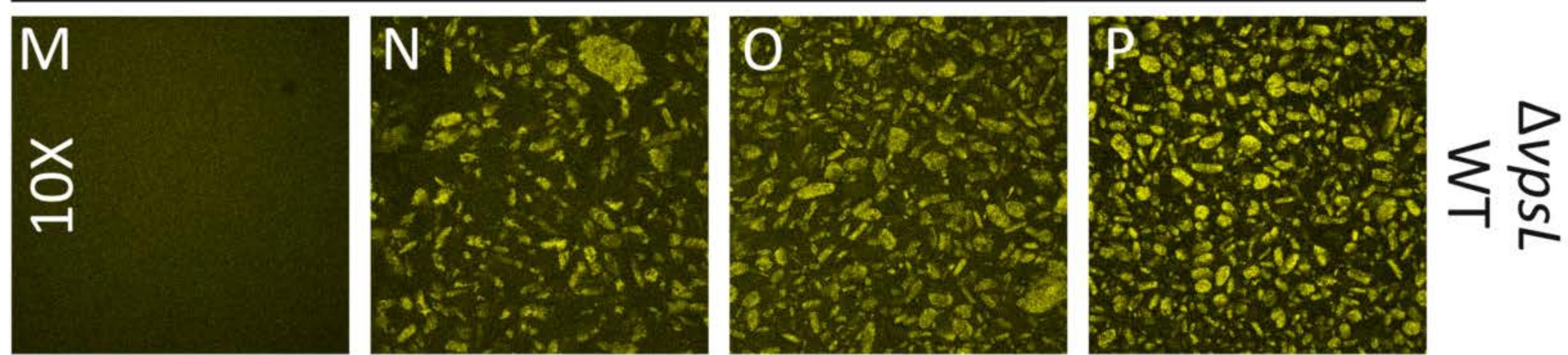
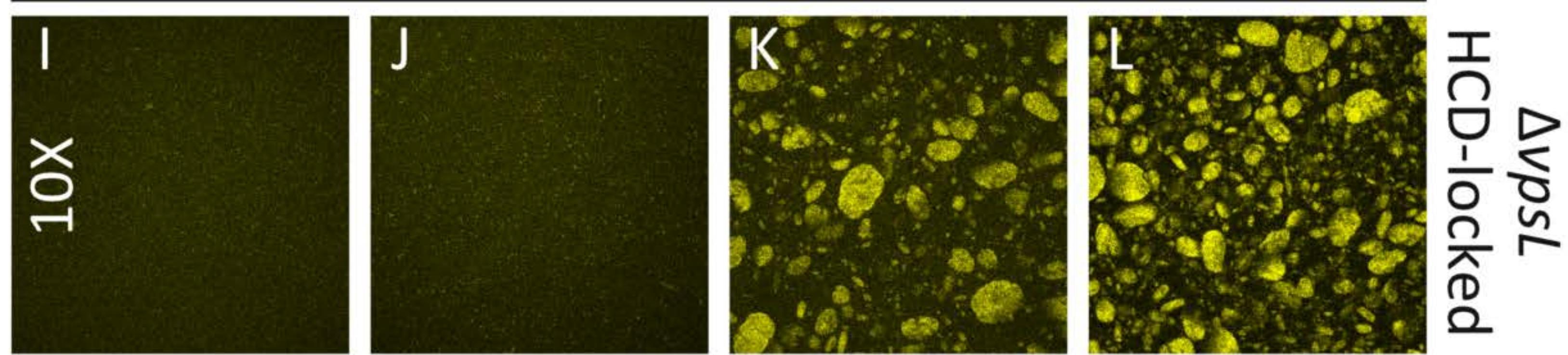
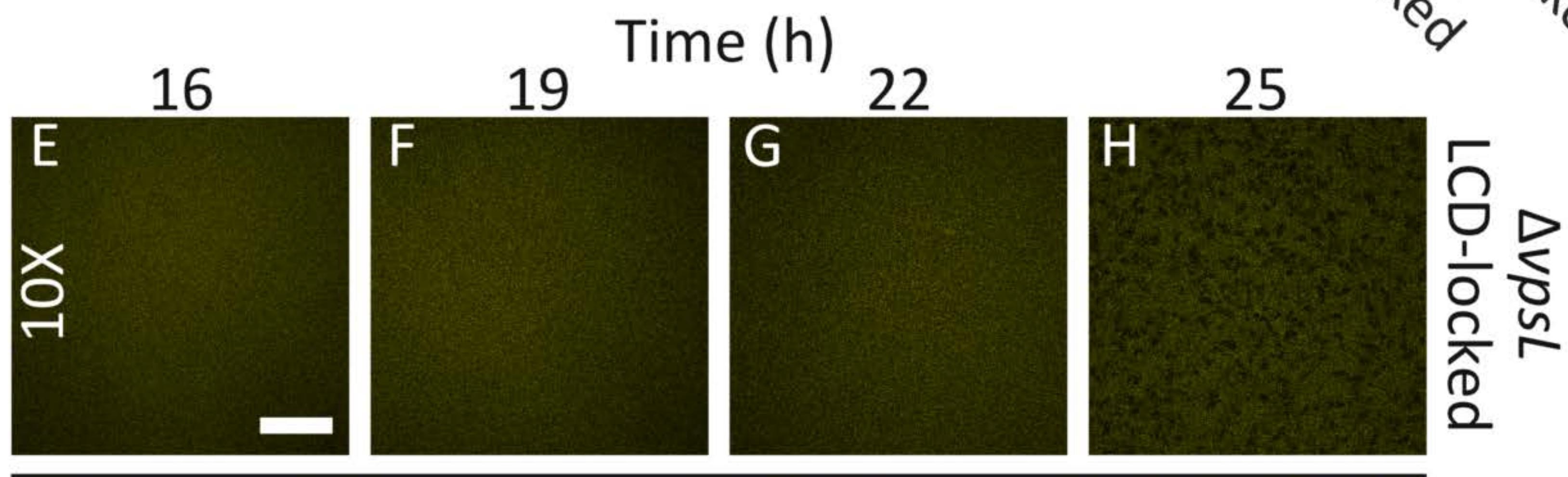
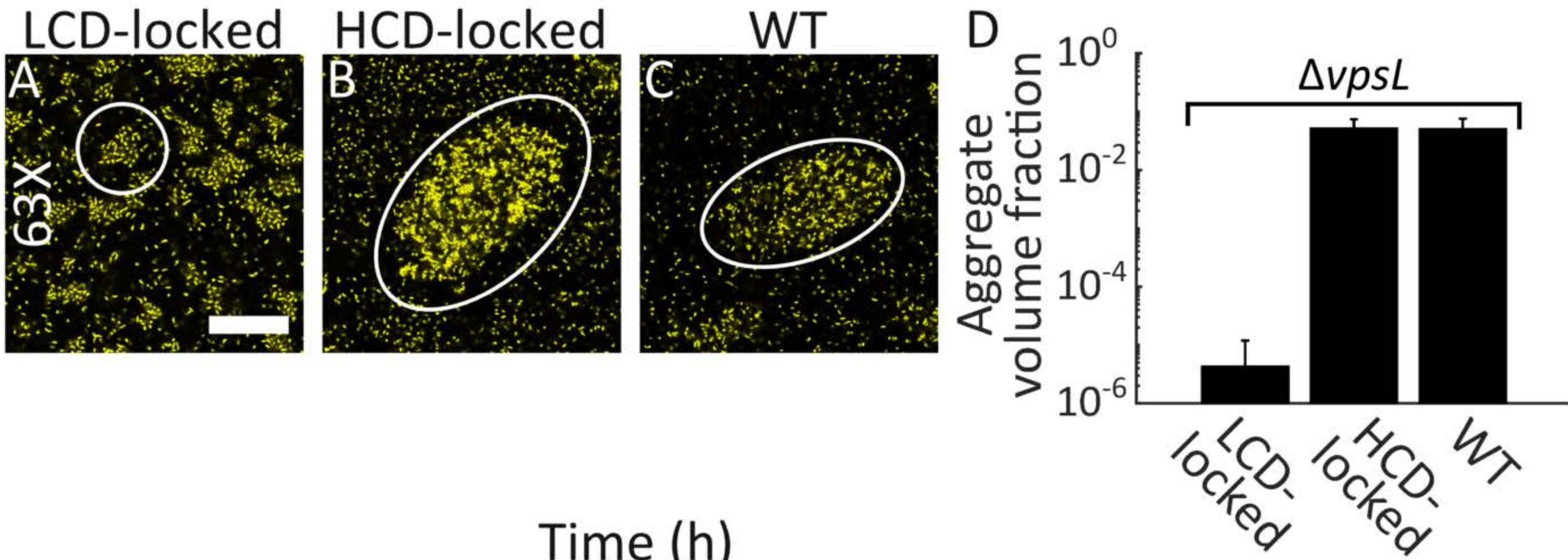
1151 • **Figure 4-figure supplement 1-Source Data 1**

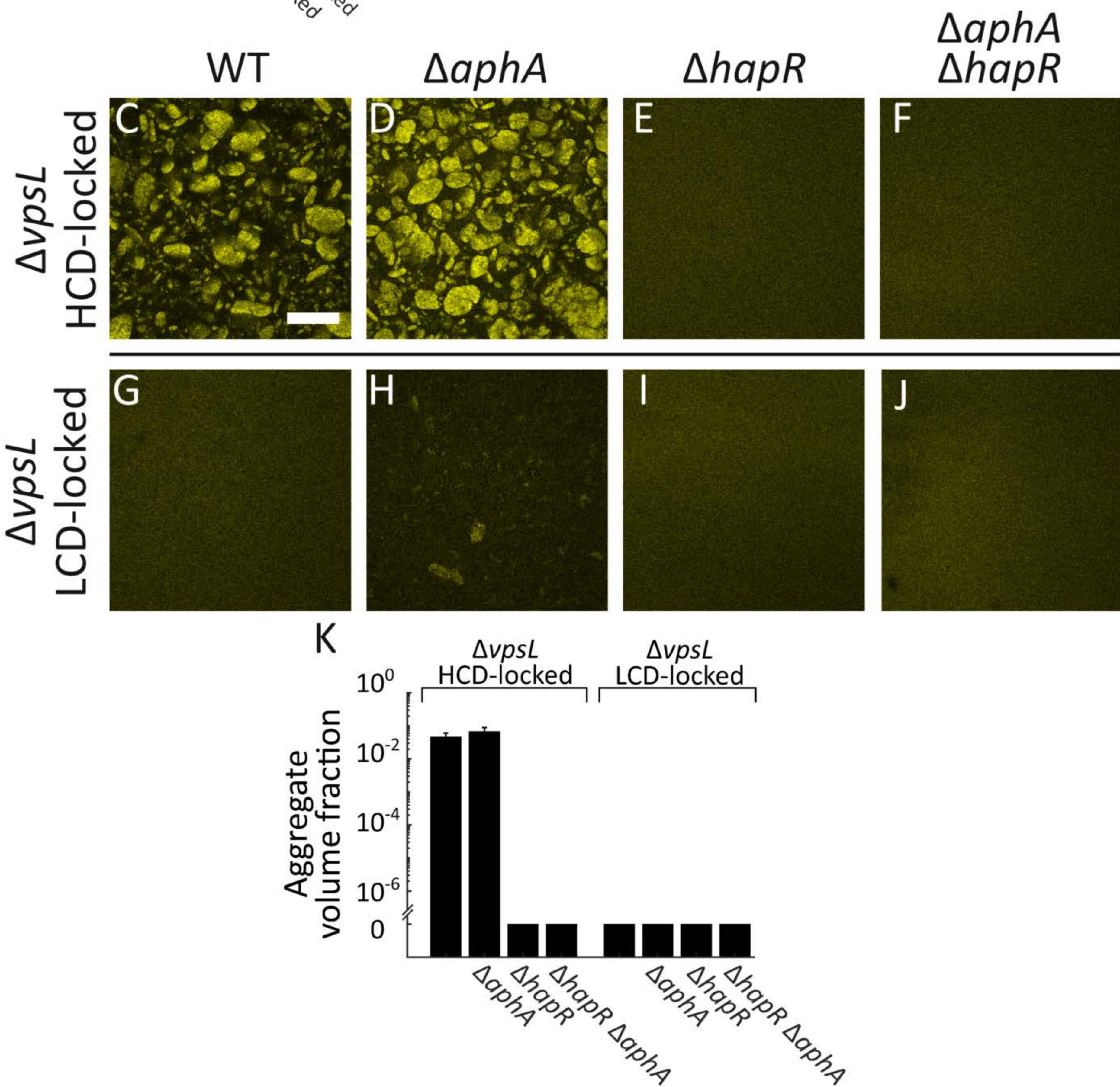
1152 • **Figure 4-figure supplement 2-Source Data 1**


1153 • **Figure 4-figure supplement 3-Source Data 1**

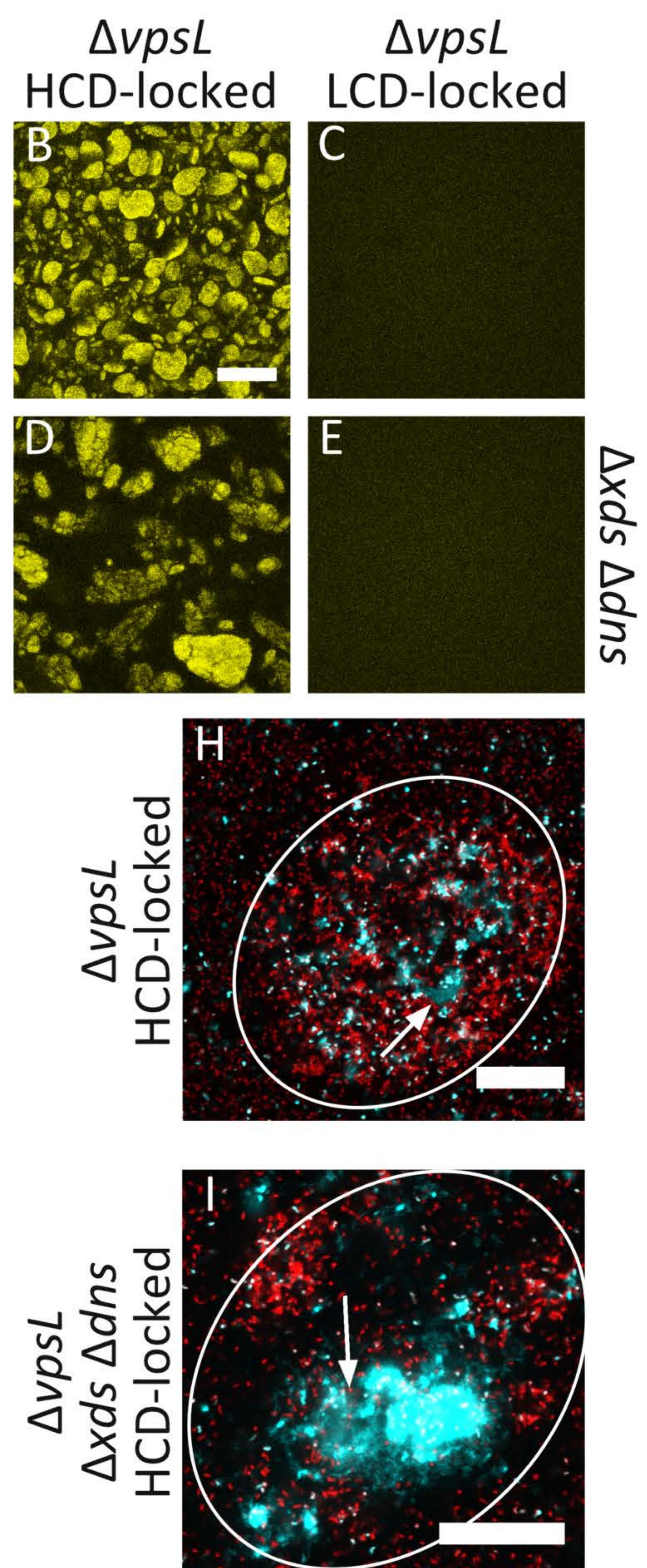
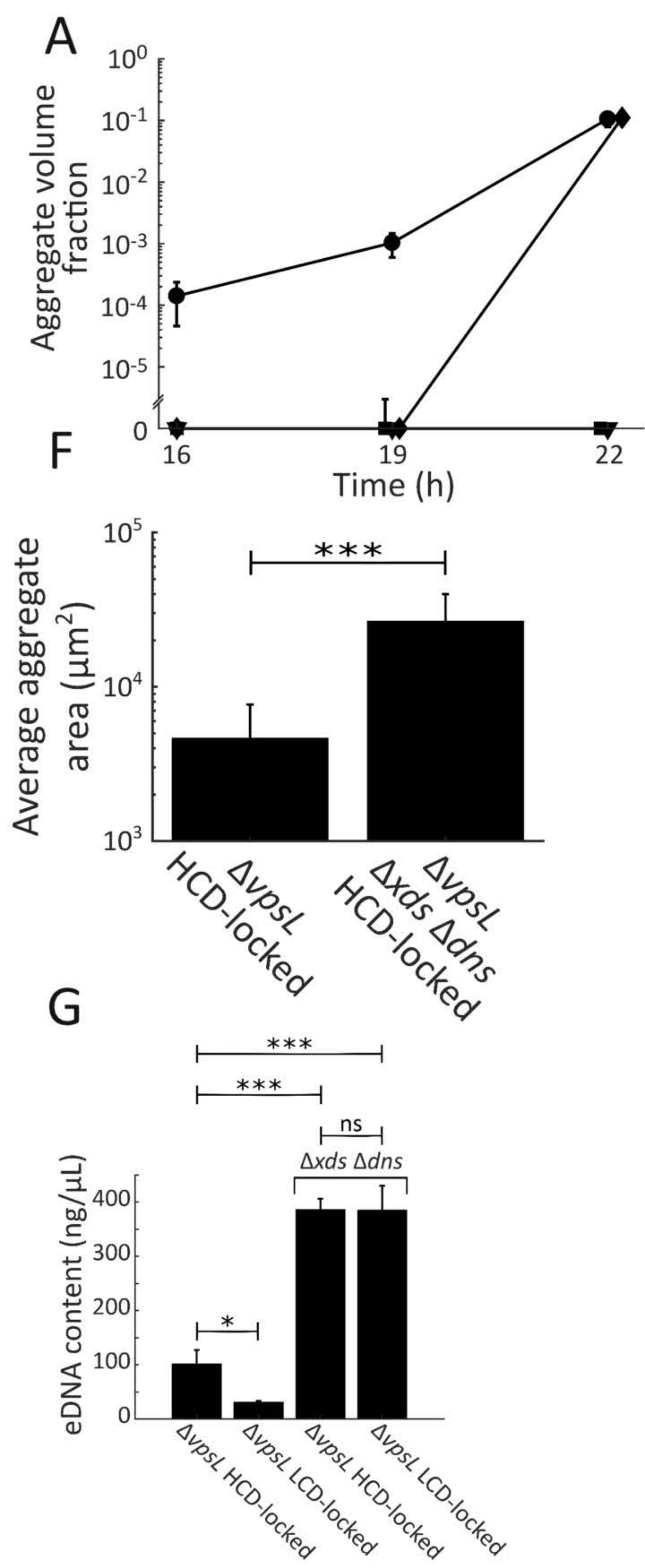
1154 **SUPPLEMENTARY FILES**

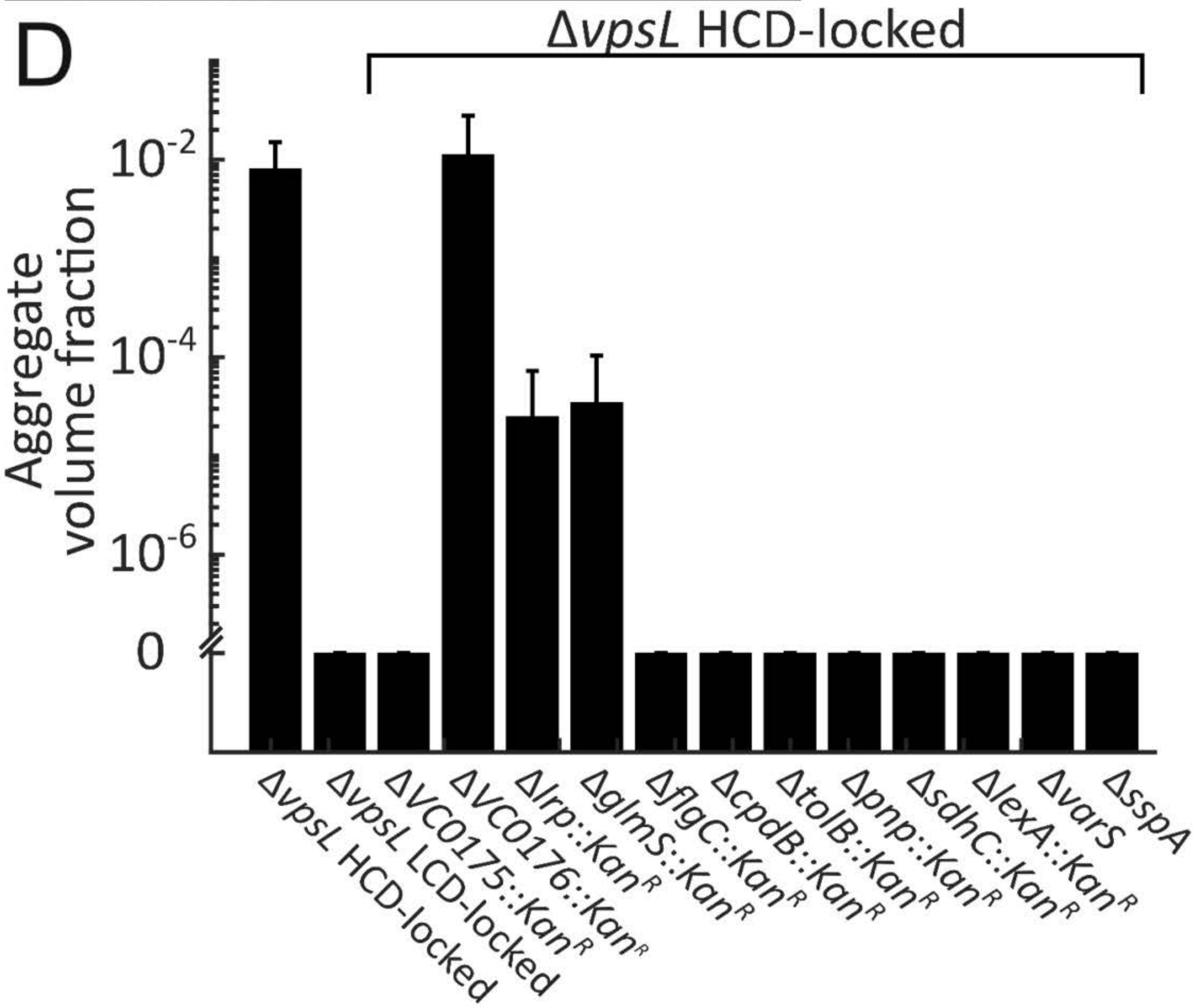
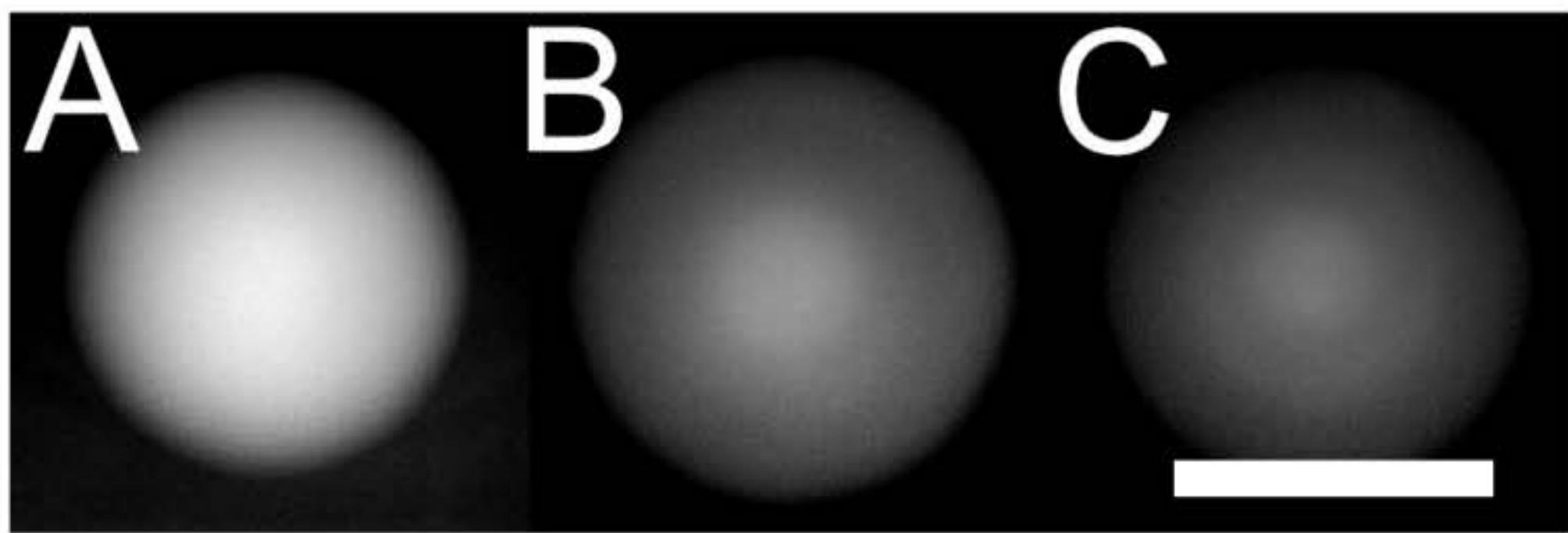

1155 • **Supplementary Table 1: Strain list**






1156 • **Supplementary Table 2: Plasmid list**



A Low cell density



B High cell density

