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Abstract
In a self-organizing particle system, an abstraction of programmable matter, simple computational elements called par-

ticles with limited memory and communication self-organize to solve system-wide problems of movement, coordination,

and configuration. In this paper, we consider a stochastic, distributed, local, asynchronous algorithm for ‘‘shortcut

bridging’’, in which particles self-assemble bridges over gaps that simultaneously balance minimizing the length and cost

of the bridge. Army ants of the genus Eciton have been observed exhibiting a similar behavior in their foraging trails,

dynamically adjusting their bridges to satisfy an efficiency trade-off using local interactions. Using techniques from

Markov chain analysis, we rigorously analyze our algorithm, show it achieves a near-optimal balance between the

competing factors of path length and bridge cost, and prove that it exhibits a dependence on the angle of the gap being

‘‘shortcut’’ similar to that of the ant bridges. We also present simulation results that qualitatively compare our algorithm

with the army ant bridging behavior. Our work gives a plausible explanation of how convergence to globally optimal

configurations can be achieved via local interactions by simple organisms (e.g., ants) with some limited computational

power and access to random bits. The proposed algorithm also demonstrates the robustness of the stochastic approach to

algorithms for programmable matter, as it is a surprisingly simple extension of our previous stochastic algorithm for

compression.

Keywords Programmable matter � Self-organizing particle systems � Shortcut bridging � Distributed algorithms �
Markov chains � Bio-inspired algorithms

1 Introduction

To develop a system of programmable matter, one

endeavors to create a material or substance that utilizes

user input or stimuli from its environment to change its

physical properties in a programmable fashion. Many such

systems have been proposed (e.g., DNA tiles, synthetic

cells, and reconfigurable modular robots) and each attempts

to perform tasks subject to domain-specific capabilities and

constraints. In our work on self-organizing particle sys-

tems, we abstract away from specific settings and envision

a system of computationally limited devices (which we call

particles) that can actively move and individually execute

distributed, local, asynchronous algorithms to coopera-

tively achieve macro-scale tasks of movement and

coordination.

A conference version of this paper was presented at DNA23

in September 2017 (Andrés Arroyo et al. 2017). This paper

differs substantially from the conference version. In

particular, all of the proofs of Sect. 4 are new.
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The phenomenon of local interactions yielding emer-

gent, collective behavior is often found in natural systems;

for example, honey bees choose hive locations based on

decentralized recruitment (Camazine et al. 1999) and

cockroach larvae perform self-organizing aggregation

using pheromones with limited range (Jeanson et al. 2005).

In this paper, we present an algorithm inspired by the work

of Reid et al. (2015), who found that army ants continu-

ously modify the shape and position of foraging bridges—

constructed and maintained by their own bodies—across

holes and uneven surfaces in the forest floor. These bridges

appear to stabilize in a structural formation that balances

the ‘‘benefit of increased foraging trail efficiency’’ with the

‘‘cost of removing workers from the foraging pool to form

the structure’’ (Reid et al. 2015).

We attempt to capture this inherent trade-off in our

algorithm for ‘‘shortcut bridging’’ in self-organizing parti-

cle systems (formally defined in Sect. 1.3). Our algorithm

is an extension of the stochastic, distributed algorithm for

compression introduced in Cannon et al. (2016), demon-

strating that many fundamental elements of our stochastic

approach can be generalized to applications beyond the

specific context of compression, in which a particle system

gathers together as tightly as possible. In particular, this

stochastic approach may be of future interest in the

molecular programming domain, where simpler variations

of bridging have been studied. Groundbreaking works in

this area, such as that of Mohammed et al. (2017), focus on

forming molecular structures that connect some fixed

points; our work may offer insights on further optimizing

the quality and/or cost of the resulting bridges.

Shortcut bridging is an attractive goal for programmable

matter systems, as many application domains envision

deploying programmable matter on surfaces with structural

irregularities or dynamic topologies. For example, one

commonly imagined application of smart sensor networks

is to detect and span small cracks in infrastructure such as

roads or bridges; dynamic bridging behavior would enable

the system to remain connected and shift position as cracks

form.

1.1 Related work

When considering recently proposed and realized systems

of programmable matter, one can distinguish between

passive and active systems. In passive systems, computa-

tional units cannot control their movements and have (at

most) very limited computational abilities, relying instead

on their physical structure and interactions with the envi-

ronment to achieve locomotion (e.g., Woods 2015; Angluin

et al. 2006; Reid and Latty 2016). A large body of research

in molecular self-assembly falls under this category, which

has mainly focused on shape formation (e.g., Douglas et al.

2009; Cheung et al. 2011; Wei et al. 2012). In contrast, our

work examines building dynamic bridges whose exact

shape is not predetermined. Mohammed et al. studied a

similar problem of connecting DNA origami landmarks

with DNA nanotubes, using a carefully designed process of

nanotube nucleation, growth, and diffusion to achieve and

maintain the desired connections (Mohammed et al. 2017).

Significant differences between their approach and ours

are: (1) the bridges we consider already connect their

endpoints at the start and we focus on the specific goal of

optimizing their shape with respect to a parameterized

objective function, and (2) our system is active as opposed

to passive.

Active systems are composed of computational units

that can control their actions to solve a specific task.

Examples include swarm robotics, various other models of

modular robotics, and the amoebot model, which is our

computational framework (detailed in Sect. 1.2).

Swarm robotic systems usually involve collections of

autonomous robots moving freely in space with limited

sensing and communication ranges. These systems can

perform a variety of tasks including gathering (Cieliebak

et al. 2012), shape formation (Flocchini et al. 2008;

Rubenstein et al. 2014), and imitating the collective

behavior of natural systems (Chazelle 2009); however, the

individual robots typically have more powerful communi-

cation and processing capabilities than those we consider.

Modular self-reconfigurable robotic systems focus on the

motion planning and control of kinematic robots to achieve

dynamic morphology (Yim et al. 2007), and metamorphic

robots form a subclass of self-reconfiguring robots (Chir-

ikjian 1994) that share some characteristics with our geo-

metric amoebot model. Walter et al. have conducted some

algorithmic research on these systems (e.g., Walter et al.

2004a, b), but focus on problems disjoint from those we

consider.

In the context of molecular programming, our model

most closely relates to the nubot model by Woods et al.

(2013), Chen et al. (2015), which seeks to provide a

framework for rigorous algorithmic research on self-

assembly systems composed of active molecular compo-

nents, emphasizing the interactions between molecular

structure and active dynamics. This model shares many

characteristics with our amoebot model (e.g., space is

modeled as the triangular lattice, nubot monomers have

limited computational abilities, and there is no global ori-

entation) but differs in that nubot monomers can replicate

or die and can perform coordinated rigid body movements.

These additional capabilities prohibit direct translation of

results under the nubot model to our amoebot model.
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1.2 The amoebot model

Our computational framework is the amoebot model

(Daymude et al. 2017b), originally proposed in Der-

akhshandeh et al. (2014) as an abstract model for pro-

grammable matter designed to enable rigorous algorithmic

research on nano-scale systems. We envision pro-

grammable matter as a collection of individual, homoge-

neous computational elements called particles. The

structure of a particle system is represented as a connected

subgraph of the infinite, undirected graph G ¼ ðV ;EÞ,
where V is the set of all locations a particle can occupy

relative to its structure and E is the set of all atomic

movements between locations in V. Each location in V can

be occupied by at most one particle at a time. For shortcut

bridging (and many other problems), we further assume the

geometric amoebot model, in which G ¼ GD, the triangu-

lar lattice1 (Fig. 1a).

Each particle is either contracted, occupying a single

location, or expanded, occupying a pair of adjacent loca-

tions in GD (Fig. 1b). Particles move via a series of ex-

pansions and contractions: a contracted particle may

expand into an adjacent unoccupied location, and com-

pletes its movement by contracting to once again occupy a

single location. An expanded particle’s head is the location

it last expanded into and the other location it occupies is its

tail; a contracted particle’s head and tail are the same

location.

Two particles occupying adjacent locations in GD are

said to be neighbors. Each particle is anonymous, lacking a

unique identifier, but can locally identify each of its

neighboring locations and can determine which of those

locations are occupied by particles. Each particle has a

constant-size, local memory that its neighbors can directly

read from for communication. A particle’s memory stores

whether it is contracted or expanded and identifies if

neighboring locations are incident to its head or tail. Par-

ticles do not have access to any global information such as

a global compass or an estimate of the size of the system.

We assume the standard asynchronous model from

distributed computing (see, e.g., Lynch 1996), where a

system progresses through atomic actions. A classical

result under this model states that for any concurrent

asynchronous execution of atomic actions, there is a

sequential ordering of actions producing the same end

result, provided conflicts that arise in the concurrent exe-

cution are resolved. In our setting, an atomic action is an

activation of a single particle. Once activated, a particle

can perform an arbitrary, bounded amount of computation

involving its local memory and the memories of its

neighbors, and can perform at most one contraction or

expansion. We assume conflicts arising from simultaneous

particle expansions into the same unoccupied location are

resolved arbitrarily such that at most one particle is

expanding into a given location at a time. Thus, while in

reality many particles may be active concurrently, it suf-

fices when analyzing our algorithm to consider a sequence

of activations where only one particle is active at a time.

Terminology for particle systems In addition to the

formal model, we introduce some terminology for our

application of shortcut bridging. Just as the uneven surfaces

of the forest floor affect the foraging behavior of army ants,

the collective behavior of particle systems should change

when GD is non-uniform. Here, we focus on system

behaviors when the locations of GD are either gap (un-

supported) or land (supported). A particle can tell whether

its location is a gap location or a land location. An object is

a static particle that does not perform computation; these

are used to keep the particle system connected to certain

fixed sites.

A particle system configuration is the finite set of

occupied locations of GD. An edge of a configuration is an

edge of GD where both endpoints are occupied by particle

tails.2 When referring to a path, we mean a path of such

edges. Two particles are connected if there exists a path

between them, and a configuration is connected if all pairs

of particles are. A hole in a configuration is a maximal

finite component of adjacent unoccupied locations. We

specifically consider connected configurations with no

holes, and our algorithm—if starting at such a configura-

tion—will maintain these properties, a fact we will prove in

Sect. 3.2.

Let r be a connected configuration with no holes. The

(single, external) boundary of r is the walk composed of all

edges in r between particles that are not surrounded (i.e.,

those with less than 6 neighbors).3 In order to analyze the

strength of the solutions our algorithm produces, we define

(a) (b)

Fig. 1 a A section of the triangular lattice GD; b expanded and

contracted particles

1 Our past works refer to GD as the equilateral triangular grid graph

Geqt and the triangular lattice C.

2 Lattice edges incident to a node occupied by an expanded particle’s

head are not counted as configuration edges, since these are

exploratory and temporary. This is explained further in Sect. 3.1.
3 Note that an edge may appear twice in the boundary if it is a cut-

edge (e.g., the bottom-left most edges in Fig. 3b).
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the weighted perimeter pðr; cÞ to be the summed weight of

the edges on the boundary of r, where edges between land

locations have weight 1, edges between gap locations have

weight c[ 1, and edges with one endpoint on land and one

endpoint in the gap have weight ð1þ cÞ=2.

1.3 Problem description

In the shortcut bridging problem, we consider an instance

ðL;O; r0; c; aÞ; where L � V is the set of land locations,

O is the set of (two) objects to bridge between, r0 is the

initial configuration of the particle system, c[ 1 is a fixed

weight for edges between gap locations, and a[ 1 is a

parameter capturing our error tolerance. An instance is

valid if (i) the objects of O and particles of r0 all occupy

locations in L, (ii) r0 connects the objects, and (iii) r0 is

connected. A (distributed) algorithm solves a valid instance

ðL;O; r0; c; aÞ if, beginning from r0, it reaches and remains

in a set of configurations R� such that any r 2 R� has

weighted perimeter pðr; cÞ within an a-factor of its mini-

mum possible value, with high probability.4

In analogy to the apparatus used in Reid et al. (2015)

(Fig. 3a), we are particularly interested in instances where

L forms a V-shape, O has two objects positioned at either

base of L, and r0 lines the interior sides of L, as in Fig. 2a.

However, our algorithm is not limited to this setting; for

example, we show simulation results for an N-shaped land

mass (Fig. 2b) in Sect. 5.

The weighted perimeter balances the trade-off observed

in Reid et al. (2015) between the competing objectives of

establishing a short path between the fixed endpoints while

not having too many particles in the gap. Although both

metrics are amenable to our analysis, we focus on weighted

perimeter instead of the number of particles in the gap for

two reasons. First, the structure and thickness of bridges

produced using weighted perimeter more closely resemble

those of ant bridges, while using particles in the gap results

in consistently thin, jagged structures (see Fig. 3b vs. c).

Second, only particles on the perimeter can move, and thus

recognize the potential risk of being in the gap.

2 Approach, techniques, and results

In Cannon et al. (2016), we introduced a stochastic, dis-

tributed algorithm for compression in the amoebot model;

here we extend that work to show our stochastic approach

is more widely applicable.

2.1 The stochastic approach to particle systems

In the stochastic approach to self-organizing particle sys-

tems, we use concepts from statistical physics to design our

algorithms, a process we outline here. At a high level, we

define an energy function that captures our objectives for

the particle system and then design a Markov chain that, in

the long run, favors configurations with desirable energy

values. Care is taken to ensure this Markov chain can be

executed in a distributed, asynchronous manner by each

particle individually. While understanding our approach

and motivation is not necessary for understanding our

results, it provides further insights into our methodologies.

In statistical physics, ensembles of particles similar to

those we consider represent physical systems and demon-

strate that local micro-behavior can induce global macro-

scale changes to the system (Baxter et al. 1980; Blanca

et al. 2018; Restrepo et al. 2013). Like a spring relaxing,

physical systems favor configurations that minimize

energy. Each configuration r has energy determined by a

Hamiltonian HðrÞ, and we then assign each a weight

wðrÞ ¼ e�B�HðrÞ, where B ¼ 1=T is inverse temperature.

Markov chains have been well-studied as a tool for sam-

pling configurations of these systems with probability

proportional to wðrÞ, that is, with probability wðrÞ=Z,
where Z ¼

P
s e

�B�HðsÞ is the normalizing constant known

as the partition function. The configurations with the

lowest values of HðrÞ—those with the least energy—are

most likely to be sampled.

For shortcut bridging, we introduce a Hamiltonian over

particle system configurations that assigns the lowest

energy values to configurations with desirable bridge

structures; we then design our algorithm to favor these

configurations with small Hamiltonians. We assign each

configuration r a Hamiltonian HðrÞ ¼ pðr; cÞ, its weighted
perimeter. Setting k ¼ eB, we get wðr; cÞ ¼ k�pðr;cÞ, where
wðr; cÞ is the likelihood with which we want our algorithm

to yield r. As k gets larger (by increasing B, effectively

lowering temperature), these weights increasingly favor

configurations where HðrÞ ¼ pðr; cÞ is small and the

desired bridging behavior is exhibited. Using a Markov

chain, we will ensure that the eventual probability with

which we are at state r is wðr; cÞ=Z, where Z ¼
P

s wðs; cÞ
in the necessary normalizing factor.

2.2 Markov chains

We briefly review relevant terminology on Markov chains.

A Markov chain M is a memoryless stochastic process

defined on a state space X. We only consider X which are

finite and discrete; in particular, the states of X will be

connected, hole-free configurations with a common land
4 An event occurs with high probability (w.h.p.) if the probability of

success is at least 1� 1=polyðnÞ; here, n is the number of particles.
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mass L, objects O, and number of particles n. The transition

matrix Q : X� X ! ½0; 1� of a Markov chain M is defined

so that Qðr; sÞ is the probability of moving from state r to

state s in one step, for any pair of states r; s 2 X. For our
Markov chain, transitions will correspond to one particle

moving one unit in one direction, and the probabilities of

these transitions will be chosen carefully. The t-step tran-

sition probability Qtðr; sÞ is the probability of moving from

r to s in exactly t steps.

A Markov chain is irreducible, or its state space is

connected, if there is a sequence of valid transitions from

any state to any other state, i.e., for all r; s 2 X, there is a

t such that Qtðr; sÞ[ 0. A Markov chain is aperiodic if for

all r; s 2 X, gcdft : Qtðr; sÞ[ 0g ¼ 1. A Markov chain is

ergodic if it is both irreducible and aperiodic. Any finite,

ergodic Markov chain converges to a unique stationary

distribution p given by, for all r; s 2 X, limt!1 Qtðr; sÞ ¼
pðsÞ. Any distribution p0 satisfying p0ðrÞQðr; sÞ ¼
p0ðsÞQðs; rÞ for all r; s 2 X (the detailed balance condi-

tion) must be this unique stationary distribution (see, e.g.,

Feller 1968).

Given a state space X, a set of allowable transitions

between states, and a desired stationary distribution p on X
(e.g., pðrÞ�wðr; cÞ), the celebrated Metropolis–Hastings

algorithm (Hastings 1970) gives a Markov chain on X that

uses only allowable transitions and has stationary distri-

bution p. This is accomplished by carefully setting the

probabilities of the state transitions as follows. Starting at

r 2 X, pick a neighbor s 2 X (i.e., a state s to which r has

an allowable transition) uniformly with probability 1=ð2DÞ,
where D is the maximum number of neighbors of any state,

and move to s with probability minf1; pðsÞ=pðrÞg; with
the remaining probability stay at r and repeat. If the

allowable transitions suffice to go between any two states

of X, then p must be the stationary distribution by detailed

balance. While calculating pðsÞ=pðrÞ seems to require

(a)

(b)

Fig. 2 Example initial configurations r0 of particles (black) connect-
ing two objects O (large, red) on land masses L (brown and black) for

two instances of the shortcut bridging problem for which we present

simulation results (Sect. 5). (Color figure online)

(a)

(b)

(c)

Fig. 3 a In this image from Reid et al. (2015), army ants of the genus

Eciton build a dynamic bridge which balances the benefit of a shortcut

path with the cost of committing ants to the structure. b Our shortcut

bridging algorithm also balances competing objectives and converges

to similar configurations. c Minimizing the number of particles in the

gap instead of the weighted perimeter results in thin bridges with

large clusters of particles on land that do not resemble the ant bridges

as closely
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global knowledge, this ratio can often be calculated using

only local information when many terms cancel out. For

shortcut bridging, because our desired stationary distribu-

tion will be pðrÞ ¼ wðr; cÞ=Z ¼ k�pðr;cÞ=Z where Z ¼
P

s wðs; cÞ, the Metropolis-Hastings probabilities can be

written as minf1; kpðr;cÞ�pðs;cÞg. Using this probability cal-

culation to decide whether or not to make a transition is a

Metropolis filter. Importantly, if r and s only differ by one

particle P, as is the case with all moves of our algorithm,

then pðr; cÞ � pðs; cÞ, the difference in weighted perimeter

due to particle P’s move, can be calculated using only local

information from the neighborhood of P (Lemma 1).

2.3 Results

We present a Markov chain M for shortcut bridging in the

geometric amoebot model that translates directly to a fully

distributed, local, asynchronous algorithm A. This Markov

chain M uses only local moves and, using a Metropolis

filter, eventually reaches a distribution that favors config-

urations proportional to their weight wðr; cÞ. Thus, con-
figurations with smaller weighted perimeter pðr; cÞ are

more likely, as desired. Rather than terminating M at some

point and using the resulting configuration as a random

sample (as is often done with Markov chains) we instead

run M indefinitely, moving among different configurations

but remaining at the stationary distribution p, which we

prove meets our desired objectives with high probability.

We prove that M (and by extension, A) solves the

shortcut bridging problem: for any constant a[ 1, for

appropriately chosen values of parameters, the long run

probability that M is in a configuration r with pðr; cÞ
larger than a times its minimum possible value is expo-

nentially small. The key tool used to establish this is a

careful Peierls argument, used in statistical physics to

study non-uniqueness of limiting Gibbs measures and in

computer science to establish slow mixing of Markov

chains (see, e.g., Levin et al. 2009, Chapter 15). We then

specifically consider V-shaped land masses with an object

on each branch of the V, and prove that the resulting bridge

structures vary with the interior angle of the V-shaped gap

being shortcut—a phenomenon also observed by Reid

et al. (2015) in the army ant bridges—and show in simu-

lation that they are qualitatively similar to those of the ants

(e.g., Fig. 3).

Our shortcut bridging algorithm and others developed

with the stochastic approach (e.g., Cannon et al. 2016)

have several advantages over other algorithms for pro-

grammable matter and self-organizing particle systems.

They are nearly oblivious, only needing to store at most

one bit of information between activations. They are also

more robust to failures; even if particles crash and stop

moving, our algorithm will converge to the best bridge

possible with respect to the crashed particles’ fixed loca-

tions. On the other hand, other algorithms for particle

systems (e.g. Daymude et al. 2017a; Derakhshandeh et al.

2017) would fail even with a single particle crash. Finally,

our algorithm requires little to no communication between

particles. Since these algorithms are derived from

stochastic processes, powerful tools developed to analyze

Markov chains can be employed to rigorously understand

their behavior.

3 A stochastic algorithm for shortcut
bridging

Recall that for the shortcut bridging problem, we desire for

our algorithm to achieve small weighted perimeter, where

boundary edges in the gap cost a factor of c[ 1 more than

those on land. The algorithm must balance the competing

objectives of having a short path between the two objects

while not forming too large of a bridge. We capture these

factors by preferring configurations r that have both small

perimeter pðrÞ, the length of the walk around the boundary

of the particle system, and small gap perimeter gðrÞ, the
number of perimeter edges that are in the gap, where edges

with one endpoint in the gap and one endpoint on land

count as half an edge in the gap. While these objectives

may appear to be aligned rather than competing, decreasing

the length of the overall perimeter increases the gap

perimeter and vice versa in the problem instances we

consider (e.g., Fig. 2). We note that

pðr; cÞ ¼ pðrÞ þ ðc� 1ÞgðrÞ, and thus minimizing

weighted perimeter is equivalent to simultaneously mini-

mizing both perimeter and gap perimeter.

Our Markov chain algorithm incorporates two bias

parameters: k and c. The value of k controls the preference

for having small perimeter, while c controls the preference
for having small gap perimeter. In this paper, we only

consider k[ 1 and c[ 1, which correspond to favoring

small perimeter and small gap perimeter, respectively.

Using a Metropolis filter, we ensure our algorithm con-

verges to stationary distribution p given by pðrÞ ¼
k�pðrÞc�gðrÞ=Z where Z ¼

P
s k

�pðsÞc�gðsÞ is the normaliz-

ing factor necessary to make p a probability distribution.

Arithmetic shows:

k�pðr;cÞ ¼ k�pðrÞ�ðc�1ÞgðrÞ ¼ k�pðrÞðkc�1Þ�gðrÞ;

so setting c ¼ kc�1 yields our desired stationary

distribution.

We note k is the same parameter that controlled com-

pression in Cannon et al. (2016), where particle configu-

rations converged to a distribution proportional to k�pðrÞ.
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That work showed that k[ 1 is not sufficient to ensure

compression, so we restrict our attention to k[ 2þ
ffiffiffi
2

p
,

the regime where compression provably occurs.

To ensure our algorithm maintains some desired

invariants throughout its execution, we introduce two

properties every movement must satisfy. Specifically, these

properties maintain system connectivity,5 prevent holes

from forming, and ensure it is possible for our Markov

chain to be reversible; more details can be found in Cannon

et al. (2016). These last two conditions are necessary for

applying established tools from Markov chain analysis.

We use the following notation. For a location ‘, let Nð‘Þ
denote the set of particles and objects6 adjacent to ‘. For

adjacent locations ‘ and ‘0, we use Nð‘ [ ‘0Þ to denote the

set Nð‘Þ [ Nð‘0Þ, excluding particles or objects occupying ‘
or ‘0. Let S ¼ Nð‘Þ \ Nð‘0Þ be the particles and objects

adjacent to both locations; we note jSj 2 f0; 1; 2g. The

following properties can be locally checked by an expan-

ded particle occupying ‘ and ‘0 (e.g., as in Step 6 of M,

Algorithm 1), and are symmetric with respect to these

locations.

Property 1 jSj 2 f1; 2g and every particle or object in

Nð‘ [ ‘0Þ is connected to a particle or object in S by a path

through Nð‘ [ ‘0Þ.

Property 2 jSj ¼ 0, ‘ and ‘0 each have at least one

neighbor, all particles and objects in Nð‘Þ n f‘0g are con-

nected by paths within this set, and all particles and objects

in Nð‘0Þ n f‘g are connected by paths within this set.

We can now present our Markov chain M for an

instance ðL;O; r0; c; aÞ of shortcut bridging. For input

parameter k[ 2þ
ffiffiffi
2

p
, set c ¼ kc�1. Beginning at initial

configuration r0, which we assume is connected and hole-

free7, repeat the steps of Algorithm 1.

Conditions (i) and (ii) of Step 6 ensure that the particle

system remains connected and no new holes are formed

during the execution of M. In particular, condition (ii)

explicitly disallows a particle with five neighbors from

moving into the only unoccupied location in its neighbor-

hood, as doing so would create a hole. Condition (iii) is the

Metropolis filter discussed above; the proposed particle

move, once confirmed to be valid, only occurs with

probability

minf1; kpðrÞ�pðr0ÞcgðrÞ�gðr0Þg ¼ minf1; kpðr;cÞ�pðr0;cÞg;

where r is the configuration with P at location ‘ and r0 is
the configuration with P at location ‘0. Although pðrÞ �
pðr0Þ and gðrÞ � gðr0Þ are values defined at system-level

scale, we show these differences can be calculated locally.

Lemma 1 An expanded particle P occupying adjacent

locations ‘ and ‘0 in GD can calculate the values of pðrÞ �
pðr0Þ and gðrÞ � gðr0Þ in Step 6(iii) of M using only local

information involving ‘, ‘0, and Nð‘ [ ‘0Þ.

Proof Observe that these values need only be calculated if

conditions (i) and (ii) of Step 6 holds. By a result of

Cannon et al. (2016),

pðrÞ � pðr0Þ ¼ jNð‘0Þj � jNð‘Þj;

which can be calculated using only local information.

Recall that gap perimeter is defined as the number of

boundary edges in the gap, counting edges between gap

and land as half an edge; this is equal to the number of

particles that are on the perimeter and in the gap, counted

with appropriate multiplicity if a particle appears on the

perimeter more than once. Given a particle R and a

configuration s, let GðR; sÞ be equal to 1 if R occupies a

gap location in s and 0 otherwise. Let dðR; sÞ be the

number of times R appears on the perimeter of s. Then the

desired difference is:

gðrÞ � gðr0Þ ¼
X

R

GðR; rÞdðR; rÞ � GðR; r0ÞdðR; r0Þ½ �:

Define DðRÞ ¼ dðR; rÞ � dðR; r0Þ. For particle P, since

conditions (i) and (ii) of Step 6 hold, DðPÞ ¼ 0. For any

particle R 62 fPg [ Nð‘ [ ‘0Þ, DðRÞ ¼ 0 since its neigh-

borhood is not affected by the movement of P. Moreover,

5 Since particles treat objects as static particles, the particle system

may actually disconnect into several components which remain

connected through objects.
6 The notion of location neighborhoods has been extended from

Cannon et al. (2016) to include objects.
7 If r0 has holes, our algorithm will eliminate them and they will not

reform (Cannon et al. 2016); for simplicity, we focus only on the

behavior of the system after this occurs.
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for any particle R 6¼ P, GðR; rÞ ¼ GðR; r0Þ since it does not
move. So:

gðrÞ � gðr0Þ ¼ dðP; rÞ GðP; rÞ � GðP; r0Þ½ �
þ

X

R2Nð‘[‘0Þ
GðR; rÞDðRÞ:

The first term is easily calculated locally. For the sum-

mation, it remains to show that P can locally calculate

DðRÞ for any R 2 Nð‘ [ ‘0Þ. First suppose that R is occupies

a location adjacent to ‘ but not ‘0. Then:

DðRÞ ¼
�1 if R has two neighbors inNð‘Þ;
1 if R has no neighbors inNð‘Þ; and
0 otherwise:

8
><

>:

The opposite is true if R occupies a location adjacent to ‘0

but not ‘. Lastly, suppose R occupies a location adjacent to

both ‘ and ‘0. Then:

DðRÞ ¼
0 if R has zero or two neighbors in Nð‘ [ ‘0Þ;
�1 if R shares a neighbor with ‘ but not ‘0; and

1 if R shares a neighbor with ‘0but not ‘:

8
><

>:

In all cases, P can calculate DðRÞ, and thus also

gðrÞ � gðr0Þ, using only local information. h

The state space X of M is the set of all configurations

reachable from r0 via valid transitions of M. We conjec-

ture that this includes all connected, hole-free configura-

tions of n particles connected to both objects, but proving

all such configurations are reachable from r0 is not nec-

essary for our results. (The proof of the corresponding

result in Cannon et al. (2016) does not generalize due to

the presence of static objects).

3.1 From M to a distributed, local algorithm A

In order for individual particles to run M, a Markov chain

with centralized control, we must translate M into a dis-

tributed, local, asynchronous algorithm A that fully

respects the constraints of the amoebot model (Sect. 1.2).

In particular, the uniformly at random particle selection in

Step 1 ofM must be translated to individual, asynchronous

particle activations and a particle’s combined expansion

and contraction in Steps 4–7 of M must be decoupled into

two separate activations because a particle can perform at

most one movement per activation. The remainder of M

can be executed directly in A: Properties 1 and 2 are

locally verifiable as they only involve a particle’s imme-

diate neighborhood, and Lemma 1 showed that the differ-

ences pðrÞ � pðr0Þ and gðrÞ � gðr0Þ used in Step 6 of M

can be calculated locally. Full details of this construction

can be found in Cannon et al. (2016).

Under the usual assumptions of the asynchronous model

from distributed computing, one cannot assume that the

next particle to be activated is equally likely to be any

particle, as specified in Step 1 of M. To mimic this uni-

formly random activation sequence in a local way, we

assume each particle has its own Poisson clock with mean

1 and activates after a delay t drawn with probability e�t.

After completing its activation, a new delay is drawn to its

next activation, and so on. The exponential distribution

guarantees that, regardless of which particle has just acti-

vated, all particles are equally likely to be the next to

activate (see, e.g., Feller 1968). We could even better

approximate asynchronous activation sequences by allow-

ing each particle to have its own constant mean for its

Poisson clock, allowing for some particles to activate more

often than others in expectation. In this setting, the prob-

ability that a particle P is the next of the n particles to

activate is not 1 / n, but rather some probability aP that

depends on all particles’ Poisson means.8 This does not

change the stationary distribution of M; Lemma 4 still

holds with a nearly identical proof that replaces 1 / n with

aP, and Lemma 5 and Theorem 1 still follow. Because the

same results hold regardless of the rates of particles’

Poisson clocks, we assume clocks with mean 1 for

simplicity.

Unlike in M, the amoebot model assumes a particle

P can perform at most one movement per activation (Sect.

1.2), so we must decouple P’s movement in one iteration of

M, which includes both an expansion and a contraction,

into two activations. However, due to asynchrony, other

particles may expand into P’s neighborhood after it has

expanded but before it contracts. We utilize flag-locking

mechanisms to ensure P retains consistent snapshots of its

neighborhood regardless of the movements of other parti-

cles between its activations. When P expands from location

‘ to also occupy neighboring location ‘0 (Step 4 of M), it

sets a Boolean flag f to TRUE if it is the only expanded

particle in its neighborhood, and to FALSE otherwise. When

P is later activated again, it checks its flag: if f is FALSE, it

simply contracts back to its original position ‘ since some

other particle in its neighborhood activated and expanded

earlier. Otherwise, P checks the conditions of Step 6 of M

(ignoring any expanded heads, see the next paragraph) and

decides whether to contract to ‘ or ‘0 accordingly. Particle
P then resets f to FALSE and completes its second activation.

This ensures that at most one particle per neighborhood

moves at a time, mimicking the sequential nature of M.

Some explanation is warranted on how particle P iden-

tifies expanded heads in its neighborhood and why it

ignores them when checking the conditions of Step 6 ofM.

8 Probability aP only plays a role in the analysis of A and M, not in

their execution. Particle P does not need to know or calculate aP.
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Recall from Sect. 1.2 that a particle stores whether it is

expanded or contracted and which neighboring locations

are adjacent to its head in memory. Particle P can read this

information from its neighbors to identify expanded heads

in its neighborhood. Moreover, for particle P to reach Step

6 of M, its flag f must be set to TRUE. Any other particle

Q that expands into the neighborhood of P must then set its

flag to FALSE, since it observes P is already expanded.

Thus, P should ignore the heads of these expanded

neighbors, since it is only a matter of time before they are

activated again and simply contract their expanded heads.

We have shown our Markov chain M can be translated

into a distributed, local, asynchronous algorithm A, but

such an implementation is not always possible in general.

Any Markov chain for particle systems that relies on non-

local particle moves or has transition probabilities that rely

on non-local information cannot be executed by a local,

distributed algorithm. Moreover, many algorithms under

the amoebot model are not stochastic and thus cannot be

meaningfully described as Markov chains; see, e.g. Day-

mude et al. (2017a), Derakhshandeh et al. (2017).

3.2 Properties of Markov chain M

We now show some useful properties of Markov chain M.

Our first two claims follow from work in Cannon et al.

(2016) and basic properties of Markov chains and our

particle systems.

Lemma 2 If r0 is connected and has no holes, then at

every iteration of M, the current configuration is con-

nected and has no holes.

Proof Cannon et al. (2016) proved that no moves allowed

in their compression algorithm could introduce holes or

disconnect the particle system. Since the moves allowed by

M are a subset of those in the compression algorithm

(since the local properties checked at each iteration are the

same), M cannot introduce holes or disconnect the

system. h

Lemma 3 If r0 has no holes, then M is ergodic.

Proof Markov chain M is irreducible because we defined

X to be precisely those configurations reachable by valid

transitions of M starting from r0. M is aperiodic because

at each iteration there is a probability of at least 1 / 6 that

no move occurs, as each particle has at least one neighbor.

Thus, the chain M is ergodic. h

As M is finite and ergodic, it converges to a unique

stationary distribution, and we can find that distribution

using detailed balance.

Lemma 4 The stationary distribution of M is

pðrÞ ¼ k�pðrÞc�gðrÞ=Z;

where Z ¼
P

r02X k�pðr0Þc�gðr0Þ.

Proof Properties 1 and 2 ensure that particle P moving

from location ‘ to location ‘0 is valid if and only if

P moving from ‘0 to ‘ is. This implies for any configura-

tions r and s, Qðr; sÞ[ 0 if and only if Qðs; rÞ[ 0. Using

this, we easily verify the lemma via detailed balance.

Let r; s 2 X be distinct configurations that differ by one

valid move of a particle P from location ‘ to neighboring

location ‘0, and let n be the number of particles. Then,

Qðr; sÞ ¼ 1

n
� 1
6
�minfkpðrÞ�pðsÞcgðrÞ�gðsÞ; 1g; and

Qðs; rÞ ¼ 1

n
� 1
6
�minfkpðsÞ�pðrÞcgðsÞ�gðrÞ; 1g:

Without loss of generality, assume that k and c satisfy

kpðrÞ�pðsÞcgðrÞ�gðsÞ 	 1. Then,

pðrÞQðr; sÞ ¼ k�pðrÞc�gðrÞ

Z
� k

pðrÞ�pðsÞcgðrÞ�gðsÞ

6n

¼ k�pðsÞc�gðsÞ

Z
� 1
6n

¼ pðsÞQðs; rÞ:

The definition of Z implies p satisfies
P

r02X pðr0Þ ¼ 1, so

p is a valid probability distribution and we conclude p is

the unique stationary distribution of M. h

The stationary distribution can be alternately expressed

using weighted perimeter.

Lemma 5 For c ¼ 1þ logk c, the stationary distribution

of M is given by

pðrÞ ¼ k�pðr;cÞ=Z;

where Z ¼
P

r02X k�pðr0;cÞ.

Proof This follows from the definition of pðr; cÞ. h

Theorem 1 Consider an execution of Markov chain M on

state space X, with k[ 2þ
ffiffiffi
2

p
¼: m and c[ 1, where

starting configuration r0 has n particles. For any constant

a satisfying

a[
log k

log k� log m
[ 1;

the probability that a particle configuration r drawn at

random from M’s stationary distribution p satisfies

pðr; 1þ logk cÞ[ a � pmin
is exponentially small in n for sufficiently large n, where

pmin is the minimum weighted perimeter of a configuration

in X.

Proof This proof mimics that of a-compression in Cannon

et al. (2016), but additional insights and care are necessary

A stochastic approach to shortcut bridging in programmable matter 731

123

Author's personal copy



to accommodate the difficulties introduced by considering

weighted perimeter instead of perimeter. Throughout we

consider weighted perimeter pðrÞ ¼ pðr; 1þ logk cÞ.
Define the weight of a configuration r 2 X to be:

wðrÞ :¼ pðrÞ � Z ¼ k�pðrÞc�gðrÞ ¼ k�pðrÞ;

where Z ¼
P

r02X k�pðr0Þc�gðr0Þ. For a set of configurations

S � X, we define its weight wðSÞ ¼
P

r2S wðrÞ; analo-

gously, let pðSÞ ¼
P

r2S pðrÞ ¼ wðSÞ=Z. Let rmin 2 X be a

configuration with minimal weighted perimeter pmin, and

let Sa be the set of configurations with weighted perimeter

at least a � pmin. We show that for sufficiently large n,

pðSaÞ ¼
wðSaÞ
Z

\
wðSaÞ
wðrminÞ

	 f
ffiffi
n

p
;

where f\1. The first equality and inequality follow

directly from the definitions of Z, w, and rmin. We focus on

the last inequality.

Stratify Sa into sets of configurations that have the same

weighted perimeter; there are at most O n2ð Þ such sets, as

the total perimeter and gap perimeter can each take on at

most O(n) values. Label these sets as A1;A2; . . .;Am in

order of increasing weighted perimeter, where m is the total

number of distinct weighted perimeters of configurations in

Sa. Let pi be the weighted perimeter of all configurations in

set Ai; since Ai � Sa, then pi 
 a � pmin.
Note wðrÞ ¼ k�pi for every r 2 Ai, so to bound wðAiÞ it

suffices to bound jAij. A configuration with weighted

perimeter pi has perimeter p	 pi, and a result from Cannon

et al. (2016) that exploits a connection to self-avoiding

walks in the hexagon lattice (Duminil-Copin and Smirnov

2012) implies the number of connected, hole-free particle

configurations with perimeter p is at most f ðpÞmp, for some

subexponential function f. Letting pmin denote the mini-

mum possible (unweighted) perimeter of a configuration of

n particles, we conclude that:

wðAiÞ ¼ k�pi jAij 	 k�pi �
Xpi

p¼pmin

f ðpÞmp 	 k�pi f1ðpiÞmpi ;

where f1ðpiÞ ¼
Ppi

p¼pmin
f ðpÞ is necessarily also a subexpo-

nential function because it is a sum of at most a linear

number of subexponential terms. So,

wðSaÞ ¼
Xm

i¼1

wðAiÞ	
Xm

i¼1

f1ðpiÞ
m
k

� �pi 	 f2ðnÞ
m
k

� �a�pmin
;

where f2ðnÞ ¼
Pm

i¼1 f1ðpiÞ is a subexponential function

because pi ¼ OðnÞ, m ¼ O n2ð Þ, and f1 is subexponential.

The last inequality above holds as k[ m and pi 
 a � pmin.
Then, since wðrminÞ ¼ k�pmin ,

pðSaÞ\
wðSaÞ
wðrminÞ

	 f2ðnÞ
m
k

� �a�pmin
kpmin

¼ f2ðnÞ k
m
k

� �ah ipmin
:

The constant kðm=kÞa is less than one whenever

a[ log k
log k�log m. Since the perimeter of any configuration of

n particles is at least
ffiffiffi
n

p
, pmin 


ffiffiffi
n

p
. Because f2ðnÞ is

subexponentially large but ðkðm=kÞaÞ
ffiffi
n

p
is exponentially

small, asymptotically the latter term dominates and we

conclude there exists f\1 such that for all sufficiently

large n,

pðSaÞ\f2ðnÞðkðm=kÞaÞ
ffiffi
n

p
\f

ffiffi
n

p
;

which proves the theorem. h

Though Theorem 1 is proved only in the case where the

number of particles is sufficiently large, we expect and

observe it to hold for much smaller n. However, we are

unable to compute an explicit bound on how large n must

be for these results to hold because the exact form of the

subexponential function f(p) in the above proof is unknown

(see Section 4 of Duminil-Copin and Smirnov (2012) and

references therein).

The following corollary shows that our algorithm solves

any instance ðL;O; r0; c; aÞ of the shortcut bridging prob-

lem when parameters k and c are chosen accordingly.

Corollary 1 The distributed, local algorithm A associated

with Markov chain M solves any valid instance of the

shortcut bridging problem where the number of particles is

sufficiently large.

Proof Given any valid instance ðL;O; r0; c; aÞ of the

shortcut bridging problem, it suffices to run A starting

from configuration r0 with parameters k[ ð2þ
ffiffiffi
2

p
Þ

a
a�1 and

c ¼ kc�1. Then a[ logðkÞ
logðkÞ�logð2þ

ffiffi
2

p
Þ [ 1, so by Theorem 1

the system reaches and remains with all but exponentially

small probability in a set of configurations with weighted

perimeter pðr; cÞ	 a � pmin, where pmin is the minimum

weighted perimeter of a configuration in X. Solving the

shortcut bridging problem only requires the weaker con-

dition that this occurs with all but a polynomially small

probability, which our algorithm certainly achieves. h

4 Dependence on gap angle

To understand the relationship between bridging and shape,

we consider V-shaped land masses of various angles (e.g.,

Fig. 2a). We prove our shortcut bridging algorithm has a

dependence on the internal angle h of the gap similar to

that of the army ant bridges studied by Reid et al. (2015).
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We show that when h is sufficiently small, with all but

exponentially small probability the bridge constructed by

the particles stays close to the bottom of the gap (away

from the apex of angle h). On the other hand, we show that

for some large values of h, when k and c satisfy certain

conditions, with all but exponentially small probability the

bridge stays close to the top of the gap. We prove these

results with a Peierls argument and careful analysis of the

geometry of the gap. Simulations of our shortcut bridging

algorithm for varying angles can be found in Sect. 5.

We first give a formal construction for the V-shaped

land mass L given any h 2 ð0; pÞ and constant width w
 2.

Let e 2 E be any edge of the triangular lattice and label its

endpoints as v1 and v2. Extend line segment ‘1 from v1 such

that it forms an angle of p=2þ h=2 with e. Similarly

extend line segment ‘2 from v2, of the same length and on

the same side of e as ‘1, also forming an angle of p=2þ
h=2 with e. Segments ‘1 and ‘2 then differ in their orien-

tation by angle h. Without loss of generality, we assume ‘1
is clockwise from ‘2 around e. Let b be the line through ‘1
and ‘2’s other endpoints (not v1 and v2). The land mass

consists of v1, v2, and all vertices of GD that are outside of

‘1 and ‘2 and from which there exists a lattice path of

length at most w to a vertex strictly between ‘1 and ‘2.

Vertices of GD on the opposite side of b from e are not

included in the land mass. For example, Fig. 4a depicts a

land mass with h� p=6 and Fig. 4b shows another with

h� p=2; both have width w ¼ 5. This careful definition

involving edge e is necessary to ensure there are no adja-

cent land locations on opposite sides of the gap, as could

happen for small h if the land mass is not constructed

carefully.

From now on we will, in a slight abuse of notation, refer

to the gap locations between ‘1 and ‘2 as the gap. By the

bottom of the gap, we mean the line b through ‘1 and ‘2’s

other endpoints (not v1 and v2). We may assume b is a line

of the triangular lattice by truncating ‘1 and ‘2 so that both

end on a lattice line; this does not change the land mass

L. We also assume b \ ‘1 and b \ ‘2 are not vertices of the

triangular lattice GD; if they are, we can perturb ‘1 and ‘2
slightly, without changing the land mass. Note b is always

parallel to e.

The height of land mass L is the length of a shortest path

in GD from v1 or v2 to b that only visits land locations; the

land mass in Fig. 4a has height 8, while the land mass in

Fig. 4b has height 9. Let m be the midpoint of the segment

connecting the midpoints of ‘1 and ‘2; m is in the center of

the gap, halfway between e and b.

The initial configuration r0 we consider is a path of

width 2 lining the interior sides of the land mass L; see

Fig. 5. We position the two fixed objects of O in line b at

the second vertices outside ‘1 and ‘2, anchoring the parti-

cles on either side of the gap. Note the height of L is

exactly the number of particles in r0 next to ‘1 (or ‘2),

excluding v1 and v2.

Lemma 6 Let L be a V-shaped land mass of height k and

angle h. The initial configuration r0 has 4k þ 5 particles

and two objects.

Proof First, suppose h	 p=3, as in Fig. 5a. Each lattice

line parallel to e and intersecting ‘1 and ‘2, up to but not

including b, contains exactly four particles. There are

k such lattice lines. Line b contains two particles. In the

lattice line above and parallel to e, there are three particles.

In total, this gives 4k þ 2þ 3 ¼ 4k þ 5 particles and two

objects.

Now, suppose h[ p=3, as in Fig. 5b; a different

counting approach is necessary. Consider the lattice line

through v1 and the gap location adjacent to v1 and v2; this

line and all lines parallel to it intersecting ‘1 contain

exactly two particles, and there are k such lines. The same

is true for v2 and ‘2. Uncounted by this approach are five

e

b

m

v1
v2

1

2

(a)

e

b
m

v1
v2

1

2

(b)

Fig. 4 The land mass L of constant width 5 for a a small value of

h� p=6 and height 8 and b a large value of h� p=2 and height 9.

Point m is the midpoint of the segment between the midpoints of ‘1
and ‘2, and b is shown as a dashed line
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additional particles: the two particles adjacent to each of

the two objects, and the particle adjacent to v1 and v2. In

total, this gives 2k þ 2k þ 4þ 1 ¼ 4k þ 5 particles and

two objects. h

For a given r, let x be the particle or object contained in

line b farthest outside of ‘1, and let y be the particle or

object in line b farthest outside of ‘2. We will refer to the

perimeter of r traversed counterclockwise from x to y as

the inner perimeter of r. We say the inner perimeter is

above a point p if p is to the right of the inner perimeter

traversed from x to y; it is below a point p if p is to its left.

We can partition X into two sets S1 and S2, where S1
contains all configurations whose inner perimeter is strictly

above midpoint m of the gap and S2 contains all configu-

rations whose inner perimeter goes through or below

m. We first prove that for k[ 2þ
ffiffiffi
2

p
(i.e., in the range of

compression) and c[ 1, there is an angle h1 such that for

all h\h1, pðS1Þ is exponentially small. We then prove that

for k[ 2þ
ffiffiffi
2

p
and c[ k4ð2þ

ffiffiffi
2

p
Þ4, there is a h2 such

that for all h 2 ðp=3; h2Þ, pðS2Þ is exponentially small. We

expect much better bounds h1 and h2 can be obtained with

more effort, and that these results generalize to all k[ 2þ
ffiffiffi
2

p
and c[ 1, but here we simply demonstrate it is pos-

sible to give rigorous results about the dependence of the

bridge structure on h.

4.1 Proofs for small h

We begin with some structural lemmas.

Lemma 7 Let L be a V-shaped land mass of height k and

angle h	 p=3. Then any path in GD that starts and ends at

the bottom of the gap and goes strictly above the midpoint

m of the gap has length at least k þ 1.

Proof For h	 p=3, there are k � 1 lattice lines parallel to

b strictly between b and e. Of these lines exactly dðk �
1Þ=2e are below or contain m. Any path from b to a

location above m and back to b must contain at least two

vertices in each of these lattice lines, two vertices in b, and

one vertex strictly above m, giving a total of

3þ 2dðk � 1Þ=2e
 3þ 2ððk � 1Þ=2Þ ¼ k þ 2

vertices. As the length of a path is the number of edges it

contains, the path must have length at least k þ 1. h

Lemma 8 The i-th lattice line below and parallel to

e contains h(i) gap locations between ‘1 and ‘2, where

i
ffiffiffi
3

p
tan

h
2
	 hðiÞ	 i

ffiffiffi
3

p
tan

h
2
þ 2:

Proof Let bi be the i-th lattice line below and parallel to

e. We use trigonometry to analyze the length of bi between

‘1 and ‘2; see Fig. 6a. Consider the triangle formed by bi,

‘1, and the line perpendicular to e at v1, which we call ‘�.
Lines ‘1 and ‘� form an angle of h=2, and the distance

between e and bi along ‘� is i
ffiffiffi
3

p
=2. It follows that the

length of bi between ‘1 and ‘� is i
ffiffiffi
3

p
tanðh=2Þ=2. Alto-

gether, this implies bi between ‘1 and ‘2 is of length

i
ffiffiffi
3

p
tanðh=2Þ þ 1. As each edge of the triangular lattice has

length 1, this means there are between i
ffiffiffi
3

p
tanðh=2Þ and

i
ffiffiffi
3

p
tanðh=2Þ þ 2 gap locations in bi, as claimed. h

Lemma 9 Let L be a V-shaped land mass of height k and

angle h	 p=3. Then the normalizing constant Z of the

stationary distribution p of M satisfies

Z
C ðkcÞ�2
ffiffi
3

p
tanh

2

h ik
;

for a constant C that depends on h, k, and c but not on k.

e

b

m

v1
v2

1

2

(a)

e

1 b
m

v1
v2

2

(b)

Fig. 5 The initial configuration r0, with particles shown in black and

objects enlarged and red, for a a small value of h� p=6 and b a large

value of h� p=2. Point m is the midpoint of the segment between the

midpoints of ‘1 and ‘2, and b is shown as a dashed line. (Color

figure online)
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Proof Observe that Z ¼
P

r2X k�pðrÞc�gðrÞ satisfies

Z
 k�pðr�Þc�gðr�Þ for any r� 2 X. We now construct a

particular r� (Fig. 6b) and calculate its perimeter and gap

perimeter. Let r� contain a straight line of particles along

b connecting the two objects, and let u be the number of

objects and particles in this line. By Lemma 8, since b ¼ bk
and u includes two particles on land as well as two objects,

k
ffiffiffi
3

p
tan

h
2
þ 4	 u	 k

ffiffiffi
3

p
tan

h
2
þ 6:

Continue constructing r� by placing rows of u particles

above this initial row such that the row starts and ends on

opposite sides of the gap. By Lemma 6, there are 4k þ 7

total objects and particles, so there will be v ¼ dð4k þ
7Þ=ue such rows, with the last row possibly incomplete. We

note that v satisfies:

v ¼ 4k þ 7

u

� �

	 4k þ 7

u
þ 1	 4k þ 7

k
ffiffiffi
3

p
tan h

2
þ 4

þ 1

	 4
ffiffiffi
3

p
tan h

2

þ 7

4
þ 1	 4

ffiffiffi
3

p
tan h

2

þ 3;

v ¼ 4k þ 7

u

� �


 4k þ 7

u

 4k þ 7

k
ffiffiffi
3

p
tan h

2
þ 6


 4k

k
ffiffiffi
3

p
tan h

2
þ 6k


 4
ffiffiffi
3

p
tan h

2
þ 6

:

Configuration r� has perimeter at most 2uþ 2v� 4 and

gap perimeter at most u� 4þ z, where z is the number of

particles occupying gap locations in the upper perimeter of

r�. These z remaining particles must be in either the

ðk � vþ 1Þ-th or ðk � vþ 2Þ-th lattice lines below e, so we

can bound z by again applying Lemma 8:

z	ðk � vþ 1Þ
ffiffiffi
3

p
tan

h
2
þ 2:

Altogether, this implies:

pðr�Þ	 2uþ 2v� 4

	 2k
ffiffiffi
3

p
tan

h
2
þ 12þ 8

ffiffiffi
3

p
tan h

2

þ 6� 4

	 k 2
ffiffiffi
3

p
tan

h
2

� �

þ 8
ffiffiffi
3

p
tan h

2

þ 14

 !

;

and

gðr�Þ	 u� 4þ z

	 k
ffiffiffi
3

p
tan

h
2
þ 6� 4þ ðk � vþ 1Þ

ffiffiffi
3

p
tan

h
2
þ 2

	 2k
ffiffiffi
3

p
tan

h
2
þ � 4

ffiffiffi
3

p
tan h

2
þ 6

þ 1

 !
ffiffiffi
3

p
tan

h
2
þ 4

	 k 2
ffiffiffi
3

p
tan

h
2

� �

þ
ffiffiffi
3

p
tan

h
2
�

4
ffiffiffi
3

p
tan h

2ffiffiffi
3

p
tan h

2
þ 6

þ 4

 !

:

We note that the second parentheses in the final bounds

above for pðr�Þ and gðr�Þ are constants that only depend

on h. This implies that there is a constant

C ¼ k
� 14þ 8ffiffi

3
p

tanh
2

� �

c
�

ffiffi
3

p
tanh

2
� 4
ffiffi
3

p
tanh

2ffiffi
3

p
tanh

2
þ6
þ4

� �

such that

Z 
 k�pðr�Þc�gðr�Þ 
C kcð Þ�2
ffiffi
3

p
tanh

2

h ik
:

As claimed, C depends only on k, c, and h, and is inde-

pendent of k. h

Theorem 2 Let k[ 2þ
ffiffiffi
2

p
¼: m and c[ 1. Then there

exists a constant h1 such that for all V-shaped land masses

with angle h\h1, the probability that the inner perimeter

is above midpoint m is exponentially small in k, the height

of the gap, provided k is sufficiently large. In particular,

h1 ¼ 2 tan�1
logkc k=mð Þ

ffiffiffi
3

p
� �

:

Proof Recall that S1 � X is the set of configurations for

which the inner perimeter is strictly above m. We show that

S1 has exponentially small weight at stationarity; in par-

ticular, we show pðS1Þ is bounded above by f2ðkÞnk, where
f2ðkÞ is a subexponential function and n\1 is a constant.

If r 2 S1, then by Lemma 7 we have pðrÞ
 2k þ 2, as

its inner perimeter—and thus the rest of the perimeter as

well—must be above m. Furthermore, because the perime-

ter by definition includes both objects and particles, which

number 4k þ 7 by Lemma 6, any configuration r 2 X has

pðrÞ	 2ð4k þ 7Þ � 2 ¼ 8k þ 12. A result from Cannon

et al. (2016) exploits a connection to self-avoiding walks in

the hexagon lattice to show the number of connected, hole-

free particle configurations with perimeter p is at most

e

b8

/2

*

1

2

(a)

e

(b)

Fig. 6 Figures from proofs in Sect. 4.1. a A depiction of the notation

used in the proof of Lemma 8; the intersection of b8 and the gap is

depicted as a solid segment, which is of length 8
ffiffiffi
3

p
tanðh=2Þ þ 1 and

contains 4 gap locations. b The configuration r� used in Lemma 9 for

h ¼ p=6 and k ¼ 8
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f ðpÞðmÞp for some subexponential function f. This is

certainly also an upper bound on the number of configu-

rations in S1 with perimeter p. Because c�gðrÞ\1, we have:

pðS1Þ ¼
X

r2S1

k�pðrÞc�gðrÞ

Z
\

X8kþ12

p¼2kþ2

f ðpÞmpk�p

Z
:

Let f1ðkÞ ¼
P8kþ12

p¼2kþ2 f ðpÞ, and note that this function is

subexponential in k because its number of summands is

linear in k. Because k[ m and p
 2k þ 2, we have that:

pðS1Þ	
f1ðkÞ m

k

	 
2kþ2

Z
:

By Lemma 9, there is a constant C1 ¼ m2=ðk2CÞ such that:

pðS1Þ	
f1ðkÞ m

k

	 
2kþ2

C kcð Þ�2
ffiffi
3

p
tanh

2

h ik ¼ C1f1ðkÞ
mðkcÞ

ffiffi
3

p
tanh

2

k

 !2k

:

For all h\2 tan�1 logkcðk=mÞ=
ffiffiffi
3

p	 

, the term in parentheses

above is less than one:

mðkcÞ
ffiffi
3

p
tan h

2

k
\

mðkcÞ
logkc

k
2þ
ffiffi
2

p

� �

k
¼ 1:

Because C1f1ðkÞ is a subexponential function but the term

above, raised to the 2k power, is exponentially small, the

latter eventually dominates and we conclude there is a

constant n\1 such that for sufficiently large k, pðS1Þ\nk,
proving the theorem. h

Since n ¼ 4k þ 5 by Lemma 6, the probability that the

inner perimeter is above point m is also exponentially small

in n, the number of particles.

As an example, for k ¼ 4 and c ¼ 2 (the parameters of

the simulations in Figs. 10 and 9), our methods give

h1 ¼ 0:0879� 5:03�. However, simulations suggest this

bound is far from tight. In general, as k increases, so does

the angle h1: a stronger bias towards a shorter perimeter

means the bridge forms closer to the bottom of the gap and

at even larger angles the bridge remains below m. Simi-

larly, as c decreases the bridge moves down towards the

bottom of the gap and at even larger angles remains below

m.

As with Theorem 1, we are unable to give explicit

bounds on the ‘‘sufficiently large k’’ required by the

statement of Theorem 2 because determining the exact

form of the subexponential function f(p) in the above proof

remains an open problem (see Section 4 of Duminil-Copin

and Smirnov (2012)). However, we expect and observe that

the claims of this theorem hold even for the small k for

which our proofs do not apply.

4.2 Proofs for large h

We now consider the set S2 ¼ X n S1, which consists of all

configurations where the inner perimeter goes through or

below m. We will show that for some large angles h, for all

k[ 2þ
ffiffiffi
2

p
and c[ ð2þ

ffiffiffi
2

p
Þ4k4, pðS2Þ is exponentially

small. While a lower bound on c is necessary for the proofs

presented below, we believe this is an artifact of our proof

rather than the problem itself and suspect this requirement

can be loosened or removed altogether.

For h
 p=3, it is no longer true that a V-shaped land

mass of height k has exactly k � 1 lattice lines between

b and e. We define a new quantity q, the gap depth, as the

length of a shortest path from e to b in GD; unlike in the

definition of the height k of a gap, this shortest path is not

required to stay on land locations. The Euclidean distance

between e and b is then
ffiffiffi
3

p
q=2. Furthermore, q can be

expressed as a function of k and h.

Lemma 10 For a V-shaped land mass of height k and

angle h
 p=3, the gap depth q satisfies

k ¼ 1

2
þ

ffiffiffi
3

p

2
tan

h
2

� �

q

� �

:

Proof Consider the path from v1 to line b that leaves v1
forming an angle of 2p=3 with e, and then proceeds along

b until it reaches a land location; see Fig. 7, where this path

is shown in bold. The total length of this path is k, and its

first segment from v1 to b is length q. Let w be the length of

b between this path’s turning point and ‘1; then

k ¼ qþ dwe. This path and ‘1 form an obtuse triangle

where two sides have lengths q and w, respectively. The

angle opposite the side of length w is h=2� p=6, while the
angle opposite the side of length q is

p� 2p=3� ðh=2� p=6Þ ¼ p=2� h=2. Length w can be

calculated in terms of length q with the law of sines:

e

b

w

q

q+1

w

v1
v2

1

2

Fig. 7 The path of length k (bold) from vertex v1 to the first land

location in line b considered in the proof of Lemma 10; this path is

used to calculate the gap height k in terms of the gap depth q. By also

considering the reflection of this path from v2 (solid line), we can

calculate the distance between the two objects to be qþ 2dwe þ 3

(Lemma 11)
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w ¼
sin h

2
� p

6

	 


sin p
2
� h

2

	 
 q ¼
sin h

2
cos p

6
� cos h

2
sin p

6

cos h
2

q

¼
ffiffi
3

p

2
sin h

2
� 1

2
cos h

2

cos h
2

q ¼ q
ffiffiffi
3

p

2
tan

h
2
� q

2
:

Because q is an integer, it follows that

k ¼ qþ dwe ¼ qþ q
ffiffiffi
3

p

2
tan

h
2
� q

2

� �

¼ 1

2
þ

ffiffiffi
3

p

2
tan

h
2

� �

q

� �

;

which is the desired result. h

For simplicity, we do the bulk of our analysis using

q instead of k. The previous lemma shows that proving an

expression is exponentially small in q implies it is also

exponentially small in k.

Lemma 11 For any V-shaped land mass of gap depth

q and angle h
 p=3, any configuration r has perimeter at

least

pðrÞ
 2
ffiffiffi
3

p
tan

h
2

� �

qþ 6:

Proof We first bound the distance between the two

objects on either side of the gap. Using the length w from

the proof of Lemma 10, the distance between the two

objects in any configuration is qþ 2dwe þ 3
 qþ 2wþ 3

(see Fig. 7). The perimeter of any particle configuration is

at least twice this distance, so for any r,

pðrÞ
 2qþ 4wþ 6 ¼ 2qþ 4
q
ffiffiffi
3

p

2
tan

h
2
� q

2

� �

þ 6

¼ 2
ffiffiffi
3

p
tan

h
2

� �

qþ 6;

which is the desired bound. h

Lemma 12 For any V-shaped land mass of gap depth

q and angle h[ p=3, any configuration r 2 S2 (passing

below or through midpoint m of the gap) has gap perimeter

gðrÞ
 q
2
.

Proof If r 2 S2, i.e., if its inner perimeter passes through

or below m, then it must contain a path that starts and ends

at land locations and also passes through or below m. We

consider all such paths and give a lower bound on the

number of gap locations they must contain. The shortest

such paths start and end on opposite sides of the gap, so we

focus on paths of this type.

If m is a vertex of GD, one shortest path between land

locations passing through m leaves m along the two lattice

lines not parallel to e and follows them until reaching the

land mass, as in Fig. 8a. If m is on a lattice edge, a shortest

path passing below m is constructed in the same way,

beginning from each of the edge’s endpoints. Otherwise, if

m is neither a lattice point nor on a lattice edge, the same

procedure is followed for the first lattice point or lattice

edge below m. In all cases, let m0 be the point of

intersection between this path and ‘�, the line perpendicular
to e through v1. Fig. 8b shows all the possible locations of

m producing a particular m0. Inspection shows that in all of

these cases, m0 is contained in the 2bqþ1
4
c-th lattice line

below e.

Let ‘1 be the line from v1 to b forming an angle of 2p=3
with e; see Fig. 8b. Because h[ p=3, all vertices of GD

contained in ‘1, except v1, are gap locations. Any shortest

path from m0 to a land location must share a vertex of GD

with line ‘1. Because m0 is in the 2bqþ1
4
c-th lattice line

below e, any path from m0 to ‘1 is of length at least bqþ1
4
c

and contains at least bqþ1
4
c þ 1 gap locations, including

both of its endpoints. By symmetry, this means any path

between land locations passing below m, and thus any inner

perimeter of a particle configuration passing below m,

contains at least

2
qþ 1

4

� �

þ 1

� �


 2
q� 2

4
þ 1

� �


 q

2

gap locations, as claimed. h

Theorem 3 Let k[ 2þ
ffiffiffi
2

p
¼: m and c[ ðkmÞ4. Then

there exists a constant h2 [ p=3 such that for all V-shaped

land masses with angle h 2 ðp=3; h2Þ, the probability that

the inner perimeter goes through or below midpoint m is

exponentially small in k, the height of the gap, provided k is

sufficiently large.

Proof Recall S2 is the set of all configurations whose

inner perimeter goes through or below m. We show that

pðS2Þ is exponentially small in k, the height of the gap. By

definition,

e

b
m

1

2

(a)

m

e

m’

*

v1

1

2

1

(b)

Fig. 8 From the proof of Lemma 12: a an example of a shortest path

between land locations on opposite sides of the gap passing through

midpoint m. b The four possible locations for midpoint m for which a

shortest path passing through or below m contains m0, and a shortest

path from m0 to a land location (solid line)
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pðS2Þ ¼
P

r2S2 k
�pðrÞc�gðrÞ

Z
:

By Lemma 6, the number of particles and objects in r0 for
a land mass of height k is 4k þ 7. Since r0 is a path of

width 2 and every particle occupies a land location,

pðr0Þ ¼ 4k þ 7 and gðr0Þ ¼ 0. Thus,

Z ¼
X

r2X
k�pðrÞc�gðrÞ 
 k�pðr0Þc�gðr0Þ ¼ k�4k�7:

It is simpler to work with gap depth q instead of gap height

k. By Lemma 10, k satisfies k	 1
2
þ

ffiffi
3

p

2
tan h

2

� �
qþ 1, so

Z 
 k�4k�7 
 k�4 1
2
þ
ffiffi
3

p

2
tanh

2

	 

q�4�7 ¼ k� 2þ2

ffiffi
3

p
tanh

2ð Þq�11:

Combining this with Lemma 12,

pðS2Þ ¼
X

r2S2

k�pðrÞc�gðrÞ

Z

	 k 2þ2
ffiffi
3

p
tanh

2ð Þqþ11
X

r2S2
k�pðrÞc�

q
2:

Let pmin (resp., pmax) be the minimum (resp., maximum)

possible perimeter for a valid particle configuration in S2.

By Lemma 11, pmin 
 2
ffiffiffi
3

p
tanðh=2Þq. As shown in the

proof of Theorem 2, pmax ¼ 8k þ 12; in terms of q, by

Lemma 10,

pmax 	 8
q

2
þ q

ffiffiffi
3

p

2
tan

h
2
þ 1

� �

þ 12

¼ 4qþ 4q
ffiffiffi
3

p
tan

h
2
þ 20:

Using the result from Cannon et al. (2016) which upper

bounds the number of particle configurations with

perimeter p by the expression f ðpÞmp, for some subexpo-

nential function f, we have that:

pðS2Þ	 k 2þ2
ffiffi
3

p
tanh

2ð Þqþ11
Xpmax

p¼pmin

f ðpÞmpk�pc�
q
2

	 k 2þ2
ffiffi
3

p
tanh

2ð Þqþ11
Xpmax

p¼pmin

f ðpÞ
 !

m
k

� �pmin
c�

q
2

	 k11
Xpmax

p¼pmin

f ðpÞ
 !

� k 2þ2
ffiffi
3

p
tanh

2ð Þ m
k

� �2
ffiffi
3

p
tanh

2

c�
1
2

� �q

¼ k11
Xpmax

p¼pmin

f ðpÞ
 !

k2m2
ffiffi
3

p
tanh

2c�
1
2

� �q
:

The first parentheses is a function f1ðqÞ that is subexpo-

nential in q, as it has a polynomial number of summands

based on our calculations of pmin and pmax (which are

expressions in terms of q), and each summand is subex-

ponential. When the term in the second set of parentheses

above is less than one, the second factor (this term raised to

the q power) is exponentially small in q, the gap depth, and

thus for sufficiently large q this term dominates and the

entire expression is exponentially small in q. This holds

whenever h satisfies:

h\2 tan�1 1

2
ffiffiffi
3

p logm c1=2k�2
� �� �

¼ 2 tan�1 1
ffiffiffi
3

p logm
c1=4

k

� �� �

¼: h2:

Whenever c1=4=k[ m—i.e., whenever c[ ðkmÞ4—the

argument of tan�1 above is at least 1=
ffiffiffi
3

p
, and thus

h2 [ p=3. It follows that whenever c[ ðkmÞ4 and

h 2 ðp=3; h2Þ,

pðS2Þ\f1ðqÞwq;

where f1ðqÞ is subexponentially large in q and w\1 so the

second term is exponentially small in q. For sufficiently

large q, the second term dominates, and we conclude the

weight of set S2 at stationarity is exponentially small in

q. Because k and q differ only by additive and multi-

plicative constants, it is also exponentially small in k, the

gap height, for sufficiently large k. h

As was the case for small angles, here also we have that

by Lemma 6, there are n ¼ 4k þ 5 particles. Thus, we have

that the probability the inner perimeter goes through or

below midpoint m when h is sufficiently large is also

exponentially small in n.

If we again use the example value of k ¼ 4 (as in the

simulations depicted in Figs. 9 and 10), Theorem 3 requires

c[ ðkmÞ4 � 34; 786. This value is large, but importantly is

constant (i.e., it does not depend on n) and is only an

artifact of our proof. For example, when k ¼ 4 and

c ¼ 105, our methods show that the resulting bridge

remains above midpoint m with high probability for any

angle between p=3 ¼ 60� and h2 � 1:2234� 70:10�. On
the other hand, an experiment with k ¼ 4, c ¼ 2, and h ¼
90� is shown in Fig. 10c to remain well above the midpoint

m, suggesting that this behavior is stable for much smaller

values of c and a much larger range of angles than we were

able to prove.

As for Theorems 1 and 2, we are unable to give explicit

bounds on the ‘‘sufficiently large k’’ required by the

statement of Theorem 3 because the exact form of f(p) in

its proof is unknown, but we expect and observe that it

holds even for the small k for which our proof does not

apply.
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5 Simulations

We can see the performance of our algorithm from

simulation results on a variety of instances. Figure 9 shows

snapshots over time for a bridge shortcutting a V-shaped

gap with internal angle h ¼ p=3 and biases k ¼ 4; c ¼ 2.

Qualitatively, this bridge matches the shape and position of

the army ant bridges in Reid et al. (2015). Figure 10 shows

the results of an experiment that held k, c, and the number

of iterations of M constant, varying only the internal angle

of the V-shaped land mass. The particle system exhibits

behavior consistent with the theoretical results in Sect. 4

and the army ant bridges in Reid et al. (2015), shortcutting

closer to the bottom of the gap when h is small and staying

almost entirely on land when h is large. Lastly, Fig. 11

shows the resulting bridge structure when the land mass is

N-shaped, demonstrating that our algorithm can be gener-

alized beyond the original inspiration of V-shaped land

masses to shortcut multiple gaps in more complex

structures.

These simulations demonstrate the successful applica-

tion of our stochastic approach to shortcut bridging.

Moreover, experimenting with variants suggests this

approach may be useful for other related applications in the

future.

6 Conclusions and future directions

In summary, we presented a Markov chain M that can be

directly translated to a stochastic, distributed, local, asyn-

chronous algorithm A that provably solves the shortcut

bridging problem. Furthermore, in the special case of

(a) (b) (c) (d)

Fig. 9 A particle system using biases k ¼ 4 and c ¼ 2 to shortcut a V-shaped land mass with h ¼ p=3 after a 2 million, b 4 million, c 6 million,

and d 8 million iterations of Markov chain M, beginning in configuration r0 shown in Fig. 2a

(a) (b) (c)

Fig. 10 A particle system using biases k ¼ 4 and c ¼ 2 to shortcut a V-shaped land mass with angle a p=6, b p=3, and c p=2 after 20 million

iterations of Markov chain M. For a given angle, the land mass L and initial configuration r0 were constructed as described in Sect. 4

(a) (b)

Fig. 11 A particle system using

biases k ¼ 4 and c ¼ 2 to

shortcut an N-shaped land mass

after a 10 million and b 20

million iterations of Markov

chain M, beginning in

configuration r0 shown Fig. 2b
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bridging over the gap in a V-shaped land mass, we rigor-

ously analyzed the effect of the land mass’s internal angle,

showing that below one threshold angle the bridge will

shortcut near the bottom of the gap, and above another

threshold angle the bridge will remain close to land, with

high probability.

Several directions of further investigation seem

promising. The successful application of our stochastic

approach to shortcut bridging suggests it may be useful for

other types of problems as well; one related behavior of

particular interest is ‘‘exploration bridging’’, where a par-

ticle system first explores its environment to discover sites

of interest, and then converges to a bridge-like structure

between them. We are also interested in formulating

alternative local rules for shortcut bridging which yield

bridges that appear more ‘‘structurally sound,’’ though we

suspect the information needed to do so may be difficult to

encode in our particle systems due to the constant-size

memory constraint of the amoebot model.
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