Computers and Geosciences 115 (2018) 88-95

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Research paper

SeisFlows—Flexible waveform inversion software N

Check for
updates

Ryan T. Modrak® , Dmitry Borisov?, Matthieu Lefebvre b Jeroen Tromp >¢

2 Princeton University, Department of Geosciences, United States
Y princeton University, Institute for Computational Science and Engineering, United States
¢ Princeton University, Program in Applied and Computational Mathematics, United States

ARTICLE INFO ABSTRACT

SeisFlows is an open source Python package that provides a customizable waveform inversion workflow and
framework for research in oil and gas exploration, earthquake tomography, medical imaging, and other areas.
New methods can be rapidly prototyped in SeisFlows by inheriting from default inversion or migration classes,
and code can be tested on 2D examples before application to more expensive 3D problems. Wave simulations must
be performed using an external software package such as SPECFEM3D. The ability to interface with external
solvers lends flexibility, and the choice of SPECFEM3D as a default option provides optional GPU acceleration and
other useful capabilities. Through support for massively parallel solvers and interfaces for high-performance
computing (HPC) systems, inversions with thousands of seismic traces and billions of model parameters can be
performed. So far, SeisFlows has run on clusters managed by the Department of Defense, Chevron Corp., Total

Keywords:

Full-waveform inversion
High-performance computing
Seismology

Ultrasound

Exploration geophysics

S.A., Princeton University, and the University of Alaska, Fairbanks.

1. Introduction

Waveform inversion is a powerful and computationally expensive
method for estimating an object's material properties and imaging its
internal structure (Virieux and Optero, 2009; Burstedde and Ghattas,
2009). Whether applied to a human body, a hydrocarbon reservoir, or a
continental craton, careful integration of software components, including
wave-equation solvers, nonlinear optimization libraries, and signal pro-
cessing routines, is required.

Many waveform inversion packages are proprietary codes developed
by oil and gas companies. Usually, such software is not available to in-
dependent researchers.

Outside of industry, a number of open source waveform inversion
packages have been developed. MADAGASCAR, a widely-used explora-
tion geophysics package, provides a variety of capabilities, including
some waveform inversion functions (Fomel et al., 2012). SEISCOPE,
another widely used tool, provides FORTRAN 90 nonlinear optimization
routines rather than a complete inversion workflow (Métivier and
Brossier, 2016). Three more recent packages, PySIT, LASIF, and SimPEG
use Python for software integration and data processing tasks. PySIT
delivers powerful waveform inversion capabilities in a toolbox format
(Hewett and Demanet, 2013). LASIF provides a useful system for orga-
nizing and visualizing earthquake tomography results (Krischer et al.,

* Corresponding author.
E-mail address: rmodrak@princeton.edu (R.T. Modrak).

https://doi.org/10.1016/j.cageo.2018.02.004

2015a). SimPEG provides a broad framework for geophysical inversion
with accompanying simulation tools based on the finite volume method
(Cockett et al., 2015).

SeisFlows differs from previous software in providing a high-level
inversion workflow emphasizing both flexibility and HPC portability.
To be of use to a wide community and remain relevant in an evolving
research field, software must be flexible and portable across hardware
and software environments. For methodological research, being able to
prototype on a workstation or small cluster is desirable. For large-scale
3D applications, running in massively parallel environments is essen-
tial. Portability can be especially difficult in large-scale applications due
to lack of standardization between clusters.

To help meet these design goals, SeisFlows abstracts the inversion
problem into six parts: (1) solver, (2) preprocessing, (3) postprocessing,
(4) nonlinear optimization, (5) system, and (6) workflow. The source
code underlying SeisFlows is structured in a modular way based on these
categories, and users are offered various choices for each one. For
example, if the study area in an earthquake tomography project expands,
users can trade a Cartesian solver for a spherical whole-earth solver. If a
PBS cluster goes offline and a SLURM cluster comes online to replace it,
users can trade the PBS system interface for a SLURM system interface. If
desired functionality is missing from the main package, users can
contribute their own classes or overload default ones.

Received 9 January 2017; Received in revised form 17 January 2018; Accepted 15 February 2018

Available online 19 February 2018
0098-3004/© 2018 Published by Elsevier Ltd.

mailto:rmodrak@princeton.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2018.02.004&domain=pdf
www.sciencedirect.com/science/journal/00983004
http://www.elsevier.com/locate/cageo
https://doi.org/10.1016/j.cageo.2018.02.004
https://doi.org/10.1016/j.cageo.2018.02.004
https://doi.org/10.1016/j.cageo.2018.02.004

R.T. Modrak et al.

Computers and Geosciences 115 (2018) 88-95

WORKFLOW SYSTEM SOLVER Fig. 1. Structure of the SeisFlows package. A selection of
main options or settings are listed for each of the six parts
) that comprise the package.
serial SPECFEM2D
inversion multithreaded
migration PBS SPECFEM3D
LSF SPECFEM3D GLOBE
SLURM
NONLINEAR
OPTIMIZATION PRE-PROCESSING POST-PROCESSING

waveform

regularization by

gradient descent smoothing
NLCG envelope Tikhonov
LBFGS instantaneous phase total variation

This paper is divided into four sections. First, we elaborate on the
motivation behind SeisFlows. Second, we briefly review the theory of
waveform inversion. Third, we describe each of the six component parts
and how they work together to mange the complexity of an inversion.
Finally, we illustrate use of the package in an HPC context through an
exploration geophysics example.

2. Motivation

About five years ago the seismology group at Princeton University
was engaged in several waveform inversion projects, but differences
between applications and the rapid pace of development led our codes to
become fragmented. This in turn led to duplication of effort, suscepti-
bility to bugs, and difficulty bringing new members up to speed. A
framework for streamlining our software efforts was needed.

Besides the need for a flexible research tool, we also faced challenges
involving portability. Our local cluster was too small to perform all the
3D inversions we were on working at the time, and other clusters were
configured differently than our own. When starting out on a new HPC
system, sometimes it took weeks of set-up work to simply run our codes.
Although SeisFlows started as a research tool, some of the principles used
to lend research flexibility also helped provide portability across
computing environments.

Below, we discuss these flexibility and portability design goals in
further details before moving on to a more comprehensive package
overview and a practical demonstration with an industry benchmark.

2.1. Flexibility

A system in which new functionality can be added without compro-
mising maintainability helps a package remain useful over time, even
despite rapidly evolving research ideas or a high-turnover development
team. Software engineering practices involving modular design and
object-oriented programming are helpful for developing flexible software
(e.g., Gamma et al., 1995). Such principles can be difficult to apply to
scientific projects, however, because of challenges posed by legacy codes.
An workable response, we found, was to develop a modular Python
framework in which either legacy executables or native Python code can
be used for key components. Besides giving options for integrating legacy
solvers, Python also provides ease of use for domain scientists, powerful
object-oriented capabilities, and a growing collection of scientific tools,
including numpy for linear algebra (Walt et al., 2011) and obspy for
seismic data processing (Krischer et al., 2015b).

89

2.2. Portability

For HPC applications, portability can be a daunting goal because
cluster environments are extremely varied. An ability to work with
different processor architectures, filesystems, memory configurations
and job schedulers may be required for an HPC code to be portable.

The approach in SeisFlows is to provide an interface layer through
which the workflow interacts with the system resources. To launch a set of
forward simulations, for example, the user invokes the forward method of
the solver via the run method of the system interface. By isolating
environment-dependent attributes, the system interface provides a
consistent command set across different computing environments.

3. Theory

As a way of introducing terminology used in the subsequent sections,
we briefly review the theory of waveform inversion (also known as full-
waveform inversion or FWI).

Waveform inversion is a data-fitting procedure in which comparisons
between observed and synthetic data are used to image the internal
structure of an object. Through a quantitative measure of fit between
observations and synthetics, the inversion problem can be explicitly cast
as a misfit function minimization problem. A common choice for the
misfit function is

xm) =3 > J|Flsmin)] ~ Fla) o, M

where s are synthetic data, d are observed data, F is a data processing
operator, and the sum is taken over various sources and receivers (i =1,
...,N). We generically call F a “preprocessing” operator to distinguish it
from R in eq (2).

Given a model m of the material properties of the object of interest, it
is the task of the wave-equation solver to generate the synthetic data s by
numerically simulating wave propagation within the object (see Tromp,
2015 for an introduction).

Observed and synthetic data typically require some kind of signal
processing to make meaningful comparisons. Often the operator F is
simply a bandpass filter, but sometimes additional steps are required
such as normalization, muting, denoising, or redatuming (see Yilmaz,
1987 for a comprehensive overview).

To iteratively update the model and improve the fit between observed
and synthetic data, we apply a nonlinear optimization algorithm to the

R.T. Modrak et al.

misfit function y(m). With each iteration, a new model is generated from
the previous model via
M = my + o H ' R—gi, 2
where g is the gradient vector of first-order derivatives of y(m), and H is
the Hessian matrix of second order derivatives of y(m), or some
approximation to the Hessian that depends on the chosen nonlinear
optimization algorithm (see Nocedal and Wright, 2006 for a more thor-
ough description). Finally, « is a step length determined by line search
and R is a regularization, smoothing, or image processing operator that
we generically refer to as a “postprocessing” operator.

4. Package organization

As illustrated in Fig. 1, SeisFlows consists of six components. While
this structure is hardwired, the individual components themselves are
highly customizable.

4.1. Solver

A tool for simulating wave propagation, the solver is the main
computational engine underlying an inversion. In the course of a model
update, the solver is first used to generate synthetic data s in Eq. (1). Then
by backprojecting data residuals (e.g., Tromp et al., 2005; Fichtner et al.,
2006), the solver is used to compute g in Eq. (2).

Choices for acoustic or elastic wave simulation in heterogeneous
media include finite-difference, finite-element, and spectral-element
numerical schemes. The type of solver best-suited to a particular inver-
sion depends on whether the data involve body waves, surface waves or
both; whether the topographic or bathymetric variations are small or
large; and whether the material properties vary continuously or discon-
tinuously within the target structure.

While in principle SeisFlows can interface with all the types of solvers
mentioned above, to date, only spectral-element solver interfaces are
included in the main repository. Interface classes for the SPECFEM2D,
SPECFEM3D and SPECFEM3D_GLOBE packages are provided, support-
ing a wide variety of applications. All solver interfaces inherit from a
common base class to avoid code duplication. Some researchers use
SeisFlows in combination with finite-difference solvers (Gian Matharu,
personal communication), but such functionality is not available yet in
the main package.

4.2. Preprocessing

In our terminology, preprocessing refers to operations carried out on
seismic traces, encompassing both y(m) and F[-] in Eq (1). The name
reflects the fact that such operations are usually performed prior to data
residual backprojection.

The default preprocessing class works with time-domain data and
relies on obspy for reading and writing data and signal processing. If a file
format is not supported by obspy, users can contribute their own reading
and writing utilities through a simple plugin system.

A variety of data processing options are included in the default class.
Choices are provided for highpass, lowpass and bandpass filtering; trace-
by-trace or record section-by-record section normalization; and muting
early or late arrivals.

Finally, machinery for generating adjoint traces is provided for use
with “optimize-then-discretize” solvers. Adjoint trace generators corre-
sponding to waveform difference, traveltime, envelope, and instanta-
neous phase objective functions are provided. Support for other objective
functions can be added, again through a plugin system.

4.3. Postprocessing

In our terminology, “postprocessing” refers to image processing

90

Computers and Geosciences 115 (2018) 88-95

operations on models, sensitivity kernels, or migrated images. The name
reflects the fact that such operations are usually performed after data
backprojection.

A wide variety of operations fall into this category. Techniques
including smoothing, basis projection, and Tikhonov and total variation
regularization all involve operations on sensitivity kernels and haven
been implemented using SeisFlows (see Modrak and Tromp, 2016 for an
overview). Treatment of site effects or numerical artifacts around sources
or receivers also falls under postprocessing, as does spatial filtering or
sharpening performed in oil and gas exploration contexts.

Because postprocessing operations are sometimes performed directly
on the model or kernels as expressed in the finite-difference, finite-
element or spectral element basis used by the solver, there may be some
overlap between the solver and postprocessing component. In SeisFlows
we use standalone utilities included in the SPECFEM2D, SPECFEM3D
and SPECFEM3D_GLOBE packages for smoothing operations on spectral-
element bases, rather than reimplementing these operations in Python.

4.4. Nonlinear optimization

What drives the progress of an inversion, both in terms of generating
model updates and reducing data misfit, is the nonlinear optimization
procedure. The rate of convergence in waveform inversion depends on
the particular nonlinear optimization algorithm chosen.

In the main package, available nonlinear optimization algorithms
include gradient descent, nonlinear conjugate gradient (NLCG) and
quasi-Newton (QN) algorithms, with bracketing and backtracking line
searches and restart safeguards included in the implementation (see
Modrak and Tromp, 2016 for an overview). Default numerical settings
should work well for a wide range inversions, but tuning parameters are
also provided. To improve performance beyond convergence offered by
NLCG and QN, preconditioners can be loaded through a plugin system.
Finally, a integration test is provided that checks the nonlinear optimi-
zation machinery using the Rosenbrock test case (Rosenbrock, 1960).

While far less than the memory used by full Newton or Gauss—-Newton
methods, conjugate gradient and quasi-Newton algorithms use roughly 2
to 10 times more storage than a simple gradient descent method. In other
words, the memory required by NLCG or QN is 2-10 times the memory
required to store a single gradient vector. Although solver operations can
be performed in parallel over any number of nodes, nonlinear

INVERSION

WORKFLOW
MIGRATION

WORKFLOW

SOLVER (FORWARD)

PREPROCESS SOLVER (FORWARD)

SOLVER (ADJOINT) PREPROCESS

POSTPROCESS SOLVER (ADJOINT)

NONLINEAR POSTPROCESS

OPTIMIZATION

\

Fig. 2. Default inversion and migration workflows provided by SeisFlows.
Because each component part is highly customizable, only a very schematic
representation is shown above.

R.T. Modrak et al.

optimization operations using SeisFlows are currently performed on only
a single node. If the nonlinear optimization storage cost exceeds the
memory available on the node, vectors are stored in virtual memory
using numpy.memmap. Parallelizing the nonlinear optimization routines
could improve performance in very large inversions, but for reasons
described in Sec. 4.5, this is not currently a priority.

4.5. System
As the software layer through which the solver and other workflow

components interact with the system resources, the “system” component
provides interoperability from one environment to another. A selection

DOMAIN-SPECIFIC EXAMPLE:
WHOLE-EARTH SEISMIC INVERSION

Prepare spherical mesh
Remove instrument response from data
Filter data

SOLVER (FORWARD)

PREPROCESS

Filter synthetics
Select measurement windows
Apply category weights
Compare data and synthetics

Generate adjoint sources used in "optimize-then-
discretize" approach

SOLVER (ADJOINT)

POSTPROCESS

Remove source/receiver artifacts
Sum source contributions
Apply edge-preserving smoothing to gradient

NONLINEAR OPTIMIZATION

Initialize quasi-Newton inverse Hessian
Generate quasi-Newton search direction
Perform backtracking line search

_

Fig. 3. One example of a domain-specific application that can be implemented
in SeisFlows by overloading default classes. Special gradient smoothing opera-
tions can be used to address spatially uneven distribution of seismic stations and
earthquakes in global seismology. To this end, users can choose from existing
options within the postprocess category or provide their own custom post-
processing class. Steps listed in the upper box are carried out just once at the
beginning of an inversion. Steps listed in the lower box are repeated until
obtaining the desired level of misfit reduction.

91

Computers and Geosciences 115 (2018) 88-95

of interfaces is provided in the main package, including some for work-
stations and others for LSF, SLURM and PBS clusters. In all cases, the idea
of the system component is to provide default configuration that allows
for customization in case anything about the user's environment requires
special handling. Examples of this type customization are available in
github.com/rmodrak/seisflows-hpc.

Take the system.run function, used to execute embarrassingly parallel
tasks, as an example. When running on a computer with a single available
CPU core, users should select the serial system interface. The causes
seisflows.system.serial.run, which executes tasks one at a time within a
loop, to be loaded at runtime. Alternatively, when running, say, a small
inversion on a SLURM cluster, users should choose the slurm_sm system
interface. This causes seisflows.system.slurm_sm.run, which executes
tasks simultaneously using resources allocated at the beginning of the

DOMAIN-SPECIFIC EXAMPLE:
NEAR-SURFACE SEISMIC INVERSION

Prepare Cartesian solver mesh
Filter data

SOLVER (FORWARD)

PREPROCESS

Filter synthetics
Compare data and synthetics

Generate adjoint sources used in "optimize-then-
discretize" approach

SOLVER (ADJOINT)

POSTPROCESS

Remove source/receiver artifacts
Sum source contributions
Apply Tikohonov penalty function contribution

NONLINEAR OPTIMIZATION

Initialize quasi-Newton inverse Hessian
Generate quasi-Newton search direction
Perform backtracking line search

N\

Fig. 4. Another example of a domain-specific application that can be imple-
mented in SeisFlows by overloading default classes. Many specialized data
preprocessing operations have been developed for near-surface data, which lack
the well-behaved crust, mantle and core phases of whole-earth data. To this end,
users can choose from existing options within the preprocess category or provide
their own custom preprocessing class.

R.T. Modrak et al.

inversion, to be loaded. For larger inversions, users should select system
interfaces ending with the Ig suffix, which causes resources to be allo-
cated on an as-needed basis rather than all at once at the beginning.

4.6. Workflow

Finally, the thing that ties everything together is the “workflow.”
Default inversion and migration workflows are provided that can be used
directly or as a base class on top of which specialized strategies can be
implemented.

In practice, execution of a workflow is equivalent to stepping through
the code contained in workflow.main. Users are free to modify the
default inversion and migration workflows, which are designed to be
easily customizable. For example, by including initialize and finalize
methods that can be used for any necessary setup or cleanup work before
or after a model update.

Fig. 2 depicts default inversion and migration workflows. Because
each component part is highly customizable, only a very schematic
representation is provided. To give a sense for the type of domain-specific
applications possible through SeisFlows, examples of more specialized
whole-earth and near-surface inversion workflows are depicted in Figs. 3
and 4.

Reflecting our group's use of SeisFlows as a research tool, a number of
custom strategies have been implemented by overloading the inversion
and migration classes. Stochastic inversion, and double-difference
waveform inversion, and full-waveform ambient noise inversion, for
example, could all be implemented in this manner. Finally, in addition to
carrying out inversions and migrations, users can script entirely new
workflows by invoking the solver, preprocessing, postprocessing, and
nonlinear optimization components in any desired sequence. Velocity
analysis or uncertainty quantification tasks could be implemented in this
way, to give some examples.

4.7. Miscellaneous

Here, we discuss miscellaneous aspects of package organization that
fall outside the above categories.

4.7.1. Tests

Seisflows/tests contains a set of directly-invokable test scripts. run_-
test_system tests the system interface with a simple “hello” message,
run_test_optimize solves an inexpensive nonlinear optimization problem,
and run_test_tools executes the seisflows/tools unit tests.

4.7.2. Source code repository

Code is hosted and collaboratively developed using GitHub
(github.com/rmodrak/seisflows). Following a pull request, the above
tests are automatically run using Travis continuous integration (travis-ci.
org). Documentation is viewable at seisflows.readthedocs.org.

4.7.3. Plugins

Each file or subdirectory in seisflows/plugins contains a set of func-
tions that share exactly the same inputs and outputs syntax. New “plu-
gins” can be added by creating a new function using the established
syntax. For example, a new data misfit function can be added to seis-
flows/plugins/misfit.py by mimicking the inputs and outputs of the
existing misfit functions. Because the syntax is kept very simple, adding
new plugins generally requires little effort.

4.7.4. Parameters and paths

When submitting a workflow, users must specify parameter and path
input files. Values are checked so that errors can be detected without loss
of queue time or run time. Parameters and paths are stored in a dictionary
that is accessible anywhere in the Python code.

92

Computers and Geosciences 115 (2018) 88-95

5. Example: onshore oil and gas exploration problem based on the SEAM
foothills model

Onshore seismic exploration has increased significantly in the last
decade, but modeling wave propagation in complex environments re-
mains difficult even for state-of-the art solvers (Oristaglio, 2012). With
extreme topography typical of mountainous thrust zones and strong
lateral and vertical velocity variations, the SEAM II foothills model is one
of three benchmarks created by an industry consortium to address
onshore modeling challenges (Oristaglio, 2013).

Below we present inversion results obtained using foothills data.
Some of these results were previously published in Borisov et al. (2018);
here we focus on computational cost, fault tolerance, and software flex-
ibility issues not previously discussed.

5.1. Methods

To reduce the overall cost of the experiment, we selected a 25 km?
portion of the original model. The chosen volume, shown in Fig. 5, is 7 x
3.5 x 3km in the x-, y- and z-directions, respectively. Working in the
1-15 Hz range, some 108 numerical grid points were required for accu-
rate wave simulation. Fig. 4 shows the model and numerical mesh.
Topographic variations of as much as 0.9 km lead to significant scat-
tering, focusing, and defocusing effects. The target model contains strong
variations in P- and S-wavespeeds and density, with discontinuities in S-

1.85 25
Vs (km/s)

o7
L7
48742,
XL
KT
baest ibestsi
S
T
<3

Fig. 5. Near-surface seismic inversion example. (a) Target S-wavespeed model.
(b) Numerical mesh. Adding to the challenge and computational expense of the
inversion, the target model contains large topographic variations and complex
folded and faulted structures. The unstructured spectral-element numerical
mesh contains on the order of 108 integration points.

http://travis-ci.org
http://travis-ci.org
http://seisflows.readthedocs.org

R.T. Modrak et al.

Computers and Geosciences 115 (2018) 88-95

>
& 1.0
— |2.50 0‘8 , >
.0 4.0 5.0 6.0 7.0 .0 30 40
X-axis (km) X-axis (km)
= Vs (km/s) 3.0
1.20
¢
=20
K]
s
1.85
1.0

3.0 4.0
X-axis (km)

3.0 4.0
X-axis (km)

1.0 20 50

3.0 4.0
X-axis (km)

3 40 50
)?-axis (km)

5.0

3.0 4.0
X-axis (km)

Fig. 6. Near-surface seismic inversion results. Vertical slices (left) and horizontal slices (right). (a,b) true model; (c,d) initial model; (e,f) result of envelope-difference
inversion; (g,h) result of envelope-difference inversion followed by waveform-difference inversion.

wavespeed in some places of more than 1 km/s. The extreme topography
of the foothills model has been shown to cause problems for finite-
difference schemes, while finite-element and spectral-element codes
such as SPECFEM3D have generally performed much better (Oristaglio,
2012).

In onshore seismic exploration, traces recorded at the surface are
dominated by high-amplitude dispersive surface waves. Rather than
removing such information from the data, surface waves can be used as
an additional constraint on shallow structure. Unfortunately, several
major obstacles, including difficulties in the numerical simulation of
surface waves and problematic effects of near-surface complexity, make
this approach difficult.

To make use of surface waves, flexibility is required in the inversion
procedure. Most inversion packages employ waveform-difference mea-
sures of fit, but these are not well-suited to surface wave inversions in
near-surface complexity exacerbates cycle skipping. To reduce cycle
skipping, envelope-misfit functions have been proposed by Bozdag et al.
(2011). As with many new techniques, envelope objective functions
required fine-tuning before large-scale production. SeisFlows provided a
useful framework for such testing.

For the inversion, we used 72 sources and 2502 receivers regularly
distributed on the surface. The distance between receivers was 50 m and
200 m in the x- and y-directions, respectively, while the distance between
shots was 600 m in both directions. Each shot corresponded to a force
applied in the vertical direction with a Ricker wavelet as a source time
function. We used a relatively high frequency band (with a dominant
frequency of 6 Hz); we did not use a multiscale approach in the manner of

93

Bunks et al. (1995). Further, we used only the vertical component for all
receivers. Search directions were computed using the L-BFGS algorithm,
which in SeisFlows comes with numerical safeguards that provide sta-
bility (e.g., Dennis and Schnabel, 1996).

Despite cropping the model, the inversion still exceeded the capacity
of our local allocation, so we ran it on a 2000-core LSF machine provided
by Total S.A. instead. Only minor modification of the default LSF inter-
face in SeisFlows was necessary, with changes involving specification of
the resource queue and MPI library paths. Memory requirements for the
mesh exceeded the capacity of a single node, so we used multiple nodes
for each wavefield simulation. With 6 nodes per source and 16 CPU cores
per node, 96 cores were required for each source. Using seisflows/sys-
tem/Isf lg.py, simulations were queued in job arrays, executing when-
ever resources became available.

Due to decreasing hardware reliability with age, the rate at which
simulations failed grew from less than 1 percent to more than 5 percent
over the two years we used the cluster. To provide fault tolerance, we
modified the Isf lg interface so that (1) simulations were delayed by a
random fraction of a second, avoiding large numbers of simultaneous I/0
operations whenever multiple simulations left the queue at the same
time; and (2) the status of every simulation in the job array was checked
every few seconds, and failed simulations were automatically resubmit-
ted as standalone jobs. A simple example of our approach to failure
detection and automatic resubmission can be found in github.com/
rmodrak/seisflows-hpc (see modules with “fault_tolerance” or “FT” in
the filename). Whereas before only one or two iterations could be reli-
ably carried out in one try, with the above measures we were able to run

R.T. Modrak et al.

X-axis (km)
0 4|' ? L 2 3

6 X-axis (km)
4 5

Computers and Geosciences 115 (2018) 88-95

X-axis (km)
a4 5

Time (s)

1 . 0 1 L 1

Fig. 7. A shot record of the SEAM Phase II foothills model, vertical component of displacement. left: observed traces, center: initial synthetics, right: synthetics after

envelope FWIL

arbitrarily many iterations at a time.

5.2. Results

First, we used an envelope misfit function to simultaneously invert
body and surface waves. After 30 iterations, accuracy of the S-wavespeed
model increased significantly in the shallow subsurface (Fig. 6e and f).
Then we used this result as input for a waveform-difference inversion,
again using both body and surface waves. After a further 30 iterations
shallow structure improved even more (Fig. 6g and h). With sensitivity
concentrated at the free surface and with amplitudes many times greater
than body waves, surface waves strongly dominate both the data and the
model updates, so recovery of deep structures is not expected until sur-
face waves are muted (Borisov et al., 2018). Having at this point recov-
ered the shallow part of the model using body and surface waves, a
conventional body wave-only inversion could be used to improve re-
covery at depth.

Record sections for the shot located at x=1km, y=1.75km are
shown in Fig. 7. As the shallow part of the true model contains strong
heterogeneities, the observed data are dominated by large-amplitude,
dispersive Rayleigh waves. In contrast, the surface waves in the initial
synthetics are much less dispersive because the starting model is rela-
tively smooth. It is clear that the synthetic shot gather generated on a
model inverted using envelope-based inversion agrees much more
closely with the observed one.

6. Conclusions

Through the SEAM II foothills test case, we illustrated the use of
SeisFlows on a difficult problem. Results in this example depended in
part on the flexible design of the inversion software, which made
experimentation with nonstandard objective functions possible. Success
also depended on a portability between HPC environments, which
allowed us to change over to supercomputer provided by Total S.A. after
we had exceeded our local cluster allocation.

Besides the above oil and gas exploration benchmark, other uses of
SeisFlows include detection of illicit tunnels (Smith et al., 2017);
nondestructive testing of bridge deck delaminations (Nguyen and Mod-
rak, 2018); medical imaging with ultrasonic waves (Bachmann, 2016);
and oil and gas exploration with acoustic (Modrak and Tromp, 2015),
isotropic elastic (Modrak et al., 2016) and transversely anisotropic
models (Rusmanugroho et al., 2017). Earthquake tomography using data
from Silwal and Tape (2016) is currently underway with the package.

Acknowledgments

The authors thank TOTAL S.A. for providing computational resources;
the SEAM consortium for making available the foothills model; and Eti-
enne Bachmann, Wenjie Lei, Gian Matharu, Luan Nguyen, Youyi Ruan,

94

Heru Rusmanugroho, Frederik Simons, James Smith, Yanhua Yuan, and
two anonymous reviewers for very helpful discussions.

References

Bachmann, E., 2016. Imagerie Ultrasonore 2D et 3D sur GPU: Application au temps réel et
a l'inversion de forme d’onde compléte. Ph.D. thesis. Université Toulouse.

Borisov, D., Modrak, R., Gao, F., Tromp, J., 2018. 3D elastic full-waveform inversion of
surface waves in the presence of irregular topography using an envelope-based misfit
function. Geophysics 83 (1), R1-R11.

Bozdag, E., Trampert, J., Tromp, J., 2011. Misfit functions for full waveform inversion
based on instantaneous phase and envelope measurements. Geophys. J. Int. 185 (2),
845-870.

Bunks, C., Fatimetou, M., Zaleski, S., Chavent, G., 1995. Multiscale seismic waveform
inversion. Geophysics 60, 1457-1473.

Burstedde, C., Ghattas, O., 2009. Algorithmic strategies for full waveform inversion: 1D
experiments. Geophysics 74, WCC37-W3346.

Cockett, Rowan, Kang, Seogi, Heagy, Lindsey J., Pidlisecky, Adam, Oldenburg, Douglas
W., 2015. SimPEG: An open source framework for simulation and gradient based
parameter estimation in geophysical applications. Comput. Geosci. 85, 142-154.
https://doi.org/10.1016/j.cageo.2015.09.015.

Dennis, J., Schnabel, R., 1996. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. SIAM.

Fichtner, A., Bunge, H.-P., Igel, H., 2006. The adjoint method in seismology: 1. theory.
Phys. Earth Planet. In. 157 (1), 86-104.

Fomel, S., Sava, P., Vlad, 1., Liu, Y., Bashkardin, V., 2012. Madagascar: open-source
software project for multidimensional data analysis and reproducible computational
experiments. J. Open Res. Software (1).

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley.

Hewett, R., Demanet, L., 2013. The Python Seismic Imaging Toolbox. pysit.org.

Krischer, L., Fichtner, A., Zukauskaite, S., Igel, H., 2015a. Largescale seismic inversion
framework. Seismol Res. Lett. 86 (4), 1198.

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C.,
Wassermann, J., 2015b. Obspy: a bridge for seismology into the scientific python
ecosystem. Comput. Sci. Discov. 8 (1), 014003.

Meétivier, L., Brossier, R., 2016. The seiscope optimization toolbox: a large-scale nonlinear
optimization library based on reverse communication. Geophysics 81 (2), F1-F15.

Modrak, R., Tromp, J., 2015. Computational Efficiency of Full Waveform Inversion
Algorithms. SEG Technical Program, pp. 4838-4842.

Modrak, R., Tromp, J., 2016. Seismic waveform inversion best practices: regional, global
and exploration test cases. Geophys. J. Int. 206 (3), 1864-1889.

Modrak, R., Yuan, Y., Tromp, J., 2016. On the Choice of Material Parameters for Elastic
Waveform Inversion. SEG Technical Program, pp. 1115-1119.

Nguyen, L.T., Modrak, R.T., 2018. Ultrasonic wavefield inversion and migration in
complex heterogeneous structures: 2D numerical imaging and nondestructive testing
experiments. Ultrasonics 82, 357-370.

Nocedal, J., Wright, S., 2006. Numerical Optimization. Springer.

Oristaglio, M., 2012. Seam phase iiland seismic challenges. Lead. Edge 31 (3), 264.

Oristaglio, M., 2013. Seam phase ii: the foothills modelseismic exploration in
mountainous regions. Lead. Edge 32 (9), 1020-1024.

Rosenbrock, H., 1960. An automatic method for finding the greatest or least value of a
function. Comput. J. 3, 175-184.

Rusmanugroho, H., Modrak, R., Tromp, J., 2017. Anisotropic full-waveform inversion
with tilt-angle recovery. Geophysics 82 (3), R135-R151.

Silwal, V., Tape, C., 2016. Seismic moment tensors and estimated uncertainties in
southern Alaska. J. Geophys. Res.: Solid Earth 121 (4), 2772-2797, 2015JB012588.

Smith, J., Borisov, D., Modrak, R., Tromp, J., Cudney, H., Moran, M., Sloan, S., Miller, R.,
Peterie, S., 2017. Near-surface Seismic Imaging of Tunnels Using 3D Elastic Full-
waveform Inversion. SEG Technical Program, pp. 2637-2641.

Tromp, J., 2015. Forward modeling and synthetic seismograms: 3D numerical methods.
In: Schubert, G. (Ed.), Treatise on Geophysics, second ed. Elsevier, Oxford,
pp. 231-251.

http://refhub.elsevier.com/S0098-3004(17)30031-6/sref1
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref1
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref1
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref1
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref1
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref2
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref2
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref2
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref2
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref3
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref3
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref3
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref3
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref4
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref4
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref4
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref5
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref5
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref5
https://doi.org/10.1016/j.cageo.2015.09.015
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref6
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref6
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref7
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref7
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref7
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref8
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref8
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref8
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref9
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref9
http://pysit.org
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref11
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref11
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref12
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref12
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref12
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref13
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref13
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref13
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref13
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref14
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref14
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref14
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref15
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref15
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref15
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref16
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref16
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref16
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref17
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref17
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref17
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref17
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref18
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref19
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref20
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref20
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref20
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref21
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref21
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref21
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref22
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref22
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref22
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref23
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref23
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref23
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref24
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref24
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref24
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref24
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref25
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref25
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref25
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref25

R.T. Modrak et al. Computers and Geosciences 115 (2018) 88-95

Tromp, J., Tape, C., Liu, Q., 2005. Seismic tomography, adjoint methods, time reversal Walt, S.v.d., Colbert, S.C., Varoquaux, G., Mar. 2011. The numpy array: a structure for
and banana-doughnut kernels. Geophys. J. Int. 160, 195-216. efficient numerical computation. Comp. Sci. Eng. 13 (2), 22-30.
Virieux, J., Optero, S., 2009. An overview of full-waveform inversion in exploration Yilmaz, O., 1987. Seismic Data Processing. Society of Exploration Geophysicists.

geophysics. Geophysics 74.

95

http://refhub.elsevier.com/S0098-3004(17)30031-6/sref26
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref26
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref26
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref27
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref27
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref28
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref28
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref28
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref29
http://refhub.elsevier.com/S0098-3004(17)30031-6/sref29

	SeisFlows—Flexible waveform inversion software
	1. Introduction
	2. Motivation
	2.1. Flexibility
	2.2. Portability

	3. Theory
	4. Package organization
	4.1. Solver
	4.2. Preprocessing
	4.3. Postprocessing
	4.4. Nonlinear optimization
	4.5. System
	4.6. Workflow
	4.7. Miscellaneous
	4.7.1. Tests
	4.7.2. Source code repository
	4.7.3. Plugins
	4.7.4. Parameters and paths

	5. Example: onshore oil and gas exploration problem based on the SEAM foothills model
	5.1. Methods
	5.2. Results

	6. Conclusions
	Acknowledgments
	References

