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Abstract

In a self-organizing particle system, an abstraction of programmable matter, simple computational elements called par-
ticles with limited memory and communication self-organize to solve system-wide problems of movement, coordination,
and configuration. In this paper, we consider a stochastic, distributed, local, asynchronous algorithm for “shortcut
bridging”, in which particles self-assemble bridges over gaps that simultaneously balance minimizing the length and cost
of the bridge. Army ants of the genus Eciton have been observed exhibiting a similar behavior in their foraging trails,
dynamically adjusting their bridges to satisfy an efficiency trade-off using local interactions. Using techniques from
Markov chain analysis, we rigorously analyze our algorithm, show it achieves a near-optimal balance between the
competing factors of path length and bridge cost, and prove that it exhibits a dependence on the angle of the gap being
“shortcut” similar to that of the ant bridges. We also present simulation results that qualitatively compare our algorithm
with the army ant bridging behavior. Our work gives a plausible explanation of how convergence to globally optimal
configurations can be achieved via local interactions by simple organisms (e.g., ants) with some limited computational
power and access to random bits. The proposed algorithm also demonstrates the robustness of the stochastic approach to
algorithms for programmable matter, as it is a surprisingly simple extension of our previous stochastic algorithm for
compression.

Keywords Programmable matter - Self-organizing particle systems - Shortcut bridging - Distributed algorithms -
Markov chains - Bio-inspired algorithms

1 Introduction

To develop a system of programmable matter, one
endeavors to create a material or substance that utilizes
user input or stimuli from its environment to change its
physical properties in a programmable fashion. Many such
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systems have been proposed (e.g., DNA tiles, synthetic
cells, and reconfigurable modular robots) and each attempts
to perform tasks subject to domain-specific capabilities and
constraints. In our work on self-organizing particle sys-
tems, we abstract away from specific settings and envision
a system of computationally limited devices (which we call
particles) that can actively move and individually execute
distributed, local, asynchronous algorithms to coopera-
tively achieve macro-scale tasks of movement and
coordination.
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The phenomenon of local interactions yielding emer-
gent, collective behavior is often found in natural systems;
for example, honey bees choose hive locations based on
decentralized recruitment (Camazine et al. 1999) and
cockroach larvae perform self-organizing aggregation
using pheromones with limited range (Jeanson et al. 2005).
In this paper, we present an algorithm inspired by the work
of Reid et al. (2015), who found that army ants continu-
ously modify the shape and position of foraging bridges—
constructed and maintained by their own bodies—across
holes and uneven surfaces in the forest floor. These bridges
appear to stabilize in a structural formation that balances
the “benefit of increased foraging trail efficiency” with the
“cost of removing workers from the foraging pool to form
the structure” (Reid et al. 2015).

We attempt to capture this inherent trade-off in our
algorithm for “shortcut bridging” in self-organizing parti-
cle systems (formally defined in Sect. 1.3). Our algorithm
is an extension of the stochastic, distributed algorithm for
compression introduced in Cannon et al. (2016), demon-
strating that many fundamental elements of our stochastic
approach can be generalized to applications beyond the
specific context of compression, in which a particle system
gathers together as tightly as possible. In particular, this
stochastic approach may be of future interest in the
molecular programming domain, where simpler variations
of bridging have been studied. Groundbreaking works in
this area, such as that of Mohammed et al. (2017), focus on
forming molecular structures that connect some fixed
points; our work may offer insights on further optimizing
the quality and/or cost of the resulting bridges.

Shortcut bridging is an attractive goal for programmable
matter systems, as many application domains envision
deploying programmable matter on surfaces with structural
irregularities or dynamic topologies. For example, one
commonly imagined application of smart sensor networks
is to detect and span small cracks in infrastructure such as
roads or bridges; dynamic bridging behavior would enable
the system to remain connected and shift position as cracks
form.

1.1 Related work

When considering recently proposed and realized systems
of programmable matter, one can distinguish between
passive and active systems. In passive systems, computa-
tional units cannot control their movements and have (at
most) very limited computational abilities, relying instead
on their physical structure and interactions with the envi-
ronment to achieve locomotion (e.g., Woods 2015; Angluin
et al. 2006; Reid and Latty 2016). A large body of research
in molecular self-assembly falls under this category, which
has mainly focused on shape formation (e.g., Douglas et al.
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2009; Cheung et al. 2011; Wei et al. 2012). In contrast, our
work examines building dynamic bridges whose exact
shape is not predetermined. Mohammed et al. studied a
similar problem of connecting DNA origami landmarks
with DNA nanotubes, using a carefully designed process of
nanotube nucleation, growth, and diffusion to achieve and
maintain the desired connections (Mohammed et al. 2017).
Significant differences between their approach and ours
are: (1) the bridges we consider already connect their
endpoints at the start and we focus on the specific goal of
optimizing their shape with respect to a parameterized
objective function, and (2) our system is active as opposed
to passive.

Active systems are composed of computational units
that can control their actions to solve a specific task.
Examples include swarm robotics, various other models of
modular robotics, and the amoebot model, which is our
computational framework (detailed in Sect. 1.2).

Swarm robotic systems usually involve collections of
autonomous robots moving freely in space with limited
sensing and communication ranges. These systems can
perform a variety of tasks including gathering (Cieliebak
et al. 2012), shape formation (Flocchini et al. 2008;
Rubenstein et al. 2014), and imitating the collective
behavior of natural systems (Chazelle 2009); however, the
individual robots typically have more powerful communi-
cation and processing capabilities than those we consider.
Modular self-reconfigurable robotic systems focus on the
motion planning and control of kinematic robots to achieve
dynamic morphology (Yim et al. 2007), and metamorphic
robots form a subclass of self-reconfiguring robots (Chir-
ikjian 1994) that share some characteristics with our geo-
metric amoebot model. Walter et al. have conducted some
algorithmic research on these systems (e.g., Walter et al.
2004a, b), but focus on problems disjoint from those we
consider.

In the context of molecular programming, our model
most closely relates to the nubot model by Woods et al.
(2013), Chen et al. (2015), which seeks to provide a
framework for rigorous algorithmic research on self-
assembly systems composed of active molecular compo-
nents, emphasizing the interactions between molecular
structure and active dynamics. This model shares many
characteristics with our amoebot model (e.g., space is
modeled as the triangular lattice, nubot monomers have
limited computational abilities, and there is no global ori-
entation) but differs in that nubot monomers can replicate
or die and can perform coordinated rigid body movements.
These additional capabilities prohibit direct translation of
results under the nubot model to our amoebot model.
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1.2 The amoebot model

Our computational framework is the amoebot model
(Daymude et al. 2017b), originally proposed in Der-
akhshandeh et al. (2014) as an abstract model for pro-
grammable matter designed to enable rigorous algorithmic
research on nano-scale systems. We envision pro-
grammable matter as a collection of individual, homoge-
neous computational elements called particles. The
structure of a particle system is represented as a connected
subgraph of the infinite, undirected graph G = (V,E),
where V is the set of all locations a particle can occupy
relative to its structure and E is the set of all atomic
movements between locations in V. Each location in V can
be occupied by at most one particle at a time. For shortcut
bridging (and many other problems), we further assume the
geometric amoebot model, in which G = Gy, the triangu-
lar lattice' (Fig. 1a).

Each particle is either contracted, occupying a single
location, or expanded, occupying a pair of adjacent loca-
tions in G4 (Fig. 1b). Particles move via a series of ex-
pansions and contractions: a contracted particle may
expand into an adjacent unoccupied location, and com-
pletes its movement by contracting to once again occupy a
single location. An expanded particle’s head is the location
it last expanded into and the other location it occupies is its
tail; a contracted particle’s head and tail are the same
location.

Two particles occupying adjacent locations in G4 are
said to be neighbors. Each particle is anonymous, lacking a
unique identifier, but can locally identify each of its
neighboring locations and can determine which of those
locations are occupied by particles. Each particle has a
constant-size, local memory that its neighbors can directly
read from for communication. A particle’s memory stores
whether it is contracted or expanded and identifies if
neighboring locations are incident to its head or tail. Par-
ticles do not have access to any global information such as
a global compass or an estimate of the size of the system.

We assume the standard asynchronous model from
distributed computing (see, e.g., Lynch 1996), where a
system progresses through atomic actions. A classical
result under this model states that for any concurrent
asynchronous execution of atomic actions, there is a
sequential ordering of actions producing the same end
result, provided conflicts that arise in the concurrent exe-
cution are resolved. In our setting, an atomic action is an
activation of a single particle. Once activated, a particle
can perform an arbitrary, bounded amount of computation
involving its local memory and the memories of its

! Our past works refer to G4 as the equilateral triangular grid graph
Geq and the triangular lattice I'.

° ./o
°
(a) (b)

Fig. 1 a A section of the triangular lattice G4; b expanded and
contracted particles

neighbors, and can perform at most one contraction or
expansion. We assume conflicts arising from simultaneous
particle expansions into the same unoccupied location are
resolved arbitrarily such that at most one particle is
expanding into a given location at a time. Thus, while in
reality many particles may be active concurrently, it suf-
fices when analyzing our algorithm to consider a sequence
of activations where only one particle is active at a time.

Terminology for particle systems In addition to the
formal model, we introduce some terminology for our
application of shortcut bridging. Just as the uneven surfaces
of the forest floor affect the foraging behavior of army ants,
the collective behavior of particle systems should change
when G, is non-uniform. Here, we focus on system
behaviors when the locations of G, are either gap (un-
supported) or land (supported). A particle can tell whether
its location is a gap location or a land location. An object is
a static particle that does not perform computation; these
are used to keep the particle system connected to certain
fixed sites.

A particle system configuration is the finite set of
occupied locations of G4. An edge of a configuration is an
edge of G4 where both endpoints are occupied by particle
tails.”> When referring to a path, we mean a path of such
edges. Two particles are connected if there exists a path
between them, and a configuration is connected if all pairs
of particles are. A hole in a configuration is a maximal
finite component of adjacent unoccupied locations. We
specifically consider connected configurations with no
holes, and our algorithm—if starting at such a configura-
tion—will maintain these properties, a fact we will prove in
Sect. 3.2.

Let o be a connected configuration with no holes. The
(single, external) boundary of ¢ is the walk composed of all
edges in ¢ between particles that are not surrounded (i.e.,
those with less than 6 neighbors).? In order to analyze the
strength of the solutions our algorithm produces, we define

2 Lattice edges incident to a node occupied by an expanded particle’s
head are not counted as configuration edges, since these are
exploratory and temporary. This is explained further in Sect. 3.1.

3 Note that an edge may appear twice in the boundary if it is a cut-
edge (e.g., the bottom-left most edges in Fig. 3b).
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the weighted perimeter p(a,c) to be the summed weight of
the edges on the boundary of ¢, where edges between land
locations have weight 1, edges between gap locations have
weight ¢ > 1, and edges with one endpoint on land and one
endpoint in the gap have weight (1 +¢)/2.

1.3 Problem description

In the shortcut bridging problem, we consider an instance
(L,0,00,c,0), where L C V is the set of land locations,
O is the set of (two) objects to bridge between, o is the
initial configuration of the particle system, ¢ > 1 is a fixed
weight for edges between gap locations, and o > 1 is a
parameter capturing our error tolerance. An instance is
valid if (i) the objects of O and particles of g all occupy
locations in L, (ii) oo connects the objects, and (iii) oy is
connected. A (distributed) algorithm solves a valid instance
(L, 0,06, c,a) if, beginning from oy, it reaches and remains
in a set of configurations ~2* such that any ¢ € X* has
weighted perimeter p(o,¢) within an o-factor of its mini-
mum possible value, with high probability.*

In analogy to the apparatus used in Reid et al. (2015)
(Fig. 3a), we are particularly interested in instances where
L forms a V-shape, O has two objects positioned at either
base of L, and gy lines the interior sides of L, as in Fig. 2a.
However, our algorithm is not limited to this setting; for
example, we show simulation results for an N-shaped land
mass (Fig. 2b) in Sect. 5.

The weighted perimeter balances the trade-off observed
in Reid et al. (2015) between the competing objectives of
establishing a short path between the fixed endpoints while
not having too many particles in the gap. Although both
metrics are amenable to our analysis, we focus on weighted
perimeter instead of the number of particles in the gap for
two reasons. First, the structure and thickness of bridges
produced using weighted perimeter more closely resemble
those of ant bridges, while using particles in the gap results
in consistently thin, jagged structures (see Fig. 3b vs. c).
Second, only particles on the perimeter can move, and thus
recognize the potential risk of being in the gap.

2 Approach, techniques, and results
In Cannon et al. (2016), we introduced a stochastic, dis-
tributed algorithm for compression in the amoebot model;

here we extend that work to show our stochastic approach
is more widely applicable.

4 An event occurs with high probability (w.h.p.) if the probability of
success is at least 1 — 1/poly(n); here, n is the number of particles.
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2.1 The stochastic approach to particle systems

In the stochastic approach to self-organizing particle sys-
tems, we use concepts from statistical physics to design our
algorithms, a process we outline here. At a high level, we
define an energy function that captures our objectives for
the particle system and then design a Markov chain that, in
the long run, favors configurations with desirable energy
values. Care is taken to ensure this Markov chain can be
executed in a distributed, asynchronous manner by each
particle individually. While understanding our approach
and motivation is not necessary for understanding our
results, it provides further insights into our methodologies.

In statistical physics, ensembles of particles similar to
those we consider represent physical systems and demon-
strate that local micro-behavior can induce global macro-
scale changes to the system (Baxter et al. 1980; Blanca
et al. 2018; Restrepo et al. 2013). Like a spring relaxing,
physical systems favor configurations that minimize
energy. Each configuration ¢ has energy determined by a
Hamiltonian H(o), and we then assign each a weight
w(c) = e PH) where B=1/T is inverse temperature.
Markov chains have been well-studied as a tool for sam-
pling configurations of these systems with probability
proportional to w(g), that is, with probability w(o)/Z,
where Z = 3" e #H() is the normalizing constant known
as the partition function. The configurations with the
lowest values of H(o)—those with the least energy—are
most likely to be sampled.

For shortcut bridging, we introduce a Hamiltonian over
particle system configurations that assigns the lowest
energy values to configurations with desirable bridge
structures; we then design our algorithm to favor these
configurations with small Hamiltonians. We assign each
configuration ¢ a Hamiltonian H (o) = p(o, ¢), its weighted
perimeter. Setting 4 = €&, we get w(o,c) = A7) where
w(a, c) is the likelihood with which we want our algorithm
to yield o. As 1 gets larger (by increasing B, effectively
lowering temperature), these weights increasingly favor
configurations where H(o) =p(o,c) is small and the
desired bridging behavior is exhibited. Using a Markov
chain, we will ensure that the eventual probability with
which we are at state o is w(a, ¢)/Z, where Z = > _w(t,c)
in the necessary normalizing factor.

2.2 Markov chains

We briefly review relevant terminology on Markov chains.
A Markov chain ./ is a memoryless stochastic process
defined on a state space 2. We only consider Q which are
finite and discrete; in particular, the states of  will be
connected, hole-free configurations with a common land
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(b)

Fig. 2 Example initial configurations g, of particles (black) connect-
ing two objects O (large, red) on land masses L (brown and black) for
two instances of the shortcut bridging problem for which we present
simulation results (Sect. 5). (Color figure online)

mass L, objects O, and number of particles n. The transition
matrix Q : Q x Q — [0, 1] of a Markov chain .# is defined
so that Q(a, 7) is the probability of moving from state o to
state 7 in one step, for any pair of states g, 7 € Q. For our
Markov chain, transitions will correspond to one particle
moving one unit in one direction, and the probabilities of
these transitions will be chosen carefully. The #-step tran-
sition probability Q'(g, ) is the probability of moving from
0 to 7 in exactly ¢ steps.

A Markov chain is irreducible, or its state space is
connected, if there is a sequence of valid transitions from
any state to any other state, i.e., for all o,7 € Q, there is a
t such that Q'(¢, 1) > 0. A Markov chain is aperiodic if for
all o,7 € Q, ged{t: Q'(o,7) > 0} = 1. A Markov chain is
ergodic if it is both irreducible and aperiodic. Any finite,
ergodic Markov chain converges to a unique stationary
distribution © given by, for all o,7 € Q, lim,_, Q'(5,7) =
n(t). Any distribution 7' satisfying 7'(¢)Q(0,7) =
7'(1)0(t,0) for all 6,7 € Q (the detailed balance condi-
tion) must be this unique stationary distribution (see, e.g.,
Feller 1968).

Given a state space €, a set of allowable transitions
between states, and a desired stationary distribution 7w on Q
(e.g., m(a) ~w(o,c)), the celebrated Metropolis—Hastings
algorithm (Hastings 1970) gives a Markov chain on £ that
uses only allowable transitions and has stationary distri-
bution 7. This is accomplished by carefully setting the
probabilities of the state transitions as follows. Starting at

’ ) \

Fig. 3 a In this image from Reid et al. (2015), army ants of the genus
Eciton build a dynamic bridge which balances the benefit of a shortcut
path with the cost of committing ants to the structure. b Our shortcut
bridging algorithm also balances competing objectives and converges
to similar configurations. ¢ Minimizing the number of particles in the
gap instead of the weighted perimeter results in thin bridges with
large clusters of particles on land that do not resemble the ant bridges
as closely

g € 2, pick a neighbor 7 € Q (i.e., a state t to which ¢ has
an allowable transition) uniformly with probability 1/(24),
where A4 is the maximum number of neighbors of any state,
and move to t with probability min{1,z(z)/n(s)}; with
the remaining probability stay at ¢ and repeat. If the
allowable transitions suffice to go between any two states
of Q, then © must be the stationary distribution by detailed
balance. While calculating 7(t)/n(0) seems to require
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global knowledge, this ratio can often be calculated using
only local information when many terms cancel out. For
shortcut bridging, because our desired stationary distribu-
tion will be n(a) =w(o,c)/Z = A7) /Z where Z =
Y. w(t,c), the Metropolis-Hastings probabilities can be
written as min{1, 771 Using this probability cal-
culation to decide whether or not to make a transition is a
Metropolis filter. Importantly, if ¢ and t only differ by one
particle P, as is the case with all moves of our algorithm,
then p(a,c) — p(z, ¢), the difference in weighted perimeter
due to particle P’s move, can be calculated using only local
information from the neighborhood of P (Lemma 1).

2.3 Results

We present a Markov chain .# for shortcut bridging in the
geometric amoebot model that translates directly to a fully
distributed, local, asynchronous algorithm .«Z. This Markov
chain .# uses only local moves and, using a Metropolis
filter, eventually reaches a distribution that favors config-
urations proportional to their weight w(a,c). Thus, con-
figurations with smaller weighted perimeter p(g,c) are
more likely, as desired. Rather than terminating .# at some
point and using the resulting configuration as a random
sample (as is often done with Markov chains) we instead
run .# indefinitely, moving among different configurations
but remaining at the stationary distribution 7, which we
prove meets our desired objectives with high probability.

We prove that .# (and by extension, .o/) solves the
shortcut bridging problem: for any constant o > 1, for
appropriately chosen values of parameters, the long run
probability that .# is in a configuration ¢ with p(o,c)
larger than o times its minimum possible value is expo-
nentially small. The key tool used to establish this is a
careful Peierls argument, used in statistical physics to
study non-uniqueness of limiting Gibbs measures and in
computer science to establish slow mixing of Markov
chains (see, e.g., Levin et al. 2009, Chapter 15). We then
specifically consider V-shaped land masses with an object
on each branch of the V, and prove that the resulting bridge
structures vary with the interior angle of the V-shaped gap
being shortcut—a phenomenon also observed by Reid
et al. (2015) in the army ant bridges—and show in simu-
lation that they are qualitatively similar to those of the ants
(e.g., Fig. 3).

Our shortcut bridging algorithm and others developed
with the stochastic approach (e.g., Cannon et al. 2016)
have several advantages over other algorithms for pro-
grammable matter and self-organizing particle systems.
They are nearly oblivious, only needing to store at most
one bit of information between activations. They are also
more robust to failures; even if particles crash and stop
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moving, our algorithm will converge to the best bridge
possible with respect to the crashed particles’ fixed loca-
tions. On the other hand, other algorithms for particle
systems (e.g. Daymude et al. 2017a; Derakhshandeh et al.
2017) would fail even with a single particle crash. Finally,
our algorithm requires little to no communication between
particles. Since these algorithms are derived from
stochastic processes, powerful tools developed to analyze
Markov chains can be employed to rigorously understand
their behavior.

3 A stochastic algorithm for shortcut
bridging

Recall that for the shortcut bridging problem, we desire for
our algorithm to achieve small weighted perimeter, where
boundary edges in the gap cost a factor of ¢ > 1 more than
those on land. The algorithm must balance the competing
objectives of having a short path between the two objects
while not forming too large of a bridge. We capture these
factors by preferring configurations ¢ that have both small
perimeter p(o), the length of the walk around the boundary
of the particle system, and small gap perimeter g(o), the
number of perimeter edges that are in the gap, where edges
with one endpoint in the gap and one endpoint on land
count as half an edge in the gap. While these objectives
may appear to be aligned rather than competing, decreasing
the length of the overall perimeter increases the gap
perimeter and vice versa in the problem instances we
consider (e.g., Fig. 2). We note that
plo,c) =p(6)+ (c—1)g(o), and thus minimizing
weighted perimeter is equivalent to simultaneously mini-
mizing both perimeter and gap perimeter.

Our Markov chain algorithm incorporates two bias
parameters: 4 and y. The value of 4 controls the preference
for having small perimeter, while y controls the preference
for having small gap perimeter. In this paper, we only
consider 4 > 1 and y > 1, which correspond to favoring
small perimeter and small gap perimeter, respectively.
Using a Metropolis filter, we ensure our algorithm con-

verges to stationary distribution n given by n(g) =
27P0)y=8) /7 where Z = 3, A7PYy=2() is the normaliz-
ing factor necessary to make m a probability distribution.
Arithmetic shows:

)

JPloe) — p=plo)=(c=1)glo) _ ;L—P(J)(/lc—l)*g(ﬂ)

so setting 7y = A" desired
distribution.
We note / is the same parameter that controlled com-

pression in Cannon et al. (2016), where particle configu-

yields our stationary

rations converged to a distribution proportional to A7 (@),
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That work showed that 4 > 1 is not sufficient to ensure

compression, so we restrict our attention to 4 > 2+ \/Q,
the regime where compression provably occurs.

To ensure our algorithm maintains some desired
invariants throughout its execution, we introduce two
properties every movement must satisfy. Specifically, these
properties maintain system connectivity,” prevent holes
from forming, and ensure it is possible for our Markov
chain to be reversible; more details can be found in Cannon
et al. (2016). These last two conditions are necessary for
applying established tools from Markov chain analysis.

We use the following notation. For a location ¢, let N(¢)
denote the set of particles and objects® adjacent to ¢. For
adjacent locations ¢ and ¢, we use N(£ U ') to denote the
set N(£) UN(¢'), excluding particles or objects occupying ¢
or /. Let S=N({)NN({) be the particles and objects
adjacent to both locations; we note |S| € {0,1,2}. The
following properties can be locally checked by an expan-
ded particle occupying ¢ and ¢’ (e.g., as in Step 6 of .,
Algorithm 1), and are symmetric with respect to these
locations.

Property 1 |S| € {1,2} and every particle or object in
N(£U{) is connected to a particle or object in S by a path
through N(¢ U £).

Property 2 |S| =0, ¢ and ¢ each have at least one
neighbor, all particles and objects in N(¢) \ {¢'} are con-
nected by paths within this set, and all particles and objects
in N(¢') \ {¢} are connected by paths within this set.

We can now present our Markov chain .# for an
instance (L, O, ad9,c,o) of shortcut bridging. For input
parameter A > 2+ /2, set y = "', Beginning at initial
configuration ¢, which we assume is connected and hole-
free’, repeat the steps of Algorithm 1.

> Since particles treat objects as static particles, the particle system
may actually disconnect into several components which remain
connected through objects.

S The notion of location neighborhoods has been extended from
Cannon et al. (2016) to include objects.

7 If ¢ has holes, our algorithm will eliminate them and they will not
reform (Cannon et al. 2016); for simplicity, we focus only on the
behavior of the system after this occurs.

Algorithm 1 Markov Chain .# for Shortcut Bridging

1: Choose a particle P uniformly at random (u.a.r.) from all n parti-
cles; let £ be its location.

2: Choose a neighboring location ¢’ and g € (0,1) v.a.r.

3: if ¢ is unoccupied then

4: P expands to occupy both £ and ¢'.

5: Let o (resp., 0”) be the configuration with P at £ (resp., at £').

6: if (i) ¢ and ¢’ satisfy Property 1 or Property 2, (ii) [N(¢)| <5,
and (iii) q < AP(0)~(¢")y2(0)=5(¢") then P contracts to £'.

7: else P contracts back to /.

Conditions (i) and (ii) of Step 6 ensure that the particle
system remains connected and no new holes are formed
during the execution of .#. In particular, condition (i)
explicitly disallows a particle with five neighbors from
moving into the only unoccupied location in its neighbor-
hood, as doing so would create a hole. Condition (iii) is the
Metropolis filter discussed above; the proposed particle
move, once confirmed to be valid, only occurs with
probability

min{1, 270808} — min(1, PP

where ¢ is the configuration with P at location ¢ and ¢’ is
the configuration with P at location ¢'. Although p(g) —
p(d’) and g(o) — g(d’) are values defined at system-level
scale, we show these differences can be calculated locally.

Lemma 1 An expanded particle P occupying adjacent
locations £ and ¢' in G4 can calculate the values of p(o) —
p(d’) and g(o) — g(a') in Step 6(iii) of ./ using only local
information involving ¢, V', and N(£ U ¢').

Proof Observe that these values need only be calculated if
conditions (i) and (ii) of Step 6 holds. By a result of
Cannon et al. (2016),

p(a) —p(a’) = IN(£)| — IN(O)],

which can be calculated using only local information.

Recall that gap perimeter is defined as the number of
boundary edges in the gap, counting edges between gap
and land as half an edge; this is equal to the number of
particles that are on the perimeter and in the gap, counted
with appropriate multiplicity if a particle appears on the
perimeter more than once. Given a particle R and a
configuration 7, let G(R, 7) be equal to 1 if R occupies a
gap location in 7 and 0 otherwise. Let J(R,t) be the
number of times R appears on the perimeter of 7. Then the
desired difference is:
(o) —g(d) = Z[G(R’ 7)0(R,0) — G(R,d')o(R, o")].

R

Define 4(R) = 0(R,0) — (R, 0’). For particle P, since
conditions (i) and (i) of Step 6 hold, 4(P) = 0. For any
particle R ¢ {P}UN({UY), A(R) =0 since its neigh-
borhood is not affected by the movement of P. Moreover,
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for any particle R # P, G(R, o) = G(R, ¢’) since it does not
move. So:

g(a) - g(gl) = 5(P7 O-)[G(P7 o) — G(P, OJ)]
+ > G(R0)A(R).
ReN(eut')

The first term is easily calculated locally. For the sum-
mation, it remains to show that P can locally calculate
A(R) for any R € N(¢ U ¢'). First suppose that R is occupies
a location adjacent to £ but not ¢'. Then:

-1 if R has two neighbors inN (¢),
AR) =< 1 if R has no neighbors in N(¢), and
0 otherwise.

The opposite is true if R occupies a location adjacent to ¢/
but not ¢. Lastly, suppose R occupies a location adjacent to
both ¢ and ¢'. Then:

0 if R has zero or two neighborsin N(¢U {'),
AR) =< —1
1 if R shares a neighbor with ¢'but not /.

if R shares a neighbor with £ but not ¢', and

In all cases, P can calculate A(R), and thus also
g(a) — g(d’), using only local information. O

The state space Q2 of .# is the set of all configurations
reachable from o( via valid transitions of .#. We conjec-
ture that this includes all connected, hole-free configura-
tions of n particles connected to both objects, but proving
all such configurations are reachable from oy is not nec-
essary for our results. (The proof of the corresponding
result in Cannon et al. (2016) does not generalize due to
the presence of static objects).

3.1 From ./ to a distributed, local algorithm .o/

In order for individual particles to run .#, a Markov chain
with centralized control, we must translate .# into a dis-
tributed, local, asynchronous algorithm .o/ that fully
respects the constraints of the amoebot model (Sect. 1.2).
In particular, the uniformly at random particle selection in
Step 1 of ./ must be translated to individual, asynchronous
particle activations and a particle’s combined expansion
and contraction in Steps 4—7 of .4 must be decoupled into
two separate activations because a particle can perform at
most one movement per activation. The remainder of .#
can be executed directly in .o/: Properties 1 and 2 are
locally verifiable as they only involve a particle’s imme-
diate neighborhood, and Lemma 1 showed that the differ-
ences p(o) — p(d’) and g(o) — g(o’) used in Step 6 of .#
can be calculated locally. Full details of this construction
can be found in Cannon et al. (2016).

@ Springer

Under the usual assumptions of the asynchronous model
from distributed computing, one cannot assume that the
next particle to be activated is equally likely to be any
particle, as specified in Step 1 of .#. To mimic this uni-
formly random activation sequence in a local way, we
assume each particle has its own Poisson clock with mean
1 and activates after a delay ¢ drawn with probability e~'.
After completing its activation, a new delay is drawn to its
next activation, and so on. The exponential distribution
guarantees that, regardless of which particle has just acti-
vated, all particles are equally likely to be the next to
activate (see, e.g., Feller 1968). We could even better
approximate asynchronous activation sequences by allow-
ing each particle to have its own constant mean for its
Poisson clock, allowing for some particles to activate more
often than others in expectation. In this setting, the prob-
ability that a particle P is the next of the n particles to
activate is not 1/ n, but rather some probability ap that
depends on all particles’ Poisson means.® This does not
change the stationary distribution of .#; Lemma 4 still
holds with a nearly identical proof that replaces 1 / n with
ap, and Lemma 5 and Theorem 1 still follow. Because the
same results hold regardless of the rates of particles’
Poisson clocks, we assume clocks with mean 1 for
simplicity.

Unlike in .#, the amoebot model assumes a particle
P can perform at most one movement per activation (Sect.
1.2), so we must decouple P’s movement in one iteration of
A, which includes both an expansion and a contraction,
into two activations. However, due to asynchrony, other
particles may expand into P’s neighborhood after it has
expanded but before it contracts. We utilize flag-locking
mechanisms to ensure P retains consistent snapshots of its
neighborhood regardless of the movements of other parti-
cles between its activations. When P expands from location
£ to also occupy neighboring location ¢ (Step 4 of .#), it
sets a Boolean flag f to Truk if it is the only expanded
particle in its neighborhood, and to FALSE otherwise. When
P is later activated again, it checks its flag: if fis FALSE, it
simply contracts back to its original position ¢ since some
other particle in its neighborhood activated and expanded
earlier. Otherwise, P checks the conditions of Step 6 of .#
(ignoring any expanded heads, see the next paragraph) and
decides whether to contract to £ or ¢ accordingly. Particle
P then resets f to FALSE and completes its second activation.
This ensures that at most one particle per neighborhood
moves at a time, mimicking the sequential nature of /.

Some explanation is warranted on how particle P iden-
tifies expanded heads in its neighborhood and why it
ignores them when checking the conditions of Step 6 of /.

8 Probability ap only plays a role in the analysis of .o/ and ., not in
their execution. Particle P does not need to know or calculate ap.
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Recall from Sect. 1.2 that a particle stores whether it is
expanded or contracted and which neighboring locations
are adjacent to its head in memory. Particle P can read this
information from its neighbors to identify expanded heads
in its neighborhood. Moreover, for particle P to reach Step
6 of ./, its flag f must be set to TRUE. Any other particle
Q that expands into the neighborhood of P must then set its
flag to FALSE, since it observes P is already expanded.
Thus, P should ignore the heads of these expanded
neighbors, since it is only a matter of time before they are
activated again and simply contract their expanded heads.

We have shown our Markov chain .# can be translated
into a distributed, local, asynchronous algorithm .o7, but
such an implementation is not always possible in general.
Any Markov chain for particle systems that relies on non-
local particle moves or has transition probabilities that rely
on non-local information cannot be executed by a local,
distributed algorithm. Moreover, many algorithms under
the amoebot model are not stochastic and thus cannot be
meaningfully described as Markov chains; see, e.g. Day-
mude et al. (2017a), Derakhshandeh et al. (2017).

3.2 Properties of Markov chain ./#

We now show some useful properties of Markov chain .Z.
Our first two claims follow from work in Cannon et al.
(2016) and basic properties of Markov chains and our
particle systems.

Lemma 2 If gy is connected and has no holes, then at
every iteration of M, the current configuration is con-
nected and has no holes.

Proof Cannon et al. (2016) proved that no moves allowed
in their compression algorithm could introduce holes or
disconnect the particle system. Since the moves allowed by
A are a subset of those in the compression algorithm
(since the local properties checked at each iteration are the
same), ./ cannot introduce holes or disconnect the
system. O

Lemma 3 If oy has no holes, then M is ergodic.

Proof Markov chain .# is irreducible because we defined
2 to be precisely those configurations reachable by valid
transitions of .# starting from oy. .# is aperiodic because
at each iteration there is a probability of at least 1 / 6 that
no move occurs, as each particle has at least one neighbor.
Thus, the chain .# is ergodic. O

As ./ is finite and ergodic, it converges to a unique
stationary distribution, and we can find that distribution
using detailed balance.

Lemma 4 The stationary distribution of . is

(o) = ;;p(a)yfg(ﬂ)/z,
where Z =730 ifp(””y*g(a’).

Proof Properties 1 and 2 ensure that particle P moving
from location ¢ to location ¢ is valid if and only if
P moving from ¢ to ¢ is. This implies for any configura-
tions ¢ and 7, Q(g,t) > 0 if and only if Q(t, ) > 0. Using
this, we easily verify the lemma via detailed balance.

Let 0,7 € Q be distinct configurations that differ by one
valid move of a particle P from location ¢ to neighboring
location ¢/, and let n be the number of particles. Then,

1
0(c,7) = o min{)vp(o')*l?(f)yg(cr)*g(f)7 1},and

) min{;f}(f)—ﬂ(ff)yg(r)—g(ff)7 1}.

O(t,0) =

S|I=3I|=

Without loss of generality, assume that A and 7y satisfy
PP e(0)=¢(1) < 1. Then,

}v—p(o')y—g(o') . ;p(ﬂ)-p(t)ygw)fg(r)

n(0)Q(0,7) = 7 o
AP0y ]
= 72 . @ = TC(T)Q(T, 0-).

The definition of Z implies 7 satisfies ) ., (') = 1, so
7 is a valid probability distribution and we conclude = is
the unique stationary distribution of .. O

The stationary distribution can be alternately expressed
using weighted perimeter.

Lemma 5 For ¢ =1+log; v, the stationary distribution
of M is given by

(o) = 17797,

where Z =73 .. 2P,

Proof This follows from the definition of p(a,c). d

Theorem 1  Consider an execution of Markov chain M on

state space Q, with . > 2+ V2 =:v and y > 1, where
starting configuration oy has n particles. For any constant
o satisfying
log 4

> 8L 1,

log A —logv
the probability that a particle configuration o drawn at
random from ’s stationary distribution 7 satisfies

1_7(0-7 1+ logi "/) > o 'pmin

is exponentially small in n for sufficiently large n, where
Dmin 1S the minimum weighted perimeter of a configuration
in Q.

Proof This proof mimics that of «-compression in Cannon
et al. (2016), but additional insights and care are necessary
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to accommodate the difficulties introduced by considering

weighted perimeter instead of perimeter. Throughout we

consider weighted perimeter p(o) = p(o, 1 + log; 7).
Define the weight of a configuration ¢ € Q2 to be:

w(o) :=n(o) - Z = i—p(ﬂ)y—g(ﬂ) — i—ﬁ(ﬂ)’

where Z =3 .o A" (@)=8(?) For a set of configurations
§ C Q, we define its weight w(S) =5 __¢w(0); analo-
gously, let 7(S) = Y _¢n(a) = w(S)/Z. Let 6,in € Qbea
configuration with minimal weighted perimeter p,,,, and
let S, be the set of configurations with weighted perimeter
at least « - p,,;,,- We show that for sufficiently large n,

W<Sa) < W(SM)

<gvn
Z W(Gmin) =&

n(S,) =

where (<1. The first equality and inequality follow
directly from the definitions of Z, w, and 7,,;,. We focus on
the last inequality.

Stratify S, into sets of configurations that have the same
weighted perimeter; there are at most O(n?) such sets, as
the total perimeter and gap perimeter can each take on at
most O(n) values. Label these sets as Aj,As,...,A, in
order of increasing weighted perimeter, where m is the total
number of distinct weighted perimeters of configurations in
S.. Let p; be the weighted perimeter of all configurations in
set A;; since A; C S, then p; > o - P,i,-

Note w(a) = 277 for every o € A;, so to bound w(4;) it
suffices to bound |A;]. A configuration with weighted
perimeter p; has perimeter p < p;, and a result from Cannon
et al. (2016) that exploits a connection to self-avoiding
walks in the hexagon lattice (Duminil-Copin and Smirnov
2012) implies the number of connected, hole-free particle
configurations with perimeter p is at most f(p)v?, for some
subexponential function f. Letting p,,;, denote the mini-
mum possible (unweighted) perimeter of a configuration of
n particles, we conclude that:

Di B _
wA) = 2PNAN <P S F(p)Y < AT ()
P=Pmin
where fi(p;) = 5": o (p) is necessarily also a subexpo-

nential function because it is a sum of at most a linear
number of subexponential terms. So,

w(Sy) = g w(A;) < ifl (i) G)ﬁ <fa(n) G)mﬁmi”7

where f>(n) =3, fi(p;) is a subexponential function
because p; = O(n), m = O(n?), and f; is subexponential.
The last inequality above holds as 4 > v and p; > o - D,,,in.-

Then, since w(G,,) = A~ P,
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Sa v %Prin 5
n(S,) < WiSa) <fo(n) (7) APmin

w (Umin )

s )T

The constant A(v/A)* is less than one whenever
log 4
log A—logv*

n particles is at least \/n, p,;, > +/n. Because fr(n) is

o>

Since the perimeter of any configuration of

subexponentially large but (i(v/i)‘“)ﬁ is exponentially
small, asymptotically the latter term dominates and we
conclude there exists { <1 such that for all sufficiently
large n,

7(S,) <falm) (Av/ D))" <O,
which proves the theorem. U

Though Theorem 1 is proved only in the case where the
number of particles is sufficiently large, we expect and
observe it to hold for much smaller n. However, we are
unable to compute an explicit bound on how large n must
be for these results to hold because the exact form of the
subexponential function f{p) in the above proof is unknown
(see Section 4 of Duminil-Copin and Smirnov (2012) and
references therein).

The following corollary shows that our algorithm solves
any instance (L, O, oy, c,a) of the shortcut bridging prob-
lem when parameters 4 and y are chosen accordingly.

Corollary 1  The distributed, local algorithm </ associated
with Markov chain M solves any valid instance of the
shortcut bridging problem where the number of particles is
sufficiently large.

Proof Given any valid instance (L,O,0q,c,o) of the
shortcut bridging problem, it suffices to run .o/ starting

from configuration o with parameters 2 > (2 + /2)7T and
log(2
the system reaches and remains with all but exponentially
small probability in a set of configurations with weighted
perimeter p(a,c) <o - P,,,,» Where p,,, is the minimum
weighted perimeter of a configuration in Q. Solving the
shortcut bridging problem only requires the weaker con-
dition that this occurs with all but a polynomially small
probability, which our algorithm certainly achieves. U

y=7" Then o > > 1, so by Theorem 1

4 Dependence on gap angle

To understand the relationship between bridging and shape,
we consider V-shaped land masses of various angles (e.g.,
Fig. 2a). We prove our shortcut bridging algorithm has a
dependence on the internal angle 6 of the gap similar to
that of the army ant bridges studied by Reid et al. (2015).
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We show that when 0 is sufficiently small, with all but
exponentially small probability the bridge constructed by
the particles stays close to the bottom of the gap (away
from the apex of angle 6). On the other hand, we show that
for some large values of 0, when A and y satisfy certain
conditions, with all but exponentially small probability the
bridge stays close to the top of the gap. We prove these
results with a Peierls argument and careful analysis of the
geometry of the gap. Simulations of our shortcut bridging
algorithm for varying angles can be found in Sect. 5.

We first give a formal construction for the V-shaped
land mass L given any 0 € (0, 7) and constant width w > 2.
Let e € E be any edge of the triangular lattice and label its
endpoints as v; and v,. Extend line segment ¢; from v; such
that it forms an angle of n/2+ 6/2 with e. Similarly
extend line segment ¢, from v;, of the same length and on
the same side of e as /), also forming an angle of 7/2 +
0/2 with e. Segments ¢; and ¢, then differ in their orien-
tation by angle 0. Without loss of generality, we assume £,
is clockwise from ¢, around e. Let b be the line through ¢,
and /,’s other endpoints (not v; and v;). The land mass
consists of vy, v,, and all vertices of G, that are outside of
¢; and ¢, and from which there exists a lattice path of
length at most w to a vertex strictly between ¢; and /5.
Vertices of G4 on the opposite side of b from e are not
included in the land mass. For example, Fig. 4a depicts a
land mass with 0 ~7/6 and Fig. 4b shows another with
0~m/2; both have width w = 5. This careful definition
involving edge e is necessary to ensure there are no adja-
cent land locations on opposite sides of the gap, as could
happen for small 6 if the land mass is not constructed
carefully.

From now on we will, in a slight abuse of notation, refer
to the gap locations between ¢; and ¢, as the gap. By the
bottom of the gap, we mean the line b through ¢, and ¢;’s
other endpoints (not v; and v,). We may assume b is a line
of the triangular lattice by truncating ¢; and ¢, so that both
end on a lattice line; this does not change the land mass
L. We also assume b N ¥¢; and b N ¢, are not vertices of the
triangular lattice G; if they are, we can perturb ¢; and ¢,
slightly, without changing the land mass. Note b is always
parallel to e.

The height of land mass L is the length of a shortest path
in G, from v; or v, to b that only visits land locations; the
land mass in Fig. 4a has height 8, while the land mass in
Fig. 4b has height 9. Let m be the midpoint of the segment
connecting the midpoints of ¢; and ¢,; m is in the center of
the gap, halfway between e and b.

The initial configuration gy we consider is a path of
width 2 lining the interior sides of the land mass L; see
Fig. 5. We position the two fixed objects of O in line b at
the second vertices outside ¢; and ¢,, anchoring the parti-
cles on either side of the gap. Note the height of L is
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Fig. 4 The land mass L of constant width 5 for a a small value of
0 ~7/6 and height 8 and b a large value of 0 ~x/2 and height 9.
Point m is the midpoint of the segment between the midpoints of ¢,
and ¢,, and b is shown as a dashed line

exactly the number of particles in g9 next to ¢ (or ¢3),
excluding v; and v,.

Lemma 6 Let L be a V-shaped land mass of height k and
angle 0. The initial configuration oy has 4k + 5 particles
and two objects.

Proof First, suppose 6 <m/3, as in Fig. 5a. Each lattice
line parallel to e and intersecting ¢; and ¢, up to but not
including b, contains exactly four particles. There are
k such lattice lines. Line b contains two particles. In the
lattice line above and parallel to e, there are three particles.
In total, this gives 4k + 2 + 3 = 4k + 5 particles and two
objects.

Now, suppose 6 > m/3, as in Fig. 5b; a different
counting approach is necessary. Consider the lattice line
through v, and the gap location adjacent to v; and v;; this
line and all lines parallel to it intersecting ¢; contain
exactly two particles, and there are k such lines. The same
is true for v, and #,. Uncounted by this approach are five
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Fig. 5 The initial configuration gy, with particles shown in black and
objects enlarged and red, for a a small value of 0 ~7/6 and b a large
value of 0 ~ n/2. Point m is the midpoint of the segment between the
midpoints of ¢; and ¢,, and b is shown as a dashed line. (Color
figure online)

additional particles: the two particles adjacent to each of
the two objects, and the particle adjacent to v; and v;. In
total, this gives 2k +2k+4 + 1 =4k +5 particles and
two objects. O

For a given o, let x be the particle or object contained in
line b farthest outside of ¢, and let y be the particle or
object in line b farthest outside of ¢,. We will refer to the
perimeter of ¢ traversed counterclockwise from x to y as
the inner perimeter of . We say the inner perimeter is
above a point p if p is to the right of the inner perimeter
traversed from x to y; it is below a point p if p is to its left.

We can partition Q into two sets S; and S, where S|
contains all configurations whose inner perimeter is strictly
above midpoint m of the gap and S, contains all configu-
rations whose inner perimeter goes through or below
m. We first prove that for A > 2 + v/2 (i.e., in the range of
compression) and y > 1, there is an angle 0; such that for
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all 0 <0, =(S)) is exponentially small. We then prove that
for A >2++/2 and y > /14(2 + \/5)4, there is a 0, such
that for all 0 € (n/3,0,), n(S>) is exponentially small. We
expect much better bounds 6; and 6, can be obtained with
more effort, and that these results generalize to all A > 2 +
V2 and y > 1, but here we simply demonstrate it is pos-
sible to give rigorous results about the dependence of the
bridge structure on 6.

4.1 Proofs for small 0

We begin with some structural lemmas.

Lemma 7 Let L be a V-shaped land mass of height k and
angle 0 <m/3. Then any path in G, that starts and ends at
the bottom of the gap and goes strictly above the midpoint
m of the gap has length at least k + 1.

Proof For 0 <m/3, there are k — 1 lattice lines parallel to
b strictly between b and e. Of these lines exactly [(k —
1)/2] are below or contain m. Any path from b to a
location above m and back to b must contain at least two
vertices in each of these lattice lines, two vertices in b, and
one vertex strictly above m, giving a total of

342[(k—1)/2]1 >3 +2((k—1)/2) =k +2

vertices. As the length of a path is the number of edges it
contains, the path must have length at least k + 1. U

Lemma 8 The i-th lattice line below and parallel to
e contains h(i) gap locations between ¢\ and {,, where

iﬁtang <h(i) < iﬁtang +2.

Proof Let b; be the i-th lattice line below and parallel to
e. We use trigonometry to analyze the length of b; between
¢, and ¢,; see Fig. 6a. Consider the triangle formed by b;,
{1, and the line perpendicular to e at v;, which we call ¢*.
Lines ¢; and ¢* form an angle of 6/2, and the distance
between e and b; along £* is i\/§/2. It follows that the
length of b; between ¢; and ¢* is iv/3tan(6/2)/2. Alto-
gether, this implies b; between ¢; and ¢, is of length
iv/3tan(0/2) 4 1. As each edge of the triangular lattice has
length 1, this means there are between iv/3 tan(0/2) and
iv/3tan(6/2) + 2 gap locations in b;, as claimed. O

Lemma 9 Let L be a V-shaped land mass of height k and
angle 0<7/3. Then the normalizing constant Z of the
stationary distribution © of ./ satisfies

zZ>C [(,Iy)ﬂﬁtang} k7

for a constant C that depends on 0, A, and 7y but not on k.
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Fig. 6 Figures from proofs in Sect. 4.1. a A depiction of the notation
used in the proof of Lemma 8; the intersection of bg and the gap is

depicted as a solid segment, which is of length 8v/3 tan(0/2) + 1 and
contains 4 gap locations. b The configuration ¢* used in Lemma 9 for
0=m/6 and k =8

Proof Observe that Z=13_ 1"

Z>7P)y=8() for any ¢* € Q. We now construct a
particular ¢* (Fig. 6b) and calculate its perimeter and gap
perimeter. Let ¢* contain a straight line of particles along
b connecting the two objects, and let u be the number of
objects and particles in this line. By Lemma 8, since b = by
and u includes two particles on land as well as two objects,

y —8(9)  satisfies

0 0
k\/gtan§—|—4§u§k\/§tan§+6.

Continue constructing ¢* by placing rows of u particles
above this initial row such that the row starts and ends on
opposite sides of the gap. By Lemma 6, there are 4k + 7
total objects and particles, so there will be v = [(4k +
7)/u] such rows, with the last row possibly incomplete. We
note that v satisfies:

4k + 7 4 7 4 7
V:[ + WS B s
u kftang+4
T Th<
\/~tan2 4

[41( + 7} 4k +7
= 2 2

u u kvV3tang+6
4k 4

k\/_tan"+6k V3tanl+6

Configuration ¢* has perimeter at most 2u + 2v — 4 and
gap perimeter at most u — 4 + z, where z is the number of
particles occupying gap locations in the upper perimeter of
c*. These z remaining particles must be in either the
(k — v+ 1)-th or (k — v + 2)-th lattice lines below e, so we
can bound z by again applying Lemma 8:

u

70—#3;
3tan§
4k +7

0
ZS(k—v—i—l)\/gtanE—&—Z.

Altogether, this implies:

p(6")<2u+2v—4

0
<2k\/_tan +12+ +6—4

Tt
<k<2ftan > (\[fan_+14>,

gl ) <u—4+z

0 0
Sk\/gtan§+6—4+(k—v+1)\/§tan§+2

4
§2k\/§tan§+ (— +1>\/§tang+4

\/§tan§+6
0 0 4+/3tan?
<k(2V3tan=) + [ V3tan= — ———2 1+ 4.
- ( 2) ( 2 \/_tan0+6

We note that the second parentheses in the final bounds
above for p(c*) and g(o*) are constants that only depend
on 6. This implies that there is a constant

C—=) <l4+\/§:ﬂo> (\/_‘a““ 4\/_m_ +4)
= A

such that

7 > i_p(a*)"/_gw*) > C[(;Ly>72\/§tan§}k.
As claimed, C depends only on 4, 7, and 0, and is inde-
pendent of k. O

Theorem 2 Let 2 >2+ 2 =:v and y > 1. Then there
exists a constant 0 such that for all V-shaped land masses
with angle 0 <0,, the probability that the inner perimeter
is above midpoint m is exponentially small in k, the height
of the gap, provided k is sufficiently large. In particular,

0 = 2 (P8009)

Proof Recall that S; C Q is the set of configurations for
which the inner perimeter is strictly above m. We show that
S| has exponentially small weight at stationarity; in par-
ticular, we show 7(S;) is bounded above by f>(k)&¥, where
f2(k) is a subexponential function and £ <1 is a constant.

If ¢ € Sy, then by Lemma 7 we have p(o) >2k + 2, as
its inner perimeter—and thus the rest of the perimeter as
well—must be above m. Furthermore, because the perime-
ter by definition includes both objects and particles, which
number 4k + 7 by Lemma 6, any configuration ¢ € £ has
p(o)<2(4k +7) —2 =8k + 12. A result from Cannon
et al. (2016) exploits a connection to self-avoiding walks in
the hexagon lattice to show the number of connected, hole-
free particle configurations with perimeter p is at most
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Fig. 7 The path of length k (bold) from vertex v, to the first land
location in line b considered in the proof of Lemma 10; this path is
used to calculate the gap height & in terms of the gap depth g. By also
considering the reflection of this path from v, (solid line), we can
calculate the distance between the two objects to be ¢+ 2[w]| +3
(Lemma 11)

f(p)(v)’ for some subexponential function f. This is
certainly also an upper bound on the number of configu-
rations in S; with perimeter p. Because 778(0) < 1, we have:

/«pr(o')yfg(g) 8k+12 f(p)vp/ﬂuip
ais) = Y R i
gES] p=2k+2

Let fi(k) = Zﬁka}jzf (p), and note that this function is

subexponential in k because its number of summands is
linear in k. Because 4 > v and p > 2k + 2, we have that:

N 2k42
n(S1) Sfil &) (ZI) .

By Lemma 9, there is a constant C; = v?/(4*C) such that:

)\ 2642 2 \V3tand\ 2
Ak () Cfi (k) <v(4y)/1 3 ) |

s < WG
7T( 1) = C[(iy)*z\/gtanﬂk

For all 6 <2tan~! (log;,(4/v)/+/3), the term in parentheses
above is less than one:

V(ip)Y3mE () (f)
< p
A A
Because C\f (k) is a subexponential function but the term

above, raised to the 2k power, is exponentially small, the
latter eventually dominates and we conclude there is a

=1

constant ¢ < 1 such that for sufficiently large k, 7(S;) < &,
proving the theorem. O

Since n = 4k + 5 by Lemma 6, the probability that the
inner perimeter is above point m is also exponentially small
in n, the number of particles.

As an example, for A = 4 and y = 2 (the parameters of
the simulations in Figs. 10 and 9), our methods give
0; = 0.0879 ~5.03°. However, simulations suggest this
bound is far from tight. In general, as 4 increases, so does
the angle 0;: a stronger bias towards a shorter perimeter

@ Springer

means the bridge forms closer to the bottom of the gap and
at even larger angles the bridge remains below m. Simi-
larly, as y decreases the bridge moves down towards the
bottom of the gap and at even larger angles remains below
m.

As with Theorem 1, we are unable to give explicit
bounds on the “sufficiently large k” required by the
statement of Theorem 2 because determining the exact
form of the subexponential function f(p) in the above proof
remains an open problem (see Section 4 of Duminil-Copin
and Smirnov (2012)). However, we expect and observe that
the claims of this theorem hold even for the small k for
which our proofs do not apply.

4.2 Proofs for large 0

We now consider the set S, = Q\ S|, which consists of all
configurations where the inner perimeter goes through or
below m. We will show that for some large angles 0, for all
2>2++v2and y > (24 V2)' 24, n(S,) is exponentially
small. While a lower bound on y is necessary for the proofs
presented below, we believe this is an artifact of our proof
rather than the problem itself and suspect this requirement
can be loosened or removed altogether.

For 0 > /3, it is no longer true that a V-shaped land
mass of height k£ has exactly k — 1 lattice lines between
b and e. We define a new quantity ¢, the gap depth, as the
length of a shortest path from e to b in G,4; unlike in the
definition of the height k of a gap, this shortest path is not
required to stay on land locations. The Euclidean distance
between e and b is then \/31]/2. Furthermore, g can be
expressed as a function of k and 6.

Lemma 10 For a V-shaped land mass of height k and
angle 0> 1t/3, the gap depth q satisfies

=[G+ L))

Proof Consider the path from v; to line b that leaves v,
forming an angle of 27/3 with e, and then proceeds along
b until it reaches a land location; see Fig. 7, where this path
is shown in bold. The total length of this path is k, and its
first segment from v; to b is length g. Let w be the length of
b Dbetween this path’s turning point and ¢;; then
k=q -+ [w]. This path and ¢; form an obtuse triangle
where two sides have lengths g and w, respectively. The
angle opposite the side of length w is 8/2 — 7/6, while the
angle opposite the side of length g is
n—2n/3 —(0/2—-mn/6) =n/2 —0/2. Length w can be
calculated in terms of length g with the law of sines:
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Fig. 8 From the proof of Lemma 12: a an example of a shortest path
between land locations on opposite sides of the gap passing through
midpoint m. b The four possible locations for midpoint m for which a
shortest path passing through or below m contains m/, and a shortest
path from m' to a land location (solid line)

sin( — %) sinfcosZ — cos§sinZ
sin(Z2—9) cosd
_?sing—%cosg q\/gtang—g
Cosg 2 2 2

Because ¢ is an integer, it follows that

k=q+[w]= {q

2 2 2
1 V3 0
= {<§+7tan§>q-‘ ,
which is the desired result. O

For simplicity, we do the bulk of our analysis using
q instead of k. The previous lemma shows that proving an
expression is exponentially small in g implies it is also
exponentially small in k.

Lemma 11 For any V-shaped land mass of gap depth
q and angle 0> /3, any configuration ¢ has perimeter at
least

plo) > (2\/§tan §>q +6.

Proof We first bound the distance between the two
objects on either side of the gap. Using the length w from
the proof of Lemma 10, the distance between the two
objects in any configuration is ¢ +2[w] +3>¢g+ 2w+ 3
(see Fig. 7). The perimeter of any particle configuration is
at least twice this distance, so for any o,

V3 0 ¢

>2g 44 —2g+ 4 an- -4
ple)>2q+4w+6 q+ <2 an2 2>+6

= <2\/§tan§> q+6,

which is the desired bound. O

Lemma 12 For any V-shaped land mass of gap depth
q and angle 0 > 1/3, any configuration ¢ € S, (passing
below or through midpoint m of the gap) has gap perimeter

glo) > 4.

Proof If o € Sy, i.e., if its inner perimeter passes through
or below m, then it must contain a path that starts and ends
at land locations and also passes through or below m. We
consider all such paths and give a lower bound on the
number of gap locations they must contain. The shortest
such paths start and end on opposite sides of the gap, so we
focus on paths of this type.

If m is a vertex of G4, one shortest path between land
locations passing through m leaves m along the two lattice
lines not parallel to e and follows them until reaching the
land mass, as in Fig. 8a. If m is on a lattice edge, a shortest
path passing below m is constructed in the same way,
beginning from each of the edge’s endpoints. Otherwise, if
m is neither a lattice point nor on a lattice edge, the same
procedure is followed for the first lattice point or lattice
edge below m. In all cases, let m' be the point of
intersection between this path and £*, the line perpendicular
to e through v;. Fig. 8b shows all the possible locations of
m producing a particular m'. Inspection shows that in all of
these cases, m' is contained in the 2|%'|-th lattice line
below e.

Let /; be the line from v, to b forming an angle of 27/3
with e; see Fig. 8b. Because 6 > n/3, all vertices of G,
contained in /;, except v|, are gap locations. Any shortest
path from m’ to a land location must share a vertex of G
with line /;. Because m’ is in the 2Lq4i1j—th lattice line

below e, any path from m’ to /; is of length at least L"Z—]J

and contains at least LqT“J + 1 gap locations, including

both of its endpoints. By symmetry, this means any path
between land locations passing below m, and thus any inner
perimeter of a particle configuration passing below m,
contains at least

(3o

gap locations, as claimed. O

Theorem 3 Let 2>2++2=:v and y > (Wv)*. Then
there exists a constant 0, > 1/3 such that for all V-shaped
land masses with angle 0 € (n/3,0,), the probability that
the inner perimeter goes through or below midpoint m is
exponentially small in k, the height of the gap, provided k is
sufficiently large.

Proof Recall S, is the set of all configurations whose
inner perimeter goes through or below m. We show that
n(S) is exponentially small in &, the height of the gap. By
definition,
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ZO’GSZ A*P(G) ,yfg(a')

7'[(32) = 7

By Lemma 6, the number of particles and objects in ¢ for
a land mass of height k is 4k + 7. Since gy is a path of
width 2 and every particle occupies a land location,
p(og) =4k + 7 and g(gy) = 0. Thus,

7 — Z)L*PW)V*

oeQ

8(o) Z}y*ﬁ(ao)yﬁg(ao) — T

It is simpler to work with gap depth ¢ instead of gap height
k. By Lemma 10, k satisfies k < (% ‘/_tan )q +1, so

143 and) g—4— - an?)g—
Z> T Z/H(2+2 wd)g—4-7 _ ;-(2+2vFand)g-11

Combining this with Lemma 12,
ifp(ff)y—g(fr)

D

gES)

< 5 (2+2v3ang)q+11 Z S0y

gES)

n(S2) =

Let pin (resp., pmar) be the minimum (resp., maximum)
possible perimeter for a valid particle configuration in S,.

By Lemma 11, p,, >2v/3tan(0/2)g. As shown in the

proof of Theorem 2, p.. = 8k + 12; in terms of g, by
Lemma 10,
q . qV3

0
+—tan + 1) + 12

max<8
o <83 :

0
=4q+ 4q\/§tan§ + 20.

Using the result from Cannon et al. (2016) which upper
bounds the number of particle configurations with
perimeter p by the expression f(p)v’, for some subexpo-
nential function f, we have that:

(242v3 tand)g+11 ‘T PPy
n(Sy) < A > fpyris
P=DPmin
Prmax
Pmin q
Si(2+2\/—tang g+11 ( Z () > ( ) -
=Pmin

LS

< (A“ pz f(p)> , (A(2+2\/_lan(’) ()v)2flan /;)
) (e

The first parentheses is a function fi(g) that is subexpo-
nential in ¢, as it has a polynomial number of summands
based on our calculations of p,,;;, and p,. (which are
expressions in terms of ¢g), and each summand is subex-
ponential. When the term in the second set of parentheses

|
N

=
M 1

\

S

P=Pmin
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above is less than one, the second factor (this term raised to
the g power) is exponentially small in ¢, the gap depth, and
thus for sufficiently large ¢ this term dominates and the
entire expression is exponentially small in g. This holds
whenever 0 satisfies:

1
0<2tan~'{ —=log, 1/2;%)
an (5 o (1247

2 (Ggton (7)) =0
=2tan | —=lo =: Us.
/3 8\ 2

P40 > v—ie., y > (Jv)*—the
argument of tan-! above is at least 1/\/§, and thus

0, >n/3. It follows that whenever y> (iv)*
0 € (n/3,0,),

n(S2) <fi(g)y?,

where fi(g) is subexponentially large in ¢ and <1 so the
second term is exponentially small in g. For sufficiently
large ¢, the second term dominates, and we conclude the
weight of set S, at stationarity is exponentially small in
q. Because k and ¢ differ only by additive and multi-
plicative constants, it is also exponentially small in k, the
gap height, for sufficiently large k. O

Whenever whenever

and

As was the case for small angles, here also we have that
by Lemma 6, there are n = 4k + 5 particles. Thus, we have
that the probability the inner perimeter goes through or
below midpoint m when 0 is sufficiently large is also
exponentially small in n.

If we again use the example value of 1 =4 (as in the
simulations depicted in Figs. 9 and 10), Theorem 3 requires

> (Av)* & 34,786. This value is large, but importantly is
constant (i.e., it does not depend on n) and is only an
artifact of our proof. For example, when A =4 and
7 =10°, our methods show that the resulting bridge
remains above midpoint m with high probability for any
angle between 7/3 = 60° and 0, ~ 1.2234 ~70.10°. On
the other hand, an experiment with A =4, y =2, and 0 =
90° is shown in Fig. 10c to remain well above the midpoint
m, suggesting that this behavior is stable for much smaller
values of y and a much larger range of angles than we were
able to prove.

As for Theorems 1 and 2, we are unable to give explicit
bounds on the “sufficiently large k” required by the
statement of Theorem 3 because the exact form of f{p) in
its proof is unknown, but we expect and observe that it
holds even for the small k for which our proof does not

apply.
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5 Simulations

We can see the performance of our algorithm from
simulation results on a variety of instances. Figure 9 shows
snapshots over time for a bridge shortcutting a V-shaped
gap with internal angle 0 = /3 and biases A =4,y = 2.
Qualitatively, this bridge matches the shape and position of
the army ant bridges in Reid et al. (2015). Figure 10 shows
the results of an experiment that held 2, 7, and the number
of iterations of .4 constant, varying only the internal angle
of the V-shaped land mass. The particle system exhibits
behavior consistent with the theoretical results in Sect. 4
and the army ant bridges in Reid et al. (2015), shortcutting
closer to the bottom of the gap when 0 is small and staying
almost entirely on land when 0 is large. Lastly, Fig. 11
shows the resulting bridge structure when the land mass is

.?4;:%‘

#"

4
.

(@) (b)

iR
gy
3 lg
§-¢§L

.,

5

N-shaped, demonstrating that our algorithm can be gener-
alized beyond the original inspiration of V-shaped land
masses to shortcut multiple gaps in more complex
structures.

These simulations demonstrate the successful applica-
tion of our stochastic approach to shortcut bridging.
Moreover, experimenting with variants suggests this
approach may be useful for other related applications in the
future.

6 Conclusions and future directions

In summary, we presented a Markov chain .# that can be
directly translated to a stochastic, distributed, local, asyn-
chronous algorithm .o/ that provably solves the shortcut
bridging problem. Furthermore, in the special case of

ol :
: ?.ffﬁg 8 J'iﬁﬁg 4,fss§§$ Eﬁggém

"

(© (d)

Fig. 9 A particle system using biases A = 4 and y = 2 to shortcut a V-shaped land mass with § = 7/3 after a 2 million, b 4 million, ¢ 6 million,
and d 8 million iterations of Markov chain ./, beginning in configuration ¢, shown in Fig. 2a

(b)

(O]

Fig. 10 A particle system using biases 1 = 4 and y = 2 to shortcut a V-shaped land mass with angle a /6, b /3, and ¢ =/2 after 20 million
iterations of Markov chain .#. For a given angle, the land mass L and initial configuration o were constructed as described in Sect. 4

Fig. 11 A particle system using
biases A =4 and y =2 to
shortcut an N-shaped land mass
after a 10 million and b 20
million iterations of Markov
chain .#, beginning in
configuration ¢ shown Fig. 2b

(b)
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bridging over the gap in a V-shaped land mass, we rigor-
ously analyzed the effect of the land mass’s internal angle,
showing that below one threshold angle the bridge will
shortcut near the bottom of the gap, and above another
threshold angle the bridge will remain close to land, with
high probability.

Several directions of further investigation seem
promising. The successful application of our stochastic
approach to shortcut bridging suggests it may be useful for
other types of problems as well; one related behavior of
particular interest is “exploration bridging”, where a par-
ticle system first explores its environment to discover sites
of interest, and then converges to a bridge-like structure
between them. We are also interested in formulating
alternative local rules for shortcut bridging which yield
bridges that appear more “structurally sound,” though we
suspect the information needed to do so may be difficult to
encode in our particle systems due to the constant-size
memory constraint of the amoebot model.
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