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Foreword by the CI 2017 Workshop Chairs 

Climate informatics continues to develop as an area of collaboration for statisticians, climate 
and computer scientists. With trendy names, such as “data science”, “deep learning”, and “big 
data analytics”, coming and going, the climate informatics scientists do their best in unraveling 
the history of the Earth’s climate and making meaningful predictions about the future. Moreover, 
we start seeing a number of research projects where local climate features, such as Indian 
monsoons or California rains, are linked to global climate, and where implications of climate 
change for local agriculture, insurance, and critical infrastructure are assessed in great details. 

It has been the seventh International Workshop on Climate Informatics and we believe it had 
much success in accelerating discovery at the intersection of these disciplines. For the 2017 
workshop, participants convened at the National Center for Atmospheric Research (NCAR) in 
Boulder, Colorado between September 20-22.  

The first day of the workshop was an optional Hackathon led by David John Gagne II. The 
Hackathon used the Rapid Analytics and Model Prototyping (RAMP) platform created by our 
continued collaborator Balázs Kégl and colleagues at the Paris-Saclay Center of Data Science. 
The RAMP platform was used to host a team-based prediction challenge, wherein groups of 
attendees were tasked with predicting extreme precipitation events in California several months 
in advance. The Hackathon also served to give attendees more opportunities to interact and 
discuss their research, methods, and potential collaborations.  A summary of the hackathon is 
included in these proceedings. 

The main workshop (September 21-22) featured five invited speakers, a poster session, short 
talks by several early career scientists, and two panel discussions. Invited speakers covered 
many topics from across the spectrum of climate informatics: Alexis Hannart (Ouranos) 
explained how causal counterfactual theory can be used to attribute events in the climate 
system; Robert Lund (Clemson University) spoke about statistical challenges posed by 
analyzing trends in real-world observations; Elisabeth Moyer (University of Chicago) explained 
how climate models can be most efficiently used to augment limited observations; Prabhat 
(Lawrence Berkeley National Laboratory) presented recent advances in using deep learning at 
scale to identify extreme events such as hurricanes and atmospheric rivers; and Sai Ravela 
(MIT) described how physical constraints can be used to improve machine learning in the 
context of data assimilation systems. 

We would like to thank all participants for submitting papers on a wide range of interesting 
topics. Following reviews by the program committee, 27 short papers were selected for 
presentation at the workshop and are published in these proceedings. Of these, authors of six 
outstanding papers were also invited to give short oral presentations of their research: Savini 
Samarasinghe and Marie McGraw, Robert Wills, Seongchan Kim, Matthias Demuzere, Zachary 
Butler, and Eniko Szekely. Thanks to generous funding from the National Science Foundation, 
NCAR, and the Elsevier journal Artificial Intelligence, 14 early career authors were provided with 
travel grants to attend the workshop.  

We would also like to thank the many people on the organizing committee and at NCAR, whose 
hard work was so crucial for the workshop's success. First and foremost, we would like to thank 
the steering committee for years of leadership and funding efforts that have ensured continuity 
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of the workshop: Doug Nychka, Imme Ebert-Uphoff, and Claire Monteleoni. The chairs of the 
program committee, Nikunj Oza and Eniko Szekely, did a fantastic job of not only orchestrating 
the paper reviews, but also countless other tasks that helped to make the workshop run 
smoothly. The members of the program committee (Wei Ding, Yulia Gel, Mohammad Gorji 
Sefidmazgi, Sara Graves, Vipin Kumar, Stefan Liess, Nikunj Oza, Brian Smoliak, Eniko Szekely, 
Pierre Tandeo, and Martin Tingley) provided thorough and timely reviews of the submitted 
papers, and we thank them for volunteering so much of their time to do so. We are indebted to 
David John Gagne II and Balázs Kégl for designing and running the Hackathon, which we think 
can serve as a model for future events. We are also grateful for the work of Mohammad Gorji 
Sefidmazgi, the Budget and Travel Chair, and Erich Seamon, the Publicity Chair. Last (but 
certainly not least), Michelle Patton and Cecilia Banner from NCAR provided an enormous 
amount of support with planning, facilities, logistics, transportation, website updates, and coffee. 
Their efforts, along with long-term support and guidance from Doug Nychka, have been in large 
part responsible for the success of the workshop. 

Finally, we would like to thank our sponsors: The National Science Foundation of the United 
States (NSF), the National Center for Atmospheric Research (NCAR), the Artificial Intelligence 
Journal, the Research Network for Statistical Methods for Atmospheric and Oceanic Sciences 
(STATMOS), and the NVIDIA corporation, for their financial support — not only this year, but 
also at previous workshops. We hope the workshop will continue to serve as the leading venue 
for interdisciplinary research in climate informatics and we look forward to your future 
participation and support. 

Andy Rhines 
Vyacheslav Lyubchich 
CI2017 Workshop Co-Chairs 
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Workshop Location 

The workshop was held again at the Mesa Laboratory of the National Center for Atmospheric 
Research (NCAR) in Boulder, Colorado. Doug Nychka, director of the IMAGe (Mathematics 
Applied to Geosciences) group, and his staff, have hosted the event at NCAR every year since 
2012.  

Overlooking the city of Boulder, and bordered by stunning cliffs, forests, and park land, this 
location has provided a wonderful setting for this workshop, reminding participants of the 
importance of protecting this planet.    

NCAR Mesa Laboratory in Boulder, CO 
Photo credit: Copyright University Corporation for Atmospheric Research (UCAR), licensed under a 

Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License, via OpenSky. 
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Workshop Participants 

Many of the Workshop Participants (for a complete list, see next page) 
Photo credit: Brian Bevirt.  

Copyright (c) 2017 University Corporation for Atmospheric Research. 
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HACKATHON INFORMATION 
Hackathon Agenda, Wednesday, September 20th, 2017 
 9:30  Bus pickup at Marriott Courtyard 

 10:00 – 10:30  Arrival at NCAR Mesa Lab: registration, coffee and introduction 

 10:30 – 12:30  Session 1 

 12:30 – 1:30  Lunch (provided) and discussion of initial results 

 1:30 – 3:00  Session 2 

 3:00 – 3:15  Coffee break 

 3:15 – 5:00  Session 3 

 5:00 – 6:00  Group presentations and closing 

 6:00  Bus departs NCAR for Marriott Courtyard 

 

 
 

Shown here: Majority of Hackathon Participants 
Photo credit: Brian Bevirt.  

Copyright (c) 2017 University Corporation for Atmospheric Research. 
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THE 2017 CLIMATE INFORMATICS HACKATHON
David John Gagne II1

Abstract—The 2017 Climate Informatics Hackathon

focused on predicting extreme winter precipitation in

northern California at seasonal time scales. The contest

dataset, methods, participants, successes, and challenges

are discussed.

I. MOTIVATION

California receives most of its annual rainfall during
the winter when storms fueled by moisture from the
tropical Pacific impact the state. This past winter was
the wettest on record for northern California, resulting
in massive floods and over 1 billion dollars in damage.
Storm runoff into Lake Oroville led to extensive re-
leases of water along the Oroville Dam spillway, which
was damaged in the process. Some of the flooding
associated with dams in northern California could be
managed better with more accurate seasonal and sub-
seasonal forecasts of rainfall. If water managers had
a skilled forecast of expected rainfall, then they could
change the distribution of water in northern California
to be more resilient to large rainfall events. The miti-
gation process can take weeks to complete, so seasonal
forecasts are needed for effective mitigation. Current
operational seasonal precipitation guidance from the
NOAA Climate Prediction Center has no skill above
climatology for northern California and is not presented
in a way that is useful for water managers at the
California Department of Water Resources. Current
seasonal precipitation forecasting relies primarily on
teleconnection indices, such as ENSO. However, these
indices individually are poorly correlated with northern
California winter rainfall. Other teleconnections should
also have some correlation with California rainfall, but
finding the most important connections and how they
interact is not a task that can be easily done manually.
The goal for the 2017 Climate Informatics Hackathon

is to use the November-averaged atmospheric fields to
predict the probability of at least 750 mm of rain in
northern California between December and February.
The observational record for northern California rainfall

Corresponding author: David John Gagne II, dgagne@ucar.edu
1National Center for Atmospheric Research, Boulder, Colorado

only goes back to the early 1920s, which would pro-
vide a very limited sample size for machine learning
or statistical models. Therefore, we are going to use
climate model output from simulations run over the last
1000 years. By using climate model output, we hope
to sample better the range of possible combinations of
weather patterns and rainfall and fit more complex ML
and statistical models.

II. DATA AND METHODS

The Hackathon focused on climate model output
from the NCAR Community Earth System Model
(CESM) Last Millennium Ensemble (LME) [1]. Each
LME member was run from 850 AD to 2005, and
the atmospheric model used 2� grid spacing. The
LME consists of 12 members with full climate forcing
while other members only include forcing from one
major climate source, such as volcanic eruptions, solar
variability, land use, greenhouse gases, orbital changes,
and ozone-aerosols. The full forcing members all used
the same physics and forcing but had their initial
atmospheric temperature fields randomly perturbed by
10�14 K to examine the natural variability within the
model. Since each full forcing member represents an
independent path through the same climate, the full
forcing members were grouped into training (4 mem-
bers), public testing (4 members), and private testing (3
members) sets. Participants were given the following
November-averaged global spatial fields as inputs for
their machine learning models: mean sea level pressure
(PSL), surface temperature (TS), precipitable water
(TMQ), 500 mb zonal wind (U 500), and 500 mb
meridional wind (V 500).
The Hackathon data, starting kit, and leaderboard

were hosted through the Rapid Analytics and Model
Prototyping (RAMP) website, developed by the Paris-
Saclay Center of Data Science. Unlike the machine
learning contest site Kaggle, in which contest partic-
ipants submit predictions from locally trained models,
the RAMP site requires participants to submit Python
code describing their feature extraction and machine
learning model processes. The submitted code is then
run on the RAMP web server to train and evaluate

Imme Ebert-Uphoff
xiv
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Fig. 1. Relative frequency of participant expertise in areas relevant
to the Hackathon.

each participant’s machine learning model. After a
specified closed period, the source code for each team’s
submissions are then made visible to all participants for
copying and modification by other teams. This system
encourages participants to build models that can run in
a reasonable amount of time, discourages cheating, and
increases the amount of cooperation among different
teams.
The submissions from each team are ranked based

on the Brier Skill Score, which is the ratio of the
submission Brier Score to the Brier Score of predicting
the test set mean probability (climatology) for each
event. Participants were provided code for a baseline
method that performed spatial principal component
analysis (PCA) on the PSL, TS, and TMQ anomaly
fields. Then the top 5 principal components were input
into a logistic regression with a LASSO penalty to
encourage sparse coefficients.

III. PARTICIPANTS

The Hackathon attracted 21 participants from a di-
verse array of backgrounds. Out of all the participants,
12 came from universities, 5 from government or na-
tional labs, and 3 from the private sector. A survey
of the participants revealed that 70% had expertise in
machine learning or statistics, over 60% had expertise
in Python, and less than 40% were experts in Python.
All but one of the climate science participants had
experience with Python or with machine learning and
statistics. Based on their self-reported expertise, the
participants were divided into 6 teams of 3 to 4 people
so that each area of expertise would be covered by at
least one team member.
The scores of the top submissions from each team

are shown in Table I. The top team improved on
the baseline Brier Skill Score by 15% but also had

TABLE I
THE TOP SUBMISSION FROM EACH TEAM RANKED BY BRIER

SKILL SCORE.

Team Brier Skill Score AUC Contributivity
4 0.150 0.788 40
6 0.146 0.798 17
2 0.139 0.801 7
5 0.137 0.798 11
7 0.133 0.794 0
3 0.133 0.794 0

Base 0.130 0.792 0

a lower AUC than the baseline. The top team used
LASSO logistic regression to select a sparse set of
spatial points and then fed them into a gradient boosted
classifier. Other successful methods included removing
the southern hemisphere mid and upper latitudes from
the PCA procedure and adding wind variables. Other
teams submitted more complex methods, including neu-
ral networks and decision tree ensembles, but most of
these methods overfit to noise in the data.

IV. DISCUSSION

The Hackathon featured both many areas of success
and areas for improvement. The combination of Jupyter
Notebooks, Anaconda Python environments, and the
RAMP system helped participants quickly start working
on the problem with less time spent troubleshooting
technical issues. Randomly assigned teams with diverse
skill sets led to more collaboration and a sustained
enthusiasm for the problem throughout the day. Group
presentations at the end helped to showcase how ev-
eryone contributed to the task and the wide array of
approaches that were tried. There was some confusion
among participants about the Brier Skill Score and not
enough explanation in the starting kit about what it
measures. While some effort was made by the organizer
to encourage the interpretation of the machine learning
models, none of the teams discovered any new phys-
ical insights from their machine learning models. In
order to encourage more model interpretation in future
hackathons, more interpretation code examples may be
needed, and more participants with a background in
climate science should be encouraged to attend. The
Hackathon site will continue to remain open and accept
submissions. Please visit https://ramp.studio/problems/
california rainfall to download the starting kit, data, and
create submissions.

ACKNOWLEDGMENTS

Special thanks go to Balazs Kegl and the RAMP
team for hosting the Hackathon RAMP site and provid-

https://ramp.studio/problems/california_rainfall
https://ramp.studio/problems/california_rainfall
Imme Ebert-Uphoff
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ing support and feedback during the development and
Hackathon process. Jeanine Jones inspired the contest
problem with a talk at the Big Data and the Earth
Sciences: Grand Challenges Workshop, and Sloan Coats
assisted with suggesting and acquiring the CESM LME
data. Andy Rhines helped with reviewing and testing
the hackathon code.

REFERENCES

[1] B. L. Otto-Bliesner, E. C. Brady, J. Fasullo, A. Jahn,
L. Landrum, S. Stevenson, N. Rosenbloom, A. Mai, and
G. Strand, “Climate variability and change since 850 ce:
An ensemble approach with the community earth system
model,” Bulletin of the American Meteorological Society,
vol. 97, no. 5, pp. 735–754, 2016. [Online]. Available:
https://doi.org/10.1175/BAMS-D-14-00233.1

https://doi.org/10.1175/BAMS-D-14-00233.1
Imme Ebert-Uphoff
xvi



	 xvii	

WORKSHOP AGENDA 
 

CI Workshop, Thursday, September 21, 2017 

 7:45  GreenRide shuttle pickup at Marriott Courtyard to NCAR 

 8:15 – 8:45  Registration and continental breakfast 

 8:45 – 9:00  Opening remarks 

 9:00 – 10:00  Invited talk.  Alexis Hannart: Methods for Attributing Climate Trends and 

Events: Overview and Challenges 

 10:00 – 10:30  Coffee break 

 10:30 – 11:30  Spotlight presentations (15 minutes each) 

1) Savini Samarasinghe and Marie McGraw: A study of causal links between the 

Arctic and the midlatitude jet-streams 

2) Robert Wills: Extracting Modes of Variability and Change from Climate Model 

Ensembles  

3) Seongchan Kim: DeepRain: ConvLSTM Network for Precipitation Prediction 

using Multichannel Radar Data 

4) Matthias Demuzere: Sensitivity of global ecosystems to climate anomalies in 

observations and earth system models 

 11:30 – 11:40  Group photo 

 11:40 – 1:00  Lunch (cafeteria serves food from 11:30 a.m. - 1:30 p.m., cash only) 

 1:00 – 2:00  Invited talk. Sai Ravela: What can Systems Science teach Machine  

  Learning? 
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 2:00 – 3:00  Poster highlights (2 minutes each)  

 3:00 – 3:30 Coffee break 

 3:30 – 4:30  Panel discussion 

 4:30 – 6:30  Poster session and reception, Mesa Lab Cafeteria 

 6:40  GreenRide shuttle departs NCAR, returns to Marriott Courtyard 

 

 

CI Workshop, Friday, September 22, 2017 

 7:45  GreenRide pickup at Marriott Courtyard to NCAR 

 8:15 – 8:30  Continental breakfast 

 8:30 – 9:30  Invited talk. Robert Lund: Climate Data Homogenization: Informatics and the  

  Changepoint Problem 

 9:30 – 10:00  Coffee break 

 10:00 – 11:00  Invited talk. Mr. Prabhat: Deep Learning for Extreme Weather Detection 

 11:00 – 11:30  Spotlight presentations (15 minutes each) 

1) Zachary Butler: Fire Event Prediction for Improved Regional Smoke Forecasting 

2) Eniko Szekely: Pattern extraction in dynamical systems using information 

geometry: application to tropical intraseasonal oscillations 

 11:30 – 11:45 Sponsors’ session. Craig Tierney: Applications of Deep Learning in Climate 

Science and Data Analysis 

 11:45 – 1:00  Lunch and posters (cafeteria serves food from 11:30 a.m. - 1:30 p.m., cash 

only) 



	 xix	

 1:00 – 2:00  Invited talk. Liz Moyer: Insights from Model Emulation for Climate Research 

 2:00 – 3:00  Panel discussion 

 3:00 – 3:15  Concluding remarks 

 3:15 – 3:30  Coffee break 

 3:30 – 3:55 Hackathon Presentation 

 3:55 – 5:15  Community-building via hiking around NCAR 

 5:30  GreenRide departs NCAR, returns to Marriott Courtyard 
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Invited Talks 
 
 

Alexis Hannart, Ouranos, Montreal, CA. 

Title: Methods for Attributing Climate Trends and Events: Overview and Challenges 

Abstract: Investigating causal links between climate forcings, whether natural or anthropogenic, and 
observed responses – ranging from the large scale evolution of climate over the instrumental era, to 
occurrences of local extreme weather events, as well as the socioeconomic impacts of both – 
represent a significant research effort in the climate sciences.  Studies addressing these questions 
combine observations, physical insights, and climate model simulations in order to evidence such 
causal links, under a probabilistic setting able to handle the many uncertainties at play. This talk will 
attempt to give an overview of the various statistical methods that were designed to perform this task, 
as well as their recent and ongoing evolution, with an emphasis on the potentialities of data science 
in this field. 
 

 

Sai Ravela, Center for Global Change Science, MIT, Cambridge, MA. 

Title: What can Systems Science teach Machine Learning? 

Abstract: Practitioners in the earth sciences will easily agree that it takes data and physics (models) to 
deliver predictive skill. The use of physical constraints within statistical procedures and the 
augmentation of physical models with statistical ones are, for example, well established practices. 
Data Science /ML has made rapid advances in many fields and garnered enormous interest. It offers 
new pathways in data model symbiosis for prediction and uncertainty quantification.  
 
In this talk, I will discuss some learning related research and teaching efforts in EAPS at MIT, and 
then present two applications of the symbiosis. In one direction, I will show using typical 
Geophysical inference problems that the rush to nonparametric statistics must be tempered in the 
presence of Model error. I then argue that there is hope that this situation can be handled through 
learning, presenting a particular case using ensemble learning and manifold learning. In the other 
direction, I will use an example of neural reduced models for uncertainty quantification to argue a 
dynamic data driven application systems paradigm to learning is essential. I will argue that the 
current variational approaches are ineffective for learning to predict uncertainty, generative/sampling 
approaches also being of relatively poor efficacy. I will argue that even from a data assimilation 
perspective, neural learning seems dated.  
 
I then propose a tractable variational information theoretic learning approach to train for uncertainty 
that enables quantification of posterior parameter uncertainties, demands minimal sampling, allows 
training under non Gaussian error distributions, facilitates adaptive sampling for learning and 
facilitates exploration of sparsity. I will show that the same approach is also useful for the more 
general data assimilation problem. 
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Robert Lund, Mathematical Sciences, Clemson University, Clemson, SC. 

Title: Climate Data Homogenization: Informatics and the Changepoint Problem 

Abstract: This talk overviews climate homogenization issues, presenting recent advances in statistical 
homogenization techniques. First, the need to homogenize climate data is justified. Attention is 
thereafter focused on how to estimate the number of changepoints and their locations in time-ordered 
data sequences. A penalized likelihood objective function is developed for the task from minimum 
description length (MDL) information theory principles. Optimizing the objective function yields 
estimates of the changepoint number(s) and location time(s). The MDL penalty depends on where the 
changepoint(s) lie, but not solely on the total number of changepoints (such as classical AIC and BIC 
penalties). Specifically, configurations with changepoints that occur relatively closely to one and 
other are penalized more heavily than sparsely arranged changepoints. The techniques allow for 
autocorrelation in the observations and mean shifts at each changepoint time. The fundamental 
methods are modified to handle series with trends, seasonal features, and scenarios where a 
``metadata" record exists documenting some, but not necessarily all, of station move times and 
instrumentation changes. Applications to climate time series are presented throughout and 
computational and informational issues are espoused upon. 
 
 
 

Mr. Prabhat, Data & Analytics Services, Lawrence Berkeley National Laboratory, Berkeley, CA. 

Title: Deep Learning for Extreme Weather Detection 

Abstract: Deep Learning has revolutionized the fields of computer vision, speech recognition, 
robotics and control systems. Can Deep Learning be applied to solve pattern detection problems in 
climate science? 
 
This talk will present our efforts in applying Deep Learning for detecting and localizing extreme 
weather events (e.g. tropical cyclones, extra-tropical cyclones, atmospheric rivers, fronts) in 
simulation and observational datasets. We have successfully developed supervised convolutional 
architectures for the binary classification tasks of detecting weather patterns in centered, cropped 
patches. We have subsequently extended our architecture to a semi-supervised formulation, which is 
capable of learning a unified representation of multiple weather patterns, predicting bounding boxes 
and object categories, and has the capability to detect novel patterns (w/ few, or no labels). We will 
briefly present our efforts in scaling the semi-supervised architecture to 9600 nodes of the Cori 
supercomputer, obtaining 15 PF performance. The talk will conclude with a list of open challenges in 
Deep Learning, and speculations about the role of AI in climate science. 
 
 
 

Liz Moyer, Atmospheric Science, University of Chicago, Chicago, IL. 

Title: Insights from Model Emulation for Climate Research 

Abstract: not available 
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Sponsors’ session.  
 

Craig Tierney, NVIDIA 

Title: Applications of Deep Learning in Climate Science and Data Analysis 

Abstract: Data science has been evolving quickly with the application of Deep Learning to the big 
data challenges we see today.  By using deep learning with NVIDIA GPUs, new insights in climate 
informatics can be realized.  In this talk we will provide a overview of NVIDIA technology and tools 
how they have been successfully applied to challenges in analyses of climate data. 
 
  
For questions, regarding the above topic, contact Craig Tierney (ctierney@nvidia.com). 
 
For questions regarding free access for faculty to NVIDIA's GPU clusters, contact Stan Posey 
(sposey@nvidia.com) or go to http://www.nvidia.com/object/io-128392.html. 
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DAILY RAINFALL SIMULATION. . .

SPATIO-TEMPORALLY CONSISTENT SIMULATION
OF DAILY RAINFALL OVER INDIA

Adway Mitra1

Abstract—Simulation of rainfall over a region for long
time-sequences should be able to preserve the known
spatial and temporal characterestics to be of practical
use. Rainfall over India is very heterogeneous, making its
simulation a big challenge. General Circulation Models
(GCMs) are unable to do so and various rainfall genera-
tors using stochastic processes are also difficult to apply.
In this work, we consider two Bayesian models based on
conditional distributions of latent variables that describe
weather conditions at specific locations and over the
whole country. During model parameter estimation from
observed data, we use spatio-temporal smoothing using
Markov Random Field. Also, we use a nonparametric
spatial clustering based on Chinese Resturant Process to
identify homogeneous regions, which are utilized by one
of our proposed models. We compare the simulations by
these models with daily rainfall over India in 2000-2014,
and evaluate their spatio-temporal properties.

I. INTRODUCTION

The impact of rainfall is enormous in certain parts
of the world such as India. Future rainfall projections
are needed for impact assessment and feasibility studies
of any projects. Process models, like biophysical crop
models and hydrological models for reservoirs require
future rainfall data as input, which can be provided by
rainfall simulations. However, such simulations must be
accurate, and preserve as many of the characteristics of
the real rainfall data as possible. Climate models of
varying levels of complexity have been developed to
simulate meteorological variables worldwide. A class
of such models called General Circulation Models
(GCMs) are quite popular, and they provide simulations
of rainfall over India, conditioned on simulated climatic
conditions all over the world. Some of them have been
found to be reasonably accurate in preserving certain
properties of Indian Monsoon rainfall, such as inter-
annual and intra-seasonal variability [3]. However, most
of the models are unable to capture spatio-temporal
properties of Indian rainfall.

Corresponding author: Adway Mitra, adway.mitra@icts.res.in
1ICTS-TIFR, Bangalore, India

Another approach is Stochastic Rainfall Generators.
Introduced by C.W. Richardson [6], they model rainfall
occurrence, rainfall volume and sometimes other cli-
matic variables like temperature using conditional prob-
ability distributions (as in a Bayesian Network), condi-
tioned on rainfall occurrence. Most of these stochastic
simulators use a training dataset to fit various param-
eters of these distributions, and then long temporal
sequences of meteorological variables are simulated by
sampling repeatedly from these distributions. Various
statistics of interest are computed from this simulated
data, and they are compared with the corresponding
statistics from the observed data. This is the general
approach prescribed by the Intergovernmental Panel on
Climate Change (IPCC) [16].
Most of the stochastic rainfall generators simulate

daily rainfall occurrence (binary) and rainfall volume
(real-valued) separately using a latent variable, such
as in [8]. Temporal coherence of the rainfall oc-
currence variable is maintained using Markovian or
Semi-Markovian([17]) approach. Originally location-
specific point processes were studied [7], then multi-
site processes were introduced [9] to capture spatial
correlations. Most recent stochastic simulators like [5],
[18], [19] achieve spatial correlations by using Gaussian
Processes. But they need to choose suitable covariance
functions, which is often difficult. A concise but com-
prehensive survey on stochastic daily rainfall generators
is available in [1]. These stochastic rainfall simula-
tions have been used in Argentina [18], Sweden [19],
USA [17], and various countries in Africa [11], [12].
However, not too much work has been done for India,
except some attempts like [10]. One reason for that is
Indian rainfall is spatio-temporally very heterogeneous.
A detailed study of these variabilities is presented in [2].
In this work, we aim to build stochastic simulation

models for daily Indian monsoon rainfall, based on
latent variables, conditional distributions, and coherent
zones within the landmass. We propose two stochastic
rainfall generators and study how accurately they can
reproduce spatio-temporal properties of Indian rainfall.

Imme Ebert-Uphoff
1



MITRA ET AL

II. VARIABLES AND PARAMETERS

Suppose there are S locations, and the total number
of days is T . Any location s has a set of neighboring
locations NB(s), according to the grid coordinates.
Only locations lying on Indian geo-political landmass
are considered. At each location s and day t, X(s, t)
denotes the volume of rainfall received, while Y (t)
denotes the aggregate rainfall received by the entire
country on that day. When these variables are measured
from the dataset, we denote them as XDATA(s, t) and
Y

DATA(t). When we consider simulation outputs by a
model M , they are denoted as XM (s, t) and Y

M (t).
Next, we introduce two latent variables that indicate

the rainfall conditions. Each state of binary variable
Z(s, t) represents a distribution over the rainfall volume
at location s and day t, one state (Z = 1) peaked
at higher value and the other (Z = 2) close to 0. In
other words, X(s, t) ⇠ Gamma(↵skt,�skt) where k =
Z(s, t) where (↵,�) are the parameters of a Gamma
distribution dependent on Z, and potentially varying
across locations and time. We also consider U(t) that
takes 3 values and indicates the rainfall conditions over
the entire country. U = 1 is associated with active
spells [2] when most of the S locations are in state
Z = 1. But U = 2 is associated with the pre-onset and
break spells [2], when most of the S locations are in
state Z = 2. U = 3 signifies normal conditions.
Our stochastic simulators use conditional distribu-

tions of local climate conditions on each day Z(s, t),
based on all-India climatic conditions U(t) and local
conditions on the previous day Z(s, t� 1). To estimate
these conditional distributions from the training data,
we first need to infer the Z and U variables during
this period. To maintain spatio-temporal coherence of
these estimates ZDATA and U

DATA, we use a Markov
Random Field, with vertices corresponding to each
of these variables, and also vertices corresponding to
observed variables X(s, t) and Y (t). Edges are put be-
tween spatio-temporally adjacent Z-variables (temporal
edges between Z(s, t)-Z(s, t+1), spatial edges between
Z(s, t)-Z(s0, t) where s

0 2 NB(s)), Z(s, t)-X(s, t)
variables for each spatio-temporal location, Z(s, t)-
U(t) and U(t)-Y (t) variables for each day. Edge poten-
tials functions are defined on edges to enforce spatio-
temporal coherence, which take high values when the
edge’s end-vertices are equal. The Z and U variables
are inferred conditioned on the X and Y variables,
using Gibbs Sampling. Parameters like ↵,� are also
estimated simultaneously. For simplicity, ↵,� are made
independent of time. The inferred Z

DATA and U
DATA

are used to estimate conditional distributions.

III. COHERENT ZONE DETECTION

To improve spatial coherence, we now attempt to
partition the landmass into coherent zones, so that Z-
varaiables can be made specific to zones rather than
locations. In the literature, various attempts at region-
alization of the Indian landmass has been made based
on rainfall characteristics [20] mostly with respect to
annual statistics. We attempt to identify sets of locations
where each of them can be assigned the same value
of Z every day. For this purpose we use the Z

DATA

assignments into the framework of spatial clustering.
Since we do not now the number of clusters, i.e. coher-
ent zones to be formed, we make use of Nonparametric
approaches based on Chinese Restaurant Process, like
[14], [15].
Consider each locations s is assigned to a coherent

zone H(s), and a set V of canonical binary vectors
{V1, V2, . . . } of dimension T (number of days), each
of which corresponds to the Z-vectors for a coherent
zone. The Z-vector of each location is a somewhat
corrupted version of VH(s), where an expected fraction
p of the binary entries are flipped, i.e. on an expected
number Tp of all the T days, the local weather state
at any location is different from the weather state of its
corresponding zone. The number of zones to be created
clearly depends on p, let this number be Kp.
Now, we introduce the generative model based on

Spatially Coherent Chinese Restaurant Process (SC-
CRP). For each location s, we assign to it a zone
id H(s), which can be among the zones assigned to
the neighboring locations, or a separate zone. This
ensures that all the zones are spatially coherent; no
location is assigned to a zone unless at least one of its
neighboring locations is also assigned to that zone. As
with normal Chinese Restaurant Process, if we consider
the assignment process sequentially, the probability of
assigning any location s to a zone k is proportional
to the number of locations nk already assigned to it,
and that of assigning s to a new coherent zone is
proportional to a constant ↵. Once this has been done,
the binary Z-vector for that location s is generated by
flipping each of the elements of Vk with a probability
p. We use Gibbs Sampling to perform the inference on
H , with V re-estimated with each iteration. Finally we
get Kp coherent zones, which depends on p.

IV. SIMULATION MODELS

In the first model M1, we simulate the all-India con-
ditions U from a conditional distribution prob(U(t) =
l|U(t � 1) = m) = �lm, and then the local condi-
tions Z for each location from conditional distribution
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prob(ZM4(s, t) = n|ZM4(s, t � 1) = l, U
M4(t) =

m) = ⇡slmn. � and ⇡ are estimated from Z
DATA and

U
DATA. The model is as follows:

U
M1(1) ⇠ �̂;UM1(t) ⇠ �n where n = U

M1(t� 1)

Z
M1(s, t) ⇠ ⇡slm;XM1(s, t) ⇠ Gamma(↵sk,�sk)

where m = U
M1(t); l = Z

M1(s, t� 1); k = Z
M1(s, t);

8s 2 {1, S}, t 2 {1, T}

This model ensures temporal coherence of both Z

and U , and it also captures the relation between lo-
cal and all-India conditions each day, but not spatial
coherence of Z. So we propose Model M2, but using
an additional variable C for weather state at zone z.
The ⇡ distributions are now defined over these zones
instead of locations. Once the zonal weather states C

have been simulated according to ⇡, the local weather
states Z(s, t) are selected by setting them equal to the
corresponding zonal state C(H(s), t) with probability
p, and the reverse of the zonal state with probability
(1� p). The model is as follows:

U
M2(1) ⇠ �̂;UM2(t) ⇠ �n where n = U

M2(t� 1)

C
M2(z, t) ⇠ ⇡zlm; 8z 2 {1,Kp}, t 2 {1, T}
where m = U

M2(t); l = C
M2(z, t� 1);

Z
M2(s, t) ⇠ Ber(c, p);XM2(s, t) ⇠ Gamma(↵sk,�sk)

c = C
M2(H(s), t); k = Z

M2(s, t); 8s 2 {1, S}, t 2 {1, T}

V. EVALUATION OF SPATIO-TEMPORAL PROPERTIES

We use two gridded datasets of daily rainfall over
India - with resolutions of 100Km � 100Km and
25Km� 25Km. We use every even year in the period
2000-2014 for training, from which we estimate the
model parameters and coherent regions. The simulation
is then done for 15 years, and the results are compared
against the data for the period 2000-2014. We also
compare the results by 16 General Circulation Models
which were identified by [3] to be somewhat suitable
for Indian monsoon simulation.
The number of locations S is 357 for low-resolution

and 4964 for the high-resolution dataset, while T =
122 ⇤ 15, where 122 is the number of days in monsoon
per year. NB(s) for location s is taken as the set of
locations surrounding it in the rectangular grid system,
i.e. each location (except those on border or sea shore)
has 8 neighbors. For coherent zone identification we use
p = 0.9, which formsK0.9 = 129 for the low-resolution
dataset and K0.9 = 248 for the high-resolution one.

For each simulated dataset, we compute the mean
and standard deviation of X at all locations, and
also Y . We compute dMX and dSX: the mean

Model dMX dSX SY X100 wetln scr tcr spatcr
LDATA 0 0 1212 2542 1.9 0.58 0.37 1
GCM 0.46 0.45 1261 748 3.1 0.71 0.66 0.58

LModel1 0.11 0.11 729 2472 1.8 0.15 0.28 0.92
LModel2 0.16 0.13 819 2690 1.8 0.23 0.27 0.9
HDATA 0 0 1212 2542 1.9 0.58 0.37 1
HModel1 0.17 0.13 936 33272 1.7 0.08 0.29 0.9
HModel2 0.18 0.14 1036 32158 1.7 0.24 0.28 0.88

TABLE I
PERFORMANCE EVALUATION OF THE PROPOSED MODELS AND

GCMS AGAINST LOW-AND-HIGH RESOLUTION DATA FOR
2000-2014.

relative error in these quantities, i.e. dMX =
means

|mn
MODEL

s
(X)�mn

DATA

s
(X)|

mnDATA
s

(X)| wheremns(X) is the
mean of X at location s across all the days, and
dSX = means

|sdMODEL

s
(X)�sd

DATA

s
(X)|

sdDATA
s

(X)| where sds(X)
is the standard deviation of X at location s across all
the days. We also measure SY - the standard deviation
of spatial aggregate rainfall. Also, to see how well local
extreme rainfall are simulated, we measure X100: the
total number of daily rainfall events of over 100mm.
Next, we come to mean lengths of wet spells wetln,
the mean number of successive days that a location
receives over 10mm of rainfall. Next, we evaluate
scr -mean spatial correlation -of each location with
its neighboring locations on same day. The mean is
computed across locations and days. We also have spa-
tial patterns - S-dimensional vector of rainfall volume
at each location. We compute this pattern each day
and compute its correlation with the pattern of the
previous day, and the mean correlation across all days
is evaluated as mean temporal correlation tcr. Again,
we compute the mean spatial pattern across all the days
for both the data and the simulation, and evaluate their
correlation as spatcr.

The above quantities are computed for the datasets,
proposed models, and the selected GCMs. In Table 1
we show these results. For brevity, we show the mean of
each quantity measured from all the selected GCMs. In
case of the proposed models, the results are provided
for both high-resolution and low-resolution data. For
each model, the reported numbers are the mean over
several simulations. It is clear that the location-wise
mean and variance are estimated better by the proposed
models than GCMs. They also simulate the temporal
coherence properties much better compared to the over-
estimation by GCMs. They are also able to produce
the spatial patterns accurately unlike GCMs. Finally,
Model2 improves upon Model1 for spatial correlation
by using coherent zones. The overestimation of this
quantity by GCMs is because they use coarser grids,
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which are downscaled by us for comparison. Although
we do not show the performance of individual GCMs,
none of them outperform any of the proposed models.
However, some GCMs are better than the rest in certain
respects. The details are available in the full version of
this work [21].

VI. FURTHER WORK AND CONCLUSION

To understand the complexities of the process, and
strengths or weaknesses of different approaches, we
need to study a more exhaustive list of models. Such a
study is available in the full version of this work [21].
Here, we explore 6 models, including the ones dis-
cussed here, and compare their merits and demerits.
Another aspect that needs to be evaluated is conditional
simulation in which the simulation by the models is
carried out conditioned on some available informa-
tion [18], such as the total all-India rainfall each day,
or rainfall at a small number of locations each day.
Such conditional simulations are very useful and are
also easier to evaluate since they are linked to real data.
In [21] we present detailed evaluations of the models
for both types of conditional simulation.
This work shows the potential of stochastic simula-

tion of Indian rainfall by Bayesian generative models.
The coherent zones provide a way to reduce model
parameters and improve spatial correlations, without us-
ing Gaussian Processes for which design of covariance
function is very difficult for the diverse landmass. We
aim to produce more efficient and accurate generative
models for Indian rainfall.
Acknowledgement This work was partially funded

by Airbus India.
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DETECTING ACTIVE AND BREAK SPELLS. . .

FINDING ACTIVE AND BREAK SPELLS OF INDIAN
MONSOON BY MARKOV RANDOM FIELDS
Adway Mitra1, Amit Apte1, Rama Govindarajan1, Vishal Vasan1, Sreekar Vadlamani2

Abstract—The Indian summer Monsoon brings rainfall

to most parts of India, during mid-May to mid-October

each year. It exhibits considerable spatial and temporal

variations across years and within each year. Meteorolo-

gists have been studying the variations of various proper-

ties of the monsoon, including short phases of unusually

high (active) or low (break) rainfall using threshold-based

approaches. In this work, we propose a framework based

on Markov Random Field (MRF) to analyse grid-level

daily data of precipitation and cloud cover. The MRF

assigns state variables to (gridpoint,day) pairs indicating

the climatic condition. Spatial and temporal coherence of

such states is ensured by the edge potential functions of

the MRF. We use these variables to identify active/break

phases of the monsoon, taking into consideration the

climate states at all locations instead of only the all-

India spatial-mean as done by existing methods. We also

identify common spatial patterns of rainfall and clouds

associated with these phases.

I. INTRODUCTION

India receives considerable rainfall every year during
the months June to September (JJAS), from the Mon-
soon. However, the amount of rainfall varies greatly
across years, across days within each year, and also
across locations [1], [2]. Low-rainfall years are known
to have significant negative effects on food-grain pro-
duction, and hence the lives of a billion people. Indian
Meteorological Department (IMD) and climate scien-
tists have, for more than a century, tried to identify
spatially coherent regions which have uniform rainfall
patterns, days and years in which rainfall is excess or
deficient, how the spatial distribution of rainfall changes
across days in a year and across years, and so on.
Recently, the widespread availability of data and the
huge progress in Data Science has resulted in advanced
statistical methods being used in multiple domains of
study, including climate. So far, not much effort has
been made in studying the Indian monsoon through the
lens of Data Science/Machine Learning. The aim of

Corresponding author: Adway Mitra, adway.mitra@icts.res.in
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this work is to make a data-driven study of the Indian
monsoon climate, with special emphasis on discovering
small-scale or local properties, and how they are related
to large-scale or all-India patterns.

II. ACTIVE AND BREAK SPELLS
In most years, the monsoon season has one or more

periods of 3 or more continuous days when the mean
rainfall volume over the Monsoon Zone [2] (a large
rectangular region over Central and Northern India,
representative of All-India Rainfall) is exceptionally
high/low. These periods are called “active spells” and
“break spells” respectively. Break spells are caused
when the cloud cover vanishes over Central and North-
ern India as characterised by [3], [4], while [5] defines
these phases based on the strength of winds over the
Bay of Bengal. On the other hand, [6],[7] and [8] define
active and break spells directly in terms of the aggregate
rainfall over the Monsoon Zone or the entire country[9].
The mean rainfall for each day is compared against
the climatogical mean for that date, and accordingly
each day is marked as “active” or “break”, and 3 or
more consecutive days marked this way are identified
as spells. [10] uses smaller subdivisions of India and
identifies regional dry and wet spells. It is recognized by
most of the above studies that active and break spells are
associated with characteristic spatial patterns of rainfall.
In contrast to the existing approaches we define

“active” or “break” spells based on the climatic con-
ditions of individual locations, encoded by discrete
state variables, instead of spatial aggregate. We aim
to replace hard thresholds by a probabilistic approach
where spatio-temporal coherence plays an important
role in determining these state variables.

III. SPATIO-TEMPORAL MARKOV RANDOM FIELD
Markov Random Fields have been used in various

applications of Computer Science for the past 20 years,
but more recently it has emerged as a powerful approach
for modeling spatio-temporal data [11]. In the geospa-
tial domain, Markov and Gaussian Random Fields have
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been used to model ocean temperature [12], detection of
droughts [13], downscaling/disaggregation of a process
observed at low resolution into high resolutions [14],
or for spatial interpolation. Sometimes, they have been
used to model a latent process which drives an observed
process. Most of these works consider continuous latent
variables, but in this work we will use discrete latent
variables to answer specific questions.
Consider S grid-locations and D days in the daily

rainfall dataset for a year. For each location s, on day
d, we denote by Zsd the state of the climate, and by Xsd

the observed measurement of a climatic variable, such
as rainfall. The Z-variables are unobserved or latent,
and must be inferred. However, each of them can take
values in {1, 2 . . . ,K}. In our model, we will consider
3 types of edges: 1) temporal edges between Zsd

and Zs,d+1 i.e., between state variables of a particular
location on successive days; 2) spatial edges between
Zsd and Zs0d i.e., between state variables of neighboring
locations on a particular day; 3) data edges between
Zsd and Xsd, i.e., between a state variable and the
corresponding observed measurement on a particular
location and day. The model is shown in Figure 1.
We set the potential function associated with the data

edges as the conditional PDF of the observed value
over the continuous space of observations, conditioned
on the discrete state variable. In this work, the observed
variable Xsd is the rainfall or OLR recorded at location
s on day d. For rainfall, we consider a state space of
size K = 2, signifying wet days (Zsd = 1) and dry
days (Zsd = 2). For both states, we consider a Gamma
distribution over the observed quantity of rainfall, with
parameters specific to the state, as  D(Zsd, Xsd) =
Gamma(Xsd;↵sk,�sk) where Zsd = k

Obviously, state-specific parameters ensure that heav-
ier rainfall is likely on wet days (Zsd = 1) and low or
no rainfall is likely on dry days (Zsd = 2). The use
of Gamma distribution to model local daily rainfall has
been used in the Climate Science community particu-
larly in rainy seasons [15], [16].
We define the potential functions of temporal and

spatial edges between the state variables to promote
spatial and temporal coherence. These functions take
high values if the Z-variables connected by the edge
take equal value, and low values if they are different, as
 T (Zsd, Zs,d+1) = exp(aI(Zsd = Zs,d+1)) (temporal
coherence) and  S(Zsd, Zs0d) = exp(c(s, s0)I(Zsd =
Zs0d)) (spatial coherence). Here I is the indicator
function and s0 is any neighboring grid location of s.
a is temporal-coherence parameter (assumed constant),
and spatial coherence parameter c is specific to the

Fig. 1. Spatio-Temporal Markov Random Field for Indian Rainfall.
Each column represents one day, each row represents a location. Z:
latent state variable, X: observed rainfall volume. Horizontal edges
are “emporal”, vertical edges “spatial”, “data edges” connect Z, X
nodes. The U -nodes below represent daily All-India state variables,
connected to all local state variables on same day

locations (s, s0) because not every pair of neighboring
locations have the same degree of correlation.
Since active and break spells of the Indian monsoon

are defined not for individual locations but for the
country as a whole, we incorporate into our model all-
India state variables Ud which indicate whether day d
is an “active day” (1), “break day” (2) or “normal day”
(3). However, as already mentioned, we wish to define
the all-India state based on the individual locations,
rather than on the all-India spatial mean rainfall. We
let the locational state variables {Zsd}s “vote” to decide
the all-India state variable Ud. Hence, we set edges from
all the locational variables Zsd to Ud on which edge
potentials are defined, allowing Ud to take a “vote” on
the locational states, and each value of Ud is charac-
terized by the number of locations that are in state 1
(wet), i.e.  SS(Ud, Zsd) = exp(I(Ud = Zsd)/S). At
the same time, we associate Ud with Yd, the spatial
mean rainfall on day d as done in literature, but all-
India spatial mean instead of the “monsoon zone”, as
 SD(Ud, Yd) = N (Yd;µUd

,�Ud
). Additionally, since

active and break phases are defined as intervals of at
least 3 consecutive days, we enforce temporal coher-
ence on the Zd-variables through edge potentials, as
 ST (Ud, Ud+1) = bI(Ud = Ud+1). Note that here
we have replaced the Gamma distribution by Gaussian
distribution for the observed rainfall quantity, since the
distribution of spatial-mean daily rainfall volume is
more symmetric, unlike location-specific daily rainfall.
The most important task now is to infer the latent

variables Z, while estimating the parameters like ↵,
�. We first make an initial estimate of the Z and U -
variables by ignoring the edges and putting thresholds
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on the observations X ,Y . The coherence parameters
a, b, c are estimated based on these initial values of
Z,U . For example, the spatial coherence paramaters for
an edge connecting two locations are set proportional
to the number of days that the initial estimates of Z at
the two locations are equal. After that, we infer Z and
U -variables using Gibbs Sampling, by sampling each
Zsd or Ud by turn, conditioned on the rest.
This same model can also be used for discrete

representation of cloud cover, measured by the proxy
variable of Outgoing Longwave Radiation (OLR).
In this case we use three states (1-very cloudy, 2-
not cloudy, 3-moderate cloudy) for the Z-value at
each location and also for the all-India variable U .
We use Gaussian distribution (instead of Gamma)
for the data edge potentials, i.e.  D(Zsd, Xsd) =
N (Xsd;µsk,�sk) where Zsd = k. These differences
are due to the natures of the distribution of daily rainfall
and daily OLR data, at grid-scale and all-India scale.
Grid-wise daily OLR data is symmetric, while grid-wise
daily rainfall data has a long right tail. To distinguish
between the variables associated with rainfall and OLR,
we use the notations {XC, Y C,ZC,UC} for OLR and
{XR, Y R,ZR,UR}.
Two main properties of the proposed model are

interpretability and non-separability. The latent vari-
ables Z at any spatio-temporal is easily interpretable- it
indicates whether or not the location is under significant
rainfall or cloud cover. Same holds for U also. Some
models for spatio-temporal data model the spatial and
temporal coherence/covariance properties separately,
such models are called separable. However, this is not
a realistic assumption, but non-separable models [17]
often suffer from computational inefficiency. Our model
defines spatio-temporal covariance implicitly through
local interactions between spatio-temporally neighbor-
ing variables, making it non-separable. Since the latent
variables are discrete, we also avoid computational
challenges, and the algorithm is very efficient.

IV. EXPERIMENTAL EVALUATION

We use gridded daily data for precipitation and
cloud cover for experiments. The precipitation dataset
that we use was published by Rajeevan et al. [7].
It records daily rainfall at 357 grid-points all over
Indian landmass, each 100KM ⇥ 100KM in size, for
the period 1901-2011. Cloud cover is quantified by
Outgoing Longwave Radiation (OLR) for which re-
analyzed data is available at (https://www.esrl.noaa.gov/
psd/data/gridded/data.interp OLR.html). This data is on
a 250KM ⇥250KM worldwide grid system, available

Fig. 2. Locations that are frequently in “wet” state during active
spells (left) and break spells (right), shown in grey

Fig. 3. Column 1: 1 August 2006, “active” by both MRF and
[8], Column 2: 6 July 2006, “active” by [8] but normal by MRF,
Column 3: 18 July 2007, “break” by [8] but normal by MRF. Top
row shows locations assigned Z = 1 by MRF in grey, bottom row
shows locations receiving more rainfall than their daily mean.

daily since 1975. For our analysis we interpolated to
the same grid system as the Indian rainfall dataset.
Active/break spells are intervals of at least 3 days of

unusually high/low rainfall. In our model, the all-India
state variables {Ud} are used to determine these spells,
based on both the spatial mean rainfall, and number of
locations in wet state. We compare the spells identified
by our method against those identified by [8], with
respect to the all-India mean rainfall on those days,
and the mean number of locations in “wet” state as
identified by our method. The results, tabulated in Table
1, show the merits of our approach, especially for the
“break” days. Clearly, the “break spells” identified by
the proposed method have much less mean all-India
rainfall, and fewer locations in the “wet” state. In some
years, [8] doesn’t identify any active or break spells,

ACTIVE SPELLS BREAK SPELLS
Mean AIR Mean #(Z=1) Mean AIR Mean #(Z=1)

Year MRF [8] MRF [8] MRF [8] MRF [8]
2000 11.34 11.72 182.44 193.13 3.08 5.4 48.2 76.33
2001 11.15 12.45 170.68 187 4.45 4.48 87.56 89.25
2002 10.79 – 154.6 – 3.49 4.39 73.9 79.8
2003 11.88 13.02 170.63 174 6.53 – 117.29 –
2004 13.5 13.2 182.5 234.33 4.5 9.5 82.03 113.17
2005 12.03 11.59 172.68 171 3.16 4.53 46.4 63.94
2006 10.68 10.34 169.66 148.22 4.84 – 107.75 –
2007 11.12 11.86 147.6 137.5 6.11 7.33 83.76 101.75

TABLE I
MEAN ALL-INDIA RAINFALL, AND MEAN NUMBER OF “WET”
LOCATIONS IN ACTIVE(LEFT) AND BREAK(RIGHT) SPELLS

IDENTIFIED BY THE PROPOSED METHOD, AND BY [8]
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Fig. 4. Mean number of locations in different states w.r.t. rainfall
and cloud-cover during active, break, normal spells

and the spells identified by our method in those years
have unusually high or low values.
It is well known that during active spells, the western

ghats and the monsoon zone of north/central India
receive heavy rainfall, while in break spells rainfall
is restricted to the north-eastern provinces, northern
foothills of Himalayas and parts of Southern peninsula.
These are corroborated by the state assignment to
locations by our method, as shown in Figure 1, for the
period 2000-2007.
In the period 2000-07, 88% of the days marked as

“active” by [8] are also marked “active” by the proposed
MRF, while 57% of days marked as “break” by [8]
are also marked so by MRF. The differences between
active and break days identified by ours and threshold-
based approaches are indicated in Figure 2. Days like
6 July 2006 have heavy rainfall in some parts of India,
for which they are classified as “active” by [8], even
though large parts of the country remain dry. Again,
days like 18 July 2007 are “break” by [8] though several
locations receive above-mean rainfall. The proposed
method takes local effects into consideration, and iden-
tify these days as “normal”. Clearly on all these days,
the local state assignments by MRF is far more coherent
than using local thresholds, which allows us to define
“zones” of rainfall.
We also consider the cloud-cover state variables (3

states) during these periods. We denote by ZR and ZC
the latent variables corresponding to states of rainfall
and cloud cover respectively. In Figure 3, we show
the mean number of locations have high (ZC=1), low
(ZC=2) or medium (ZC=3) cloud cover and high or low
rainfall during active (U=1), break (U=2) and normal
(U=3) days. Clearly, the number of locations having
high cloud cover and rainfall are directly related to these
spells.

V. CONCLUSION

We propose a new approach to represent Indian mon-
soon climate, using spatio-temporally coherent discrete
state variables. We showed here how this representation
can be used to make a new characterization of active

and break spells, and their spatial patterns. We plan to
use this representation to define local onset dates and
Monsoon Intra-Seasonal Oscillation Index (MISO).
Acknowledgement This work was partially funded

by Airbus India.
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TRACKING THE PROPAGATION OF PLANETARY
SCALE CLOUD ZONES OVER INDIAN OCEAN AND
SOUTH ASIA WITH MARKOV RANDOM FIELDS

Adway Mitra1, Amit Apte1, Rama Govindarajan1, Vishal Vasan1, Sreekar Vadlamani2

Abstract—Much of South and South-East Asia receives

its rainfall from planetary-scale cloud zones that originate

over Indian Ocean south of the Equator, and propagate

northwards in Summer. Across the year, different loca-

tions in this region are frequently under cloud cover and

rainfall. Daily grid-scale data of Outgoing Longwave Ra-

diation (OLR) and precipitation contains a lot of spatial

and temporal variation, and it is impossible to visualize

and identify large-scale movement patterns of cloud zones

from it. We propose an approach where discrete latent

variables are defined to indicate whether a location is

under an active cloud zone or not on each day. A spatio-

temporal Markov Random Field is constructed with the

latent variables, and they are inferred based on daily local

observations of rainfall and OLR. Their spatio-temporal

coherence is ensured by edge potentials. Location and

movement patterns of large and coherent cloud zones

are clearly visible from these discrete variables.

I. INTRODUCTION

Many countries in South Asia receive most of their
annual rainfall from a monsoon season [1], roughly
from May to September. It is known that this sea-
son is caused by the northward migration of a huge,
planetary-scale cloud-band called Inter-Tropical Con-
vergance Zone (ITCZ) [2] from the Equatorial region
over Indian Ocean to the landmasses of South Asia.
As a result, much of the South Asian landmass is
under medium or high cloud cover and rainfall on
several days of the monsoon season, unlike in other
parts of the year. However, over most of the Indian
Ocean and in various landmasses of South-East Asia
this seasonality of climate is less pronounced and more
evenly distributed through the year. In this work, we are
interested in tracking the daily movements of planetary-
scale cloud zones (including but not limited to ITCZ).
The influence of an active cloud zone over a location
is manifested through daily cloud cover (measureable

Corresponding author: Adway Mitra, adway.mitra@icts.res.in
1ICTS-TIFR, Bangalore, India 2TIFR-CAM, Bangalore, India

by OLR) and rainfall there. Using observations of these
two quantities, we attempt to identify the “active zones”
each day, i.e. locations over which such cloud zones
are active. Since our aim is to identify, track and
study large-scale systems, we need the representation
to be concise. Such conciseness can be obtained from
a discrete representation that has spatial and temporal
coherence. In doing so, we may need to make a trade-
off with the magnitude of local rainfall/cloud cover,
since we are not interested in strong local rainfall events
unless they are related to a larger system. To make the
trade-off process flexible and to avoid thresholds, we
turn to a probabilistic approach: Markov Random Field.

II. THRESHOLD-BASED APPROACH

We used gridded datasets at spatial resolution of
25Km� 25Km for daily rainfall and Outgoing Long-
wave Radiation (a proxy for cloud cover) over the South
Asian region, including both land and sea, 50�E �
120�E and 30�S � 30�N . The results presented here
is for a particular year: 2010, though similar results
were obtained in other years also (not shown here for
brevity). We represent by XR(s, d) and XC(s, d), the
rainfall and OLR measurements at location s, date d.
Binary variable U(s, d) indicates whether locations s
on day d is part of an “active zone” (U = 2) or not
(U = 1).
An obvious solution to this problem is to put thresh-

olds on the rainfall and OLR values. On each day,
if the OLR at a particular grid-location is below a
threshold (say 220W/m2), and the precipitation is
above a threshold (say 5mm) we may say that the
location is under a active zone on that day, and set
U -variables accordingly. However, such assignment is
not at all spatially coherent, and hence the daily maps
are spatially oversegmented with no clear patterns.
Temporal coherence is also missing due to lots of
changes between any two successive days. Moreover,
it is difficult to choose the thresholds reasonably. The
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maps for two days in the year 2010 (20 Jan and 20
July) are shown in Figure 1. A quantitative measure of
the lack of spatio-temporal coherence is provided later.
To improve this, we considered intervals of days

around each day to get a more stable picture of whether
or not a location is under influence of cloud zone. Sim-
ilarly, we considered the spatial neighborhood of each
spatial location (grid). We attempted spatio-temporal
smoothing of the variables and XR(s, d), XC(s, d) are
replaced by the mean over {X(s, d�t), . . . , X(s, d+t)}
for a period t and {X(s0, d)} where s0 is a spatial
neighbor of location s. The slightly improved results
are shown in last row of Figure 1.

III. MARKOV RANDOM FIELD
A major drawback of this approach is the use of strict

thresholds, and there is no explicit attempt to iden-
tifying spatio-temporally coherent structures. We now
attempt a Latent Variable approach based on Graphical
Models to address these issues. A similar approach was
made in [4] to locate the ITCZ over Pacific Ocean, but
the model did not include rainfall and it was supervised.
For each spatio-temporal location (s, d), consider

discrete variables ZC(s, d), ZR(s, d), U(s, d) which in-
dicate whether or not it is under strong cloud cover,
heavy rainfall and a combination of both. In the pre-
vious analysis, these were assigned on the basis of
thresholds on (XR, XC). Now, we define a Markov
Random Field (MRF) [3] on these Z and U -variables,
along with edge potential functions that enforce spatio-
temporal coherence, and infer their values through
probabilistic inference. In this model, we define ZR and
ZC-variables to have 4 discrete states, corresponding to
very low (1), low(2), high (3) and very high (4) amounts
of rainfall and cloud cover. The values associated with
these states are not separated by hard thresholds but
allowed to overlap, so that spatial and temporal coher-
ence of these state-assignments is maintained. The U -
variables are binary, as earlier.
We consider a graph where each node corresponds to

one of these variables like ZC(s, d), ZR(s, d), U(s, d),
for a spatio-temporal location (s, d). We also have
nodes corresponding to XC(s, d), XR(s, d). Spatial

edges are added between pairs of nodes associated with
spatially adjacent locations ((s, d) and (s0, d) where
s0 and s are spatial neighbors), corresponding to each
type of latent variable. Similarly, temporal edges are
added between pairs of nodes associated with suc-
cessive days ((s, d) and (s, d + 1)), corresponding to
each type of latent variable. Also, nodes corresponding
to each observed variable XR(s, d) (or XC(s, d)) are

Fig. 1. Map of OLR (row 1), rainfall (row 2) and U -variables (row
3) by putting thresholds on raw data (250W/m2 for OLR, 2mm
for rain) on 20 Jan and 20 July, 2010. Row 4: U -variables (bottom)
after spatio-temporal smoothing and putting thresholds on raw data
(220W/m2 for OLR, 5mm for rain) In row 1, red: weak cloud,
blue: strong cloud. In row 2, purple: less rain, red: heavy rain. In
rows 3,4: Pink: U = 2, i.e. under cloud cover

connected by data edges to discrete variables ZR(s, d)
(or ZC(s, d)). Finally U(s, d) is linked to the ZR, ZC-
variables for a period {d � t, . . . , d + t} of days by
state edges for every spatio-temporal location (s, d).
The intermediate discrete variable Z is important to
design and compute potentials for U , as each U -variable
must connect to an interval of 2t+ 1 days.

We define edge potential functions  on each of
the edges that enforce spatial and temporal coherence
of these discrete variables. Specifically, for spatial
edges the potential is defined as  R((s, d), (s0, d)) =
exp(�|ZR(s, d) � ZR(s0, d)|),  C((s, d), (s0, d)) =
exp(�|ZC(s, d)�ZC(s0, d)|), for temporal edges also
the potentials are defined accordingly. Similarly, for
state edges between U(s, d) and Z(s, d0) (where d0 2
{d� t, . . . , d+ t}), the potential functions are defined
as  R

U ((s, d), (s, d
0)) = exp(�|ZR(s, d) � 2U(s, d0)|),

 C
U ((s, d), (s, d

0)) = exp(�|ZC(s, d) � 2U(s, d0)|).
Clearly, each of these functions takes high value when
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the discrete variables connected by that edge are equal
or close.
Each discrete state represents a distribution over the

real space of the corresponding observed variables.
For example, the distribution for ZC = 1 is peaked
at low values, while that of ZC = 4 is peaked
at high values. We use the Gamma distribution for
rainfall and Gaussian distribution for OLR values, i.e.
XR(s, d) ⇠ Gamma(↵sk,�sk) where k = ZR(s, d),
XC(s, d) ⇠ N (µsk,�sk) where k = ZC(s, d). These
PDFs are used as the edge potentials for each data edge.
The distribution parameters are dependent on locations,
to account for the natural spatial variability of rainfall.
The total likelihood of the model is the product of

all the edge potential functions discussed above. The
discrete state variables ZR, ZC , U and the distribution
paramaters are unknown. So we first initialize them at
each location individually, by setting thresholds on the
observations based on the mean and variance at each
location for rainfall and OLR. After that probabilistic
inference is carried out using Gibbs Sampling [5],
where each of these latent variables are sampled, con-
ditioned on all of the rest. The conditional distribution
of each variable is proportional to the product of the
potential functions on all edges attached to its node in
the MRF. By the iterative process we generate enough
samples for all the variables, from which we estimate
their optimal values.
Two main properties of the proposed model are

interpretability and non-separability. The latent vari-
ables ZR, ZC , U at any spatio-temporal is easily
interpretable- it indicates whether or not the location is
under significant rainfall or cloud cover or both. Some
models for spatio-temporal data model the spatial and
temporal coherence/covariance properties separately,
such models are called separable. However, this is not
a realistic assumption, but non-separable models [6]
often suffer from computational inefficiency. Our model
defines spatio-temporal covariance implicitly through
local interactions between spatio-temporally neighbor-
ing variables, making it non-separable. Since the latent
variables are discrete, we also avoid computational
challenges, and the algorithm is very efficient.

IV. RESULTS

In Figure 2, we show maps corresponding to assign-
ments of ZR,ZC and U on two different days. It is
obvious that the maps of ZR and ZC are more spatially
coherent than those of XR and XC in Figure 1. The
binary map of U is also clearly far more coherent in
Figure 2.

Fig. 2. Map of discrete states for OLR (ZC ,top), rainfall
(ZR,middle) and U -variables (bottom) by proposed model on 20
Jan and 20 July, 2010. Pink: U = 2, i.e. under cloud cover

We now attempt to express these results quantita-
tively. For comparison, we choose such thresholds so
that the number of spatio-temporal locations assigned
to U = 2 are roughly comparable (33% � 40%) in all
methods. To quantify temporal coherence, we compute
on how many days the U -variable at each location
was equal to that of the previous day, and compute its
mean over all locations. In case of the threshold-based
approach, this turns out to be 257 out of the 365 days
in the year, while after smoothing it improves to 342
days. In the MRF-based approach this is 358 days.
We quantify spatial coherence in two ways - locally

and globally. For local spatial coherence, we compute
how many spatially neighboring grids of each grid-point
has the same value of U on each day, and compute its
mean over all locations and days. Using threshold-based
approach on the raw data, this value is 6.9 (where each
location has 8 neighbors in the grid system). In both
the threshold-with smoothing and the MRF approaches,
this value comes to around 7.4. But to measure global
spatial coherence, we compute the number of connected
components in the maps of U on each day, where we
consider each grid-location as a node in a graph, and
neighboring locations having same value of U are con-
nected by edges. The number of connected components
in such graphs is measured for each day. Smaller the
number of connected components, more coherent is the
graph. In the MRF-based approach, the mean number
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of connected components is 10, while in the threshold-
based approach it is 25, and for thresholding after
smoothing the value is 15. Clearly, the MRF approach
creates coherent maps of U .

In Figure 3 we show the tracking of cloud zone
marked by U -variables on maps from the period 5 May
to 28 June 2010, when the band expands northwards
from the equatorial region to cover much of South Asia
including India, Sri Lanka and Burma.

V. CONCLUSION

Tracking of large-scale cloud zones is important to
understand the physics of the climate systems. However,
detecting or tracking them is not an easy task because
they are not always manifested in the local daily
readings of climatic variables, and using thresholds on
these readings fails to capture any coherent structure.
In this work we showed how this shortcoming can be
overcome using graphical models that derive statistical
strength from spatio-temporal neighborhooods. While
temporal effects were taken into account by considering
a window of 15 days, it should be noted that the window
length is a tuneable parameter with bearings on the
results. In a more detailed study, we plan to explore
this issue. It is also interesting that though the Markov
Random Field imposed local spatial coherence through
interactions between neighboring spatial locations, yet
global spatial structures emerged which are visible as
large coherent zones in the maps. The temporal stability
of these structures allow us to track them. A follow-
up on this work would be to quantify the movement
patterns of these zones, and build a dynamical model.
Acknowledgement This work was partially funded

by Airbus India.
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PREDICTABILITY OF ATTRIBUTES OF ANNUAL
AND MONTHLY RAINFALL OVER INDIA

Adway Mitra1, Ashwin Seshadri2

Abstract—We evaluate predictability of discrete at-
tributes of monthly and annual rainfall over India us-
ing conditional statistics. Three attributes are studied:
whether rainfall in a given year is above or below its long-
term mean (“state”), whether it differs from the long-term
mean by at least one standard deviation (“extreme”), and
whether it is above or below the previous year’s rainfall
(“phase”). For monthly scale we consider rainfall volumes
scaled by the corresponding calendar-month’s mean to
account for seasonal effects. We consider an attribute
to be more predictable if its probability distribution
conditioned on attributes in the previous month or year is
sharper than its unconditional distribution. Conditional
probability calculations reveal that phase is more pre-
dictable than state and extremes because it is likely to
reverse sign between successive years and months. Also,
dry years are more likely than wet years to be followed by
extreme years. We also examine conditional probability
relations between attributes at grid-level and all-India
scales, revealing that all-India extremes entail widespread
grid-level phase and state of the corresponding sign.

I. INTRODUCTION

A large section of India’s population depends on
rainfall for agriculture [2]. Prediction of rainfall in India
is a major scientific challenge [1], which meteorologists
and others have attempted for decades using various
approaches. Most approaches seek to predict All-India
spatial aggregate rainfall (and sometimes for smaller
“homogeneous zones”), either for entire years or for
the monsoon season (June-September) that accounts for
75% of India’s annual rainfall [7], [5]. Such prediction
for any year includes annual rainfall in the past years, to
take into account variability on different timescales, as
well as climatic variables in certain parts of the world
(e.g. sea surface temperature over Pacific and Indian
Ocean) in the same year [9], [8]. This is a difficult task
and the efforts are yet to yield adequate results [6].
Monthly rainfall prediction with long lead-times, such

Corresponding author: Adway Mitra,
adway.cse@gmail.com1ICTS-TIFR, Bangalore, India 2Divecha
Center for Climate Change, IISc, Bangalore, India

as in the previous year, is rarely attempted [11]. More-
over, prediction of all-India rainfall is not sufficient as
Indian rainfall has a lot of spatial variation [10], and
local predictions are necessary for all stakeholders [3],
[4]. In this work, we consider the simpler task of
prediction of certain attributes of annual and monthly
rainfall, and the relationship between these attributes
at all-India and local scales. We study how well these
attributes can be predicted based only on their past
values, without invoking external conditions. Since
these are discrete attributes, we cannot use regression-
based techniques which are used for prediction of all-
India rainfall or ENSO indices. So we make use of
discrete conditional distributions. This approach allows
us to make probabilistic forecasts for the attributes,
something which regression-based techniques do not
allow.

II. PHASE, STATE, EXTREME

Let us denote by Y (t) the aggregate annual rainfall
over India in year t. Also, let µ and � be the mean
and standard deviation of Y , measured over a century.
In years that Y (t) > µ we say Y is in positive

state, SY (t) = 1, otherwise SY (t) = �1. Similarly,
if Y (t) > µ + � we call it a positive extreme with
ZY (t) = 1, and if Y (t) < µ � � it is a negative

extreme with ZY (t) = �1, and otherwise it is a normal
year with ZY (t) = 0. These two quantities have been
used quite frequently in climate sciences [13], including
for All-India annual rainfall [12]. Additionally, we also
define positive phase, PY (t) = 1 if Y (t) > Y (t � 1)
and negative phase PY (t) = �1 otherwise, i.e. phase
is the direction of change in the time-series. These
attributes can be defined for each location also, i.e.
we can have annual time-series of local rainfall X(s, t)
based on which we can have local annual state SX ,
phase PX and extreme ZX .

We also consider corresponding quantities for
monthly time-series MY (t) and MX(s, t) at all-India
aggregate and local scales respectively. These time-
series consider months across years in chronological
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Fig. 1. Time-series of annual All-India Rainfall (AIR) and its
attributes over 1901-2011: AIR Y (t); Extremity ZY (t); Phase
PY (t); State SY (t) in clockwise order

order. However due to seasonal effects in Indian rain-
fall, different months have very different long-term
means. So we consider mean and standard deviation
µm,�m separately for each of the 12 calendar-months,
and divide MY (t) by µm where m is the calendar-
month MM(t) corresponding to month t. This is done
specific to locations for MX . The phase, state, extreme
(MPY,MSY,MZY ) and (MPX,MSX,MZX) are
computed accordingly.

III. CONDITIONAL DISTRIBUTIONS OF ATTRIBUTES

Now, we consider the time-series of phase, state and
extremes respectively. Figure 1 shows the time-series of
Y , PY ,SY and ZY for the period 1901-2011. These
figures, in case of Y and PY , indicate a mean-reverting
behavior - a high year is likely to be followed by a
low year, and vice versa. This raises the possibility of
prediction.
We aim to see if PY (t), SY (t), ZY (t) can be

predicted from PY (t�1), SY (t�1), ZY (t�1). Since
these are all binary variables we cannot use regression,
so instead we estimate the conditional distributions of
each attribute, based on the attributes in the previ-
ous year, i.e. pr(PY (t)|PY (t� 1)), pr(PY (t)|SY (t�
1)), pr(SY (t)|ZY (t � 1)) and so on. They are com-
puted as relative frequencies. These conditional distri-
butions are shown Table 1, where each column stands
for the condition, i.e. an attribute in the previous year
t � 1. Each row stands for the attribute’s value in
the current year t. We also evaluate the unconditional
distribution of each attribute.
First of all, Table 1 shows that the unconditional

distributions are not informative for making predictions,

as the phase and state in any year can take any of the
two values with almost equal frequency. But the dis-
tributions pr(PY (t)|PY (t� 1)) are clearly “sharper”,
suggesting that the phase will reverse with around 66%
probability. In other words, previous year’s phase is
a reasonable predictor for current year’s phase. But
previous year’s state is an even better predictor, as
pr(PY (t)|SY (t�1)) distribution is even sharper. Cur-
rent year’s phase will be the opposite of previous year’s
state with about 75% probability. Also, an extreme
event of either type will almost surely cause the rainfall
volume in the next year to change in the reverse direc-
tion, as indicated by as prob(PY (t)|ZY (t � 1)). This
tendency to reverse is called Mean-reverting behavior.
These results show that phase for a given year can be
predicted quite well from previous year’s attributes, but
this is not true for state, as indicated by conditional dis-
tributions pr(SY (t)|SY (t� 1)), pr(SY (t)|PY (t� 1))
and pr(SY (t)|ZY (t�1)). The conditional distributions
are quite close to the unconditional distribution of
SY (t). Finally, both types of extremities are rare, but
years of negative phase and negative state are more
likely to be followed by a year of extremity of either
type, while years of positive state/phase are more likely
to be followed by a normal year. These general patterns
hold for individual grid-locations also.
We carried out a statistical testing for these attributes,

under the null hypothesis that the PY ,SY ,ZY time-
series were drawn independently at each time-step ac-
cording to the unconditional (marginal) distribution of
the attributes. We simulated sample time-series accord-
ing to this hypothesis, and the test statistic was whether
or not the state transition probabilities were around the
values measured in Table 1. The null hypothesis was
rejected at 1% significance level.

We also explore distributions of these attributes, con-
ditioned on multiple attributes of the previous year. For
state and extreme this did not make much difference,
but it did for phase when conditioned on both phase
and state of the previous year. In particular, when
both phase and state in previous year are same, the
probability of current year’s phase being the reverse is
increased further to nearly 80%. But when SY (t � 1)
and PY (t � 1) have opposite signs, PY (t) is more
likely to take the sign opposite to SY (t� 1).

These analyses of attributes have consequences for
the annual aggregate rainfall Y (t) also. In Figure 1
we plot the probability density function of Y (t) con-
ditioned on PY (t � 1),SY (t � 1) and ZY (t � 1).
The results are clearly consistent with the attribute
conditional distributions studied above, as the previous
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Fig. 2. Distribution of Y conditioned on attributes P, S, Z in
previous year

Fig. 3. Distribution of phase and state attributes for individual
calendar-months conditioned on previous month

year’s state or phase have a reverting effect on current
year’s rainfall.
Similarly, this is repeated for the monthly-scale at-

tributes, where we compute conditional distributions
like pr(PMY (t)|SMY (t � 1)). These results are
shown in Table 2. Broadly the same patterns of pre-
dictability hold in this case also, where the state SMY
is not predictable because its unconditional and condi-
tional distributions are all close to uniform. The phase
variable PMY is usually the reverse of the previous
month’s phase and state, and an extremity in any month
makes the phase reversal in the next month almost
certain. Unlike the annual scale, the distribution of
ZMY (t) is not strongly affected by PMY (t� 1) and
SMY (t � 1). But a positive extreme month has an
increased probability of being followed by a normal
month, while a negative extreme month is more likely
to be followed by another extreme month.
The aforementioned results are aggregates across

calendar months. In addition we examine for each
calendar-month (e.g. July) how its phase and state can
be predicted based on the attributes of the previous
month (in case of July, based on June). This is important
for making operational forecasts involving the progres-
sion of monsoon. The results are shown in Figure 2,
where we plot the probability of positive phase in the
next month, conditioned on the phase (left panel) and
state (right panel) in the current calendar-month.
The figure shows that predictability of a month’s

phase based on the previous month’s phase does not
vary much across different calendar months, although
negative phase in March, June, November or December

. PY PY SY SY ZY ZY ZY

. = 1 = �1 = 1 = �1 = 1 = �1 = 0
PY = 1 0.50 0.32 0.64 0.25 0.74 0.17 0.95 0.44
PY = �1 0.50 0.68 0.36 0.75 0.26 0.83 0.05 0.56
SY = 1 0.52 0.51 0.54 0.52 0.53 0.50 0.45 0.55
SY = �1 0.48 0.49 0.46 0.48 0.47 0.50 0.55 0.45
ZY = 1 0.16 0.09 0.23 0.14 0.19 0.17 0 0.21
ZY = �1 0.18 0.15 0.20 0.11 0.25 0.06 0.25 0.18
ZY = 0 0.66 0.76 0.57 0.75 0.56 0.77 0.75 0.61

TABLE I
DISTRIBUTION OF CURRENT YEAR’S ATTRIBUTES (ALONG EACH

ROW), CONDITIONED ON PREVIOUS YEAR’S ATTRIBUTES
(ALONG EACH COLUMN)

. PMY PMY SMY SMY ZMY ZMY ZMY

. = 1 = �1 = 1 = �1 = 1 = �1 = 0
PMY = 1 0.49 0.33 0.64 0.23 0.71 0.11 0.86 0.49
PMY = �1 0.51 0.67 0.36 0.77 0.29 0.89 0.14 0.51
SMY = 1 0.47 0.48 0.46 0.48 0.46 0.53 0.4 0.47
SMY = �1 0.53 0.52 0.54 0.52 0.54 0.47 0.6 0.53
ZMY = 1 0.16 0.15 0.17 0.16 0.15 0.17 0.13 0.16
ZMY = �1 0.15 0.14 0.16 0.12 0.18 0.06 0.24 0.15
ZMY = 0 0.69 0.71 0.67 0.72 0.67 0.77 0.63 0.69

TABLE II
DISTRIBUTION OF CURRENT MONTH’S ATTRIBUTES (ALONG

EACH ROW), CONDITIONED ON PREVIOUS MONTH’S ATTRIBUTES
(ALONG EACH COLUMN)

indicate a higher probability (over 0.7) of positive phase
in the following months, and positive phase in March,
April and September indicate a reasonable probability
(nearly 0.4) of positive phase in the following months
also. Again, a negative state in March and June strongly
indicate that the following month will have higher
relative rainfall (positive phase), but negative state in
August means September is unlikely to be any better. A
positive state in August improves the chances of having
a better September.

IV. ATTRIBUTES ACROSS SPATIAL SCALES

We now study another aspect - how attributes
of all-India aggregate rainfall in a year affect
those at grid-scale in the same year. In other
words, we now study the conditional distribution
of PX(s, t), SX(s, t), ZX(s, t), based on
PY (t), SY (t), ZY (t). This is important because
local information is very important for activities like
agriculture, and yet most predictions are made at an
aggregate scale. It is important to relate local attributes
to all-India aggregate attributes.
We consider 357 grid-locations over India, each of

size 100Km�100Km. For every location s, we count
the fraction of years in which its phase agrees with the
all-India phase, i.e. |t : PX(s, t) = PY (t)|. We repeat
the same for state and extremities. Since we cannot
show the results for all locations, we show in Figure 3
the distribution of these fractions. It turns out that most
locations follow the all-India attributes in at least 50%
of all the years, and some locations do so in even 70%
of the years.
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Fig. 4. The fractions of locations (Y-axis) which have their local
attributes equal to attributes of AIR in at least a certain fraction of
the years (X-axis).

. PY PY SY SY ZY ZY ZY

. = 1 = �1 = 1 = �1 = 1 = �1 = 0
E(PX = 1) 0.51 0.64 0.38 0.58 0.43 0.67 0.41 0.49
E(PX = �1) 0.49 0.36 0.62 0.42 0.57 0.33 0.59 0.51
E(SX = 1) 0.47 0.55 0.39 0.57 0.36 0.67 0.27 0.47
E(SX = �1) 0.53 0.45 0.61 0.43 0.64 0.33 0.73 0.53
E(ZX = 1) 0.15 0.19 0.11 0.20 0.10 0.29 0.07 0.14
E(ZX = �1) 0.15 0.09 0.20 0.08 0.22 0.05 0.30 0.13
E(ZX = 0) 0.70 0.72 0.69 0.72 0.68 0.66 0.63 0.73

TABLE III
SPATIAL DISTRIBUTION OF LOCAL ANNUAL ATTRIBUTES

CONDITIONED ON ALL-INDIA ANNUAL ATTRIBUTES IN SAME
YEAR

Next, we compute the expected number of locations
(spatial distribution) having different values of local
attributes in each year, conditioned on the all-India
attributes. The results are shown in Table 3, where each
column stands for a value of an all-India attribute, and
each row for a local attribute value. The unconditional
spatial distribution of each attribute is also shown.
Clearly, there is a general positive correlation between
local and all-India attributes of the same type. But all-
India extremes have the strongest association with local
attributes, as they are associated with significantly more
local extremes of the same type. Years of all-India
extreme also entail widespread local phases and states
of the corresponding sign. Similar patterns hold in the
relations between monthly-scale attributes.

V. CONCLUSIONS

We made a study of simple attributes, specifically
phase, of rainfall over India and noted that it can be
predicted well from previous year’s attributes. We also
studied relations between attributes at different scales.
Such predictions can help in policy-framing and climate
simulations.
Acknowledgement This work was partially funded

by Airbus India.
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MASSIVE SCALE DEEP LEARNING FOR
DETECTING EXTREME CLIMATE EVENTS

Soo Kyung Kim1, Sasha Ames1, Jiwoo Lee1, Chengzhu Zhang1,Aaron C. Wilson1, Dean Williams1

Abstract—Conventional extreme climate event detec-

tion relies on high spatial resolution climate model

output for improved accuracy. It often poses significant

computational challenges due to its tremendous iteration

cost. As a cost-efficient alternative, we developed a system

to detect and locate extreme climate events by deep

learning. Our system can capture the pattern of extreme

climate events from pre-existing coarse reanalysis data,

corresponds to only 16 thousand grid points without

expensive downscaling process with less than 5 hours to

training our dataset, and less than 5 seconds to testing our

test set using 5-layered Convolutional Neural Networks

(CNNs). As the use case of our framework, we tested

tropical cyclones detection with labeled reanalysis data

and our cross validation results show 99.98% of detection

accuracy and the localization accuracy is within 4.5

degrees of longitude/latitude (which is around 500 km,

and is 3 times of data resolution).

I. MOTIVATION

Deep learning, a subset of machine learning, is
the latest iteration of neural network approaches that
model intricate structure in large datasets. [1], [2]
These models control how a machine should change
its internal parameters that are used to compute the
representation in each layer from the representation in
the previous layer. Recent advances in deep learning
have led to groundbreaking results in several domains
with complex, nonlinear prediction functions, such as
speech recognition, computer vision, etc. Due to its
ability to capture the latent abstraction of massive scale
complex data, deep learning is making similar inroads
in scientific data analysis [3], and already have shone
light on recent projects in laboratories, such as satellite
image classification at NASA AMES [4], and analysis
of human brain records at LBNL [5].
The large volume and complex nature of climate

data pose many challenges to traditional analysis: there
is already too much available data, namely peta-bytes
of general calculation model (GCM) output than what

1Lawrence Livermore National Laboratory, Livermore, CA

can be analyzed efficiently. The data analysis processes
using conventional tools is done essentially by hand,
and requires considerable time from trained experts. [6],
[7], [8], [9] Moreover, conventional climate research
relies on Earth System Modeling, which increases the
spatial resolution up to 1.3km through downscaling
process with regional climate models (RCMs) started
from the input of 100 to 300km scaled coarse resolution
of GCM [10], [11]. The need to increase the spatial
resolution of models for improved accuracy poses sig-
nificant computational challenges due to its tremendous
iteration cost. For instance, to produce regional climate
model output at 1.3 km resolution, corresponding to
the calculation of 256.8 million grid points per vertical
level, requires the full-time execution of the model
on a supercomputer with 130,000 cores (at NOAA).
Exacerbating the problem, the computing power needed
to run a model with N -times finer resolution increases
by factor of 2N . As a cost-efficient alternative, we
developed event detection and localization system by
deep learning which can capture the pattern of events
from pre-existing coarse GCM scaled reanalysis data,
corresponds to only 16 thousand grid points without
expensive downscaling process with less than 10 hours
to training our dataset.
As the used case of our framework, we tested tropical

cyclones detection with labeled reanalysis data and
achieve 99.98% of detection accuracy and 4.5 degree
of localization accuracy. To our knowledge, these tech-
niques have not been explored at the scales of data
available in the climate domain, and thus, presents us
a unique opportunity to break ground in that regard.

II. METHOD

Our system is consisted of two modules, such as
detection CNNs and localization CNNs. Figure 1 shows
schematic description of our framework.
In first stage, our in-house python program collects

and adds labels indicating presence and location of
extreme climate events on climate dataset. Labeling has
been guided by historical report of specific extreme
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climate event. As one of the use cases, tropical cyclones
has been chosen as extreme climate event. This is
because: (1) there are well-constructed historical reports
of tropical cyclones informing exact date and location
of tropical cyclones [12], [13], and (2) It is believed that
the climatic pattern of tropical cyclones is relatively
simple than other extreme events [14]. Collected cli-
mate dataset is consisted of multi-channeled reanalysis
data, and each channel represents different climate
variables. Reanalysis data are global datesets that are
generated by incorporating observations into a stable
data assimilation system within climate models and
are routinely used to study climate processes. Guided
by the historical tropical cyclones reports, reanalysis
data of five climate variables, - cloud fraction (clt),
precipitation (pr), surface level pressure (psl), east-
ward near-surface wind (uas), northward near-surface
wind (vas) - which are pertinent to a tropical cyclone
diagnosis, have been collected, and labeled grid box
as true instance where and when the exact tropical
cyclones occurred, and false otherwise. Data with
true instance has been collected three times repeatedly
on the same climate data map by randomly shifting
grid box to sustain transient invariance. Data with
true instance has additional label representing rela-
tive (x, y) location of tropical cyclones inside of the
bounding box which will be reconstructed as exact
location of longitude and latitude later by combining
with the location of its bounding box. The grid box
has size of 20�(longitude)⇥20�(latitude), and resolution
of collected reanalysis data is around 1.25�⇥1.25�.
Therefore, the collected dataset is 5 channeled 2-D
feature with size of 16⇥16. Figure 2 visualizes the exact
location of tropical cyclones in our dataset overlaid with
grid box. We have collected 109,000 incidents of tropi-
cal cyclone according to the JTWC tropical cyclone best
track data [15] from 1979 to 2016. JMA reanalysis data
(JRA-55) of different climate variables [16] has been
downloaded through ESGF [17], [18], and selectively
collected bounding boxes those containing tropical cy-
clones, utilizing CDMS module [19]. The total size
of constructed tropical cyclone dataset is 218,000 with
50% of true instances and 50 % of false instance.

Once a labeled dataset is constructed, in second stage,
the first convolutional neural networks, so called ‘De-
tection CNNs’, is trained for the binary classification of
true and false instance of tropical cyclones. We have
used 5-layered CNNs started by using a simple MNIST
structure to begin with that uses all of the elements for
state of the art results [20], [21], then optimized for our
use case of tropical cyclone detection. As the optimizer,

Fig. 1. Systemic framework for detection and localization of
extreme climate event.

Fig. 2. Dataset: Visualization of historic cyclones from JWTC
hurricane report from 1979 to 2016.

stochastic gradient descent [22] has been chosen with
batch size of 32. We used Tensorflow-r12.0 to design
and develop code [23]. The detailed architecture of
detection CNNs is as follows:
1) Each layer contains one convolutional layer and

pooling layer. Each convolutional layer is called a
Convolution2D. All five convolutional layers are
designed to have 64 feature maps, each with the
size of 5⇥5 and a rectifier activation function.

2) Next we defined a pooling layer that takes the
max called MaxPooling2D [24]. It is configured
with a pool size of 2⇥2.

3) After passing five convolutional layers as de-
scribed (1) and (2), the regularization layer fol-
lowed using Dropout [25], which is configured to
randomly exclude 20% of neurons in the layer in
order to reduce overfitting.

4) Finally, the output layer has 2 neurons for the 2
classes, true and false instance, and a softmax
activation function [26] to output probability-like
predictions for each class.

To consider input with multiple channels, we used the
late fusion [27] techniques which different CNNs take
inputs of different channels, and combines outputs from
different CNNs as single feature. Then, the final readout
layer takes the combined feature to classify true and
false instance. Our comparison test between late fusion
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Fig. 3. Test accuracy of the first CNNs for Cyclone detection task.

with early fusion, which uses input combined with
multiple channels at the early stage and then use single
CNNs to classify instance, shows late fusion performs
better to detect tropical cyclones.
Lastly, in third stage, the second convolutional neural

networks, so called ‘Localization CNNs’, is trained
to solve the regression problem to predict location,
(x, y), inside of 20�⇥ 20�sized bounding box. We have
used same CNNs architecture with ‘Detection CNNs’,
except we are solving a regression problem rather than a
classification problem. For localization CNNs, we only
use the true instance datasets (those with (x, y) labels)
in training.
After finishing the procedure of training of two

CNNs, the whole framework takes global scaled five-
channeled reanalysis data as input, and global scaled
input (global climate map) divided as multiple gridded
boxes. Then, detection CNNs takes those gridded boxes
and classify true and false instance. Localization
CNNs can locate (x, y) of a tropical cyclone only
for the gridded dataset classified as a true instance
within the detection CNNs. Therefore, our final output
generated from the framework is the detection result of
each grid box and location (x, y) in the true grid box.
In test procedure, false grid box can generate (x, y)
and we attempt not to update network weight when
It’s false instance from detection CNN by multiplying
detection result(1 for true and 0 for false) to accuracy
loss.

III. EVALUATION

We have used 80% of our datasets (with size of
872,000 data) for training CNNs and used the remaining
20%(with size of 21,800 data) hold-out for testing
performance [28]. For each iteration, we shuffled whole

Fig. 4. Localization accuracy of the second CNNs for Cyclone
localization task.

data set and randomly selected 20% of test set. We
iterate to training network and evaluating accuracy with
different training set and test set until 200,000 time-
steps after we achieved perfect convergence at 2000
steps. Therefore, detection and localization accuracy
we got here is the cross-validation results. Figure 3
shows the accuracy of ‘Detection CNNs’ on our test set
measured by training iterations. Accuracy has been cal-
culated using reduced mean average of mini batch [29].
As Figure 3 shown, we achieved more than 99.98 %
of detection accuracy of tropical cyclones after 2000
iteration.
Figure 4 shows the l2 loss with the unit of degree

of ‘Localization CNNs’ on our test set measured by
training iterations. As Figure 4 shows, we reduced l2
loss [28] of accurate localization of event down to 4.5
degrees after 10000 iterations. Considering one degree
is around 111 km, our designed ‘Localization CNNs’
can locate tropical cyclone around 500 km off from the
true center of tropical cyclones. Considering the fact
that (1) the diameter of tropical cyclone is around 100
to 2000 km and (2) resolution of input is quite low
as 1.25 degree (138km), our localization error is low
enough which is capable to predict only 2.5 pixels offs
from the true location.
Our results showing high detection accuracy and

good localization performance, even with low quality
(resolution) input, demonstrate that (1) there exists the
specific pattern of tropical cyclones in multi-variabled
climate model output, and (2) this pattern is distinguish-
able even in low resolution around 1.25 degrees. Our
results suggest that its is possible to detect extreme
climate events in low resolution model output, which
can potentially save computational cost for conventional
expensive downscaling process. Also, our approach can
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be applied without scientific or algorithmic definition
but only using data. Our model can be more adaptive to
general purpose and massive data rather than classical
method to detect climate events based on scientific
knowledge.
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Abstract—Vegetation is a key player in the climate

system, constraining atmospheric conditions through a

series of feedbacks. This fundamental role highlights

the importance of understanding regional drivers of

ecological sensitivity and the response of vegetation to

climatic changes. While nutrient availability and short-

term disturbances can be crucial for vegetation at various

spatiotemporal scales, natural vegetation dynamics are

overall driven by climate. At monthly scales, the inter-

actions between vegetation and climate become complex:

some vegetation types react preferentially to specific cli-

matic changes, with different levels of intensity, resilience

and lagged response. For our current Earth System

Models (ESMs) being able to capture this complexity is

crucial but extremely challenging. This adds uncertainty

to our projections of future climate and the fate of

global ecosystems. Here, following a Granger causality

framework based on a random forest (RF) predictive

model, we exploit the current wealth of satellite data

records to uncover the main climatic drivers of monthly

vegetation variability globally. Results based on three

decades of satellite data indicate that water availability is

the most dominant factor driving vegetation in over 60%

of the vegetated land. These observation-based results will

then used to benchmark ESMs on their representation of

vegetation sensitivity to climate and climatic extremes.

I. MOTIVATION

Vegetation takes on a central position in the cli-
mate system, affecting atmospheric conditions through
a series of positive and negative feedbacks. Plants
regulate water, energy and carbon cycles, through their
transfer of vapour from land to atmosphere (i.e. transpi-
ration, interception loss), effects on the surface radia-
tion budget (e.g. albedo, surface temperature, emission

Corresponding author: M. Demuzere,
matthias.demuzere@ugent.be 1Laboratory of Hydrology and
Water Management, Ghent University, Ghent, Belgium 2Depart.
of Mathematical Modelling, Statistics and Bioinformatics, Ghent
University, Ghent, Belgium 3Depart. of Geodesy and Geo-
Information, Vienna University of Technology, Vienna, Austria

of volatile organic compounds), exchange of carbon
dioxide with the atmosphere (i.e. photosynthesis, res-
piration), and influence on wind circulation ([1], [2],
[3], [4]). Simultaneously, vegetation dynamics and the
distribution of ecosystems are largely driven by the
availability of light, temperature, and water; thus, they
are mostly sensitive to climate conditions ([5], [6], [7]).
Because of the strong two-way relationship between
terrestrial vegetation and climate variability, predictions
of future climate can be improved through a better
understanding of the vegetation response to past climate
variability.
The current wealth of earth observation data can

be used for this purpose. Nowadays, independent sen-
sors on different platforms collect optical, thermal,
microwave, altimetry, and gravimetry information, with
the longest composite records of environmental and
climatic variables spanning up to 35 years. This enables
the study of multidecadal climatebiosphere interactions.
Simple correlation statistics and multi-linear regressions
using some of these data sets have led to important
steps forward in understanding the links between veg-
etation and climate (e.g. [5], [8], [9]). However, these
methods in general are insufficient when it comes to
assessing causality, particularly in systems like the
land-atmosphere continuum in which complex feedback
mechanisms are involved. Therefore, as an extension of
linear Granger-causality analysis, this work presents a
novel non-linear framework consisting of several com-
ponents, such as data collection from various databases,
time series decomposition techniques, feature construc-
tion methods, and predictive modelling by means of
RFs.

II. METHOD

Given a particular target time series, one speaks of
the existence of ‘Granger causality’ if the prediction
of this target variable improves when information from
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other time series is taken into account in this prediction
([10]). Here, we quantify the extent to which a variable
x (i.e. a predictive feature) is ‘Granger-causing’ a target
variable y (i.e. a residual vegetation index such as Nor-
malized Difference Vegetation Index (NDVI) or Leaf
Area Index (LAI)) by computing the increase in the
variance of y that is explained by the non-linear random
forest ([11]) model predictions when x is included in
the set of predictive features used by the model (this
set also includes past values of y to conform to the
definition of Granger causality). In the remainder of
the paper, the ‘baseline’ model refers to including only
past values of y, while the ‘full model’ incorporates all
available information. The explained variance used here
is defined as R2 = 1 � RSS

TSS , with RSS being the sum
of squared errors of the predictions (relative to the true
target residuals), and TSS being the sum of the squared
differences between the true values and their long-term
mean.
In our experiments, we treat each continental pixel

as a separate problem for the RF regressor implemen-
tation, with the number of trees equal to 100 and
the maximum number of predictor variables per node
equal to the square root of the total number of pre-
dictor variables. Changes in these parameters or in the
randomness of the algorithm do not cause substantial
changes in the results. Model performance is assessed
by means of 5-fold cross-validation ([12]). The window
length is fixed to 12 months because initial experimental
results revealed that longer time windows did not lead
to improvements in the predictions. For more details on
the methodology, please refer to [13], [7].
Input features to the RF framework used to pre-

dict NDVI/LAI residuals have been selected from the
current pool of satellite and in situ observations on
the basis of meeting a series of spatiotemporal re-
quirements: (a) expected relevance of the variable for
driving vegetation dynamics, (b) multidecadal record
and global coverage available, and (c) adequate spatial
and temporal resolution. The selected data sets can be
classified into three different categories: water availabil-
ity (including precipitation, snow water equivalent, and
soil moisture data sets), temperature (both for the land
surface and the near-surface atmosphere), and radiation
(considering different radiative fluxes independently).
Rather than using a single data set for each variable,
all data sets meeting the above requirements have been
selected, leading to a total of 21 different data sets ([13],
[7]). They span the study period 19812010 at the global
scale and have been converted to a common monthly
temporal resolution and 1� x 1� latitudelongitude spatial

resolution. On top of considering raw and anomaly
time series, also ‘higher-level’ features are taken into
account, consisting of 1) lagged variables (with monthly
lags up to six months into the past), 2) cumulative vari-
ables (corresponding to the cumulative mean over the
antecedent one to six months), and 3) extreme indices
(including the maximum and minimum of a variable
per month, number of days per month exceeding a
given threshold, values of specific percentiles, etc.).
To conclude, as a proxy for the state and activity of
vegetation, we use the third-generation (3G) Global
Inventory Modelling and Mapping Studies (GIMMS)
satellite-based NDVI and LAI datasets ([14]).
The observation-based results are then used to bench-

mark Earth System Model’s on their representation of
vegetation sensitivity to climate and climatic extremes.
ESMs are selected from the Coupled Model Intercom-
parison Project Phase 5 (CMIP5) based on their avail-
ability of daily output for all variables of interest. This
resulted in a subset of six ESMs: BCC-CSM1 ([15]),
GFDL-ESM2G ([16]) and MIROC-ESM ([17]), BNU-
ESM (http://esg.bnu.edu.cn), CAN-ESM2 ([18]) and
INM-CM4 ([19]). Note that the first three ESMs include
a dynamic global vegetation model (DGVM), which
calculates interactive vegetation variation (biomass and
coverage) due to climate change simulated by the atmo-
spheric model component. Similar as in [3], robustness
is increased by selecting 50 years of data for the model
analysis (1956-2005) rather than the shorter 35-year
period used for the observational analysis.

III. EVALUATION

The main results on detecting linear and non-linear
Granger-causality relationships targeting NDVI resid-
uals are provided in [13]. Yet, since ESMs do not
model vegetation greenness expressed by NDVI, the
methodology has been repeated using GIMMS’ LAI
data (Figure 1). The results are in line with those from
[13], providing confidence in both the methodology as
well as the use of the LAI residuals as a target variable.
Figure 1 depicts strong regional differences in the

non-linear relationships between vegetation and cli-
mate. Especially in semi-arid regions such as eg. Aus-
tralia, Africa, and Central and North America, which
are frequently exposed to water limitations. In those
regions, more that 40% of the variance of LAI anoma-
lies can be explained by antecedent climate variability
(see also [13]). On the other hand, the variance of
LAI explained in other areas, such as the Eurasian
taiga, tropical rainforests, or China, is often below
10%. We hypothesise two potential reasons: (a) the
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Fig. 1. Non-linear Granger causality of climate on vegetation. (Top)
Explained variance (R2) of LAI residuals based on the baseline RF
model. (Middle) Explained variance (R2) of LAI residuals based
on a full RF model in which all climatic variables are included as
predictors. (Bottom) Improvement in terms of R2 by the full RF
model with respect to the baseline RF model that uses only past
values of LAI residuals as predictors; positive values indicate (non-
linear) Granger causality. Blue shades refer to regions where the RF
models have no skill (R2 < 0).

uncertainty in the observations used as target and pre-
dictors are typically larger in these regions (especially
in tropical forests and at higher latitudes), and (b)
these are regions in which vegetation anomalies are
not necessarily primarily controlled by climate but may
be predominantly driven by phenological and biotic
factors ([20]), occurrence of wildfires ([21]), limitations
imposed by the availability of soil nutrients ([22]), or
agricultural practices ([23]).
In order to further investigate the impact of re-

placing NDVI with LAI as a target value, the results
are clustered regionally according to the International
Geosphere-Biosphere Program (IGBP) land cover clas-
sification ([24]). Figure 2 shows both the full RF results
for NDVI, taken from [13], as well as the results
for the full RF model targeting LAI. First of all,
the scatter plot reveals good correspondence between

targeting both vegetation indices. In addition, one can
clearly see that the full model outperforms the baseline
model in all IGBP land cover classes, i.e. that Granger
causality exists for all these biomes. Moreover, the error
bars indicate that the variances of the two models are
analogous; i.e. they are low or high in both models in
the same land cover class.

Fig. 2. Mean R2 and variance per IGBP land cover class for the
baseline (squares) and full (circles) RF model, targeting both NDVI
and LAI residuals. Note that the NDVI results correspond to those
presented in [13].

Based on the non-linear Granger-causality frame-
work, [7] indicate that water availability is the most
dominant factor driving vegetation globally: about 61%
of the vegetated surface was primarily water-limited
during 1981-2010 (results not shown here). This de-
pendency of global vegetation on water availability
is substantially larger than previously reported. For
more details on the results, please refer to [7]. In a
following (future) step, an identical set of features will
be extracted from the previously defined ESM subset,
and will serve as input to the same non-linear Granger-
causality framework. This will allow the exploration of
the sensitivity of vegetation to climatic anomalies in an
ESM framework.
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EXTRACTING MODES OF VARIABILITY AND
CHANGE FROM CLIMATE MODEL ENSEMBLES

Robert C. Wills1, David S. Battisti1, Dennis L. Hartmann1, Tapio Schneider2

Abstract—Ensembles of climate model simulations are
commonly used to separate externally forced climate
change from internal climate variability. However, much
of the information gained from running large ensembles
is lost in traditional methods of data reduction such as lin-
ear trend analysis or large-scale averaging. In this paper,
we describe a statistical method to extract patterns of low-
frequency variability and change from large ensembles.
We demonstrate how this method characterizes modes
of forced climate change (e.g., global warming) and low-
frequency internal variability (e.g., the Pacific decadal
oscillation) in the CESM large ensemble.

I. MOTIVATION

Internal climate variability gives rise to uncertainty
in long-term climate predictions [1]. Ensembles of
climate model simulations are often used to quantify
this uncertainty and to better understand the average
response to external forcing [2], [3], [4]. Separating
the forced response from the internal variability also
helps to understand multi-decadal internal variability
[5], which may lead to better decadal climate pre-
dictions [6]. However, most climate studies diagnose
the spatial pattern of climate change by computing
linear trends and/or diagnose the temporal behavior
of climate variability by studying large-scale spatial
averages. These methods of dimension reduction loose
valuable information about the complex spatiotemporal
structure of climate variability and change.
Principal component analysis (PCA) provides spa-

tiotemporal information about the modes of variability
that explain the most variance in a dataset. However, by
maximizing variance, PCA can mix together physically
distinct modes of variability such as global warming
and the El Niño–Southern Oscillation (ENSO). One
method to correct for this mode mixing is to look for
linear combinations of the empirical orthogonal func-
tions (EOFs) that maximize a particular type of variance

Corresponding author: R. C. Wills, rcwills@uw.edu 1Department
of Atmospheric Sciences, University of Washington, Seattle, WA
2Department of Environmental Sciences and Engineering, California
Institute of Technology, Pasadena, CA

representing a “signal” compared to “noise” that exists
within internal variability or amongst realizations, so-
called optimal filtering or signal-to-noise maximizing
EOF analysis [7], [8], [9], [10], [11]. These methods
take advantage of any spatial structure in the “noise”
to optimally filter it out. Here, we use low-frequency
component analysis (LFCA, [12]) to find patterns with
the maximum ratio of low-frequency (signal) to high-
frequency (noise) variance, correcting for mode mixing
based on differences in time scale between physically
plausible modes of variability.

II. METHOD

The basic assumption behind our approach is that
externally forced climate change operates on longer
time scales than most internal variability. We can thus
isolate patterns of climate change by solving for spatial
patterns that describe variability with the maximum
ratio of low-frequency to total variance, where low-
frequency variance is defined as the variance remaining
after application of a lowpass filter. LFCA provides an
algorithm to find such spatial patterns for a truncated
basis of EOFs. This method orders modes by their ratio
of low-frequency to total variance, providing orthogonal
indices of climate variability that tend to be ordered by
time scale. For example, it separates global warming,
the Pacific Decadal Oscillation (PDO), and ENSO in
observed Pacific SSTs [12]. Here, we generalize LFCA
for application to climate model ensembles. Our ensem-
ble LFCA method is as follows:
1. Compute ensemble covariance matrix. For an

ensemble of nE climate model simulations, each with
n⇥p data matrix Xi, we compute the p⇥p covariance
matrix Ci with respect to either (a) the ensemble-mean
climatology vector xE or (b) the individual-ensemble-
member climatology vector xi. Option (b) discards
differences in climatology between ensemble members,
while option (a) does not.
2. Ensemble EOF analysis. We compute the EOFs

ak, which are the eigenvectors of the ensemble covari-
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Fig. 1. Low-frequency patterns (LFPs) and components (LFCs) of the CESM large-ensemble historical simulation, with N = 25 EOFs
retained and maximization of the variance remaining after application of Lanczos lowpass filter with cutoff ⌧ = 10 years. Orange (blue)
lines show the ensemble member with the most (least) change in LFC 1 over the last 20 years. All other ensemble members are shown
with grey lines. A black line shows the average of the LFC over all ensemble members.

ance matrix
CE = n�1

E ⌃nE
i=1Ci. (1)

The EOFs are normalized ||ak|| = 1, such that the
principal components have unit variance and the corre-
sponding eigenvalue �2

k = aTkCeak gives the variance
associated with the kth EOF.

3. Low-frequency component analysis. We apply
the LFCA algorithm [12] (see also [10]) to find the
linear combination of the first N EOFs,

uk =


a1
�1

a2
�2

...
aN
�N

�
ek, (2)

such that the ratio of low-frequency to total variance

rk =

⇣
eXEuk

⌘T eXEuk

(XEuk)
T XEuk

(3)

is maximized when the data is projected onto it. Here,
XE is the full-ensemble data matrix, obtained by con-
catenating individual-ensemble-member data matrices

XE = [XT
1 XT

2 ... XT
nE

]T , and eXE is the lowpass-
filtered full-ensemble data matrix, obtained by concate-
nating lowpass-filtered data matrices (i.e., we do not
filter over the discontinuities between ensemble mem-
bers). In practice, the linear combination coefficients
ek are computed as the eigenvectors of the covariance
matrix of the first N lowpass-filtered principal compo-
nents, such that filtering only needs to be applied to an
n ·nE ⇥N matrix of the leading principal components
(see derivation in [12]).
4. Visualizing results. The result is low-frequency

components (LFCs) given by

LFCk = XEuk (4)

and low-frequency patterns (LFPs) given by

vk = XT
ELFCk = [�1a1 �2a2 ... �NaN ] ek. (5)

These are analogous to principal components and EOFs
in PCA. The linear coefficients are normalized ||ek|| =
1, such that the LFCs have unit variance and the LFPs
show the spatial pattern associated with a 1-standard-
deviation anomaly in the corresponding LFC.
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III. RESULTS

We demonstrate our method by applying it to annual-
mean surface temperatures from a 40-member ensem-
ble of “historical” simulations with the Community
Earth System Model (CESM) [4]. These simulations
simulate climate from 1920 to 2005 based on histor-
ical forcing by greenhouse gasses, anthropogenic and
volcanic aerosols, and ozone. The ensemble members
differ only by machine-precession perturbations in their
atmospheric initial condition in 1920, such that their
climatology vectors xi differ only as a result of internal
variability. We include these climatology differences by
using option (a) in step 1. We retain N = 25 EOFs in
the LFCA and use a Lanczos filter with lowpass cutoff
⌧ = 10 years to focus on multi-decadal variability. The
results are insensitive to the choice of cutoff for ⌧ > 5
years. However, there is no good criterion for choosing
N , so in practice one must look for results that are
robust across parameters (see discussion in [12]).
The first LFP shows a global warming pattern, with

amplified warming over land and at high latitudes
(Fig. 1). The associated LFC increases by 3 standard
deviations from 1920 to 2005, emerging well beyond
the ensemble spread. The second LFP/LFC shows
cooling of the North Atlantic, Arctic, and Northern
Hemisphere land through the 1950s and 60s and a
subsequent recovery (Fig. 1), corresponding roughly
to the time series of anthropogenic aerosol radiative
forcing [13]. It also shows a large excursion in the
ensemble mean due to the Mt. Pinatubo eruption in
1991 and a large variance amongst ensemble members,
perhaps related to Atlantic multi-decadal variability
[14]. The third LFP/LFC shows low-frequency internal
variability associated with the PDO ([15], Fig. 1). There
is only a small excursion in the ensemble mean, before
1930, related to spin-up from initial conditions. The
fourth LFP/LFC shows low-frequency variability over
the Barents-Kara Sea, Eurasia, and the North Pacific
(Fig. 1). It shows primarily internal variability (i.e.,
there is little agreement amongst ensemble members),
but there is a response to the volcanic eruptions in
1982 and 1991. The remaining LFCs 5-25 show internal
variability with increasingly shorter time scales. One
interesting aspect of these results is that modes can be a
combination of internal variability and forced responses
(e.g., LFC 2-4), whereas most other analysis methods
assume that modes are either one or the other.
To quantify the number of ensemble members needed

to obtain these results, we compute the pattern corre-
lation of LFPs obtained from analyses with fewer en-
semble members, with those of the 40-member analysis
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Fig. 2. Convergence of the first 4 LFPs as the ensemble size
is increased, based on pattern correlation with results of the
40-ensemble-member analysis; comparison to convergence of the
ensemble-mean linear trend. To make sub-ensembles, we pick the
first nE ensemble members from the 40-member ensemble. All
ensemble members are identical in design, so we do not expect
that our conclusions are sensitive to this sampling method.

(Fig. 2). For LFP 1, we find a pattern correlation > 0.95
using only 3 ensemble members. This is slightly less
than the 4 ensemble members needed for a pattern cor-
relation > 0.95 between the ensemble-mean linear trend
and the 40-member ensemble-mean linear trend. Few
ensemble members are needed for a robust estimate of
global warming. The second, third, and fourth LFPs
take longer to converge, requiring 7, 9, and 14 ensemble
members, respectively, to reach a pattern correlation
> 0.9. Only with large ensembles (or long control runs)
can we understand these higher-order LFCs.

IV. SUMMARY AND OUTLOOK

We have demonstrated that ensemble LFCA can
identify modes of low-frequency variability and change
that are robust across climate model ensembles. It needs
only 3 ensemble members to identify the forced global
warming pattern, and makes no assumptions on the
linearity of the warming response.
We have also applied our method to multi-model

ensembles, where it is beneficial to discard the large
ensemble-member differences in climatology (option
b in step 1). This method provides particular utility
when there are multiple time scales of forced response,
such as in simulations of the response to abrupt 4xCO2

forcing. This provides a powerful tool to visualize
the dominant modes of low-frequency variability and
change in large climate datasets.
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UNCERTAINTY QUANTIFICATION FOR
STATISTICAL DOWNSCALING USING BAYESIAN

DEEP LEARNING
Thomas Vandal1, Auroop R Ganguly1

Abstract—Global Climate Models (GCMs) contain un-

certainty from internal variability of the system, pa-

rameterizations, and constraints from unknown phys-

ical processes. Furthermore, statistical downscaling of

GCMs exasperates the uncertainty further. As down-

scaled datasets are often leveraged for climate change

adaptation and planning, quantifying the uncertainty

of our statistical model is crucial. In this work, we

show how uncertainty quantification from Bayesian deep

learning approaches can be leveraged in climate applica-

tions. We review and compare three approaches, Monte-

carlo dropout, Concrete dropout, and Alpha-divergence

based dropout, for statistically downscaling precipitation

in Orlando Florida. In our experiments, we find that

Concrete and Monte-carlo dropouts perform well but

Alpha-divergence based dropout is less effective. While

further experimentation is needed, Concrete dropout is a

promising approach which extends Monte-carlo dropout

by optimizing dropout probabilities.

I. MOTIVATION

Downscaling is a process of enhancing the spa-
tial (or temporal) resolution of global climate models
(GCMs) for the purpose of climate change adaptation
and planning. The statistical approach to downscaling
aims to learn a functional mapping between low- and
high-resolution historical datasets, which can then be
applied directly to coarse resolution GCM outputs.
A wide range of methods have been explored for
statistical downscaling, ranging from bias correction
techniques [1] and nearest neighbor approaches [2],
[3] to sparse linear regressions [4] and neural net-
works [5], [6]. Intercomparison studies have shown that
each method tends to perform well for certain regions,
seasons, and climate variables but have difficulty gen-
eralizing [4]. The lack of consensus between statistical
downscaling approaches highlights the difficulty of the

Corresponding author: Thomas Vandal, vandal.t@husky.neu.edu
1Sustainability and Data Science Lab, Northeastern University

problem and the need for uncertainty quantification in
downscaled projections.
Given the difficulty of credibly downscaling GCMs,

it is crucial to provide stakeholders with a range possi-
ble events. For example, a stakeholder may be interested
in various metrics of extreme precipitation, including
maximum daily return values. These metrics can be
extracted from downscaled precipitation from GCM
outputs under a set of scenarios. However, we know
that these downscaled values have some amount of
uncertainty which should be quantified appropriately.
The concept of uncertainty quantification applied to
statistical downscaling can be leveraged to compute
uncertainties on the daily scale which can then be
aggregated when computing a chosen metric. In this
work, we refer to uncertainty quantification as the
uncertainty over our prediction (rather than uncertainty
over the parameters).
Bayesian models are well suited for uncertainty quan-

tification and can be leveraged in statistical downscal-
ing. Given the recent hype in deep learning as well as a
recent publication using convolutional neural networks
for statistical downscaling [6], we begin by studying the
use of Bayesian deep learning (BDL) for uncertainty
quantification in the climate domain.
Bayesian neural networks, originally studied in the

early 1990’s [7], applies a prior over the weights and
biases of the network and aims to learn the posterior
distribution given the data. As is common in many
Bayesian modeling problems, the formulation is in-
tractable and unable to scale to multiple hidden layers.
BDL has attempted to solve this problem by estimating
the posterior distribution using approximate variational
inference and leveraging stochastic regularization tech-
niques such as dropout [8]. Similar to more basic deep
learning architectures, the tuning of hyper-parameters
can greatly influence a model’s results. In the remainder
of this paper, we discuss the only three approaches
which have been proposed for BDL and experiment in
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downscaling daily precipitation in Orlando Florida.

II. METHOD

The technique of using dropout as a stochastic reg-
ularization technique has been crucial for the major
advances in deep learning. Dropout is implemented by
randomly setting weights in the neural network to zero
during training, usually sampled as a Bernoulli random
variable. This process then reduces overfitting by more
evenly spreading out information at each layer. The
further study of BDL has provided a basic theoretical
understand of why dropout effectively reduces overfit-
ting of deep networks and how it can provide robust
uncertainty estimates [9]. In this section, we review the
fundamental concepts of BDL as well as two variants.
We define an L-layered neural network with inputs

X = {x1, ...,xN}, label Y = {y1, ...,yN}, and
weights ! = {W 1, ...,W L} such that


f!(x)
g!(x)

�
=

r
1

KL
W L�

⇣
...

r
1

K1
�(W 1x)

⌘
(1)

where Kl are the number of units in layer l, as defined
in [10]. The predictive probability of a Bayesian neural
network can be written as

p(y⇤
|x⇤,X,Y ) =

Z
p(y⇤

|x⇤,!)p(!|X,Y )

p(y|x,!) = N (y;y(x,!), g!(x)�1)
(2)

An approximate distribution q(!) is defined as:

W i = M i ⇤ diag([zi,j ]Ki

j )

zi,j = Bernoulli(pi) for i = 1, ...L, j = 1, ...,Ki�1

given some probabilities pi and variational parame-
ters Mi. The Bernoulli random variable zi,j performs
dropout at unit j for layer i � 1 resulting in a
stochastic approximation of Wi. We then minimize the
Kullback�Leibler divergence between the posterior and
it’s variational approximation giving us the optimization
objective:

L̂(✓) = �
1

N

NX

i=1

logp(yi|xi,!) +
1

N
KL(q✓(!)||p(!))

(3)
where ✓ represents the variational parameters and the
term KL(q(!)||p(!)) is a regularization term, assur-
ing that our approximate distribution does not deviate
too far from the prior. Plugging our prior distribution
p(y|x,!) into 3, we obtain our regression objective:

L̂reg(✓) =
1

2N
g(xi)

1/2
||yi � f(xi)||

2 + log g(xi)
�1

+
1

N
KL(q✓(!)||p(!))

(4)

A. Monte Carlo Dropout

Monte Carlo Dropout (MC-Dropout) is the funda-
mental technique used in Bayesian deep learning for
inference. Given a neural network trained with dropout
minimizing 4, for a given new example we can use
dropout to sample the posterior distribution to estimate
the predictive mean and variance.

E[y] =
1

T

TX

i=1

f̂
!
(x)

V ar[y] =
1

T

TX

i=1

g!(x)�1 +
TX

i=1

f!(x)2 � E[y]2

(5)

In this approach, the probability of dropout, p, is held
constant which can cause under- or over-estimations
of uncertainty as well as less than optimal predictions.
The following two approaches, Concrete Dropout [11]
and Dropout with Alpha-Divergence [12], attempt to
improve the model’s robustness and credibility of un-
certainty estimates.

B. Concrete Dropout

The first approach we will discuss to learning a
more robust uncertainty estimate is through Concrete
Dropout [11]. Rather than doing a grid-search over all
dropout probabilities (for each layer), which is com-
putationally infeasible, Concrete dropout optimizes this
probability. By parameterizing the variational approxi-
mation with probabilities such that ✓ = {M i, pi}Li=1,
we can rewrite the KL objective in 4 as:

KL(q✓(!)||p(!)) /
LX

l=1

l2(1� pl)

2
||M l||

2
�KH(p)

(6)
where

H(p) = �plogp� (1� p)log(1� p) (7)

is the entropy of the Bernoulli random variable with
probability p [11]. The term H(p) acts as a regularizer
and enforces p  0.5. The authors show that the dropout
probabilities in the lower layers tend to approach zero
during training, which, in the past, has been shown to
work well in various applications.
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C. Dropout with Alpha-Divergences

A second approach to learning uncertainty estimates
is by using Dropout with Alpha-Divergences (Dropout-
AD) [12]. Using black-box ↵-divergence minimization
as an extension to variational inference, which tends to
under-estimate uncertainty, to penalize the function in
the domain where examples have not been seen by the
model. As shown by generative adversarial examples,
small distortions on a trained example can easily fool
the neural network. As shown in [12], Black-box ↵-
divergence can reduce this effect. Li and Gal, using
a re-parameterization trick, derive a new minimization
objective:

L̃↵(✓) = �
1

↵

NX

n=1

log-sum-exp[�↵p(yi|xi, !̂k)]

+ KL[q✓(!)||p0(!)]

(8)

where q is the approximated posterior distribution
parameterized by ↵ and the log-sum-exp operating over
K samples from the approximate posterior !̂k ⇠ q(!).
In this formulation the dropout probabilities are held
constant.
Experimentations in [12] suggest that ↵ = 0.5

provides a good balance between test accuracy and
robustness to adversarial examples. However, outside
of using adversarial examples, the authors did not
explicitly test for robust uncertainty quantification.

III. EXPERIMENTS

To begin to understand the applicability of Bayesian
deep learning to climate applications, we experiment on
a statistical downscaling dataset. Our dataset, extracted
from PRISM1, contains daily precipitation from years
1981 to 2015 in Orlando Florida. The features are a
low-resolution 9x9 patch (1.25�) of precipitation and
the label is precipitation at 1/16�. Training and test data
are split before and after year 2005, respectively.
Three Bayesian neural networks are then trained,

MC-Dropout, Concrete Dropout, and Dropout with
Alpha-Divergences, each consisting of 2 convolutional
layers of 128 hidden units each and a fully-connected
output layer. For MC-Dropout and Dropout with Alpha-
Divergences, the dropout rate is set to 0.25, sufficiently
large for regularization and enforcing reasonably wide
predictive uncertainty. Ten Monte-Carlo samples are
used during training of Alpha-divergence dropout and
set ↵ = 0.5. 100 Monte Carlo samples are used to esti-
mate the mean and variance of the learned distributions.

1PRISM Climate Group, Oregon State University

Fig. 1. (A) Comparison of uncertainty calibration between each
BDL model. A perfect calibration corresponds to y = x. (B)
Predictive performance of the test set measured by RMSE in
mm/day between observed precipitation and E[X].

The models were trained with a batch size of 128 for
100 epochs using the Adam optimizer.
To evaluate the uncertainty estimates, we quantify

what ratio of the samples fall within a certain interval
around the prediction. As presented in Figure 1, we find
that concrete dropout’s prediction intervals are more
aligned with the ideal calibration (y = x) with MC-
dropout performing better at wider intervals. Similar
results are found for predictability, with MC-dropout’s
daily RMSE being just slightly higher than Concrete
dropout. Alpha-divergence based dropout has both a
larger RMSE and lower calibration performance relative
to the others.
When training Concrete-dropout, we find that the

learned dropout probabilities are 0.1 and 0.14 for each
layer, respectively. This results in slightly more overfit-
ting to the training set and reduce generalizability on
the test set. To minimize this effect, one often includes
an l1 or l2 regularization of the weight parameters.

IV. CONCLUSION

The three approaches tested have shown impressive
results when tested on out-of-sample data as well as
adversarial examples [12] however the predictive uncer-
tainty on our statistical downscaling dataset is relatively
poor. Architecture selection is generally a challenging
task requiring many experiments, especially in the case
with no other literature on our application. Furthermore,
this is the only Alpha-divergence based dropout applied
on a regression problem that the authors are aware of.
At it’s current state, the method provides value in

estimating uncertainty but should be used cautiously
in practice as more experimentation is needed. The
current formulations of these methods assume the out-
put variable follows a normal distribution, but in many
climate applications we know this assumption will
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not hold. The authors hypothesize that an adaption
to a well-suited distribution and network architecture
will improve performance, especially at the extremes.
Furthermore, the relative uncertainty estimates between
multiple samples may provide value in understanding
where the model is less confident, which aid in un-
derstanding where the performs poorly. Also, as is
shown in the literature, these methods can provide more
robust predictions when compared to vanilla dropout
techniques. For these reasons, we will follow up this
work with experiments in statistical downscaling with
a modified likelihood distribution.
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Improving Spatiotemporal Skill Assessment of
Climate Field Reconstructions
Sooin Yun, Bo Li, Jason E. Smerdon and Xianyang Zhang

Abstract—Paleoclimate reconstructions that target spa-

tiotemporal climate fields have been used to estimate

climate conditions of the last several millennia from

networks of heterogeneously distributed networks of mul-

tiple climate proxies. Assessing the skill of the methods

used for these reconstructions is critical as a means

of understanding the spatiotemporal uncertainties in

the derived reconstructions products. Li et al. [2016]

developed a skill assessment metric that evaluates the

difference of the mean and covariance structure between

spatiotemporal fields. We apply Li et al. [2016] to re-

sults from synthetic reconstruction experiments based on

multiple climate model simulations from Smerdon et al.

[2015] to assess the skill of four reconstruction methods,

and further interpret and understand the comparison

results using analysis of Empirical Orthogonal Functions

that represent the noise filtered climate field.

I. INTRODUCTION

Climate field reconstructions (CFRs) target hemi-
spheric or global patterns of spatiotemporal temperature
changes. Among the different uncertainties that have
been addressed in CFR work, methodological assess-
ments have become a recent focus. In particular, the
performance of CFR methods have been tested using
synthetic experiments called pseudoproxy experiments
(PPEs; Smerdon [2012]). The basic premise of PPEs
is to subsample the surface temperature field from
a last-millennium simulation derived from a general
circulation model (GCMs) in a way that mimics the data
available for deriving real-world CFRs. This subsam-
pled data then forms the input data for a CFR algorithm,
which is used to generate an estimate of the excluded
data in the spatiotemporal complete climate field from
the last-millennium simulation. The derived CFR can
then be compared to the known values of the simulated
climate field as a means of evaluating the CFR skill.
We use the multi-model PPE results from Smerdon

et al. [2015] and apply the set of robust Skill Assess-
ment comparisons proposed by Zhang and Shao [2015]
and Li et al. [2016] that are based on the functional
principal components inherent in the data. This method
has significant strong points: it evaluates whether the
spatially-varying mean surfaces and covariance struc-

tures of two climate fields exhibit similar patterns, it is
completely non-parameric and thus is free of the risk
of model misspecification, and it assess which direction
the differences lie.
Despite the above listed benefits, it can be difficult

to interpret and determine why some CFRs methods
perform differently and why they do so within PPEs
based on different climate model output. In this paper
we explore several important factors that underlie the
skill assessment metrics to more clearly articulate the
reasons why the applied CFR methods perform differ-
ently within simulation-specific PPEs and across PPEs
based on different last-millennium simulations.

II. DATA

The PPEs are based on concatenated last-millennium
and historical simulations from modeling centers as
configured and implemented in the Coupled Model
Intercomparison Project Phase 5 and the Paleo-
climate Modeling Intercomparison Project Phase 3
(CMIP5/PMIP3). Simulations from the following mod-
els are employed: the Beijing Climate Center CSM1.1
model (BCC), the National Center for Atmospheric
Research Community Climate System version 4 model
(CCSM), the Goddard Institue for Space Studies E2-
R model (GISS), the Institue Pierre-Simon Laplace
CM5A-LR model (IPSL) and the Max -Plank Institute
ESM-LR model (MPI). In all cases, annual means
from the surface temperature fields of the models are
used and all fields are interpolated to 5-degree latitude-
longitude grids from which all sampling is performed
(Smerdon et al. [2015]). These fields are subsampled
to approximate available instrumental temperature grids
in the Brohan et al. [2006] surface temperature dataset
(1,732 grid cells in total) and the multi-proxy network
used in Mann et al. [2009] that yield 283 proxy loca-
tions.
Four CFR methods commonly employed in the litera-

ture are used, including two versions of the regularized
expectation maximization (RegEM) method that both
employ truncated total least squares (RegEM-TTLS) for
regularization (Schneider [2001]; Mann et al. [2007]).
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The first is a non-hybrid version of RegEM-TTLS
(TTLS) as originally adopted by Schneider [2001] and
the second is the hybrid version (TTLH) applied in
Mann et al. [2009]. Additionally, we apply standard
ridge regressions (Hoerl and Kennard [1970]) and
canonical correlation analysis (CCA) as described in
Smerdon et al. [2010]. All CFR methods use a calibra-
tion from 1850-1995 C.E. and a reconstruction interval
from 850-1850 C.E.

III. METHOD

The methods of comparing two spatiotemporal ran-
dom fields developed in Zhang and Shao [2015] and
Li et al. [2016] based on a functional data analysis
approach provide useful tools for CFR skill assess-
ments. The basic idea is to perform the comparison
in subspaces that are of much lower dimension but
preserve a large portion of the variability.
Let {Xt(s)}Nt=1 and {Yt(s)}Nt=1 be two spatiotem-

poral random fields observed over spatial locations,
s 2 D, and time points, t = 1, . . . , N . We define the
mean and covariance function of each spatial process
as follows: µX(s) = E{Xt(s)} and µY (s) = E{Yt(s)}
are mean functions over s 2 D and CX(s, s0) =
cov{Xt(s), Xt(s0)} and CY (s, s0) = cov{Yt(s), Yt(s0)}
are the covariance functions of Xt(s) and Yt(s) over
s, s

0 2 D, respectively. To compare the mean and
covariance functions of two spatiotemporal random
fields, we consider the following two hypotheses:
(i) H0 : µX = µY vs. Ha : µX 6= µY ,
(ii) H0 : CX = CY vs. Ha : CX 6= CY .
We denote the eigenvalues and eigenfunctions, also
called empirical orthogonal functions (EOFs), corre-
sponding to ĈX by {�̂j

X} and {�̂j
X}, where ĈX denotes

the sample covariance function. Then we define a
sequence of vectors consisting of the projected mean
differences on the first K eigenfunctions:  ̂k = (<
µ̂X,k � µ̂Y,k, �̂

1
X > · · · < µ̂X,k � µ̂Y,k, �̂

K
X >)T for

1  k  N , where < x, y >= x
T
y, and µ̂X,k

(µ̂Y,k) denotes the sample mean based on the recursive
subsamples {Xt(s)}kt=1 ({Yt(s)}kt=1). Our test statistic
for hypothesis (i) is TS1(K) = N  ̂

T
NV

�1
 (K) ̂N

where V = 1
N2

PN
k=1 k

2( ̂k �  ̂N )( ̂k �  ̂N )T . The
parameter K is user chosen and determines how many
eigenfunctions are to be used in the test. Similarly,
to test the covariance function, we define a sequence
of matrices by the projected covariance differences,
Ck = [ci,jk ], where c

i,j
k =< (ĈX,k � ĈY,k)�̂i

X , �̂
j
X >

, 1  k  N, 1  i, j  K, where ĈX,k (ĈX,k) denotes
the sample covariance function based on {Xt(s)}kt=1
({Yt(s)}kt=1). Let ↵̂k be the vectorized Ck, that con-
tains the elements on and below the main diagonal

of Ck. Test statistic for hypothesis (ii) is TS2(d) =
N ↵̂

T
NV

�1
↵ (d)↵̂N , where d = K(K+1)/2 and V↵(d) =

1
N2

PN
k=1 k

2(↵̂k� ↵̂N )(↵̂k� ↵̂N )T . Again K is chosen
by the user and can be determined by the cumulative
percentage of total variation. The pivotal distributions
of TS1(K), TS2(d) under certain regularity conditions
are given in Zhang and Shao [2015] and Li et al. [2016].
For more details and generalized methods, see Zhang
and Shao [2015] and Li et al. [2016].
An important control on the skill of CFRs is tied to

how well the leading EOFs of climate in the reconstruc-
tion period represent those of the calibration period. We
use the inner product of the leading EOFs from those
two time periods to compare the similarity of the two
EOFs. For instance, if the absolute value of the inner
product is close to 0, it suggests that the two EOFs
are very different, while if the inner product is close to
1, it implies that they are equivalent. The p-values to
test how significantly those inner products are different
from zero can be derived using bootstrap analysis.
The leading EOFs only show the direction or the

pattern of the variation but is uninformative of the
total variability of the temperatures or the magnitude
of the covariance structure. To measure the latter, we
compute the eigenvalues. Let �̂X

i (s), �̂X
i (s0) be the i-th

eigenfunction of CX over s, s0 2 D. The eigenvalue is
defined as ⌘X,i in CX(s, s0) =

Pk
i=1 ⌘X,i�̂

X
i (s)�̂X

i (s0).
The coefficient ⌘X,i measures the variability of temper-
atures on the ith leading EOF direction.

IV. RESULTS

We test the equivalence of mean structures between
the CFRs and their target fields for all combinations of
the five climate model simulations and the four CFR
methods. Fig 1 shows p-values of the tests at each
principal component. To understand the comparison
results, we examine the key features of climate models
and use them to interpret the skill of the CFRs in
conjunction with a particular climate model.
The inner product of leading EOFs of the calibration

period and of the reconstruction period demonstrates
how strong the leading EOFs in the reconstruction
period represent those in the calibration period (Table
I). The CCSM and MPI models have significantly larger
inner product values on their diagonal, implying that the
calibration period well preserves the dominant pattern
of leading EOFs in the reconstruction period. Moreover,
for those two climate models, the order of the modes are
preserved as well. In contrast, the BCC model reveals
very weak associations between the calibration and the
reconstruction period, and IPSL only displays strong a
association for the first EOF.
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Fig. 1: Mean Comparison at each Principal Components

TABLE I: Inner Product of Reconstruction and Cali-
bration period EOFs

EOF of
(Reconstruction Period)INNER PRODUCT 1 2 3

1 0.550 0.042 0.160
2 0.761† 0.084 0.334

EOF
of

BCC (Calibration) 3 0.020 0.436 0.605
1 0.966‡ 0.002 0.098
2 0.093 0.872‡ 0.320

EOF
of

CCSM (Calibration) 3 0.057 0.280 0.820†

1 0.861‡ 0.194 0.098
2 0.164 0.895‡ 0.071

EOF
of

GISS(Calibration) 3 0.027 0.213 0.225
1 0.886‡ 0.223 0.222
2 0.378 0.643 0.616

EOF
of

IPSL(Calibration) 3 0.096 0.627 0.496
1 0.976‡ 0.077 0.072
2 0.084 0.943‡ 0.227

EOF
of

MPI (Calibration) 3 0.092 0.179 0.844†

Note : Significances of inner products are denoted by ‡, † for 5%
and 10% levels respectively.

As indicated in Table I, the skill of CFRs is highly
related to the stationarity of the leading EOFs in the
calibration and the reconstruction periods. Additionally,
if a large fraction of the variability in the climate field
is represented by a few leading EOFs, and this feature
is similar in the calibration and reconstruction periods,
the CFRs tend to recover the true mean structure well.
Because BCC and IPSL simulations violate either or
both of the two conditions, CFRs based on BCC and
IPSL have reduced skill in this sense. The performance
of TTLS and TTLH largely depend on how well the
first EOF of the reconstruction period represents the
dominant EOF patterns in the calibration period, and
CCA and RIDGE usually outperform the other methods
when the leading variation in the reconstruction period
is well preserved in the first few EOFs with the same
order as the calibration period.
The total variability measured by the eigenvalues

(⌘X,i) is shown in Fig 2. This plot indicates that CCSM
and MPI exhibit larger variability whereas BCC exhibits
much smaller variability. We find among the CFRs,
TTLS and TTLH tend to better represent the variability
of the target field compared to the CCA and RIDGE
methods.

Overall, the covariance comparisons between the
CFRs and their target fields are poor if comparisons
are limited to all 1,732 grid points. However, if we only
focus on the covariance structure where the El Nino-
Southern Oscillation (ENSO) is dominant, we identify
stronger associations between the CFRs and their target.
This is because the CFRs may fail to recover covariance
structure at local scales, but are skillful in recovering
the large-scale covariance structure in the climate field.

Fig. 2: Eigenvalues on ENSO teleconnection field

Fig. 3: Correlation at ENSO teleconnection region

Fig. 4: Correlation distribution

Another means of investigating ENSO dependencies
are through the correlation between the mean tem-
perature time series within the Nino3 region (5N-5S,
150W-90W) and all other grid points. The upper panel
of Fig 3 displays this correlation and it is seen that
this correlation structure is somewhat unclear due to
the noise in each climate field. In order to clearly
show the dominant correlation pattern, we compute the
correlation of the first five leading EOFs instead of the
original temperature as seen in the bottom panel of
Fig 3. The bottom panel exhibits a more pronounced
correlation pattern. This is corroborated by the corre-
lation distribution plot in Fig 4, which shows that the
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correlation between temperatures has a long right tail
whereas the correlation of the leading five EOFs (right)
has a long left tail.
To compare the covariance over the ENSO tele-

connection region, we only compare the covariance
of points where the teleconnection is evident. (EOF
correlation is greater than 0.85 or less than -0.5). Fig
5 shows the results of the covariance comparison at
Nino3 and selected regions.

Fig. 5: Skill Assessment Comparison of Covariance

Similar to results in Fig 2, TTLS and TTLH well
depict the variability of covariance compared to CCA
and RIDGE throughout all climate models. Among all
five models, CFRs of CCSM exhibit the true covariance
structure the best. This is true not only because the
large variability reflected in the leading EOFs was well
depicted in TTLS and TTLH, but also because the
correlation pattern of the ENSO teleconnection region
was very pronounced after filtering out the noise in Fig
3 (bottom panel). However, the MPI model does not
imply any common covariance structure due to the weak
teleconnection signal on the leading EOFs (Fig 4).

V. CONCLUSION

Skill assessment comparisons of the mean can de-
pend on many factors such as the sample network
variability represented in the climate models; however,
the major factor appears to be how well the calibration
period represents the reconstruction period in terms of
preserving the variability in their leading EOFs. Ad-
ditionally, the covariance comparison accounts for the
variability of covariance reflected in the leading EOFs
as well as the magnitude of the teleconnection on the
dominant modes. Different CFRs perform differently
based on the specific characteristics of the climate
model simulations.
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ANALOG NOWCASTING OF SOLAR IRRADIANCE

ANALOG NOWCASTING OF SOLAR IRRADIANCE
FROM GEOSTATIONARY SATELLITE IMAGES

Alex Ayet1,2 and Pierre Tandeo3

Abstract—Accurate forecasting of Global Horizontal Ir-

radiance (GHI) is essential for the integration of the solar

resource in an electrical grid. We implement a novel

data-driven model for up to 6h probabilistic forecasting

of GHI. Cloud dynamics are emulated using an analog

method on a geostationary satellite database (herein 5

years of hourly images). It contains both the images to

be compared to the current meteorological conditions

and their successors at one or more hours of interval.

No approximation is thus made on the physics of the

system, unlike numerical weather forecast. The algorithm

is computationally efficient and requires no tuning. It is

designed to be easily used on different locations, requiring

only GHI satellite images.

I. INTRODUCTION

In the context of a growing need for sustainable energy,
the solar resource ranks among the most promising
solutions to meet this upcoming demand. However, the
intermittent nature of the production makes its integra-
tion into an electrical gird challenging. The main input
for most solar power generation systems is Global Hor-
izontal Irradiance (GHI), and its accurate probabilistic
and deterministic forecasting is thus essential.

Depending on the forecast horizon, different approaches
are used for GHI forecasting (see the reviews [1], [2]).
Satellite images have proven to be efficient for the intra-
day horizon (up to six hours). The popular cloud motion
vector methods ([3], [4]) estimate a motion field from
successive cloud satellite images, to then advect the
clouds, producing the forecast. The main drawback of
this methods is the need for post-processing to take into
account the cloud dissipation and deformation. Analog
methods are also used, e.g. [5] that combines outputs
from numerical models and in-situ data as features of
a k-nearest neighbors algorithm. However, to satisfy
the forecasting demand for a big amount of different

Corresponding author: A. Ayet, alex.ayet@ens.fr 1Elum Energy,
Paris, France 2École Normale Supérieure, Paris 3Institut Mines-
Télécom Atlantique, Brest, France

sites, in locations where numerical models and in-situ
observations are sparse, a robust and easy to use method
is still needed.

For precipitation nowcasting, atmospheric analogs have
become an important topic (e.g. [6], [7]) due to the
availability of huge radar datasets. Analogs represent
two atmospheric states closely resembling each other
[8], with the hypothesis that these states evolve sim-
ilarly. The forecast is thus issued by finding similar
states in an historical database (the analogs), and con-
sidering how the atmosphere evolved following these
states (the successors). The whole physics of the system
is thus contained in the analog-successor pair.

The aim of this paper is to present an operational
method to forecast GHI over a precise solar energy
source (e.g. a solar photovoltaic panel). It uses only one
source of data: hourly satellite images of GHI, which
are easily accessible for different locations. Finally, the
method needs no tuning, meaning that it can be easily
applied to forecast the irradiance over sites in different
locations, with different climatic conditions.

Fig. 1: OSI SAF satellite GHI image with selected
BSRN stations in Europe on July 2nd, 2016.
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II. DATA AND SETUP

To demonstrate the method, we use an archive of
18, 521 GHI images obtained from the geostationary
satellite Meteosat and processed by the Ocean and
Sea Ice Satellite Application Facility (OSI SAF, [9])
covering western Europe and Africa. The images are
remapped on a regular grid of 0.05�, and interpolated
to produce hourly maps. The archive extends from Sept.
6th, 2011 to Dec. 31st, 2016. We use the 2016 year as a
test year and the rest of the archive as the training set.
The method is tested at the location of five stations
of the Baseline Surface Radiation Network (BSRN,
see [10]) where in-situ pyrgeometer data is available.
The stations, shown in Fig. 1, cover a wide range of
climatic situations (oceanic, mountain, continental) and
constitute a good framework to test the robustness of
the method.

The variability of GHI, hereinafter noted G, is due both
to the daily and seasonal solar cycle (the clear sky
contribution Gclr) and to the cloudiness. Since clouds
only reduce GHI, the clear sky at a location (x, y) is
obtained as

Gclr(t, x, y) = max
t02S(t)

G(t0, x, y), (1)

with S(t) a 3-month interval around time t, with con-
stant hour. This is a general expression that does not
require any clear sky model (e.g. [11]). The cloud index
c (between zero and one) is then defined as

G = (1� c)Gclr. (2)

Fig. 2: Correlation masks for different BSRN sites (red
dots) for Jan. 1st (full line) and July 1st (dotted line).

III. METHODOLOGY

The main GHI variability being due to change in cloudi-
ness, the analog method presented herein forecasts the
cloud index, which is then converted to GHI using
Eq. (2).

A. Correlation Mask

For a given site of coordinates (xs, ys), it is crucial
to automatically select the zone in which the analogs
are looked for. A daily correlation map Cm (for a day
d) between the pixel of interest and the surrounding
region is computed. We use a metric inspired by [12]
that measures the average spatial extension of cloud
structures around the site

Cm(d, x, y) =
c(t, xs, ys, )c(t, x, y)

d

h
c(t, xs, ys)2

d
c(t, x, y)2

d
i1/2 , (3)

where the averages · d are temporal within a 3-month
interval around d. The region where the correlation is
higher than 0.9 is then selected. Examples of masks
are presented in Fig. 2. In the following, all compu-
tations are performed considering only image pixels
in the mask corresponding to the site and day of
forecast.

Fig. 3: (a) Histogram of cloud index from image (b) on
the 2nd of July 2016 at Payerne. The threshold in (a)
corresponds to the thick black line in (b).

B. Analog forecasting

The forecast consists in two steps: the analogs selection
and aggregation. To avoid overfitting and for computa-
tional efficiency, the analogs selection is done consid-
ering images compressed in a four dimensional space.
For a given cloud index image, Otsu’s method [13]
(similar to a bimodal Fisher’s discriminant analysis on a
histogram of cloud index) is used to obtain a threshold
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separating the clear sky and the cloud pixels (c below
and above the threshold respectively, see Fig. 3). The
images (observed and database) are compressed into
four features between 0 and 1:

1) the cloud fraction: number of cloud pixels over the
total number of pixels in the mask

2) the cloud spread: number of cloud pixels over the
number of pixels in the convex hull of the clouds.
It tends to one when there is only one cloud (its
convex hull is nearly identical to the cloud itself)
and to zero when there are many separate clouds

3) the clear sky intensity: the mean cloud index of
the clear sky pixels

4) the cloud intensity: the mean cloud index of the
cloud pixels.

Following [7], the database is first shrinked by consid-
ering images only within a time of the year (3-month
window) and time of the day (±3h) interval with respect
to the date at which the forecast is to be issued. This
increases the likelihood of finding similar convective
and advective patterns. Then, the k-nearest neighbors
of the observed image are selected using the Euclidean
distance in the four-dimensional features space. For
the BSRN sites of this study, the optimal number of
neighbors is close to k = 90.

Next, the selected analogs are aggregated to produce
a probabilistic forecast. For a given k-th analog, we
determine the optimal spatial translation � such that
the correlation Cs

k between the analog cloud index cak
and the observed cloud index co

Cs
k(T�) =

< co(x, y)T�cak(x, y) >⇥
< co(x, y)2 >< T�cak(x, y)2 >

⇤1/2 (4)

is maximal (T�· is the translation operator).

A local linear operator (see [14] or [15] for more
details) is then applied on the translated images: it con-
sists in fitting a linear regression between the translated
analogs and successors, taking into account the weights
computed in Eq. (4). The regression operator is then
applied to the current observation to provide the analog
nowcasts.

IV. EVALUATION

The deterministic forecast of GHI (the mean of the pre-
dicted Gaussian) is evaluated with the normalized Root

Mean Squared Error (RMSE) for a set of validation
observations S

RMSE =

pP
s2S(c

o
s � ĉs)2P

s2S cos
(5)

with cos the observed cloud index from a satellite
image at the BSRN sites, and ĉs the corresponding
forecast. The analog forecast is compared to an Eulerian
persistence (keeping the last cloud index observation
frozen), and a hourly climatology, obtained by taking
the hourly average of GHI in the train dataset for days
in a 2-weeks interval around the forecasted day. Results
are given in Fig. 4 and indicate good performance and
robustness to different locations. In all cases, the analog
nowcasting procedure reaches better performances than
the persistence and climatology method.
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Fig. 4: Normalized RMSE for the five BSRN sites.

V. CONCLUSION AND PERSPECTIVES

We have presented a computationally efficient method
for GHI analog nowcasting on a particular site. The
method uses a k-nearest neighbors algorithm on a
four-dimensional feature-space of cloud index to then
apply a local regression between selected analogs and
successors. The methodology has proven to be robust to
different geographical locations, and requires no tuning,
no in-situ data nor a numerical weather model.

The method will be extended by downscaling predic-
tions on a particular site. The analogs times will be
used to select historical in-situ data, using the BSRN
data also available during the period 2011-2016. An
aggregation operator will then be applied to forecast
the in-situ production.
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RCD FOR CLIMATE NETWORK

ROBUST COPULA DEPENDENCE FOR CLIMATE
NETWORK ANALYSIS

Yi Li1, Adam Ding1

Abstract—Climate system exhibits highly complex,
nonlinear and inter-connective phenomenon. Complex
network theory has been recently proposed to discover
various climate properties of the earth system. While
some interesting results have been proposed, there are still
much unknown of the sophisticated mechanism of the na-
ture. In this paper, we propose to use a nonlinear depen-
dence measure, the robust copula dependence measure
(RCD), in the climate network study, in comparison with
the traditional Pearson’s correlation coefficient which has
been the major tool used in the current climate network
literatures. We compare different statistical properties of
the networks constructed with these two types depen-
dence measure. Moreover, we show that with the help of
the nonlinear dependence measure, we could have some
interesting finding in the teleconnection exploration.

I. INTRODUCTION

Ever since the identification of certain types of the
small world network models [1], the complex network
has been a mature field with a wide range of applica-
tions, ranging from the modeling of social network, the
structure of the World Wide Web (WWW), to the gene
network. Recently, the complex network theory has
been brought to the climate community as the climate
network [2][3][4][5], which aims to view and model the
climate data from the complex network point of view.
Most of the current research in climate network is

based the Pearson’s correlation coefficient (cor), which
is an excellent tools for detecting linear signals. How-
ever, as is known to us all, the climate system involves
a great amount of nonlinearity. Thus, we attempt to
apply a cutting edge nonlinear dependence measure,
the robust copula dependence measure (RCD) [6][7],
to help constructing the climate network. This could
potentially enable us to include more nonlinear features
or information based on our data, which may be helpful
for us in understanding more about the nature.
On the other hand, teleconnection [8][9] has been a

traditional but still on-going research topic in climate

Corresponding author: Yi Li, li.yi3@husky.neu.edu 1Department
of Mathematics, Northeastern University, Boston, MA

science. Detecting relatively weak but informative infor-
mation of the teleconnection from the highly correlated
nearest-neighbour effect is a challenging problem. The
usage of nonlinear dependence measure in climate
network could help to discover novel and interesting
teleconnection phenomenon.
The rest of the paper is organized as follow: in the

next section, we describe the data set, the RCD, the
constructed climate networks using cor and RCD. In
section III, we discuss the application of the climate
network in teleconnection discovery. We conclude this
paper in section IV.

II. THE CLIMATE NETWORK

A. Climate Data
In this paper, we consider the reanalysis monthly

mean temperature data (1948 - 2016) from the National
Oceanic & Atmospheric Administration (NOAA) 1.
The resolution of this data is 5� ⇥ 5�. We normalize
the raw data (temperature) by removing the histori-
cal long range mean for each month. Namely, for a
given climate variable x(y,m) at year y and month
m 2 {1, 2, · · · , 12}, the anomaly data x̃(y,m) =
x(y,m) � hx(y,m)iy, where h·iy is the average over
y.

B. The Robust Copula Dependence Measure
The robust copula dependence is a nonlinear depen-

dence measure that is recently proposed in [6][7]. Given
two random variableX and Y with the CDF FX(x) and
FY (y), the RCD between X and Y is defined as the
following quantity:

RCD(X,Y ) =
1

2

Z

[0,1]2
|c(u, v)� 1|dudv, (1)

where u, v correspond to the copula transformed vari-
ables U = FX(X) and V = FY (Y ) and c(·, ·) is
a copula density function [10]. RCD is an equitable

1https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.
html
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Fig. 1. Degree distribution of the networks based on the two
dependence measure.

dependence measure, that is, ranking the dependence
strength purely by the noise level regardless the func-
tional shape (see [6][7] for details). Therefore, it detects
nonlinear relationship as well as linear relationship, un-
like the cor. RCD allows us to detect more nonlinear but
interesting relationships hidden in the high dimensional
data.

C. Climate Network

A network, or graph, is a combination of vertexes and
edges which is usually denoted by G = (V,E), where
V is the collection of all the vertexes and E is the set
of all the edges with the endpoints from V . Moreover,
the climate network models the climate data in the way
that the vertexes are the geographical locations while
the edges represent the possible relationship between
each pair. In our current situation, the vertexes are the
spatial grid points from the reanalysis model. While cor
is often used in describing the relationships along each
edge, we apply RCD as a nonlinear proxy instead.
To analyze the climate network, several statistics can

be used to summarize the characteristics of the intrinsic
structure. Here, we focus on four major aspects: the
degree distribution, clustering coefficient, betweenness,
and community detection. The networks are constructed
based on the top 0.5 percentile of the edge weight,
although other testing based method is also possible.
The degree of a vertex is the total number of edges

correspond to this vertex. The overall distribution of the
degree can provide us a general information about the
connectivity of the network. As we can see from Fig-
ure 1, the two network based on Pearson’s correlation
coefficient and RCD have similar degree distribution.
Local clustering effect is a way trying to delineate,

for a given vertex, whether the connected points are
also connected. It is defined as the fraction of connected

Local Clustering of cor

Local Clustering of RCD

Fig. 2. Local clustering of the networks based on the two depen-
dence measure (Redder is higher value, and bluer is lower value).

Betweenness of cor

Betweenness of RCD

Fig. 3. Betweenness of the networks based on the two dependence
measure (Redder is higher value, and bluer is lower value).

triples through each vertex that are closed. As we can
see from both plots in Figure 2, the clustering effect are
more likely to occur around the equator and the poles.
As another important summary statistics, the be-

tweenness is a way to measure the centrality of a
network. A vertex with high betweenness plays a sig-
nificant role to bridge two sub-network together. It is
the number of geodesic paths that pass through the
corresponding vertex. Figure 3 shows the relatively
different results based on cor and RCD. As we can
see from the plots, the nonlinear RCD based network
indicates the grid points around the America continent
has higher betweenness.
Community detection is a traditional way to find

homogeneous regions based on the relationship/distance
between each pair of the vertexes. Figure 4 presents
the hierarchical clustering results based on the two
distance matrices (here, we define 1 � |cor(x, y)| and
1�RCD(x, y) as a semi-distance). Results shows that
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Fig. 4. Communities of the networks based on the two dependence
measure based on the hierarchical clustering algorithm.

both of the communities are distributed according to
their latitude.

III. TELECONNECTION

It is of great interest and significance to study the
teleconnection, the dependence relationship between
faraway locations, of the earth system. The application
of the nonlinear dependence measure in the climate
network could cast light on finding novel information
from climate data set. To this end, we first filter out
the neighbourhood points within five grid units, and
carefully examine the networks constructed based on
the top 100 dependence scores.
Figure 5 shows that the basic structure of the two

networks. The vertexes are geographical grids and the
edges are the cords. While most of the relationships are
around the equator, we notice that the nonlinear depen-
dence RCD detect an arc with long latitude distance.
This arc is further analyzed in Figure 6.
Figure 6 is the scatter plot that is uniquely iden-

tified with the nonlinear dependence measure RCD,
which is between the grid point (65�W, 60�N) and
(30�E, 65�S). As we can see from the Figure 6, the
anomaly data in these two positions exhibit a bilinear
relationship, which cannot be detected by linear de-
pendence measure like Pearson’s correlation coefficient.
This bilinear relationship of the anomaly data indicates
some possible interesting finding: if the air temperature
of one place is in its average value, the other place is
more likely in its extreme case, and vise versa. This
may help to guide the further research in studying the
climate extremes.
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Fig. 5. Visualization of the network structure that are constructed by
the remotely highly correlated edges base on their spatial location
on map.
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Fig. 6. Interesting possible teleconnection that is uniquely detected
by nonlinear dependence measure.

IV. CONCLUSION

In this paper, we apply an equitable nonlinear de-
pendence measure RCD to the climate network. We
compare the networks constructed based on the linear
Pearson’s coefficient coefficient and the nonlinear RCD
and use climate network as a tool to study the telecon-
nection. Result shows that some interesting nonlinear
relationship could be found by RCD.
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A STUDY OF CAUSAL LINKS . . .

A STUDY OF CAUSAL LINKS BETWEEN THE
ARCTIC AND THE MIDLATITUDE JET-STREAMS

Savini Samarasinghe1, Marie McGraw2, Elizabeth A. Barnes2, Imme Ebert-Uphoff1

Abstract—This paper investigates causal links between

Arctic temperatures and the jet-streams. We apply two

different frameworks for this application based on the

concepts of (1) Granger causality and (2) Pearl causality.

Both methods show that Arctic temperature and jet speed

each exhibit strong auto-correlation (as expected), and

that jet speed drives Arctic temperature at timescales of

5-15 days, while Arctic temperature drives jet speed at

timescales of up to 5 days, in the North Pacific. A positive

feedback loop is also identified and discussed, among

additional findings. This study is only the beginning of

a larger effort to apply and compare different causality

methods in order to gain a deeper understanding of the

causal connections between the Arctic and weather at

lower latitudes.

I. MOTIVATION

Arctic amplification–that is, the phenomenon of Arc-
tic temperatures rising much faster than the global mean
([1])–and its present and future effects on midlatitude
weather and climate have received substantial attention
in recent years. While it is well known that the midlat-
itude circulation can drive changes in Arctic tempera-
tures and sea ice, it is unclear how and to what extent
the Arctic influences midlatitude weather ([2]). Some
argue that Arctic amplification is already influencing
midlatitude weather (e.g. [3], [4], [5], [6]), while others
state that any possible signal is too small to have been
observed amidst the background of atmospheric vari-
ability (e.g. [7], [8], [9]). Regarding Arctic influence on
midlatitudes under climate change, idealized and fully-
coupled climate model simulations have shown an equa-
torward shift of the jet-stream and weakening of the
zonal winds in response to Arctic warming and sea ice
loss (e.g. [10], [11], [12], [13]), but little is understood
about the underlying dynamics behind this response in
models or whether the models can adequately simulate
the processes involved. Making progress requires that
we study the two-way causal connections between
Arctic temperatures and the midlatitude circulation, and

Corresponding author: Imme Ebert-Uphoff, iebert@colostate.edu.
1Electrical & Computer Engineering, Colorado State University,
Fort Collins, CO, USA. 2Dept. of Atmospheric Science, Colorado
State University, Fort Collins, CO, USA.

place the different pathways in context of one another
and the background of atmospheric variability.
The typical approach for assessing causal links in

climate dynamics (including studying the links between
the jet-streams and Arctic warming/sea ice loss) is
targeted modeling studies. While incredibly useful for
understanding the physical mechanisms at play, this
approach only allows for studying cause and effect
in isolation, and does not allow for the feedbacks to
fully develop. In addition, we have entered a period
where atmospheric science tends to be “data rich”
both in observations and model output [14]. There is
great need for additional tools that can aid scientists
in identifying and extracting signals. Causal discovery
techniques provide (1) robust definitions of causality,
(2) can have direct ties to forecasting/prediction, (3)
augment targeted model studies, (4) place pathways in
context relative to other drivers and feedbacks, and (5)
allow for a direct comparison of results from observa-
tions and models.
Here we use two different frameworks to learn about

causal relationships for this system. The first framework
uses vector autoregression (VAR) type models (plain
VAR and LASSO), combined with the concept of
Granger causality. The second framework is based
on the concept of Pearl causality. We apply both
frameworks to the study of causal links between the
Arctic and midlatitude jet-streams. The purpose is two-
fold: (1) by comparing the results of two very different
frameworks we hope to obtain robust results; (2) we
hope to make more geoscientists aware of the different
types of causal analysis tools.

II. RELATED WORK

In recent years significant work has been done on us-
ing causal reasoning for climate applications, including
[15] [16] [17] [18] [19] [20] [21], on developing tools
for that purpose [22] [23], and on causal attribution of
climate events [24]. Of highest relevance to this work
are causality studies specifically for the Arctic: Strong
and Magnusdottir [25]; Kretschmer et al. [26]. These
studies demonstrate the utility of causality techniques
for studying Arctic-midlatitude connections, however,
each employs a different approach. Thus, it is unclear
whether different causality approaches would produce
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similar results, or whether a particular technique is best
suited for this topic. In addition, neither study investi-
gates the relationship between Arctic temperatures and
the jet-streams - the focus of this work.

III. DATA

We use daily data from the NCAR CESM1 Large
Ensemble Control run. We use Years 402 to 2,200,
resulting in 656,634 days (1,799 years) of data. For our
analysis we use only one season per year, either DJF or
JJA, roughly dividing the number of data samples for
each experiment by four. We focus on the North Pacific
(120oE - 230oE) and the following three indices: jet
latitude, L; jet speed, S; Arctic temperature (averaged
over 70oN-90oN), T . For each time series the seasonal
cycle was subtracted in order to focus on anomalies,
then it was averaged into non-overlapping chunks of 5
days to smooth out weather noise. Then we extract the
values corresponding to the season of choice. Finally,
each time series is standardized, i.e. we subtract its
mean and divide by its standard deviation.

IV. METHODS BASED ON GRANGER CAUSALITY

We first explain two closely related models, VAR

models and LASSO models, then discuss how they can
each be linked to the concept of Granger causality.

A. Vector Autoregression (VAR) model

A VAR(p) model estimates vector yt in terms of its
p lags as follows:

yt = c+A1yt�1 + ...+Apyt�p + et, (1)

where p denotes the number of lags considered; vector
yt contains the values of k considered variables at time
t; c is a coefficient vector; Ai are the k⇥ k coefficient
matrices (for i = 1, . . . , p); and et is the vector of
error terms (residuals). Eq. (1) is a standard regression
problem and a standard least-squares approach is used
to calculate the model parameters [27], vector c and
matrices Ai. We derive such a VAR model for several
different values of p, then look at convergence charac-
teristics to choose the smallest p for which the model
no longer changes significantly.

B. LASSO model (Regularized Regression)

For an interpretation based on Granger causality we
need to distinguish which of the coefficients, akij , of
matrices Ai are non-zero. (The reasons will become
apparent in the next subsection.) For a standard VAR
model that requires using a cut-off value, since, due to
noise and numerical accuracy, none of the coefficients
is likely to be exactly zero. The LASSO (least absolute
shrinkage and selection operator) [28], [29] approach
solves this problem in a more elegant and robust way.

It adds constraints, namely it limits the sum of the
magnitude of the elements of all Ai (i = 1, . . . , 10)
matrices to be below a chosen threshold [30]. This
forces small coefficients to become exactly zero, while
the remaining coefficients compensate for that change.
As such it performs variable selection along with
prediction, i.e. it tells us which input variables (and at
which lags) are actually important in the model. LASSO
results in a model of the exact same form as Eq. (1), but
where many coefficients are exactly zero, which makes
the subsequent Granger analysis more straightforward.
C. Connection to Granger causality

Once a model of the form in Eq. (1) is obtained, we
perform validation tests to assure the model is stable
[27],[31], then apply the concept of Granger causality
by inspection of the coefficients in Ai. Let akij denote
the element of row i and column j of matrix Ak.
Then akij denotes the effect of yj,(t�k) (the jth variable,
lagged by k) on yi,t (the ith variable, without lag). Fur-
thermore, since the data was normalized, akij indicates
for a change of one standard deviation of yj,(t�k) how
much change to expect (approximately) in yi,t. (This
quantitative interpretation should be used with caution,
as many geophysical relationships are non-linear, and
the model is thus only a rough approximation.) Then,
for i 6= j, we see in this model that yj,(t�k) is useful
for the prediction of yi,t, if and only if akij 6= 0.
Consequently, the jth variable, yj , is said to Granger-

cause the ith variable, yi, if and only if at least one of
the coefficients akij 6= 0 for any lag k = 1, . . . , p.

V. METHOD BASED ON PEARL CAUSALITY

The concept of Granger causality is related to pre-

dictability. In contrast Pearl and Rebane developed the
framework of causal calculus [32] based on the concept
of intervention, which forms the basis for graphical
models and for the concept of Pearl causality (see
also [33], [34]). The method we use builds on the fact
that it is impossible to prove a cause-effect relationship
between two variables based on just observations, but
that one can nevertheless disprove such relationships
based on observations. We thus use an elimination
method that first assumes that all variables have cause-
effect connections to each other (for all lags), then uses
conditional independence tests to eliminate the great
majority of these connections. This method usually
yields a small set of potential cause-effect relationships,
each of which may or may not be a true causal
relationship. Nevertheless, the sets of actual causal
relationships is a subset of the resulting set. The specific
method used is the temporal version [15], [18] of the PC
stable algorithm [35], which is a variant of the classic
PC algorithm [36] (so named after the first names of
the two authors, i.e. no relation to PCA). For more
information, see [18]. For brevity, we refer to PC stable
as simply PC in the remainder of this document.
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VI. RESULTS AND INTERPRETATION

Our primary focus for now is on the boreal winter
(DJF) results, and the relationship between jet speed (S)
and Arctic temperature (T ). The results of the LASSO
model run for a maximum lag of 25 days (p = 5) is
shown in Figure 1a, while the results of the PC model
run using 11 time slices is shown in Figure 1b. To create
the time slices, we used the original variables (y) and
10 time shifted versions of y, namely shifted by -25,
-20, ..., -5, +5, ..., +25 days [18]. All three methods–
VAR (not shown), LASSO, and PC–agree quite well
with each other.
The LASSO model (Figure 1a) shows both the mag-

nitudes and the signs of the jet speed-Arctic temperature
(S-T ) relationship. First, we note that both S and T are
autocorrelated (curved arrows), with coefficients that
decay over the 25 day period but remain non-zero.
Second, T drives S 5 days earlier (as well as 15,
20, and 25 days earlier), with the positive coefficient
indicating that warmer temperatures drive a faster jet
in the North Pacific. S also drives T at a lag of 5
days, with the negative coefficient indicating that faster
jets are associated with a colder Arctic. However, at a
lag of 15 days and beyond, the relationship between
S and T changes–S drives T with positive LASSO
coefficients, indicating that a stronger North Pacific jet
drives warmer Arctic temperatures. Collectively, the

LASSO results indicate that there is a positive feed-

back loop between Arctic temperature and North

Pacific jet speed–a warmer Arctic drives a stronger

North Pacific jet, and the stronger jet drives further

Arctic warming.

The PC model (Figure 1b) agrees quite well with the
results of the LASSO model (although its formulation
does not provide the magnitudes or signs of the relation-
ships). In the PC model, we did not allow instantaneous
connections between variables to make it easier to
compare results with the VAR and LASSO models. The
autocorrelated relationships (curved arrows) in the PC
model are quite similar to those in the LASSO model. In
the PC model, T drives S at a lag of 5 days only, and S
drives T at lags of 15 and 20 days. These are the lags
with the strongest coefficients in the LASSO model.
So, the PC model and the LASSO model show very
similar results, with the lags with the strongest LASSO
coefficients also showing significant relationships in the
PC model.
Jet latitude, L, also shows evidence of a causal

relationship with T in both the LASSO and PC models
(not shown). The influence of T on L is not strong,
with both PC and LASSO showing few significant
relationships. However, the influence of L on T is
stronger. The LASSO model shows that L drives T
with negative coefficients at most lags, indicating that
a more poleward jet drives colder Arctic temperatures
(and vice versa). The PC model shows a very similar

Fig. 1. Arctic temperature (T ) and jet speed (S) relationships as
described by (a) LASSO (� = 0.005, p = 5) and (b) PC (11 time
slices, ↵ = 0.05) models. Non-zero LASSO regression coefficients
are shown next to their corresponding arrows in (a). (b) shows lags at
which a significant relationship was present according to PC stable.

relationship to the LASSO model, with L driving T at
similar lags.

VII. CONCLUSIONS AND FUTURE WORK

Using VAR, LASSO, and PC models, we have
demonstrated that Arctic temperature drives jet speed
at timescales of 5-15 days in the North Pacific. This
relationship is positive, with warmer Arctic tempera-
tures driving a stronger jet, and a stronger jet driving
warmer Arctic temperatures. The work described here
is only the beginning of a larger study. Future steps
include: (1) expansion of these methods to reanalysis,
2-D spatial fields, and inclusion of additional variables
such as sea ice extent; (2) providing results from signif-
icance testing by comparing unrestricted and restricted
VAR models; (3) quantifying the strength of causal
relationships beyond use of regression coefficients.
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Abstract—
The massive surge in the amount of observational

field data demands richer and more meaningful collab-

oration between data scientists and geoscientists. This

document was written by members of the Working Group

on Case Studies of the NSF-funded RCN on Intelli-
gent Systems Research To Support Geosciences (IS-GEO,
https:// is-geo.org/ ) to describe our vision to build and

enhance such collaboration through the use of specially-

designed benchmark datasets. Benchmark datasets serve

as summary descriptions of problem areas, providing a

simple interface between disciplines without requiring

extensive background knowledge. Benchmark data intend

to address a number of overarching goals. First, they

are concrete, identifiable, and public, which results in a

natural coordination of research efforts across multiple

disciplines and institutions. Second, they provide multi-

fold opportunities for objective comparison of various

algorithms in terms of computational costs, accuracy,

utility and other measurable standards, to address a

particular question in geoscience. Third, as materials for

education, the benchmark data cultivate future human

capital and interest in geoscience problems and data

science methods. Finally, a concerted effort to produce

and publish benchmarks has the potential to spur the

development of new data science methods, while provid-

ing deeper insights into many fundamental problems in

modern geosciences. That is, similarly to the critical role

the genomic and molecular biology data archives serve

in facilitating the field of bioinformatics, we expect that

the proposed geosciences data repository will serve as

“catalysts” for the new discicpline of geoinformatics. We

describe specifications of a high quality geoscience bench-

mark dataset and discuss some of our first benchmark

efforts. We invite the Climate Informatics community to

join us in creating additional benchmarks that aim to

address important climate science problems.
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I. MOTIVATION

For decades there has been a strong trend in the
geosciences in the direction of larger, more diverse
datasets that demand sophisticated mathematical and
computer science expertise [1]. This is a consequence
of improvements in computing power, which permit far
more sophisticated physical modeling; improvements
in measurement technology, which permit acquisition
of high-resolution large-scale datasets; and demands of
challenging problems such as measuring the planet’s
response to a changing climate. Meeting these chal-
lenges requires rich communication between the geo-
scientists familiar with the application domain and data
scientists that could bring novel computational methods
to the field. Closing this gap is a primary goal of
the Climate Informatics workshop series, and is shared
by this benchmark development effort. This document
describes the manner in which benchmark standard
datasets (or simply, benchmarks) of typical geoscience
data analysis problems can bridge the two communities.

A. Relation to Existing Efforts
Benchmarks can be seen as an extension of classic data
repositories. In particular, classic data repositories, such
as those maintained by NCAR [2], NOAA [3], NASA
[4], USGS [5], and related repositories [6], [7], provide
vast amounts of data, but only domain scientists would
know how to use the data efficiently, which questions
to ask, and how to set up an interesting analysis
[8]. The same holds for repositories maintained by
journals, such as the Geoscience Data Journal [9] and
Nature Scientific Data [10]. We seek to bridge the gap
between the geoscientist and the data scientist by having
geoscientists preselect and preprocess interesting data,
couple them with interesting and unsolved science
questions, and add data documentation and background
explanations suitable for non-domain scientists. The key
to the benchmarks is this packaging of existing data
with science questions suitable for data scientists.
The proposed benchmarks can also be seen as an

extension of existing efforts originating from the data
science community, such as the CI Hackathon events
[11], [12], the UIOWA Midwest Big Data Hackathon
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[13], the Challenges in Machine learning events [14],
the Kaggle data science platform [15], and the UCI
Machine Learning Repository [16]. (In fact, we may
incorporate the CI 2016 Hackathon topic [12] and topics
from the UIOWA Midwest Big Data Hackathon [13]
as benchmarks.) The following aspects distinguish our
benchmark datasets from such data science competi-
tions: (1) benchmarks tend to be more open-ended, i.e.
there might be no pre-defined performance measure; (2)
benchmark data sets are meant to initiate and stimulate
interdisciplinary discussion, and in turn to faciliate
long-term collaborations between data scientists and
domain scientists; (3) the benchmark data in their
current form do not aim to focus on comparison among
different participant groups (i.e., no competition); how-
ever, the benchmarks can also be utilized for various
data science contests and challenges involving analysis,
modeling, validation, and prediction.

B. Specific Goals
The benchmarks are intended to serve several goals,

including:
(1) A means for two-way communication to connect
the two disciplines, geoscience and data science: (i) data
scientists learn about typical data analysis tasks in the
geosciences, including typical properties of geoscience
data, the types of science questions geoscientists are in-
terested in, and existing approaches for data analysis in
the geosciences; (ii) geoscientists learn about potential
new methods, tools, and services for data analysis.
(2) Benchmarks seek to stimulate new collaborations,
which may lead to discovery of new approaches and
methods for data analysis in the geosciences; science
advances by gaining new insights from geo data using
the new approaches; formation of new collaboration
teams that will work together in the future.
(3) A permanent repository of complex data sets,

representative of geoscience problems is an important
resource for education, research, and to promote an
emergent coordination of research activities and con-
versations in the research literature that build off each
other (not possible when every lab has an independent
data set with its own idiosyncrasies).

II. DESIRED BENCHMARK CHARACTERISTICS

Given the list of goals in the preceding section,
what are the key characteristics and elements of an
ideal benchmark set? Below is a list of properties that
we believe make a data set particularly suitable as a
benchmark in this context. An outstanding benchmark
is expected to satisfy many, but usually not all of these
characteristics.
High Impact: A problem with high potential impact
should be chosen, and the connection to that impact
clearly spelled out, namely how will the proposed tasks
contribute to advances in science or benefit society?

Active Geoscience research area: To stimulate long-
term interactions between geoscientists and data sci-
entists, the benchmark should come from an active
research area, i.e. a group of geoscientists should be
eager to continue to work on the topic, to answer
questions from the data scientist(s), and to help him/her
interpret any analysis results.
Challenge for data science: The problem should be
challenging for the data scientists in some way. This
is almost a given for geoscience applications, because
1) if the analysis was straightforward the geoscientist
would have done the analysis him/herself; 2) geoscience
data by their very nature tend to pose several challenges
for standard data analysis methods (see Section II-A
below). Known challenges should be spelled out for
each benchmark, but some challenges will only become
apparent during the analysis.
Data science generality and versatility: Ideally, solu-
tions generated from the data set analysis and proposed
models and algorithms will not only help to address a
stated set of problems in geosciences, but also will be
applicable to a broad range of other settings and pos-
sibly other disciplines, i.e. will stimulate and facilitate
development of new methodology in data science.
Rich information content: Ideally the data set provides
stimulus for analysis at many different levels, i.e. it
lends itself to answering more than one science ques-
tion. If so, one can gain a lot from a single data set.
Hierarchical problem statement: Each benchmark
should include a data set and a clear description of
what types of analyses are suggested. Ideally, there is
a hierarchy of analysis tasks, ranging from relatively
straight-forward tasks to more open-ended tasks.
A means for evaluating success: Data scientists need
some kind of means to evaluate whether their algo-
rithms are successful in solving the problem. Ideally,
some kind of performance measure should thus be
included for at least some of the tasks. However, in
very open-ended applications, the performance measure
might be developed during the collaboration.
Quick start guide: It should be as easy as possible
for data scientists to start working with the data. Data
scientists focus on data first, so the data needs to be
easily accessible, and ideally there would be quick-start
instructions on how to explore them. We seek to include
for each benchmark a data use tutorial, consisting of (1)
code snippets in a well-known framework (e.g., Matlab,
Python, R) that illustrate how to read and visualize the
data, potentially also illustrating some sample analysis
steps; (2) plots generated from the code snippets that
illustrate some of the data properties, so that data
scientists can get a better feeling for the problem before
even touching the data.
Understandable geoscience context: Geoscience data
generally has a rich background, ranging from the
motivation for collecting the data in the first place
(science question), to the instruments used to take it,
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the pre-processing that has already taken place, and the
science questions it seeks to answer. Providing a brief
summary of this background, in a way that is easy for
someone outside the field to understand (no jargon),
results in more efficient collaboration and may yield a
more meaningful analysis of the data.
Citability: As discussed in the article on the Geo-
science Paper of the Future [17], it is crucial to provide
for each data set (1) a license specifying conditions for
use, and (2) a unique and persistent identifier to make
it citable, and later allow search engines to easily find
all research papers using it. Both criteria can be met
by using Zenodo (https://zenodo.org/) to host the data
sets. Zenodo is a data repository run by CERN, that
provides free hosting of data sets up to 50 GB, provides
a selection of license terms and assigns a unique DOI
number to each data set.
Communication between researchers: A public
Google document provides both an FAQ and a com-
munication channel for the domain experts and anyone
working with the data. Researchers may use it to ask
questions, exchange experiences and discuss results.

A. Suitable data science methods
Many data science methods cannot be directly ap-

plied to geoscience data, because of the challenging
properties of such data. Karpatne et al. [18] cate-
gorize the most important challenging properties as
follows: spatiotemporal structure; high dimensionality;
heterogeneity in space and time; existence of objects
with amorphous spatial/temporal boundaries; multi-
scale/multi-resolution data; low sample size; paucity
or absence of ground truth; noise, incompleteness, and
uncertainty in data. It will be useful to identify for each
benchmark which challenging properties are present.
Furthermore, it is difficult to convince geoscientists

to use any method they do not understand. In fact geo-
scientists strongly prefer transparent methods, which
allow them to follow the basic reasoning and generate
novel scientific insights, over black box methods [19].

B. Distribution and Advertisement of benchmarks
All benchmarks will be featured on the IS-GEO web-

site, and advertised through papers (such as this one),
talks, and mailing lists, and we will reach out personally
to data scientists through the IS-GEO members to make
them aware of these benchmarks.

III. SAMPLE BENCHMARKS

The IS-GEO benchmark project was created in
Spring 2017. To date we have created one benchmark
and are working on two more.
The first benchmark was developed in collaboration

with researchers at the Jet Propulsion Laboratory (JPL),
and deals with the automatic analysis of their imaging
spectrometer data in order to detect significant sources
of methane in the atmosphere [20], [21]. Methane

(CH4) is a powerful Greenhouse Gas in the atmosphere
and it is essential to determine its most important
sources in the environment, such as geologic seeps, an-
imal husbandry, decomposition in landfills, and oil and
gas extraction and production. The ultimate goal of this
benchmark is to develop methods for the reliable detec-
tion, and potentially classification, of methane sources
from imaging spectrometer data. The key challenge is
to distinguish methane sources from background noise
in the spectrometer images. Domain experts currently
perform this task manually by visual inspection of the
imaging spectrometer data.
With regard to the requirements from Section II, this

benchmark satisfies many of them. Namely, it is a high
impact application, as it has the potential to reduce
greenhouse gas emissions, and thus global warming; it
is an active research area of research institutions such
as JPL; it provides a rich, multi-layered and challenging
playground for data scientists, because the data includes
high levels of noise, as well as artifacts from roads and
buildings that may be addressed through a variety of so-
phisticated statistical and image processing techniques;
the problem statement consist of a hierarchy of tasks of
increasing difficulty; we developed a quick start tutorial
with Matlab code examples and visualization of sample
data; there are manually labeled results for methane
detection that can be used to evaluate performance for
the simpler tasks, while the remaining tasks are more
open-ended.
We are currently working with the team of the 2016

Climate Informatics Hackathon event to extend their
challenge, prediction of sea ice cover based on several
atmospheric variables [12], to a benchmark. We also
collected a list from the IS-GEO community containing
ten additional benchmark topics to consider.

IV. AN INVITATION TO THE CI COMMUNITY

We invite the members of the Climate Informatics
community to get involved in this effort. In particular,
we would appreciate feedback on the general vision
presented here, and any collaboration for the creation
of additional benchmarks. Furthermore, we invite you
to find out more about the general IS-GEO initiative
(https://is-geo.org/) and to become a member of that
community as well.
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FIRE EVENT PREDICTION…

 FIRE EVENT PREDICTION FOR IMPROVED 
REGIONAL SMOKE FORECASTING  

Zachary Butler1, Yang Chen2, James Randerson2, and Padhraic Smyth1

Abstract— Smoke from wildfires is a significant public 
health concern with over 300,000 people dying annually 
worldwide. Given these large health impacts an 
important goal is to forecast fire emissions on multi-day 
time scales, for example, to provide higher quality 
forecasts for operational smoke forecasting systems. In 
this paper we describe initial work on statistical 
predictive modeling techniques that use historical 
satellite and weather data to predict fire activity on daily 
time-scales and for a regional spatial domain. Prediction 
results from 10 years of wildfire data in Alaska illustrate 
how local weather information can be used to improve 
the quality of multiday fire forecasts. 

I .  M O T I V A T I O N  A N D  B A C K G R O U N D 

Fire is an important and dynamic ecosystem process 
that responds to climate change and human 
modification of the land surface [1]. Fire emissions of 
greenhouse gases, ozone precursors, and black carbon 
aerosols have a warming effect on climate, whereas 
emissions of organic carbon aerosols and post-fire 
changes in species composition (and surface 
biophysics) may have an opposing effect.  In concert, 
human health impacts from fire aerosols are 
widespread and significant [2]. Smoke impacts on 
health are amplified in regions downwind of large 
regional fire complexes [3,4]. For example, 
exceptionally large fire complexes in Alaska and 
Canada in June of 2015 generated smoke plumes that 
traveled thousands of miles, and significantly reduced 
air quality in cities across the central U.S.  

To help mitigate these impacts, several federal 
agencies have created smoke forecasting systems, such 
as the European Union’s Monitoring Atmospheric 
Composition and Climate System (MACC) [5], the 
U.S. Navy’s Fire Locating and Monitoring of Burning 
Emissions (FLAMBE) Project [6], NOAA’s Smoke 
Forecasting System [7], the U.S. Forest Service’s 
BlueSky smoke modeling framework [8], and NASA’s 
GEOS-5 Forward Processing (FP) system [9]. These 
systems often use near real-time satellite observations 

of fire radiative power to estimate the spatial pattern of 
fire emissions. The fire emissions, in turn, are 
introduced into an atmospheric model that uses 
weather forecasts of winds and other meteorological 
variables to transport the smoke into downwind areas. 
Most of these systems assume that the spatial structure 
and intensity of fire emissions remain constant over the 
duration of the forecast. Thus, while the evolving 
impact of fires on atmospheric composition is 
determined by the influence of meteorology on aerosol 
transport and loss processes, increases in burned areas 
or modification of fire behavior due to changing 
weather are not considered.  

In this paper we describe our work on developing 
models that can predict daily fire emissions over the 
course of a weather forecast. In our approach, we draw 
upon satellite data streams and online archives of 
weather forecasts, with a specific focus on Alaska (the 
methodology is, however, more broadly applicable). A 
primary goal of this work is to understand limits to fire 
prediction originating from uncertainties in weather 
forecasting and from our ability to model fire behavior. 
Unlike most existing fire prediction systems that use 
physically-based fire behavior models to predict spread 
rates of individual fires and which do not track fires 
locally [e.g., 10, 11, 12, 13], our approach is designed 
to track multiple fires simultaneously and to predict 
new ignitions. Fire emissions forecasting at this larger 
spatial scale represents a novel prediction challenge 
and is needed for operational smoke forecasting 
systems operating at regional or global scales. In 
subsequent work we plan to couple our fire prediction 
algorithms to smoke forecasting systems with the goal 
of improving the quality of aerosol predictions from 
existing approaches. We expect that by allowing 
emissions to evolve dynamically over the duration of a 
forecast, we will be able to considerably improve the 
accuracy and value of smoke forecasting systems for 
public health and air quality applications. 
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I I .  DATA	

By exploiting the strong emission of mid-infrared 
radiation from fires, Moderate Resolution Imaging 
Spectroradiometer (MODIS) instruments onboard 
NASA’s Terra and Aqua satellites detect active fires at 
a ~1 km spatial resolution using a contextual algorithm 
[14]. Here we used the daily active fire count in the 
MODIS Fire Location Product (MCD14ML, from 
http://modis-fire.umd.edu/) as our target variable y for 
fire prediction – see Figure 1 for an example below. 

 
 

Figure 1: Left: Active fire detections in Alaska during the 2013 
fire season. Right: The spatio-temporal evolution of the blue 
detections (which form a fire cluster – see Section III), color-
coded by day of detection. 

The weather variables we used were from the NOAA 
Global Forecast System (GFS). GFS is a global 
numerical weather prediction system, which is run four 
times a day, and produces forecasts for up to 16 days in 
advance. Here we used gridded (0.5º) surface 
temperature, surface humidity, surface wind, and 
precipitation rate data from the GFS analysis [15]. 
These weather variables were converted to daily 
averages (daily accumulations for precipitation) 
(Figure 2). We collected both data sources for each fire 
season in Alaska from 2007-2016. We defined the fire 
season as May 14-Aug 31 - most fire detections occur 
within this window.  

I I I .  M E T H O D S 

The modeling problem of interest is to predict the 
total number of fire detections in a fixed spatial area on 
day t+k given information on day t, with k = 1, 2, 3,… 
We decompose the overall problem into two parts: (1) 
spatially local predictions for clusters of fires, and (2) 
global prediction of new ignition events. (Only local 
prediction is described here given space limitations). 
We represent fires as spatio-temporal clusters of fire 

detections (e.g, Fig. 1). We assume two fire pixels 
belong to the same fire cluster if they are within 5 km 
of each other (or connected through a chain of points, 
each within 5 km of the next). This clustering yielded 
1335 fire clusters over the period 2007-2016 with each 
cluster persisting for a mean duration of 9.7 days. 
 

 
Figure 2:   Time series of active fire counts for the cluster from 
Figure 1 with various weather variables used as model drivers. 
The increase in rain and humidity results in the fire dying out. 

We predict the number of detections for active fires 
on day t+k via Poisson regression [e.g., 16]. 
Specifically, we model the log of the Poisson rate on 
day t+k (i.e., the expected number of detections on 
that day) for fire cluster i as 
log(	&[()*+, ]	) 	= 01 + 03	log (), + 1 + 056)*+,5,

5
 

Here log ()*+,  is the number of fire detections for 
cluster i on day t+k, 6)*+,5, 	represents different 
weather variables w for cluster i on day t+k, and the 
B‘s are global model coefficients (not dependent on t 
or on cluster i). The B‘s are estimated by maximizing 
the log-likelihood, defined as the sum of the log 
probability of the observed data on day t+k (under a 
Poisson model), over clusters and days for each 
cluster, and where the Poisson mean is a function of 
the model parameters (the B’s), conditioned on the 
covariates (), and 6)*+,5, . The weather variables 6)*+,5,  
are estimated at the spatial centroid of fire i on day t+k 
(e.g., see Figure 1 (right)). Thus, predictions are made 
locally in time and space for each fire cluster: metrics 
for assessing performance are then aggregated over 
fire clusters and over days when each fire is active. 
The results in this abstract are based on having 
“perfect weather forecasts”, using the actual future 

Imme Ebert-Uphoff
54



 
weather data as a proxy for forecasted weather, 
realizing that actual forecasts will be noisier. 

IV .  R E S U L T S   

Our experiments addressed three questions: 
1. Can we predict fire detections more accurately 

than the baseline of y(t+k) = y(t)?  
2. To what extent can weather covariates improve 

predictions beyond autoregression? 
3. How does predictive performance decrease in 

quality as we predict further into the future? 
To answer these questions we conducted two 

experiments. In the first experiment we fit a model to 
all years to predict on each day, and for each fire 
cluster, the number of detections on day t+k given 
covariates defined on day t. The resulting regression 
coefficients (the B’s) for the log of the Poisson rate are 
shown in Table 1 below.  

 
 Intercept Counts 

y(t) 
Temp Hum Wind Rain 

Normali
zed 

1.138 0.935 0.217 -0.043 0.033 -0.556 

Unnorm
alized 

-9.473 0.717 0.035 -0.002 0.022 -0.163 

Table 1: Regression coefficients for the cluster Poisson 
regression model.   

The normalized coefficients above are for a model fit 
with standardized inputs (with a mean of zero, standard 
deviation of 1) and the unnormalized results are for a 
model without standardization. The model coefficients 
agree with physical intuition. The coefficients for 
temperature and wind are positive and those for 
humidity and rain are negative. For example, a unit 
increase in temperature (one degree Kelvin) for the 
unnormalized model results in a multiplicative increase 
in expected number of detections by a factor of 
exp(0.035) = 1.036. Similarly a unit increase in rainfall 
(1 mm/day) corresponds to a multiplicative decrease of 
exp(-0.163) = 0.850 in expected count of fire 
detections per cluster. 
The second experiment was designed to evaluate the 

relative accuracy of different models via cross-
validation at the yearly level. We trained models on 
every year but one and evaluated performance on the 
held-out year, then aggregating the results across all 
held-out years. We fit instances of each model to make 
predictions at day t+k, k=1,2,3,4, and 5, conditioned on 
(a) fire detections at day t, and (b) weather covariates 
defined on day t+k. Since many existing smoke 
forecasting models assume that fire detections are 
constant over the duration of the forecast, i.e., y(t+k) = 
y(t), we compared against this as a baseline. The three 
types of models we trained are: 

1. Autoregression (with lag 1): the only covariate is 
the number of detections on day t, y(t). 

2. Temp/Hum: the covariates include autoregression, 
y(t), and temperature and humidity on day t+k. 

3. All weather: This adds rain and humidity to the 
Temp/Hum model. 

 Figure 3 below shows the mean absolute error (MAE) 
of predicted detections compared to actual number of 
detections, as a function of k. Models with weather 
covariates outperform the baseline and autoregression 
across all values of k, indicating that regression models 
built on historical data can provide systematic 
improvements over current forecasting practices. 
 

 
Figure 3: Cross-validated MAE from 2007-2016. The x-axis is 
the day we are predicting: at x=3, we are using the counts at 
time t and weather at time t+3 to predict counts at time t+3. 

V .   C O N C L U S I O N S 

We investigated the use of statistical methods for 
predicting fire growth over time using patterns of 
historical fire and weather data in Alaska. We find that 
the incorporation of weather variables allows for more 
accurate prediction compared to models solely based 
on temporal autoregression. Under the assumption of 
perfect weather forecasts the relative improvements 
became larger the further the model forecasted into the 
future, suggesting that accurate weather forecasts have 
the potential to significantly improve the quality of 
smoke forecasts. Ongoing work and future directions 
include: measuring the degradation in accuracy from 
actual weather forecasts relative to perfect weather 
information; incorporating additional local variables 
such as vegetation, elevation, topological features such 
as rivers, lakes, and roads, history of prior burned 
areas; adding spatial context to the models; and adding 
longer term memory through fire weather indices to 
capture ground moisture and drying effects. 
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LONG-RANGE FORECASTING…

LONG-RANGE FORECASTING USING COMPASS 
MACHINE LEARNING 

Alison O’Connor1, Ray Bell2, Ben Kirtman2, Joe Gorman1

Abstract—The Climatological Observations for 
Maritime Prediction and Analysis Support Service 
(COMPASS) uses machine learning to create long-
range forecasts of the probability that future 
conditions will differ from average climatology or 
mission-specific thresholds. COMPASS learns over 
multi-model forecast data to generate skillfully-
superior forecasts to improve mission readiness and 
effectiveness; ensure safety; as well as reduce cost, 
labor, and resource requirements. Furthermore, 
COMPASS enables Navy operational planners and 
decision makers to use more reliable long-range 
forecasting capabilities to improve current 
forecasting systems and mission-planning tools. 

I .  MOTIV ATIO N 
Current US Navy forecasting systems and mission-

planning tools cannot easily incorporate long-range 
forecasts that can improve mission readiness and 
effectiveness; ensure safety; as well as reduce cost, 
labor, and resource requirements. If Navy operational 
planners and decision makers had tools and systems that 
incorporated these long-range forecasts, they could plan 
missions using more reliable long-range weather and 
climate predictions.  

Recently, large research efforts have focused on 
improving the quality of long-range forecasts. 
Specifically, long-range multi-model forecast 
ensembles have been developed with higher predictive 
performance compared to individual forecast models 
[1], [2], [3], [4], [5], [6]. Multi-model ensembles are 
forecasting systems that consist of several forecast 
models from different modeling centers. Numerous 
studies have shown that multi-model ensemble 
approaches based on dynamic predictions increase the 
accuracy and tractability goals of long-range forecasting 
due to error cancellation and non-linear interaction of 
diagnostics [5]. At the forefront of these efforts are the 

North American Multi-Model Ensemble (NMME) [3] 
and the SubSeasonal (SubX) Multi-Model Ensemble 
Prediction System (EPS).  

The NMME and SubX EPS offer predictions for 
environmental parameters (e.g., temperature and wind 
speed) for any region of the world, ranging from one 
week to a year in advance. Each model within the 
prediction systems consists of x ensembles (x >= 10) 
with varying initial conditions and model physics to 
produce a total of x predictions for every environmental 
parameter. The data is provided at daily frequency and 
a spatial resolution of 100 km2.  

The NMME and SubX EPS are ideal for system 
integration because of their skilled predictions; 
however, the ensemble techniques can be improved. 
Using forecast models from the NMME and SubX, 
higher skill predictions can be produced if forecast 
models are combined effectively. 

Currently, combining forecast models is a 
cumbersome process. While many methods for 
weighting models exist [7], [8], [9], the best method for 
a given mission requires expert knowledge of both the 
forecast models and possible combination methods. 
When weights are assigned, they often apply to models 
as a whole. This is problematic because each forecast 
model differs in performance under different 
circumstances. For example, some models excel in 
certain regions, such as the tropics; others excel during 
specific time periods, such as winter. Currently, models 
are not combined using fine-grained weight assignments 
based on region, time period, and parameter. A fine-
grained approach to weighting would reflect the forecast 
skill of models in various predictive environments, 
leveraging the strengths of each model as it pertains to a 
specific mission.  

We are developing a robust service known as the 
Climatological Observations for Maritime Prediction 
and Analysis Support Service (COMPASS). 
COMPASS accurately and efficiently combines long-
range forecast model ensemble data by learning fine-
grained weight assignments via machine learning to 
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greatly improve the operational plans produced by 
forecasting systems and mission-planning tools. 

II .  METHO D 
Under the COMPASS effort, Charles River is 

developing a service that uses machine learning to 
successfully combine long-range data from multi-model 
forecast ensembles. Given a desired region, time period, 
and environmental parameters for an upcoming mission, 
COMPASS automatically evaluates, selects, and 
combines data from long-range forecast models. The 
result is a single mission-specific forecast of the 
probability that future conditions will differ from 
average climatology or mission-specific thresholds.  

To describe COMPASS’ forecast generation 
method, let us assume in July 2017 a planner is 
interested in the probability that wind speeds will be 
below, near, or above a threshold of 20 mph during a 
mission set to take place in October 2017 (3 month lead-
time). The mission is a 10-day aircraft carrier transit in 
the Pacific Ocean from San Diego, California to 
Honolulu, Hawaii. Using the specifications of this 
mission, COMPASS generates its forecast using the 
following process: 

COMPASS begins by clustering all Octobers from 
historical years with multi-model ensemble data 
available (1981-2016) according to the Multi-Variate El 
Niño Southern Oscillation Index (MEI). For the clusters 
output by k-means clustering [10] (k = 2), COMPASS 
identifies which cluster is most similar to October 2017. 
The years in this cluster are used for training. Because 
the Octobers within this cluster are most representative 
of the test period, we expect improved results by 
learning over these years only. Learning over years that 
do not have similar context are likely to deteriorate 
results. However, learning using too few years may also 
deteriorate results. Therefore, if a cluster with less than 
five years is chosen, COMPASS learns over all years. 

To build the training data set, COMPASS obtains 
all July forecasts of the Pacific region in October for the 
training years in the identified cluster. The forecasts 
obtained are generated by different models within the 
NMME. COMPASS also obtains the observed data 
specifying the conditions that actually occurred in the 
region and time period in each training year. Assuming 
there are 17 Octobers in the cluster and four NMME 
models with daily data (CanCM3, CanCM4, CCSM4, 
and CFSv2), there are a total of 68 historic forecasts for 
learning. Each model has at least 10 ensembles which 
increases the number of predictions by at least an order 
of magnitude.  

Using the training data and observed data, 
COMPASS learns patterns of forecast model successes 
and failures, without user involvement. Specifically, 
COMPASS creates several machine-learned weighted 
forecast models for each of the training years by 
combining individual NMME forecast models. To 
create these weighted models, COMPASS applies equal 
weighting (EQ), ridge regression (RR) [11], and 
Bayesian model averaging (BMA) [8], creating three 
weighted models for each training year. Under the 
assumption that there are 17 training years, then there 
are 51 (17 years x 3 models) weighted models.  

Next, COMPASS evaluates each weighted model 
using another algorithm that learns their historic 
successes for the mission’s region, environmental 
parameters, and month in historic years. The reason for 
having this layer of learning is due to the fact that that 
weighted forecasts are often superior, in terms of skill, 
to individual ones; however, which weighted 
combination to use differs between missions. Due to the 
vast amount of data and expertise required of each 
NMME and weighted model, selecting the best 
weighted method is an intractable problem for humans. 
Therefore, by creating three weighted models using 
machine-learning techniques that have proven to be 
successful in weather and climate forecasting [7], [8], 
[11], we can then select the weighting method that best 
suites the specific mission.  

The weighted models are assessed in terms of rank 
probability skill score (RPSS), which compares the rank 
probability score (RPS) of a prediction in the forecast to 
the RPS of the constant climatology forecast, using a 
tercile-based system (above, near, or below the 
threshold) [12]. The superior weighted method is 
determined based on the weighted method with the 
largest number of predictions that yielded the highest 
RPSS across all training years as compared to the other 
two methods. Once we decide on the superior weighted 
method, COMPASS creates the weighted model 
accordingly for the test period (October 2017) using all 
NMME forecasts from the training years. 

Finally, for each prediction in the final forecast, 
COMPASS obtains a probabilistic distribution of 
whether the environmental parameter will be below, 
near, or above the average climatology and mission-
specific threshold. 

II I .  EV ALU ATION 
Early experimental results and analysis demonstrate 

the benefits of our approach to produce long-range 
forecasts of the probability that future conditions will 
differ from average climatology or mission-specific 
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thresholds that are superior, in terms of skill, to 
individual NMME forecast models.  

To come to this conclusion, we evaluated two use 
cases. The first use case is similar to the example 
described in this paper: a Pacific transit from San Diego 
to Honolulu. However, in the use case we evaluated, the 
forecast was made in May 2010 for December 2010. 
The second use case is an Atlantic transit during 
December 2010 from Norfolk, VA to the Mediterranean 
Sea using the forecast from October 2010.  

Our results are consistent between both use cases. 
Specifically, the COMPASS forecast outperforms all 
individual forecasts and is equal to the best performing 
weighted model. This can be seen in Fig. 1 for the 
temperature parameter for the Pacific use case. 

 
Fig. 1. (top): observed forecast over Pacific region; (middle-left) 

COMPASS forecast; (middle-right) CanCM3; (bottom-left) 
CCSM4; (bottom-right) CanCM4  

The COMPASS forecast (middle-left), which is the 
BMA forecast, most similarly resembles the observed 
forecast (top) of the conditions that actually happened 
compared to the three individual NMME forecasts. 
Further, the BMA forecast is superior to the EQ and RR 
model for December 2010 as generated using all the 
training years. 

For the second use case, the COMPASS forecast is 
the EQ forecast. To compare forecasts, we calculated 
the RPSS for each prediction in every individual 
NMME forecast and machine-learned model. For each 
prediction, we assigned the rank of 1 to the forecast with 
the highest (best) RPSS, 2 to the forecast with the 
second highest RPSS, and so on. We show these 
rankings for the second use case in Table 1 for the wind 
speed parameter.  

Table 1: Rank Probability Skill Score Results 

Model 
Rank 
Score 

No. 1 
Ranks 

No. 2 
Ranks 

No. 1 
& 2 
Ranks 

No. 7 
Ranks 

COMPASS-
(EQ) 1482 538 420 958 14 
BMA 1349 463 435 898 12 
CanCM4 531 298 222 520 287 
CFSv2 487 237 187 424 174 

RR 451 306 181 487 342 
CCSM4 430 237 161 398 205 
CanCM3 417 294 127 421 298 

*Rank score: 2 * No. 1 Ranks + No. 2 Ranks – No. 7 Ranks 
There were over 1,500 predictions (one for every 

day and 100 km2 region) in the entire October 2017 
forecast. The COMPASS forecast is the best forecast, in 
terms of the rank score metric, compared to any other 
forecast (individual or weighted). Furthermore, it is 
ranked first more often than any other forecast and 
ranked 7th (last) for only 14 predictions in the entire 
forecast. It is a vast improvement over the individual 
NMME models across all metrics. We compared the 
forecasts on several other metrics not shown in Table 1, 
including Brier skill score [12], Heidke hit rate [13], and 
false alarm rate [14]. The COMPASS (EQ) forecast had 
the highest Brier skill score, lowest false alarm rate, and 
a near equal Heidke hit rate to the BMA forecast, which 
was not selected as the best weighted method.  

Currently, we are continuing to refine the 
COMPASS machine-learning approach and compare it 
to related work [15]. As we continue to compare several 
procedural variations, such as number of years in the 
training data and the use of forecast scoring criteria (in 
addition to or in place of RPSS), to discover which 
forecast generation approach yields weighted forecasts 
that consistently out-perform individual ones. Some of 
our preliminary findings include: 
• The best weighted forecast is strictly better than all 

individual models 
• Performance increases with more training years but 

only to a point 
• Performances increases with clustering  
• Two layers of learning, in which we learn weighted 

models from individual models then select the best 
one, consistently out-performs: (1) using only one 
weighted method to learn a single forecast directly 
from individual NMME forecasts; and (2) 
combining all three weighted combinations into a 
single forecast 
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WASSERSTEIN k-MEANS++ FOR CLOUD REGIME
HISTOGRAM CLUSTERING

Matthew Staib1, Stefanie Jegelka1

Abstract—Much work has sought to discern the dif-
ferent types of cloud regimes, typically via Euclidean k-
means clustering of histograms. However, these methods
ignore the underlying similarity structure of cloud types.
Wasserstein k-means clustering is a promising candidate
for utilizing this structure during clustering, but exist-
ing algorithms do not scale well and lack the quality
guarantees of the Euclidean case. We resolve this by
generalizing k-means++ guarantees to the Wasserstein
setting and providing a scalable minibatch algorithm for
Wasserstein k-means. Our methods empirically perform
well and lead to new, different cloud regime prototypes.

I. MOTIVATION

Given the climatic importance of clouds, much recent
work has focused on identifying and then analyzing the
main cloud regimes [1], [2], [3], [4], [5], [6], [7]. Once
determined, these regimes are used in many settings,
e.g., assessing general circulation models [5], [8], and
therefore accurately identifying these regimes is crucial
to understanding the climate system.
The vast majority of work applies k-means clustering

to joint histograms of cloud top pressure (PC) and
optical depth (TAU) (henceforth PC-TAU histograms
of “cloud types”), e.g. [1], [2], [6]. Histograms are
treated as vectors and compared via the Euclidean
distance between them. This approach scales well to
large datasets but ignores the latent structure of the
data, in particular the similarity between different cloud
types. Moreover, the clustering problem is solved via
Lloyd’s algorithm [9], which is empirically effective but
gives no guarantees about the cluster quality.
Instead, we apply histogram clustering techniques

based on Wasserstein distance [10], a metric between
probability distributions (or histograms) that respects
the underlying geometry of the space, in this case
the similarity structure of cloud types. As illustrated
in Figure 1, histograms with similar frequencies for
similar cloud types are close in this metric, in contrast to

Corresponding author: M Staib, mstaib@mit.edu 1Computer Sci-
ence and Artificial Intelligence Laboratory, MIT
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Fig. 1. In Euclidean distance, EX1 is equally far from EX2 and
EX3. In the specific Wasserstein distance defined in Section IV,
EX3 is over 20 times farther from EX1 than EX2 is from EX1,
because EX1 and EX2 are concentrated on similar PC-TAU cells.

Euclidean distance, which ignores cloud type similarity.
We further 1) show that k-means++ seeding [11], which
gives provably good cluster seedings in the Euclidean
case, yields the same guarantee for the Wasserstein
metric, 2) provide an efficient minibatch algorithm for
Wasserstein k-means that scales to climate data, and 3)
show histogram clustering can yield notably different
cloud regimes than identified via Euclidean k-means.

II. THEORETICAL BACKGROUND

Given a set of points {xi}i2I , metric k-means clus-
tering seeks to find a set of centroids C = {cj}kj=1 in a
convex set K (e.g. the probability simplex) minimizing

�(C) =
X

i2I
min

j=1,...,k
d(xi, cj)2. (1)

Typically d is taken to be the Euclidean distance,
d(x, y) =

pP
i(xi � yi)2. In this setting, Lloyd’s algo-

rithm [9], which alternates between assigning points xi
to the closest cluster centroid c

j and replacing c
j with

the mean of the points assigned to it, converges to a lo-
cal optimum but lacks other guarantees: in fact, finding
an optimal set C of centroids is NP-hard [12]. The k-
means++ seeding algorithm alleviates this problem: this
efficient, randomized algorithm produces an O(log k)-
optimal clustering in expectation [11]. This solution can
then be fine-tuned by Lloyd’s algorithm. This result has
been extended to the case when d(x, y)2 is replaced
by a Bregman or total Jensen divergence [13], [14].
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Algorithm 1 Minibatch metric k-means

Input: point set X , parameter k
{cj}kj=1  k-MEANS++INITIALIZATION(X, k)
nj  0 for j = 1, . . . , k . Cluster sizes
loop

Draw x
1
, . . . , x

m ⇠ X

si  argminj=1,...,k d(x
i
, c

j)2 for i = 1, . . . ,m
for i = 1, . . . ,m do

j  si . Cluster index assigned for xi

�  1/nj

cj  projK(cj � �rc[d(xi
, c

j)2])
nj  nj + 1

end for
end loop

Results for general metrics exist for other seeding
algorithms, e.g. [15], but these scale poorly and are
hence impractical; to our knowledge, the general metric
case has not yet been addressed for k-means++.

In contrast to Euclidean distance, Wasserstein dis-
tance between distributions µ and ⌫ on points {yi}ni=1
accounts for the “cost” Cij of moving y

i to y
j . Viewing

µ and ⌫ as two piles of dirt, we can define a notion of
distance between them: how much dirt must we move
how far to transform one pile into the other, moving dirt
as efficiently as possible? Formally, if Cij = g(yi, yj)p

for a distance metric g, the p-Wasserstein distance
Wp(µ, ⌫) is defined as the value of the linear program

min hC, T i1/p ⌘ min (
P

ij CijTij)1/p

s.t. 1TT = µ, 1TT T = ⌫, T � 0.
(2)

The joint distribution T is a “transport plan” that moves
mass from µ to ⌫. A full discussion of Wasserstein
distance and optimal transport is outside the scope of
this paper; we refer the reader to [10], [16] for theo-
retical foundations, and [17], [18], [19] for computing
Wasserstein distance. In our clustering formulation, we
use d(xi, cj) = Wp(xi, cj).
Wasserstein distance has been applied to a limited

extent to histogram clustering [20], [21]. The main
computational challenge is computing the centroid, i.e.,
the Wasserstein barycenter of the measures in one
cluster, in place of the Euclidean mean. Reasonably
efficient barycenter algorithms exist [22], [21], [23] but
scaling to large datasets remains an active research area.

III. THEORY AND ALGORITHM

We sample initial cluster centroids via k-means++
seeding where we replace the Euclidean by Wasserstein
distance. Then we fine-tune the seeding with a stochas-
tic minibatch k-means algorithm suitable for large scale

climate data. Our Theorem III.1 states an approximation
guarantee for our method; the seeding guarantee is
proved by building on results from [24, Theorem 2]:

Theorem III.1. Suppose centroids C are chosen via k-

means++ seeding applied to any metric d (e.g. d =
Wp). Then the objective function �(C) satisfies

E[�(C)]  8(ln k + 2)min
C⇤

�(C⇤). (3)

Once an initial seeding is selected, Lloyd’s algorithm
can be applied to fine-tune the clustering, and can only
improve the objective value. However, updating the
centroids requires expensive full passes over the dataset.
A more scalable alternative is a variant of online

or minibatch gradient descent applied to Problem (1).
In particular, we generalize an algorithm from [25]
to the Wasserstein case. The result is our algorithmic
contribution: Algorithm 1 enjoys the guarantees of The-
orem III.1, and efficiently fine-tunes the clusters without
many expensive passes over the entire dataset. In par-
ticular, for Wp distances, we can compute the required
gradients rc[d(xi, cj)2] via linear programming and the
chain rule, and project efficiently onto the simplex K

[26], [27], [28]. Note that we accomplish this without
ever needing to compute a Wasserstein barycenter, in
contrast to past work on histogram clustering.

IV. EXPERIMENTS

a) Experimental setup: We applied our cluster-
ing framework to PC-TAU histograms from the In-
ternational Satellite Cloud Climatology Project (IS-
CCP) [29]. We focused specifically on data from the
tropical region within 15� of the equator as in [2], in 3
hour increments from 1994-2009.
Wasserstein distances depend on a “ground” distance

metric g between points: we built the ground metric g

by mapping the cloud top pressure and optical depth
pairs to an equally-spaced grid in R2 and using Eu-
clidean distance. An extra “no cloud” state is added
with constant distance 0.5D to each other state as
in [17], where D is the maximum distance otherwise.
We ran Algorithm 1 for 20 iterations with minibatch
sizes of m = 1000. Gradients rc[d(xi, cj)2] were com-
puted using Gurobi [30], and each outer iteration took
about 10 seconds on a modern 8-core desktop computer.
The initial k-means++ seeding was approximated using
the algorithm from [31], with 2000 burn-in steps.
Both Euclidean and Wasserstein-based clustering

were tested. Prior work had carefully determined the
number of clusters k by analyzing correlations between
cluster centroids [2], [3], [4], [6]. In the Euclidean
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Fig. 2. Weather states (cluster centroids) produced by Algorithm 1
applied to Euclidean distance. Note the similarity to those from [2].
RFO is relative frequency of occurence; TCC is total cloud cover.

k 4 5 6 7 8

W1(ci, cj)2 0.283 0.244 0.168 0.141 0.174
�(C)/|I| 0.107 0.098 0.086 0.078 0.074

Fig. 3. Minimum squared Wasserstein distance W1(c
i, cj)2 be-

tween cluster centroids and the scaled k-means objective value �(C),
as the number of clusters k varies. Note that the nearest distance
drops considerably from k = 5 to k = 6.

case, we chose k = 6 to match [2]. In the Wasserstein
case, we instead analyzed the minimum Wp distance
between cluster centroids, seeking a balance between a
low objective value and spread out centroids.

b) Results: First, we applied Algorithm 1 to the
standard Euclidean setting, producing cluster centroids
(weather states) as shown in Figure 2. We essentially
reproduce the same weather states as in [2] for the same
tropical region.
We then clustered with respect to Wp distance, for

p 2 {1, 2}. Qualitatively, p = 2 led to centroids that
are more spread out, as W2 induces a lower penalty
for moving mass between very close points. Hence,
we focus on p = 1 in this paper. Table 3 shows
the minimum W1 distances between cluster centroids,
together with estimates of �(C). There is a notable
dropoff in minimum distance after k = 5 without great
improvement in the objective, so 5 clusters were chosen.
The resulting k = 5 weather states (WS) are shown in

Figure 4. For each point in the tropical region, we give
in Figure 5 a visual breakdown of how frequently that
point belongs to each weather state (c.f. [2, Figure 2]).
There are clear correspondences between the Euclidean-
derived weather states and the Wasserstein ones. Note
that Euclidean WS1, WS4, and WS5 split into Wasser-
stein WS3 and WS5. These Euclidean weather states
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Fig. 4. Weather states from Algorithm 1 applied to W1 distance.
RFO is relative frequency of occurence; TCC is total cloud cover.
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Fig. 5. Heatmaps for weather states 1 (top) through 5 (bottom). On
the heatmap for one weather state, each point is colored according
to how often it belongs to that state.

are more muddled, having very similar total cloud
cover and concentration (under g); in contrast, their
Wasserstein counterparts have similar concentration, but
notably different total cloud cover.

V. DISCUSSION

We propose Wasserstein histogram clustering as a
way to leverage prior knowledge about similarity and
geometry in learning from climate datasets. We demon-
strate that Wasserstein k-means++ clustering is achiev-
able at large scale and with provable guarantees. Apply-
ing these techniques to cloud regimes yields different
inferred weather states than Euclidean clustering.
For determining cloud regimes, we still need a princi-

pled way to select the ground distance metric between
cloud types, perhaps via metric learning. Further in-
depth analysis of these new, different weather states
is needed, and of cloud regimes beyond the trop-
ics considered here. More generally, identifying new
geometry-aware clustering tasks in climate science is
fertile ground for future work.
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NON-UNIFORM SPATIAL DOWNSCALING OF
CLIMATE VARIABLES

Soukayna Mouatadid1, Steve Easterbrook1, Andre Erler2

Abstract—The goal of this study is to present a scalable

and robust approach to spatial downscaling of climate

variables. We explore the ability of artificial neural

networks (ANN) to downscale a climate variable to a

given location of interest. We illustrate our proposed

method in a downscaling application of monthly mean

air temperature and precipitations at twelve stations

located across the topographically complex province of

British Columbia, Canada. Our method generalizes well

to different locations and leads to high downscaling

accuracy. The performance of the models is measured

based on four statistical metrics, including the coefficient

of determination, and the root mean square error.

I. INTRODUCTION

Complete and accurate climate datasets are not readily
available in many regions around the world. They are
especially lacking in the areas most sensitive to climate
change [1], due, in part, to the complex topography of
such regions, where it is difficult to install and maintain
weather stations. As a result, some of the regions most
affected by climate change are unable to obtain detailed
climate data needed to understand impacts and develop
adaptation plans for future climate change [2].
To address this problem, scientists often rely on

gridded reanalysis products as a replacement for obser-
vational data [3]. These datasets are produced by using
the available station observations to constrain a physics-
based simulation that then fills in the missing data points
to provide a complete, physically realistic gridded data
product [4]. However, gridded products for remote areas
are typically coarse resolution, and do not capture small-
scale climatic characteristics associated with regional
topographic features, such as mountain ranges or lakes.
For this reason, it is usually necessary to re-process these
data sets to a finer scale, in a way that accounts for such
features, but does not introduce additional errors and
biases. This process is referred to as downscaling. This

Corresponding author: S Mouatadid, soukayna@cs.toronto.edu
1Department of Computer Science, University of Toronto
2Department of Physics, University of Toronto

can be done using a high resolution regional dynamical
model, but is computationally demanding. Statistical
downscaling instead relies on statistical or empirical
relationships between the large-scale predictor field from
the model simulations and the variables of interest,
at the location of interest. Statistical downscaling is
challenging where there is insufficient historical data to
derive robust relationships. Several recent papers review
the spatial interpolation methods used for downscaling
in meteorology and climatology [5], [6], [7].

We present a novel statistical downscaling method that
learns from gridded reanalysis data and local station
data. Our method learns a mapping between a low-
resolution reanalysis dataset and the climate at specific
locations, using an ANN model. It can be used for
locations with available historical time-series (task 1) as
well as locations where no historical data is available
(task 2), a case where existing downscaling methods
perform poorly.

II. MODEL DEVELOPMENT

For each task, we investigate the use of an ANN
model. The theoretical background for the algorithm
is provided in [8]. The predictand of our models is
the expected value of a given climate variable at a
specific location and time. We have tested the method for
two variables: monthly mean temperature and monthly
mean precipitation. Our predictors from the reanalysis
dataset include monthly means of: cloud forcing net
longwave flux; upward and downward solar radiation
fluxes; u-wind and v-wind; relative humidity; and sea
level pressure.

In the first task, we downscale the gridded reanalysis
data to a location for which past observations are
available. In this scenario, the historical values recorded
at the station were used as the predictand, and the
reanalysis data at 16 grid points around the station were
used as model predictors, selected such that the location
of the station of interest is at the center grid cell of
a 4 x 4 sub-grid or square. We refer to these 16 grid
points as the station’s neighborhood. The studies in [9],
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[4] showed that the sixteen grid points around a station
of interest all supply relevant information to the model.
In the second task, the goal was to explore how a

gridded dataset can be downscaled to locations where no
past observational record is available. The methodology
used here is similar to [9], where the focus was on
predicting solar energy over a spatial grid by developing
a support vector machine model for each individual
cell of a gridded dataset. We develop a model for a
location of interest, using the information available
from that location’s neighbourhood. Again, we use
the square formed by the nine grid cells (i.e., 16 grid
points) as the location’s neighborhood. As there is no
data for the location of interest, we use other stations
within the given neighborhood. For the training set,
the input variables are the reanalysis values from the
sixteen grid points surrounding these stations along with
each stations’ coordinates (i.e., latitude, longitude and
elevation), and the output variables are the observations
recorded at the stations that fall within the neighborhood.
To test the method, we select one station as the

location of interest, and exclude its data from the training
set. The output variable in our tests corresponds to
the observational data recorded at this location, and
the input variables are the reanalysis values from the
sixteen grid nodes around said location, and the location
coordinates. During the training phase, the model has
not been fed any value related to the location of
interest, and during the testing phase, the model’s only
input is the information from the reanalysis dataset,
and the location’s coordinates. Figure 1 illustrates the
construction of a test set for a model used to downscale
to a location of interest (s1) with three neighbouring
stations (s9, s11 and s12) used for training. Following
this methodology, the models can be used to downscale
to any location (any latitude, longitude, elevation),
whether or not it is in the testing set.

III. APPLICATION AND EXPERIMENTS

This section presents the experimental results when
applying our method on monthly mean air temperature
and precipitation datasets for British Columbia. The
station data used as target in our study consists of the
observed values of monthly mean air temperatures and
precipitation. These were obtained for twelve stations
that are part of the Environment and Climate Change
Canada network [10]. The reanalysis data used as the
models’ predictors (inputs) are from the NCEP/NCAR
(National Centers for Environmental Prediction/National
Center for Atmospheric Research) reanalysis dataset.
NCEP/NCAR dataset is a combination of physical

Fig. 1: Development of models’ datasets for task 2.

process and model forecast gridded data at the 2.5�x
2.5�spatial resolution. Details regarding this dataset’s
development can be found in [11]. The data used
extended over a 56-year period from 1960 to 2015.

The predictand and predictor data were standardized
to fall within a range of [0, 1]. By standardizing the
variables and recasting them into dimensionless units,
the arbitrary effect of similarity between objects is
removed. The data was partitioned into a training and
testing set. Parameter tuning was achieved through
cross-validation. In all cases, 10% of the available data
was used to test the models. In order to compare the
developed models’ performance, the following measures
of goodness of fit were used: the root mean square error
(RMSE), the mean absolute error (MAE), the mean
absolute deviation (MAD) as well as the coefficient of
determination (R2).

A. Results and discussion

The results show that overall, the monthly mean air
temperature and precipitations were predicted with high
accuracy. In general, the results for the monthly air tem-
perature models are more accurate than the precipitation
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results. In fact, for the monthly air temperature target,
the R2 values, at test time, range between 0.980 and
0.998 for the first task and between 0.987 and 0.997
for the second task. When it comes to the monthly
precipitations variable, the R2 values, at test time, range
between 0.616 and 0.893 and between 0.390 and 0.916
for the first and second tasks respectively.

Regarding the first task, downscaling to locations
where past observations are available, the results in
table I show that the stations where the downscaling
accuracy was highest are station 8 for the monthly
temperature variable and station 7 for the monthly
precipitation target. The worst performance was obtained
for station 2 and station 5 for the monthly air temperature
and monthly precipitations respectively. The relatively
lower R2 values for both stations 2 and 5 can be
explained by their proximity to large bodies of water
(i.e., Atlin Lake and Stuart Lake).

When it comes to the second task, where the objective
is to downscale to locations with no past observational
records, the stations with the highest downscaling
accuracy are station 11 for the monthly air temperature
and station 4 for the monthly precipitation (see Table II).
These results confirm our intuition that one of the
key factors impacting the downscaling accuracy is the
number of stations in the neighbourhood or square
surrounding the station of interest. In fact, station 11 is
surrounded by three neighbouring stations (i.e., stations
1, 3 and 4) and station 4 is surrounded by stations 3 and
11. It’s also interesting to look at how the performance
changes with respect to elevation. Interestingly, the best
downscaling accuracy, with respect to each task and
climate variable, was obtained for stations 4, 7, 8 and
11 which are located at low elevation at 7, 6, 41 and
18m respectively. The worst performance was obtained
at stations 2, 5 and 9 located at higher elevations of
674, 686 and 297m.

Finally, when it comes to the impact of the models’
structure on the performance of the machine learning
techniques, we noticed that the performance only slightly
changes as the number of hidden neurons varied (the
results for all the developed models are not shown
here due to space constraints). In general, networks
with a smaller number of hidden neurons gave poorer
performance, and so did networks with a high number
of hidden neurons, as they resulted in underfitting and
overfitting respectively. Overall, the best performances
were obtained when the number of hidden neurons varied
between a minimum of 7 and a maximum of 17.

TABLE I: Results of the best models at test time for
task 1.

Station Neurons in
layers

Air temperature Precipitation
. . RMSE R2 RMSE R2

s1 (144-17-1) 1.119 0.991 0.576 0.860
s2 (144-7-1) 0.327 0.980 1.299 0.827
s3 (144-17-1) 1.814 0.987 0.538 0.749
s4 (144-17-1) 1.949 0.997 0.199 0.856
s5 (144-17-1) 0.494 0.994 0.673 0.616
s6 (144-7-1) 0.498 0.995 0.625 0.619
s7 (144-17-1) 0.725 0.994 0.335 0.893
s8 (144-17-1) 0.945 0.998 0.160 0.807
s9 (144-7-1) 0.427 0.995 0.647 0.624
s10 (144-7-1) 0.848 0.988 0.896 0.649
s11 (144-7-1) 0.810 0.997 0.299 0.888
s12 (144-7-1) 0.329 0.992 0.750 0.829

TABLE II: Results of the best models at test time for
task 2.

Station Neurons in
layers

Air temperature Precipitation
. . RMSE R2 RMSE R2

s1 (144-17-1) 0.444 0.994 1.051 0.888
s2 (144-7-1) 1.093 0.987 0.456 0.581
s3 (144-17-1) 0.371 0.994 1.427 0.877
s4 (144-17-1) 0.328 0.991 1.664 0.916
s5 (144-17-1) 1.018 0.988 0.594 0.490
s6 (144-7-1) 0.707 0.994 0.397 0.752
s7 (144-17-1) 0.318 0.995 0.972 0.831
s8 (144-17-1) 0.290 0.994 1.163 0.775
s9 (144-7-1) 0.737 0.993 0.497 0.390
s10 (144-7-1) 0.629 0.993 0.651 0.701
s11 (144-7-1) 0.286 0.997 1.046 0.869
s12 (144-7-1) 0.649 0.994 0.489 0.637

IV. CONCLUSIONS AND FUTURE WORK

This study presented a new downscaling method
for two specific tasks: downscaling at locations where
past observations are available to train the models, and
downscaling for locations where there is no past record,
using neighbouring stations to train the models. We
explored the ability of artificial neural networks to down-
scale monthly mean temperatures and precipitations
for selected stations in British Columbia. The results
showed that using artificial neural networks to learn
from reanalysis gridded data and station observations
can lead to accurate downscaling results. In further
work, we plan to test the application of these methods
for downscaling additional climate variables, including
climate extremes as these are important for assessing
climate change impacts, and for planning adaptation
strategies for future climate change.
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GLOBENET: CONVOLUTIONAL NEURAL
NETWORKS FOR TYPHOON EYE TRACKING FROM

REMOTE SENSING IMAGERY
Seungkyun Hong⇤,1,2, Seongchan Kim2, Minsu Joh1,2, Sa-kwang Song†,1,2

Abstract—Advances in remote sensing technologies

have made it possible to use high-resolution visual data

for weather observation and forecasting tasks. We pro-

pose the use of multi-layer neural networks for under-

standing complex atmospheric dynamics based on multi-

channel satellite images. The capability of our model was

evaluated by using a linear regression task for single

typhoon coordinates prediction. A specific combination

of models and different activation policies enabled us to

obtain an interesting prediction result in the northeastern

hemisphere (ENH).

I. INTRODUCTION

Recent decades have seen significant efforts by me-
teorologists to develop numerical weather prediction
(NWP) models such as Weather Research&Forecasting
(WRF) to predict and produce rich atmospheric metrics
such as the air pressure, temperature, and wind speed.
The purpose of these processes is to predict extreme
weather events capable of causing severe damage to
human society. Typhoons, i.e., mature tropical cyclones
known to commonly develop in the northwestern Pacific
Basin, are one of the targets of atmospheric dynamics
modeling. However, these models require considerable
computational resources and processing time.
Previous studies [1]–[3] have shown that deep neu-

ral networks yield reliable results for weather-related
problems and are computationally less intensive com-
pared to large NWP models. Recent weather research
comprising 3D data, such as weather simulation results
or radar reflectivity datasets, involved the application of
convolutional neural networks (CNN) which are known
to be capable of extracting rich regional features from
multi-dimensional data.
Meanwhile, advances in satellite equipment have

made it possible to accumulate extensive global obser-
vations than was previously the case. Modern satellite

1Korea University of Science and Technology (UST) 2Korea
Institute of Science and Technology Information (KISTI)
†Corresponding Author

imaging sensors collect visual global observations cou-
pled with infrared (IR) and visible (VIS) wavelength
and have capabilities of 0.25˜4km at s.s.p. (Spatial
resolution) and multiple channels from 5ch (MI) to
36ch (MODIS). Considering that high-resolution global
observations exceeding 1 TB in size are collected by
several weather research centers daily, it has become
possible to use sophisticated visual information from
massive datasets.
Nevertheless, an approach for typhoon eye tracking

based on bare remote sensing images has not been re-
ported yet. Moreover, high-resolution imagery itself has
never been utilized extensively without any modifica-
tion on information. Our solution to these problems was
to focus on the utilization of the entire visual context
from large-scale global observation to yield models for
typhoon eye tracking based on deep CNNs. We first
present two discrete neural networks based on multiple
convolutional layers to develop an understanding of
complex atmospheric dynamics, and then discuss the
prediction results.

II. RELATED WORK

In recent years, many researchers have investigated
the use of deep neural networks to solve various
weather-related problems. Kordmahalleh et al. [1] ex-
plored a model to predict cyclone tracks from the large
NOAA best track database. Racah et al. [2] suggested a
semi-supervised model for extreme weather events from
long-term CAM5 climate simulation datasets. Xingjian
et al. [3] suggested a complex CNN-LSTM network
(ConvLSTM) for the prediction of future precipitation
rates from reflectivity data recorded by ground-based
radar stations. However, not many investigations in-
volved processing high-dimensional imagery data of
weather phenomena.
Several complex network topologies proved capable

of high-accuracy prediction or classification such as im-
age classification from multi-layer inception followed
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by repeated convolution-pooling steps [4] and symmet-
ric skip connections for clear image restorations [5].
Unlike other CNN surveys, our research focuses on the
characteristics of high-resolution remote sensing images
containing vast and detailed descriptions of typhoon and
cloud movement. In other words, our models utilize
satellite images by preserving their details without
significant modification due to processing such as image
resizing or cropping.

Fig. 1. Typhoon trajectories spanning 6 years (2011˜2016) from
the JMA RMSC-Tokyo Best Track Data

III. METHOD

A. Data

Predicting a typhoon eye coordinate requires two de-
tailed types of information: a trajectory point consisting
of the latitude and longitude and a single satellite image.
The trajectory dataset we used was the Japan Meteoro-
logical Agency (JMA)’s official best track information
(Figure 1), which was used with a decimal precision of
1 latitudinal/longitudinal degree. The satellite image set
comprised images acquired with the COMS-1 [6] MI
of the Korea Meteorological Agency (KMA). The MI
covers five channels including four IR images and one
VIS image; however, because VIS imaging cannot be
used for observation of the area of interest at midnight,
only the 4-ch IR images (Figure 2) were chosen for
the image dataset.

Fig. 2. Normalized COMS-1 MI 4ch IR images with CDF
We used 2,674 satellite images collected from 2011

until the end of 2016, covering nearly six years and 152

occurrences of single typhoons. The scope of the scale
level between the latitude (80�) and longitude (150�)
was matched by normalizing both the input (satellite
image) and output (typhoon track with latitude and
longitude) to a value between 0 and 1.
Furthermore, both the image and track data are

randomly sampled for mini-batch training and shapes of
arrays are reshaped to fitting on neural networks. There-
fore, the dimensionality of an image becomes four,
denoted by the NumSamples ⇥ Height ⇥ Width ⇥
Channels (NHWC) format, and that of the track be-
comes three (NumSample⇥Latitude⇥Longitude).

B. Models

The model receives 3D satellite images denoted by
NHWC format as inputs. Our research surveyed two
discrete network topologies for extracting rich features
of cloud shapes. After an input image passes the
multiple convolutional layers, each network has the
exact fully connected dense layers for linear metrics
regression. In the regression step, any values related
to the weather event can be trained and predicted as a
target value. Our networks are developed to achieve fast
examination; thus, they only fit a point of the typhoon
from the input image. The overall prediction process
can be described as follows:
1) An input image is used for feature extraction by

cascaded convolutional filters and max-pooling.
2) Fully connected layers following flattening of the

filtered images builds a nonlinear connection for
predicting the point of a single typhoon eye.

3) A smaller dense layer is used to ensure that the
model fits its final outcome and ground truth,
stimulated by linear activation.

Fig. 3. Network Topology of Simple CNN with Fast Striding

1) Simple CNN with Fast Striding: Our first model
(Figure 3) uses four conv. layers in conjunction with
max pooling, which is similar to the basic CNN named
LeNet-5 [7]. We applied 2-pixel strides and max-
pooling technique on filter convolutions due to the high
dimensionality of the input data. These optimizations
resulted in each layer extracting fewer sparse features,
further minimizing computational resources.
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Fig. 4. Network Topology of Complex CNN with Inception Units

2) Complex CNN with Joint Inception Units: Our
second model (Figure 4) starts by jointly using two
conv. layers & max pooling steps for image reduction
and as candidates to prepare for feature extraction.
Then, eight deep-and-complex inception layers follow
previously convolved images similar to the approach
used in GoogLeNet [4]. In each inception unit, the im-
ages pass four different filter policies involving various
types of feature extraction. After each convolutional
procedure in the inception unit has been completed, all
the filtered images are concatenated to produce the same
image dimension with increased depth.

Fig. 5. Fully connected layers for linear regression process after
flattening the convolutional layer

3) Linear metrics regression: After the CNN pro-
duces low-dimensional images with greater channel
depth, these features are flattened to build fully con-
nected (FC) layers. (Figure 5) Three fixed FC lay-
ers develop a nonlinear connection for obscure value
prediction. Finally, a single FC layer coupled with a
linear activation unit produces the predicted coordinate
of typhoon eye.

IV. EVALUATION

The accuracy of typhoon eye tracking models is
defined as (1), where P (2) is a point consisting of the
latitude and longitude of the ground truth and P̂ (3) is
a point from the prediction result:

RMSEPrediction =

vuut 1

N

NX

n=1

(P � P̂ )
2

(1)

P = (Latgt, Longgt) (2)

P̂ = (Latpred, Longpred) (3)

We examined the accuracy of our models for linear
regression by conducting multiple experiments with
several different configurations. Each network can set

two different activation functions for each convolutional
step (ReLU/LeakyReLU [8]/ELU [9]) and fully con-
nected step (Sigmoid/Tanh). The Adam optimizer [10]
is used for gradient optimization with an initial learning
rate 1e-5, which is known to achieve fast optimization.
The entire dataset is divided into training and testing
sets in the ratio 9:1.
All our models use the toolkit named Keras [11]

with the TensorFlow [12] backend as a neural network
framework.

Fig. 6. Test Error: Basic CNN vs. Complex CNN - Combination
of ReLU/LeakyReLU/ELU & Sigmoid/Tanh

Figure 6 shows the overall test error during 30
epochs of training process. The best prediction was
achieved with Complex CNN with ELU/Tanh activation
policy, with an RMSE of 0.02, about 40.24 nmi (74.53
km) in great circle distance. In contrast, the worst
prediction models was Basic CNN with ReLU/sigmoid
activation, characterized by an RMSE of 0.065 which
is about 195.96 nmi (362.91 km) in great circle dis-
tance. Every result obtained with Complex CNN was
more accurate than with Simple CNN with the same
activation policy.

V. CONCLUSION AND FUTURE WORKS

We proposed two different neural networks to de-
velop an understanding of atmospheric dynamics and
weather events, for typhoons in particular. We studied
typhoon tracking by attaching the observation images
after evaluating the capability of the model to extract
the topology features. This produced an RMSE of
approximately 0.02 to guess the center of a single
typhoon in a space of 80-degrees latitude by 150-
degrees longitude.
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However, our model only focused on single-event
typhoons in remote sensing images. Hence, we also
plan to survey multiple occurrences in a single image
that would require simultaneous tracking, as well as
predicting additional weather metrics such as the air
pressure, and wind speed for the simulation of complex
atmospheric circulation and long-term global climate
modeling.
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DETECTING PRECURSORS OF TROPICAL 
CYCLONE USING DEEP NEURAL NETWORKS 

Daisuke Matsuoka1, Masuo Nakano1, Daisuke Sugiyama1, Seiichi Uchida2

Abstract— Predicting tropical cyclonegenesis areas 
before their generation has tremendous social and 
academic significance. In this work, we investigate 
the predictability of the generation of tropical 
cyclones and their precursors based on one million 
cloud images visualized from 30-year simulation 
data using deep neural networks. Tropical 
cyclogenesis areas are predicted by ensemble 
learning using ten weak-classifiers, each possessing 
an accuracy of 85.0-88.0%. We succeeded in 
predicting the precursors of tropical cyclones seven 
and five days before their formation with a Recall of 
88.6% and 89.6% (average of Precision is 11.4%), 
respectively, from only cloud images. 

I .  MOTIV ATIO N 

Large scale tropical cyclones (TCs) such as typhoons, 
cyclones, and hurricanes affect significant damage to 
human life, agriculture, forestry and fisheries, and 
infrastructure. In Japan, Typhoon Lionrock in 2016 
dealt severe damage to building and left many dead as a 
consequence. Predicting TC formation as soon as 
possible is important not only from an academic 
perspective, but also in disaster mitigation. 
Thus far, TCs have been predicted using various 
methods that incorporate numerical simulation and/or 
satellite observation data. Dvorak proposed T-number 
to estimate the strength of TCs from satellite imagery 
data [1], [2]. The early stage Dvorak Analysis (EDA) 
developed by Japan Meteorological Agency (JMA) has 
been utilized in operational forecast since 2001 [3]. 
National Hurricane Center (NHC) and the Central 
Pacific Hurricane Center (CPHC) also use the advanced 
Dvorak method for TCs prediction in 48 hours lead time 
with an accuracy of 15-57% [4]. Yamaguchi et al. 
demonstrated that combined use of the Dvorak method 
and multi-model ensemble forecasts improved 

predictability to 35-79% [5]. However, if numerical 
models try to simulate farther into the future, the 
predicted error of simulated results increases due to the 
initial value dependency. This is the limitation of the 
deductive method in the weather forecasting. Therefore, 
we adopt machine learning, an inductive approach, to 
extract features of clouds from past data, before TCs 
occurrence.  
In recent years, deep learning, one of the machine 
learning methods based on neural networks, has been 
increasing attraction and being applied to pattern 
recognition [6], [7]. In meteorology, several proposals 
for studies using deep neural networks for existing TCs 
detection [8], tornado prediction [9], hurricane pathway 
prediction [10] and extreme rain fall prediction [11]. 
Comparatively fewer studies have been proposed for 
predicting TCs, because the precursor of TCs, “the Eggs” 
of them, are difficult to identify even by meteorological 
experts.  
In the present study, we investigate the probability of 
predicting TCs 7 days prior from long-term global 
atmospheric simulation data using deep neural networks.  

II .  DATA 

The atmospheric simulation data used in this study is 30-
year data produced by the NICAM with a 14-km 
horizontal resolution [12]. This model employs fully 
compressible nonhydrostatic equations and guarantees 
the conservation of mass and energy. Equations are 
discretized by the finite volume method. One 
characteristic feature of this model is that it explicitly 
calculates deep convective circulations without using 
any cumulus parameterizations. This model is suitable 
for the reproduction of tropical phenomena such as TCs 
[13] and the Madden-Julian Oscillation (MJO) [14]. For 
additional details on this model, please see the original 
and survey papers [15], [16]. 
To generate supervised image data, we employed a TCs 
tracking algorithm [13], [17] to NICAM simulation data. 
In the first step, candidate grid points at the center of 
TCs are selected from local extrema of sea level 
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pressure (SLP). In the second step, candidate points, 
which satisfy some criteria related to wind speed, 
relative vorticity, temperature, duration, and range are 
combined temporarily and spatially into the TC track. 
By adapting this algorithm, existing TCs as well as those 
yet to be formed are detected with their center point, 
elapsed time, maximum wind speed, and minimum SLP. 
TCs are defined by a threshold value of maximum wind 
speed; it is difficult to distinguish TCs before and after 
their formation. In this work, we classify the precursor 
(10 days before their formation) and developing TCs (7 
days after their formation) under one category (Fig. 1. 
(a)). In addition, low pressure clouds that were 
candidates for TCs but do not satisfy the criteria of 
duration are labeled as “not TCs” (Fig. 1.(b)). These 
images are visualized from Outgoing Long Radiation 
(OLR) and their horizontal sizes are 800-1000 km 
(64x64 pixels). We generate approximately one million 
images of TCs, including their Egg and four million 
images of not TCs from 30-year simulation data. 
 

II I .  METHO D AN D RESU LTS 
The spatial distribution of clouds is important for 
atmospheric pattern recognition and therefore we adopt 
a 2D convolutional neural network for image 
classification described in Table 1. The architecture 
includes four convolutional layers, three pooling layers, 
and two fully connected layers. Input data is grayscaled 
image data of 64x64 pixels and output is generated in 
two classes (0 or Negative: not TCs, 1 or Positive: TCs).  
Hyper parameters are optimized by sensitivity study 
which explores 216 settings of the number of the 
convolutional layer (1-5) and pooling layer (1-5), 
number of parameter in the fully-connected layer (100, 
300, 500, 1000, 2000), drop out ratio (0.2, 0.3, 0.4, 0.5), 

size of convolutional filter (3x3, 5x5, 7x7), and number 
of feature maps (16, 32, 64); the architecture with the 
highest performance is adopted accordingly.  
 

Table 1.  The architecture of our CNN. 
Input 64x64 
Convolution 1 3x3@16 
Convolution 2 3x3@32 
Pooling 2x2 
Convolution 3 3x3@64 
Pooling 2x2 
Convolution 4 3x3@64 
Pooling 2x2 
Fully-connected 500 
Fully-connected 2 

 
The accuracy using 100,000 images (50,000 for each of 
two classes) for training and 5,000 images for cross-
validation test is 87.61%. In order to improve the 
accuracy, ensemble learning that fuses the plurality of 
an individual trained weak-classifier is effective way. 
Although Bagging [18], Boosting [19] and Random 
Forest [20] are well known methods of ensemble 
learning, we employ a simplified version of AdaBoost 
[21] which is one of a Boosting method. In our method, 
ten weak-classifiers (Classifier 1, 2, …, 10) are 
generated by learning ten sets of randomly selected 
training data on the same neural network. One percent 
of erroneous predicted data in Classifier i (i=1, 2, …, 9) 
is used again in Classifier i+1 as training data (original 
AdaBoost repeats this process). The accuracy of ten 
classifiers is listed in Table 1. Here, accuracy indicates 
that all the predictions including positive (TCs) and 
negative (not TCs) are correct. 
 

Table 2.  Accuracy of ten weak-classifiers. 
Model number Accuracy (%) 
Classifier 1 87.61 
Classifier 2 86.22 
Classifier 3 87.12 
Classifier 4 86.30 
Classifier 5 86.20 
Classifier 6 87.46 
Classifier 7 87.06 
Classifier 8 85.78 
Classifier 9 85.86 
Classifier 10 86.42 

 
Our method outputs the ensemble average using the 
accuracy of each weak-classifier. The final probability 
p for predicting the presence of TCs in an arbitrary 
region is defined as follows using a weighted average:  

Fig. 1. Supervised image data. (a) Sequential images of 
a life cycle of a TC and (b) images of cloud with low 
pressure (not TCs). 
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                                (1). 

Here, wi is the weight value of classifier i, and xi is 
output value by Classifier i (0: not TCs, 1: TCs). 

IV.  EV ALU ATION 
Generated classifiers are applied to untrained global 
simulation data. We clip rectangular 64x64 pixels 
images with cloud cover of 30-80% (this range covers 
92% of TCs) from global scale images as the prediction 
target area. Fig. 2. shows an application result of 
ensemble classifier to one snapshot image. Target areas 
and predicted areas of TCs are represented by white and 
red boxes, respectively. Real TCs and precursors 
(ground truth) calculated by the TC track algorithm are 
represented by blue and red dots, respectively. In this 
example, four TCs including two precursors of five 
ground truth can be predicted in a snapshot image 
(Recall is 4/5=80%); however, three areas of seven 
positive prediction areas are mispredicted (Precision is 
4/7=57.1%). Here, Precision is the proportion of all 
positive prediction (TCs) that are correct, and Recall is 
the proportion of all real positive (ground truth is 
positive) that are correct [22].  
Recall of each elapsed time-frame using 1-year of 
untrained data are shown in Fig. 3. The precursors of 
TCs seven days before their formation have a  Recall of 
88.6% and five days before have a  Recall of 89.6%. 

Meanwhile, average of Precision is 11.4% (minimum is 
4.7% and maximum is 57.1%); this means 88.6% of 
positive prediction is incorrect. In order to improve total 
prediction performance, it is necessary to improve both 
Recall and Precision. The future work includes to 
investigate the reason for mispredicted cases and 
understand the contents of convolutional layer and 
weight.  
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NEMR PREDICTABILITY ASSESSMENT OVER 
INDIAN PENINSULA USING ELM  

Yajnaseni Dash1, Saroj K. Mishra1, B.K. Panigrahi2

Abstract—This study proposed an Extreme 
Learning Machine based approach to evaluate the 
potential predictability of Northeast Monsoon 
Rainfall (NEMR) over the Indian southern 
peninsular region by using Sea Surface 
Temperature (SST) and Sea Level Pressure (SLP) 
as predictors. Performance of six different 
activation functions of ELM such as hardlim, 
radbas, sigmoid, sine, tansig and tribas was 
investigated. It is observed that among all activation 
functions, radbas performs better with minimal 
error scores. Thus, using global SST and SLP as 
predictors for NEMR prediction, radbas activation 
function of ELM gives optimal outcome.  

I .  MOTIV ATIO N  

The northeast monsoon season is also known as 
retreating southwest monsoon, post monsoon season 
[1] or winter season [2]. This monsoon season occurs 
over the Indian southern peninsula during the period of 
October, November and December (OND). The 
contribution of this season to annual rainfall in the east 
coast of the Indian peninsula is 50% [3]. Western 
Ghats plays a significant role in determining the 
climate of the southern part of India. The west coast of 
India does not receive much rainfall during the 
southwest monsoon due to Western Ghats. Reverse 
wind distribution begins during OND period, causing 
extensive rainfall due to the movement of maritime air 
of the equator towards southern India [4].  

Prediction of Northeast Monsoon Rainfall (NEMR) is 
a difficult task due to the dynamic nature of the 
monsoon. However, its prediction is an essential task 
as it has socioeconomic impact on the country. 
Artificial neural networks are among one of the most 
admired mathematical technique for classification, 
pattern recognition, prediction etc [5]. Back-
propagation neural network (BPNN) has been used for 

prediction of Indian summer monsoon [6, 7]. However, 
its limitations include lengthy computational time due 
to the iterative weight update mechanism, stopping 
criteria, learning rate etc. [8, 9]. Extreme Learning 
Machine (ELM) was proposed to overcome the various 
issues of BPNN [10]. 

Northeast monsoon depends on several tele-
connection parameters, but our key goal of this study is 
to assess the predictability of NEMR based on global 
predictors like Sea Surface Temperature (SST) and Sea 
Level Pressure (SLP). Two previous studies [11, 12] 
have used SST anomaly as a predictor for predicting 
monsoon rainfall using artificial neural network 
(ANN). A previous study by Nair et al. has shown that 
SST over the Indian Ocean (equatorial), the Bay of 
Bengal, the Pacific Ocean (central) and the Atlantic 
Ocean (north and south) have an effect upon northeast 
monsoon rainfall during OND [13]. This signifies that 
SST all of the major oceans have considerable 
influence over NEMR. SLP is an influencing factor for 
monsoon over the Indian subcontinent. SLP-based 
predictors influencing the NEMR include the regions 
of Southern Greenland and North Pacific Ocean; 
similarly, for the ISMR, the regions include the 
Tibetan plateau, Bering Sea near Alaska and Southern 
Atlantic Ocean, and north-west Europe. Even studies 
have considered the combination of SLP of North 
America, South America and a region of the Southern 
Ocean below Australia as a predictor [14]. So, we have 
considered global data for SST and SLP to check the 
predictability of NEMR. 

This study used global climatic predictors such as 
SST and SLP for analyzing the predictability of 
northeast monsoon over the southern Indian peninsula 
using an ELM based approach. 

II .  METHO D  

In ELM, Moore-Penrose generalized inverse method 
is used to accomplish the learning task by following a 
non-iterative mechanism. It is computationally much 
faster than BPNN and there is no need to tune the 
hidden layer [10]. Thus, we have employed this ELM 
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technique for the current study. The following steps 
have been carried out in this study. 

1) Data: The input data comprised of Sea Surface 
Temperature (SST) and Sea Level Pressure 
(SLP) which were obtained from NCEP/NCAR 
reanalysis monthly mean data provided by the 
NOAA ESRL Physical Sciences Division (PSD) 
[15, 16]. The time series of area weight grids, 
data has been taken into consideration with 
coverage of 90qN-90qS and 0qE-358qE. The 
peninsular region rainfall dataset of post 
monsoon (OND i.e. October +November + 
December) season for the period 1948-2014 
years were obtained from Indian Institute of 
Tropical Meteorology (IITM), Pune to examine 
the Northeast Monsoon Rainfall (NEMR) 
predictability. The peninsular region covers 
Coastal Andhra Pradesh, Rayalaseema, Tamil 
Nadu and Pondicherry, Coastal and South 
Interior Karnataka, and Kerala subdivisions. For 
operational purposes, the peninsular region 
consisting of these meteorological subdivisions 
is considered by Indian Meteorological 
Department (IMD). The OND mean rainfall 
time series was taken as the target (observation) 
dataset [17]. In fig.1 homogenous monsoon 
regions are presented from which peninsular 
region is distinguishable.  

 

Fig.1. Map showing the Indian peninsular region 
(Source: IITM, Pune) 

 
2) Scaling: Min-Max normalization method was 

used for scaling the data in the range [-1, 1] 
using the equation (1) given below. 

                
         

  (1) 

3) Activation function: The key role of activation 
function is very crucial as it elucidate the non-
linear relationship between input and output.  
We have used six different activation functions 
namely, hardlim, radbas, sigmoid, sine, tansig 
and tribas.   

4) ELM model: ELM is the improved version of 
single layer feed forward neural network [10]. 
The entire dataset was divided into training 
(1948-2009) and testing (2010-2014). The 
training dataset was used to train the ELM 
model. Then, the trained model has been applied 
to the independent test dataset. Finally, the 
obtained outcomes were compared with the 
original observations using Mean Absolute 
Relative Error (MARE) and Root Mean Square 
Relative Error (RMSRE). 

II I .  EV ALU ATION  AND DIS CUSSION  

The present study has been carried out to observe the 
potential predictability of the northeast monsoon 
rainfall over the Indian southern peninsula by using 
SST and SLP as predictors based on ELM approach. 
SST anomaly has been used as a predictor for monsoon 
rainfall by two previous studies [11, 12] ANN. We 
have used SST and SLP as global predictors as input 
for this prediction task of NEMR.  

The correlation between SST anomaly and observed 
rainfall was shown to be very low in linear as well as 
in polynomial trend equations [11]. In our study SST 
has shown a low positive correlation and low 
coefficient of determination (R2). We have also studied 
another predictor SLP to find out its impact on 
northeast monsoon. But, it is found that SLP has a very 
low negative correlation with northeast monsoon. The 
correlation of SST is higher than SLP; this indicates 
that SST may have greater impact in climate variability 
of the southern peninsular India during northeast 
monsoon period. 

  In this study, the effect of the different activation 
functions in climate data has been examined. 
Prediction errors (observed - predicted) in fig. 2 has 
been presented to show the error score obtained by 
different activation function for the independent test 
period (2010-2014). Though there is no statistically 
significant difference among the six activation 
functions corresponding to the observed and predicted 
value, the average prediction error (observed - 
predicted) is lowest for radbas depicting its superiority 
among all. The higher prediction error in 2010 may be 
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due to the excess rainfall during the northeast monsoon 
in this year. In 2010, the rainfall over the peninsular 
India has been recorded excess than normal (nearly one 
and a half times) leading to several damages and loss 
of life i.e. more than 150 people died alone from the 
Tamil Nadu subdivision [18]. 

It can be clearly visible from fig. 3 that for radbas 
activation function both MARE and RMSRE scores are 
low as compared to other activation functions i.e. 
hardlim, sigmoid, sine, tansig and tribas. Based on 
MARE scores, the superiority of activation functions 
follows the order as given below: 
radbas > tansig > sigmoid > sine > hardlim > tribas  

 

 
Fig. 2. Prediction error (Observed - predicted) 
over period (2010-2014)  

 

 
Fig. 3. Relative error scores of different activation 
functions 

 
So, it is observed in this study that radbas has 

better performance among all activation functions of 
ELM. This optimal radbas activation function has also 

been used by a standard neural network to have a 
comparison with ELM. The error scores have shown 
that radbas activation function using ELM (MARE 
0.0373; RMSRE 0.0382) is performing better than 
standard neural network (MARE 0.1128; RMSRE 
0.1518). 

Thus, from this study, it is found that ELM has the 
potential predictability to predict the intricate monsoon 
by using SST and SLP as input predictors. Among the 
six activation functions of ELM, radbas activation 
function has shown better performance.  

IV.  CONC LUSION  

Prediction of NEMR in the Peninsular Indian 
region has been considered for this study using ELM 
approach. Global SST and SLP data have been used to 
check the predictability of NEMR. SST has a better 
correlation than SLP for northeast monsoon. It is found 
that radbas has better performance than other activation 
functions such as hardlim, sigmoid, sine, tansig and 
tribas using ELM. Comparison of MARE and RMSRE 
scores among ELM and standard neural network has 
shown better performance of radbas using ELM. Thus, 
for prediction of NEMR, radbas activation function of 
ELM gives optimal outcome using global predictors 
like SST and SLP. 
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THE ADVANCED CLIMATE ANALYSIS AND 
FORECASTING – DECISION SUPPORT SYSTEM 

(ACAF-DSS) 

Bruce Ford1, Herbert Dawkins2, and Tom Murphree3  

Abstract:   We are developing a system for improving 
the operational climate services provided by 
government agencies, businesses, and other 
organizations.  The Advanced Climate Analysis and 
Forecasting – Decision Support System (ACAF-DSS) 
provides users with three primary types of climate 
information via a unified web application: (1) multiple 
petabytes of reanalysis and other climate data; (2) real-
time outputs from intraseasonal to interannual (I2I) 
forecasting systems; and (3) real-time assessments of 
forecast system skill.   ACAF-DSS provides access to 
the datasets and forecasts, along with analysis and 
visualization tools, in a clustered computing 
environment.  The system provides users with an array 
of options for using information about the climate 
system (including atmosphere, ocean, land, and ice 
components) to develop probabilistic decision support 
products, such as alternative courses of action (COA) 
products and measures of product performance.  ACAF-
DSS was designed to support operational decision 
making by national security organizations.  But the basic 
approach, data, and methods also apply to climate 
research, climate support services, and climate related 
decision making by a wide range of users in 
government, business, and other sectors of the economy. 

I .  MOTIV ATIO N  

  In 2008, we initiated the Advanced Climate Analysis 
and Forecast (ACAF) project to give operational climate 
support providers access to climate reanalysis datasets, 
and to advanced tools for developing analysis and I2I 
forecasting products based on those datasets.  ACAF is 
similar in several ways to the data access and 
visualization applications provided by the National 
Oceanic and Atmospheric Administration Earth System 

Research Laboratory – Physical Sciences Division 
(NOAA ESRL-PSD).  However, ACAF provides users 
with a larger number, and a greater range, of climate 
datasets, as well as a number of additional capabilities 
for data selection, processing, analysis, and 
visualization.  These include the ability for users to: (1) 
rapidly select and analyze data, and create conditional 
composites of data, based on the intensity and phase of 
climate variations (e.g., El Nino-La Nina, Madden-
Julian Oscillation (MJO)); (2) identify and select data 
according to user specified thresholds (e.g., significant 
wave heights exceeding 5 meters); and (3) analyze data 
according to user specified probabilities of occurrence 
(e.g., probability of ocean current speeds greater than 
user specified value; Figure 1).   

 
Figure 1. Example ACAF product: percent probability of upper 
ocean current speeds exceeding 1 m/s in January-March. 

 
  The development of ACAF was driven by the needs 

of US national security organizations for climate dataset 
access, and I2I analysis and forecasting capabilities, that 
were not provided by NOAA or other organizations.  As 
an example, national security organizations planning 
operations several months or seasons in the future need 

Authors: 1B. Ford, bruce@clearscienceinc.com Clear Science, Inc , 
2H. Dawkins, drdawkins@clearscienceinc.com, Clear Science, Inc.  
3T. Murphree, murphree@nps.edu, Naval Postgraduate School 
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credible assessments of the probabilities of 
environmental conditions exceeding or falling within 
specific limits (e.g., the probability of air temperature or 
ocean surface winds and waves exceeding safe 
operating limits).   

  One of our main objectives in developing ACAF was 
to provide rapid access to, and processing of, large 
climate datasets by operational climate scientists and 
other climate support providers working at US national 
security organizations.  We achieved that objective, in 
large part, by providing an extensive range of: (1) high 
priority datasets in formats that facilitate rapid data 
processing; and (2) software tools that eliminate the 
need for extensive scripting to extract, analyze, and 
visualize data, and to generate products ready for 
operational use. 

  The primary initial users of the ACAF system were 
scientists in the climate support division of the Fleet 
Numerical Meteorology and Oceanography Center 
(FNMOC) who quickly gained proficiency in using 
ACAF to develop climate analysis and forecasting 
products to support the planning and analysis of national 
security operations.  The range of ACAF users, as well 
as ACAF datasets and capabilities, have greatly 
expanded as the demand for I2I decision support has 
grown [1].  This has included, for example, demand for 
datasets with higher temporal and spatial resolution and 
extent, dataset formatting to increase data processing 
speeds, tools for dataset comparisons, more advanced 
statistical and dynamical analysis tools, and a greater 
range of visualization options. 

  But the rapid emergence of new and much larger 
climate datasets and I2I forecasting outputs, and 
extensive feedback from ACAF users and their 
customers, led us to begin development in 2016 of a 
successor system, ACAF-DSS [2].   The primary 
motivations for this new system were user demands for 
a much greater range of: (1) new and forthcoming large 
climate data sets and I2I forecast products; (2) more 
complex analyses of datasets and forecast products; and 
(3) improved decision support capabilities. 

ACAF-DSS will expand the information used by the 
ACAF system by including additional high resolution 
reanalysis data sets (e.g., mesoscale eddy resolving 
ocean reanalyses) and I2I ensemble based dynamical 
forecasting products (e.g., those from NOAA’s Climate 
Forecast System (CFS) [3] and the North American 
Multi-Model Ensemble (NMME) program [4]; Figure 
2).  In addition, the ACAF-DSS system will provide 
real-time information on forecast skill and confidence.  
The system will provide users with access to multiple 
petabytes of reanalysis and other datasets, I2I forecast 

outputs, and forecast performance metrics, along with 
graphical interfaces with which to interrogate, visualize, 
and analyze the data and other information.  Users will 
be able to generate analysis and forecast products, and 
corresponding decision support products, including 
probabilistic analyses, forecasts, and alternative courses 
of action (COAs). 

 
Figure 2. Example ACAF-DSS product: I2I forecasts from CFS of 
surface air temperature and corresponding historical means and 
extremes. 

II .  METHO D 

    ACAF-DSS is being constructed by using a clustered 
computing environment coupled with advanced data 
storage management techniques.  This system has two 
main components: (1) an advanced version of the ACAF 
system; and (2) the Meteorology and Oceanography 
(METOC) Store.   

Advanced ACAF Component   

    The advanced ACAF component contains all user 
(human or machine) interfacing functions, and all data 
presentation and communication functions. This 
component allows human and machine users to answer 
complex planning and long range forecast questions in 
a multi-dimensional, flexible, and intuitive manner.  
Users will be able to apply a wide range of statistical and 
dynamical analysis tools to, for example: (a) analyze 
correlations, teleconnections, and planetary wave 
dynamics associated with multiple simultaneous climate 
variations (Figure 3); (b) compare the forecasts and 
forecast skill of different forecasting systems by 
variable, location, time of year, forecast launch time, 
and forecast lead time; and (c) develop probabilistic 
decision support products based on user operating 
limits, risk thresholds, cost constraints, and planning 
lead time. 
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Figure 3. Example ACAF-DSS product: conditional composite 
precipitation rate anomalies for simultaneous occurrence of El Nino 
and MJO phase 4 during January-March. 
 

METOC Store Component   

    The METOC Store is a knowledge store capable of 
warehousing and analyzing climate system data using 
multiple instance data managers with access to 
petabytes of data, coupled with in-memory data cubes 
(populated with high interest data) and rapid access to 
other data sources.  The METOC Store allows other 
‘front ends’ or interpreters to request METOC Store 
data for other applications, and to potentially act as a 
cloud peer fusion platform participating in track 
management or within an Object Management as a 
Service (OMaaS) environment.  
    The METOC Store employs pipeline processes that 
ingest, composite, evaluate, and stage data to ready it for 
rapid recall should a user request it.  The pipeline 
processes include the preparation and constant update of 
forecast performance measures.  The clustered 
computing environment constantly: 

• Evaluates new data quality 
• Post-processes model runs 
• Computes model performance 
• Updates existing model performance values 
• Extracts temporally corresponding statistical 

information 
• Stages high interest data within in-memory 

cubes 
 
    The data-intense analyses that must take place to 
answer user requests is performed using the clustered 
resources of the METOC Store and sends forward very 
small amounts of post-calculation aggregated data in 

user specified formats.  The METOC Store conducts 
data extractions and calculations to support statistical 
and dynamical analyses (e.g., percentiles; probabilities 
of occurrence; conditional composites; optimal climate 
normal; correlations and regressions; teleconnections; 
vertical profiles; horizontal and vertical cross sections, 
time-space cross sections; fluxes, transports, and 
divergence of mass, energy and momentum; wave 
dynamics). 

 
Figure 4. ACAF-DSS high level functional diagram 
 

  ACAF-DSS applies a single-map, geo-referenced 
approach to display interpretive products that allows 
users to: (a) layer color-fills, iso-lines, vectors, wind 
barbs, streamlines, time series, and other visualizations; 
and (b) select from a range of colormaps, line thickness 
and color, still and animated images, etc. (Figure 5)  
Multiple output formats are available. including image, 
GIS formats, and other custom formats, to support user 
applications of the ACAF-DSS outputs.  

 

Figure 5.  ACAF-DSS single map interface example. 

II I .  EV ALU ATION  

  Each version of ACAF and ACAF-DSS is evaluated 
by the development team, and by independent climate 
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scientists and operational support providers.  ACAF and 
ACAF-DSS products are assessed by comparisons to 
independently generated products, when those products 
are available.  With each successive version, new tests 
are added and previous tests are repeated to ensure 
system integrity.   

  To be included in ACAF and ACAF-DSS, a dataset 
must first be validated through formal scientific 
validation testing and/or evaluations completed as part 
of research and operational applications of the dataset.  
Testing of each dataset within ACAF and ACAF-DSS 
is focused on verifying that the data processing correctly 
represents the original data (e.g., correct dataset has 
been accessed; correct selection and display of date, 
time, and location; correct analysis of data, etc.).  This 
verification includes comparisons of ACAF and ACAF-
DSS products to comparable products from independent 
sources, such as products generated at the ESRL-PSD 
sites or products created via independent scripting and 
data processing.  Additional verification is conducted 
for products that involve derived quantities, such as 
those that result from statistical or dynamical analyses 
or extensive data manipulations (e.g., correlations, 
conditional probabilities, conditional composites, 
fluxes, transports).  

  Each version of the system is also beta tested by 
climate scientists and support providers at FNMOC, the 
host for the operational version of the system.  Problems 
identified in this operational testing are corrected until 
the system meets FNMOC standards for operational use.  
Once the system is operational, system performance is 
routinely evaluated by FNMOC staff and other users.  
User feedback is explicitly solicited and analyzed to 
identify and correct problems, and to plan the next 
versions of the system.  User testing and evaluation have 
been ongoing since 2008, which has allowed us and 
FNMOC to amass extensive information on use 
patterns, user needs, user requests, and system strengths 
and limitations.  This information has been a major 
factor in designing and developing each new version, 
and was the primary basis for setting the design 
requirements for ACAF-DSS. 
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GRAPH CONVOLUTIONAL AUTOENCODER WITH
RECURRENT NEURAL NETWORKS FOR

SPATIOTEMPORAL FORECASTING
Sungyong Seo1, Arash Mohegh2, George Ban-Weiss2, Yan Liu1

Abstract—The importance of spatiotemporal data min-
ing has been growing with the increasing number of
heterogeneous datasets and importance of large datasets
such as climate measurements, geographic information
systems, virtual globes, the decennial census, and collec-
tions of traffic trajectories. For several decades, numerous
studies have been done for analyzing time series, however,
these traditional models often perform poorly when
applied to multi-source datasets such as spatiotemporal
data because of its heterogeneity. In this paper, we
propose the novel method that combines spatial features
with temporal dynamics based on the graph autoencoder
(GAE). Specifically, an unsupervised model based on
GAE for learning spatial representations is incorporated
with Long short-term memory (LSTM) which captures
temporal dynamics. We apply our model (GAE-LSTM)
for climate applications, the spatial features such as
geographical proximity and terrain similarity, and mete-
orological measurements like temperature, pressure, and
precipitation.

I. MOTIVATION

The recent advances of GPS-equipped technology
have enabled to collect of large scale spatial and tempo-
ral datasets easily. Along with the increasing volume of
such data and high update rate, it is naturally required
to create automatic mining models extracting valuable
information that is extremely difficult to be described by
hand-made features. Furthermore, the special character-
istics of the data domain make traditional techniques in-
effective. Specifically, most previous models have been
oriented for particular domains, respectively and not
for multiple correlated domains, such as spatiotemporal
data.
For example, Bayesian models, Hidden Markov

Model (HMM) [1], [2], [3] and Kalman filter [4],

Corresponding author: Sungyong Seo, sungyons@usc.edu
1Computer Science Department, University of Southern California

2Department of Civil and Environmental Engineering, University
of Southern California

[5] are used to predict time series. Recently, deep
neural networks have been studied for general time
series prediction. Particularly, recurrent neural networks
(RNNs) are suitable for the prediction task. Long short
term memory (LSTM) [6] has been widely used because
it can handle long term dependency by minimizing
vanishing gradient. Thus, many prediction works based
on LSTM [7], [8], [9], [10], [11] have been studied.
However, these works have only focused on extracting
patterns in time series or sequences without combining
additional information from other domains.
It is extremely important to consider the two dif-

ferent domains coincidentally because there are strong
dependencies between the heterogeneous features. For
example, change of meteorological measurements such
as temperature is significantly dependent on where the
measurements have been collected. If a climate class
(tropical or dry climates) is given, it can provide more
hints for forecasting measurements correctly. Similarly,
temporal dynamics have also implicitly reflected spa-
tial difference or similarity. If we track a traffic of
a certain mobile application over time, the temporal
pattern can easily provide the spatial information such
as urban/rural area.
In this work, we propose a single model which

can learn through spatial and temporal observations.
Specifically, spatial features are extracted from a graph
convolutional autoencoder [12] and the extracted fea-
tures are incorporated with a temporal state from a
recurrent neural network to predict future sequence.

II. METHOD

A. Graph Convolutional Networks
Convolutional neural networks (CNNs) are versatile

networks which can extract translationally invariant
features with fewer parameters. CNN is particularly
effective on images (or videos) that are represented on
grid structures (which are same as regular graphs) be-
cause it is easy to apply kernels on to the grid structures
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directly. However, it is much harder to generalize the
convolutional operation on to general graph structures
due to the irregularity. To alleviate the issue, many
works [13], [14] have tried to develop the generalized
convolutional neural networks called graph convolu-
tional networks (GCNs) in the spectral domain.
Given an undirected weighted graph G = (V, E ,W)

with N vertices, the normalized graph Laplacian is
defined as L = IN �D� 1

2AD� 1
2 where A is an adja-

cency matrix and D is a degree matrix Dii =
P

j Aij .
Fourier transform is an expansion of a given signal f(t)
on the spectral domain (e.g., frequency) based on the
eigenfunctions (e.g. e�j2!ft) of the Laplacian operation
(�). Similarly, the eigenvectors of the graph Laplacian
can be defined as L = U⇤U> and thus, the graph
Fourier transform of a given graph signal x can be
defined as:

x̂ =
N�1X

j=0

u>j x = U>x, (1)

where uj is an eigenvector corresponding to jth eigen-
value �j . The inverse transform is x = Ux̂ = UU>x.
Since the transform is defined, the convolution of a

given kernel g✓ and a graph signal x can be defined as
the inverse transform of a product of g✓ and x̂ on the
spectral domain:

g✓ ⇤ x = Ug✓U
>x, (2)

where g✓ is a function of the eigenvalues ⇤ of L as
g✓(⇤).
It is important to note that the Eq. 2 is computa-

tionally expensive due to multiplication of the eigen-
vector matrix and the eigenvector decomposition in
the first place. The cost problem is alleviated by the
approximation of the Chebyshev polynomials which are
defined recursively (Tk(x) = 2xTk�1(x) � Tk�2(x)
with T0(x) = 1 and T1(x) = x). The expansion up
to Kth order is:

g✓(⇤) ⇡
KX

k=0

✓kTk(⇤̃), (3)

where ⇤̃ = 2
�max

⇤�IN and �max is the largest eigenvalue
of L. ✓ = (✓0, · · · , ✓K) is a vector of Chebyshev
coefficients.
Since g✓(⇤) is efficiently computable (Eq. 3), the

convolution of the kernel and the signal is defined as:

g✓ ⇤ x ⇡
KX

k=0

✓kTk(L̃)x, (4)

! = 1

! = 2
! = 3

Fig. 1: K order localized filtering on a graph.

with L̃ = 2
�max

L� IN . Eq. 4 is K order polynomial in
the Laplacian L and it provides localized kernels since
(LK)ij is zero if the node i and j are not connected in
K steps in the graph. In Figure 1, the receptive fields are
shown for different K order polynomials at the center
node (red node).
Since we have the form of the spectral convolution

on graphs (Eq. 4), a neural network based model can
be obtained by stacking multiple graph convolutional
layers (Eq. 4). Furthermore, it is easy to extend to
the graph convolutional autoencoder as [15] with the
definition of the graph convolution. Details of building
neural networks are covered in [13], [12].

B. GAE-RNN
In the previous sections, it is shown that the graph

convolution autoencoder extracts latent representations
of a given input feature. Furthermore, it is well-known
that a recurrent neural network (e.g., LSTM) can be
trained to learn temporal dependencies. Since these two
modules have their own purposes, it is required to inte-
grate the different modules as a single model. As shown
in Figure 2, we concatenate the latent representations,
�i, with the output of the last cell of LSTM and feed it
to one shared fully connected layer to make prediction.
Thus, the complete loss function of the integrated model
is written as:

L =
1

2

NX

i=1

||xi,T+1 � x̂i,T+1||22 +
↵

2

NX

i=1

||Xi � X̂i||22

+ �R(⇥) (5)

where xi,· is a series of measurements and Xi is a
feature vector at the node i, respectively. The regularizer
weights, ↵,� are adjustable to control the importance
of the regularization terms.

III. EVALUATION

A. Datasets
In order to have a fair comparison, we use real

world meteorological measurements from two commer-
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Fig. 2: GAE-RNN model architecture

(a) Weather Underground (b) WeatherBug

Fig. 3: Personal weather stations distributed over Los
Angeles area

cial weather service providing real-time weather infor-
mation, Weather Underground, WU1 and WeatherBug,
WB2. Both services use observations from automated
personal weather stations (PWS). The PWSs are illus-
trated in Figure 3.
In the dataset, each station is distributed around

Los Angeles County and land characteristics where the
station is located at are provided. The list of the static
characteristics, Xi, is; Latitude, Longitude, Elevation,
Tree fraction, Vegetation coverage fraction, Albedo,
Distance from the coast, Impervious fraction, Canopy
width, Canopy height, and Building height.
At each station, a number of weather data are ob-

served through the installed instruments and recorded.
The types of measurements are Temperature, Solar
radiation, Pressure, Precipitation, Relative humidity,
Wind speed, and Wind direction. In this experiments,
observations from June/2015 to July/2015 are used.

B. Experimental results

In the datasets, while the spatial features are pro-
vided, the actual graph structures are not given. There-
fore, it is required to create a graph based on distances

1https://www.wunderground.com/
2http://weather.weatherbug.com/

between the features. We use thresholded cosine simi-
larity to build the graph. By adjusting the threshold, it
is possible to tune the size of the receptive fields.
For forecasting experiments, one meteorological

measurement is chosen and aggregated over a given
temporal granularity (e.g., hour). After setting the
length of historical measurements (past 6 hours mea-
surements), the graph structure, spatial features of
weather stations, temporal measurements, and temporal
gap between measurements are fed into our model and
next measured value is predicted. We compare with two
baselines, 1) LSTM only (LSTM) and 2) LSTM with
graph Laplacian regularization (Lap-LSTM). LSTM has
same as GAE-LSTM excluding GAE module. In Lap-
LSTM, the graph autoencoder is replaced with a simply
stacked autoencoder and a graph Laplacian regular-
ization is assigned to consider the spatial similarity.
Mean squared error is used to the comparison and all
hyperparameters are chosen by cross validations.

LSTM Lap-LSTM GAE-LSTM
WB 0.893 0.863 0.853
WU 1.537 1.501 1.440

TABLE I: MSE for temperature forecasting

Fig. 4: Forecasting of temperature

Table I shows that GAE-LSTM outperforms other
models. Especially, it is notable that GAE-LSTM has
better spatial representations than that of Lap-LSTM
which is only dependent on the similarity of spatial
nodes. We also count how many weather stations have
shown less MSE when GAE-LSTM is used compared
to results of LSTM. In the time period, total 48 stations
in WU have observed meteorological measurements.
GAE-LSTM outperforms in the 34 stations out of the 48
stations compared to LSTM. For WB stations, we have
better forecasting results in the 106 stations out of the
158 stations. It clearly shows that the spatial features
are useful and able to improve forecasting quality.

In Figure 4, we sample a time period and plot the
forecasting of temperatures with the ground truth.
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DEEPRAIN: CONVLSTM NETWORK FOR
PRECIPITATION PREDICTION USING

MULTICHANNEL RADAR DATA
Seongchan Kim1, Seungkyun Hong1,2, Minsu Joh1,3, Sa-kwang Song1,2

Abstract—Accurate rainfall forecasting is critical be-
cause it has a great impact on people’s social and
economic activities. Recent trends on various literatures
shows that Deep Learning (Neural Network) is a promis-
ing methodology to tackle many challenging tasks. In
this study, we introduce a brand-new data-driven pre-
cipitation prediction model called DeepRain. This model
predicts the amount of rainfall from weather radar
data, which is three-dimensional and four-channel data,
using convolutional LSTM (ConvLSTM). ConvLSTM is a
variant of LSTM (Long Short-Term Memory) containing
a convolution operation inside the LSTM cell. For the
experiment, we used radar reflectivity data for a two-
year period whose input is in a time series format in
units of 6 min divided into 15 records. The output is
the predicted rainfall information for the input data.
Experimental results show that two-stacked ConvLSTM
reduced RMSE by 23.0% compared to linear regression.

I. INTRODUCTION

Precipitation prediction is an essential task that has
great influence on people’s daily lives as well as busi-
nesses such as agriculture and construction. Acknowl-
edging the importance of this task, meteorologists have
been making great efforts to build advanced forecasting
model of weather and climate, mainly focusing on Mod-
eling & Simulation based on HPC (High Performance
Computing).
In recent years, studies using deep learning tech-

niques have been drawing attention to improve predic-
tion accuracy [1], [2], [3], [4]. The Convolution Neu-
ral Networks (CNNs) and Recurrent Neural Networks
(RNNs) are necessary techniques for the prediction
of weather-related tasks. Several studies [4], [2] have
employed each technique for precipitation prediction,

Corresponding author: Sa-kwang Song, esmallj@kisti.re.kr
1Disaster Management HPC Technology Research Center, KISTI,
Korea; 2Dept. of Big Data Science, UST-KISTI, Korea; Dept. of
3S&T Information Science, UST-KISTI, Korea

and others [1], [3] have tried using combinations of
these. Primarily, convolutional LSTM (ConvLSTM),
which is a variant of LSTM, was devised to embed
the convolution operation inside the LSTM cell to
model spatial data more accurately by Shi et al. [1].
The authors demonstrated that ConvLSTM works on
precipitation prediction in their experiments. However,
they utilized three-dimensional and only one-channel
data. In our study, we used the ConvLSTM for three-
dimensional and four-channel data.
On the other hand, the data types used for rainfall-

related prediction using the deep learning method are
various. They include radar data [1], [2], past pre-
cipitation data, and atmospheric variable observation
data such as temperature, wind, and humidity [3], [4].
In general, weather radar observations are the data
used as inputs to numerical forecasting and hydrologic
models to improve the accuracy of weather forecasts for
hazardous weather such as heavy rains and typhoons
[5]. Specifically, weather radar data refers to data
represented by a radar image that is composed using
the moving speed, direction, and strength of a signal
transmitted by a radar transmitter into the atmosphere
and received after it has collided with water vapor or
the like. For example, Figure 1 shows a radar image of
the Korean peninsula at 15:00 on April 5, 2017, and
shows the rainfall rate in different colors depending on
the degree of reflection.
In this study, to estimate the rainfall amount based on

the weather radar data, we introduce DeepRain, which
applies ConvLSTM, one of the variants of LSTM. Our
radar data is three-dimensional data (width, height, and
depth) consisting of four channels (depth) from four
altitudes. The contributions of this study are as follows:
1) We adopt ConvLSTM first for three-dimensional

and four-channel radar data to predict the rainfall
amount.

2) We stacked the ConvLSTM cells for performance
enhancement.
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Fig. 1. Examples of radar map for rainfall rate

3) It was confirmed that the proposed method is
more effective for predicting rainfall than lin-
ear regression and fully connected LSTM (FC-
LSTM).

This paper presents the rainfall forecasting model
proposed in Chapter 3 and related research in Chapter 2.
Section 4 shows the experimental procedure and results,
and the paper concludes in Section 5.

II. RELATED WORK

Zhuang and Ding [4] designed a spatiotemporal CNN
to predict heavy precipitation clusters from a collection
comprising historical meteorological data across 62
years. They used two-convolution, pooling, and fully
connected layers. Zhang et al. [2] proposed a 3D-cube
successive convolution network for detecting heavy
rain. In this study, they cast rainfall detection as a
classification problem and identified the presence of
heavy rainfall by using radar data of several channels
as an input to the convolution network. Gope et al. [3]
proposed a hybrid method combining CNN and LSTM.
Their model used outputs of CNN as inputs for LSTM.
In their model, CNN and LSTM were considered as
independent steps. For data, they employed atmospheric
variables such as temperature and sea-level pressure.
However, they did not consider radar data. Shi et al.
[1] devised a ConvLSTM model that enhanced an FC-
LSTM model by replacing a fully connected layer with
a convolution layer. However, that study was an attempt
to generate a radar map for the future based on a
past radar map using an many-to-many and end-to-
end approach, while in our study, rainfall is forecast
using a many-to-one (one-step time series forecasting)
approach.

III. DATA

The radar rainfall data used in the experiments were
distributed by the Shenzhen Meteorological Adminis-
tration in China for research purposes [6]. The data,
which were normalized and anonymized (Details about
pre-processing of the data were not publicized.), were
radar observations in the Shenzhen area. The data
consists of numerical integer values (dBZ). There are
101 * 101 radar reflection values, each representing
one cell after modeling a specific area of Shenzhen in
grid form (101 * 101 km

2). The 101 * 101 numerical
values are grouped into four groups (from an altitude
of 3.5 km; 1-km intervals) and 15 intervals (every 6
min) for each altitude. (See Figure 2.) That is, a total
of 612,060 (=101 * 101 * 4 * 15) numerical values are
listed. The ground truth is the measured rainfall amount
(mm

3) from 1 h to 2 h in the area corresponding
to the target area of 50 * 50 km

2 from the center
of the grid. Therefore, one row of the data set is
composed of 612,060 integer values (radar reflectivities)
and one float value (ground truth). The complete data
set consists of 10,000 rows randomly selected during
a two-year period. We randomly divided the data into
training (90%), validation (5%), and test data (5%).

IV. METHOD

ConvLSTM was introduced as a variant of LSTM
by Shi in 2015 [1] and it is designed to learn spatial
information in the dataset. The main difference between
ConvLSTM and FC-LSTM is the number of input di-
mensions. As FC-LSTM input data is one-dimensional,
it is not suitable for spatial sequence data such as our
radar data set. ConvLSTM is designed for 3-D data
as its input. Further, it replaces matrix multiplication
with convolution operation at each gate in the LSTM
cell. By doing so, it captures underlying spatial features
by convolution operations in multiple-dimensional data.
The equations of the gates (input, forget, and output)
in ConvLSTM are as follows:

it = �(Wxi ⇤ xt +Whi ⇤ ht�1 + bi) (1)

ft = �(Wxf ⇤ xt +Whf ⇤ ht�1 + bf ) (2)

ot = �(Wxo ⇤ xt +Who ⇤ ht�1 + bo) (3)

Ct = ft �Ct�1+tanh(Wxc ⇤xt+Whc ⇤ht�1+bc) (4)

Ht = o� t � tanh(ct) (5)

where it, ft, and ot are input, forget, and output
gate. W is the weight matrix, xt is the current input
data, ht�1 is previous hidden output, and Ct is the cell
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state. The difference between equations in LSTM is that
the convolution operation (⇤) is substituted for matrix
multiplication between W and xt, ht�1 in each gate.
By doing this, a fully connected layer is replaced with
a convolutional layer, and then the number of weight
parameters in the model can be significantly reduced.
In this study, the problem involves predicting rainfall

using test radar data with training radar data and its
label (in actual fact, the measured amount of rainfall)
on a large scale. We solve the problem by utilizing con-
vLSTM. The structure of DeepRain using convLSTM
is shown in Figure 2. The input data X of the model
receives 15 items of data according to the time interval,
and the input data of each node is 40,804 (which is
reshaped as 101 * 101 * 4; three dimensions with four
channels) for radar reflection value (integer) data. The
output is the generated value O of the output gate of the
last cell, which is the expected amount of rainfall for
the input data. This model configuration (many-to-one)
is a result of the data set which has the ground truth
label is given to the radar data as a number of rainfall
amount falling between 1 hour and 2 hour. Note that
our model does not predict next sequences of labeling
(many-to-many).

Fig. 2. DeepRain architecture using ConvLSTM

V. EXPERIMENT

We trained the proposed model (Figure 2) with the
Adam optimizer at a learning rate of 0.001. The input
data (originally in txt format at 16 Gb) was trans-
formed into a binary tfrecord (6.4 Gb) to improve the
learning speed. We used random shuffling mini-batches
for learning; the mini-batch size was set to 30. The
training epoch used 50, and it took about 12 h to learn
(one-stack ConvLSTM). The Root Mean Square Error

(RMSE) was used to measure the prediction accuracy.
The testbed environment configuration was as follows:

• CPU: Intel R Xeon R E5-2660v3 @ 2.60GHz
• RAM: 128GB DDR4-2133 ECC-REG
• GPU: NVIDIA R TeslaTM K40m 12GB @
875MHz (Dual)

• HDD: 4TB 7.2K RPM NLSAS 512n 12Gbps
• Framework: TensorFlow 1.2, Python 3.5.2
Figure 3 shows the learning curves by four different

conditions of two models (FC-LSTM and ConvLSTM).
ConvLSTM shows significantly better learning per-
formance than FC-LSTM using Adam and Gradient
Descendant Optimizer (GDO). A further experiment
confirmed that FC-LSTM with GDO required 300
epochs to reduce the loss from 15.5 to 14.4, while
ConvLSTM has required only five epochs to reach a
loss of 10.0. It seems that the convolution operation
efficiently extracted underlying features from the data
and enabled quick training.

Fig. 3. Learning curves of differently conditioned models

According to Figure 3, the two-stacked ConvLSTM
model show more stable performance than the one-
stacked ConvLSTM. Then, we decided to find the
optimal number of epochs to have a predictable per-
formance that was not overfitted with the two-stacked
ConvLSTM. Our further experiments with a validation
set indicated that the validation loss increases from
epoch 5, as shown in Figure 4. Then, we measured the
performance with the test set from the trained model at
epoch 5.
Table I lists the results of measuring the error rate

(RMSE) for the test data with multiconditioned models
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Fig. 4. Training and validation error curve with the two-Stacked
ConvLSTM

and a baseline. The result of the two-stacked ConvL-
STM is shown to be 11.31, which is 23.0% less than
that of the linear regression model used as a control.
Furthermore, it is 21.8% lower than that of the FC-
LSTM [7]. The poor performance of the FC-LSTM
seems to originate from the fact that the FC-LSTM is
fed with one-dimensional input data and loses spatial
information in the cell.

TABLE I
RMSE OF PREDICTING RAINFALL AMOUNT WITH TEST SET

Model RMSE Drop(%)
Linear Regression 14.69 -
DeepRain: FC-LSTM[7] 14.46 1.6
DeepRain: Conv-LSTM(one-Stacked) 11.51 21.6
DeepRain: Conv-LSTM(two-Stacked) 11.31 23.0

VI. CONCLUSION

In this study, we first applied ConvLSTM to three-
dimensional and four-channel radar data to predict the
rainfall amount between 1 h and 2 h. Experimental
results showed the prediction accuracy of the proposed
methodology is better than that of the linear regression
and the FC-LSTM. Future studies will utilize Convo-
lutional Gated Recurrent Units (ConvGRU) to compare
ConvLSTM and expand the data set with several data
augmentation techniques to enhance the performance.
The augmentation technique will include cropping data
of a 50 * 50km2 area from the center, which is an im-
portant consideration in predicting rainfall. In addition,
we are devising an effective convolution method on
spatial three-dimensional data with multiple variables
and channels. Lastly, we have a plan to consider El
Nino for our model, which is likely to have an effect
on precipitation of the studied area.
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MULTIPLE CHANGE DETECTION IN LINEAR
TREND OF SERIALLY CORRELATED TIME SERIES

Mohammad Gorji-Sefidmazgi1, Mina Moradi-Kordmahalleh1, Abdollah Homaifar1

Abstract—Trend analysis is important for better un-
derstanding of climate change and variability. Since the
changes in atmosphere and hydrological variables are
not monotonic, a single linear trend is not adequate to
represent their changes. Common methods for finding
piecewise linear trends are based on some restrictive
assumptions, and do not take into account the autocor-
relation of the time series. In this study, we propose a
multiple change detection based on the Genetic Algorithm
and Statistical Inference to find the piecewise linear trend
of autocorrelated time series. The Bayesian Information
Criterion is used to find an optimal number of change
points. The proposed technique is applied on the global
surface temperature, and the linear trend and lag-one
autoregressive parameters of the time series with multiple
change points are estimated.

I. MOTIVATION

The linear trend is a straightforward assessment of
long-term behavior of a time series. But in general,
warming trends are nonlinear, especially the warming
is accelerated over most of the twentieth century [1].
Seidel et al. showed that modeling of surface tempera-
ture trend with a piecewise linear model added to a lag-
one autoregressive process (AR(1)) is better than single
trend in the sense of Bayesian Information Criterion

(BIC) [2]. Detection of piecewise linear trend of the
trend requires finding the change points in the linear
trend and its attribution to a potential cause. Several
methods based on statistical tests were used in the liter-
ature to find breakpoints in the trend, such as sequential
Mann-Kendall and Bai-Perron tests. But these statistical
tests are generally developed under the assumption of
independence among observations in the time series.
However, climate time series, especially with monthly
or smaller time scales are autocorrelated. If time series
has an autoregressive structure, decision about the null
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1Department of Electrical and Computer Engineering, North

Carolina A&T State University, Greensboro, NC.
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hypothesis in statistical tests can be misleading by
inflating/deflating the estimated significance levels and
this would lead to false over-rejection/under-rejection
of the null hypothesis [3]. One solution is to aggregate
the data in order to convert it to a yearly time series
and remove the autocorrelation. But this procedure
drastically decreases the number of samples and reduces
the power of change detection algorithm. On the other
hand, the removal of the positive serial correlation
component from time series by pre-whitening reduces
the magnitude of existing trend [4]. In fact, the most ef-
ficient method of change detection in serially correlated
time series is simultaneous estimation of change point
and AR(1) coefficient [5]. In addition, several methods
based on Bayesian Inference [6] and Markov model
[7] exist in literature for change detection problem.
These methods need prior assumptions on probabilistic
distribution of the dataset or the change points, while
these assumptions may not be generally true.
In this work, we propose a trend analysis algorithm

for serially correlated time series based on the Change

Detection based on Genetic Algorithm (GACD). Unlike
Markov or Bayesian methods, no additional assumption
on the time series or change points are necessary. Un-
like Bayesian and Markov change detection approaches,
it does not need restrictive assumptions on statistical
distribution of data or change points. Adding the as-
sumption that the residual follows a Gaussian distribu-
tion, the BIC is adopted to find the optimal number of
change points. By considering the autocorrelation, the
proposed techniques can be applied to the time series
with resolution of less than a year, and thus provides
a more accurate estimation of trend parameters and
change points. Finally, we test the proposed algorithm
on global surface and ocean temperature to find a
piecewise linear trend.

II. METHOD

The GACD method assumes that the time series has
several regimes, while the model of the time series
in each regime has constant statistical parameters, and
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the parameters of these regimes are different from
each other. Then, the algorithm finds the best values
of change points between the regimes, and also the
sequence that the regimes appear in the time series [8].
Let x(t) 2 Rn be a multidimensional time series over

t = {1, . . . , T} with C regimes. The model of the time
series in each regime could be a function of time or a
probability density function:

• Function f of time and other inputs u(t) 2 Rm

if they exist), where ✓c is the set of parameters in
the c-th regime. Also, p and q are the order of the
lagged inputs and the lagged outputs respectively. For
this case, the model of time series and the distance

function d (x(t), ✓c) between the time series at time t
and the model of the c-th regime is defined as below.

x(t) = f(x(t� 1), ..., x(t� p),

u(t� 1), ..., u(t� q), t, ✓c) (1)

d(x(t), ✓c) = kx(t)� f(x(t� 1), ..., x(t� p),

u(t� 1), ..., u(t� q), t, ✓c)k2 (2)

• Probability density function f , where the u(t) 2
Rm is the set of covariates. For this case, the model of
time series and the distance function using the negative
log-likelihood can be defined as:

P (X = x(t)) = f(x(t)|u(t), ✓c) (3)

d (x(t), ✓c) = ` (f(x(t)|u(t), t, ✓c)) (4)

Then, the problem of time series modeling is defined
as a minimization problem in Eq. 5.

min
µ,✓

TX

t=1

CX

c=1

µc(t).d (x(t), ✓c) (5)

where µc(t) 2 {0, 1} is the regime membership function
indicating whether the data at time t belongs to the
c-th regime or not. The change points occur at times
when the values of µc(t) are changed. For example, if
µ2(50) = 0 and µ2(51) = 1, then the regime 2 is started
at the change point t = 51. Since data at each time

belongs to only one of the regimes, hence
CP
c=1

µc(t) = 1

for t = {1, ..., T}. The problem in Eq. 5 is a non-
convex mixed-integer optimization with two sets of
unknown parameters, the regime membership function
µc(t) and the model parameters ✓c. It is common to add
an assumption to the problem that the number of change
points is known and equals to W . The optimal value of
these hyper-parameters (C and W ) can be selected by
information theory methods such as BIC [9].

In the GACD, A population of individuals are gen-
erated, while each individual represents a possible
solution for the problem of change detection. Each
individual is a string of numbers, where the first W
strings are change point times and the next W + 1
strings represent the order of regimes. For example,
the individual of Fig. 1 shows a sample solution for
a problem with T = 100, and C = W = 3. This
individual represents that the regime 1 is active in time
frames of [1,9] and [40,69]. In a similar way, regime 3
is active in [70,100].
Since each individual shows the starting and ending

times of each regime, it is possible to extract a unique
regimes membership function from each individual.
Thus, the regimes parameters ✓c and error of modeling
can be found using the statistical inference. For this aim,
the following optimization should be solved for each
of the C regimes and t 2 c-th regime, using maximum
likelihood or least-square. The value of E is assumed
as cost of the corresponding individual.

E = min
✓

TX

t=1

d (x(t), ✓c) (6)

The procedure of optimization using genetic algo-
rithm starts with generating a random population of
individuals like Fig. 1. Then, the crossover and muta-

tion operators are applied to the population members
to generate new individuals. The crossover operator
selects two members of population, and combines them
to generate two new offsprings which are then added
to the population. The mutation operator, selects an
individual, generates a new offspring by applying a
slight modification, and then add the offspring to the
population. Since each individual represents both the
change point times and order of regimes, 50% of
crossover and mutation are applied to the change points,
and 50% are applied to the regime sequences. For
each new member of the population, the value of
cost is calculated using Eq. 6. Then, those members
of the population with higher (worse) values of cost
are deleted from the population. The procedure of
{selection, crossover, mutation, deleting} is repeated
for enough number of generations until the population
converges to an individual with a lowest cost. This
individual represents the best values for change points
and order of regimes [8].
This procedure should be repeated several times for

different possible values of number of regimes C and
number of change points W . In each case, the value
of BIC is found by Eq. 7, where n is the number of
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Fig. 1. A sample individual for a time series with length of 100,
three change points and three regimes

estimated parameters for each regime. For example if
each regimes has a Gaussian model, there are n = 2
(mean, variance) estimated parameters for each regime.
The model with lowest BIC is selected as the best
model.

BIC(C,W ) = �2⇥ ln(E) + ln(T )⇥ n (7)

III. EVALUATION

The GACD method is applicable to a wide range
of statistical or regression model. In this paper, we
test the method for finding the linear trend of global
land and ocean temperature anomaly. The monthly
data in the time range of [1880, 2016] can be down-
loaded from https://www.ncdc.noaa.gov/monitoring-
references/faq/anomalies.php.
Suppose that the time series x(t) is defined at t =

{1, . . . , T} and the linear trend in the c-th regime is
in the form of x(t) = �0c + �1ct + ✏(t). Furthermore,
let the correlated noise be ✏(t) = ⇢c✏(t � 1) + w(t),
where w(t) = N (0,�2

c ). The coefficients �0c, �1c and
⇢c are the intercepts, slopes, and AR(1) coefficients of
the time series in the c-th regime. The goal of GACD
is to find these parameters such that the norm of w(t)
is minimized. The Euclidean distance between the time
series and the model of the c-th regime is defined as:

d(x(t),�0c,�1c, ⇢c) = k[x(t)� (�0c + �1c.t)]

� ⇢c[x(t� 1)� (�0c + �1c.(t� 1))]k2 (8)

If the noise term ✏(t) of the time series in each
regime is uncorrelated, ordinary least square (OLS) can
find the trend parameters in a closed form solution
[10]. However, in the case of correlated residuals, other
methods need to be utilized. Zhang et al. compared
the performance of different methods in estimating
the magnitude and statistical significance of trends in
time series with AR(1) and showed that the estimation
with Generalized Least Square (GLS) is better than
non-parametric methods for longer time series (i.e.
T > 80) [11]. Since the maximum likelihood of the

linear trend with AR(1) noise doesn’t have a closed
form solution, the linear trend and AR(1) coefficient
are commonly calculated by Feasible Generalized Least
Square (FGLS). Here, we use the Prais-Winsten method
[12] to find coefficients of linear regression and AR(1)
and calculate the cost of each individual.
Using BIC, we found that the optimal number of

regimes is 5 with 4 change points between them. Fig
2(a) shows the time series with fitted piecewise linear
trend. The change points are in 1913, 1933, 1945 and
1964. The results of our analysis can be compared
with similar studies [6]. Figure 2(b) and 2(c) show the
autocorrelation of ✏(t) and w(t). It can be seen that by
considering the AR(1) component, the residual of trend
detection is almost uncorrelated.
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Fig. 2. (a) Global temperature and fitted piecewise linear trend
(b) The autocorrelation of residuals ✏(t). (b) The autocorrelation of
residuals w(t) after fitting the trend.
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PATTERN EXTRACTION IN DYNAMICAL SYSTEMS
USING INFORMATION GEOMETRY: APPLICATION
TO TROPICAL INTRASEASONAL OSCILLATIONS

Eniko Székely1, Dimitrios Giannakis1

Abstract—Datasets generated by dynamical systems are
increasingly large both in sample size and dimensionality,
and require new data analysis techniques that incorporate
temporal information to process the large amount of ob-
servations. The framework that we propose here operates
in spaces of probability measures induced by observables
of the dynamical system rather than the more con-
ventional machine learning approaches operating in the
original data space. This allows us to use techniques from
information geometry to study the dynamical evolution of
observables. Dimension reduction is further employed to
extract meaningful temporal and spatiotemporal patterns
from the observations. The method is applied to the
Lorenz 63 system and to real-world observations of the
realtime multivariate Madden-Julian oscillation (RMM)
index.

I. INTRODUCTION

Dynamical systems are inherent to a vast array of
applications, and it is worthwhile looking at the mul-
titude of data analysis techniques available in the data
mining and machine learning literature to analyze them.
However, most existing machine learning techniques
often consider the observations to be independent and
identically distributed and do not take into account the
temporal information (e.g., the time ordering of the
data) which is directly linked to the dynamical evolution
of the system.
The most common approach to pattern extraction in

dynamical systems is to work in ambient data spaces,
and compute the eigenfunctions of a covariance [1],
[2], [3] or kernel [4], [5] operator defined on the data
manifold. When working with dynamical systems it
is important to consider the dynamical evolution of
the system, and this is often achieved by embedding
the data into the Takens time-lagged embedding (delay
coordinate) space [6], [7]. A different approach that has

Corresponding author: E. Székely, eszekely@cims.nyu.edu
1Courant Institute for Mathematical Sciences, New York University,
New York, NY 10012

been successfully applied to the analysis of nonlinear
dynamical systems extracts the eigenfunctions of the
Koopman (shift, composition) operator governing the
evolution of observables in the phase space [8], [9],
[10], [11], [12], [13]. However, in recent years there
has been an increased interest in trying to uncover the
dynamical processes by working in probability spaces
[14], [15], [16], [17] where techniques from information
geometry [18], [19] can be further employed. The
current work lies at the intersection of three fields,
namely machine learning, information geometry, and
dynamical systems theory.

II. METHOD

Let (X,BX , t, µ) be a continuous-time determinis-
tic ergodic dynamical system, where X is a compact
topological space equipped with its Borel �-algebra
BX ,  t : X 7! X with t 2 R is the flow map, and µ is a
 t-invariant probability measure. Let also f : X 7! Rd

be a d-dimensional vector-valued observable over the
state space, and T = [��t, 0] a closed time interval.
We consider that we have at our disposal a time-
ordered sequence {y1, y2, . . . , yN} of d-dimensional
measurements yi = f(xi) of f taken at the states
xi =  (i�1) �t(x1) 2 X for some initial state x1 and
sampling interval �t. We consider to have access to only
partial observations of the dynamical system through
the observable f .

Trajectories along the dynamical system induce prob-
ability measures over the measurable space defined by
f . For every x 2 X we can define the probability
measure px : B(Rd) 7! [0, 1] such that

px(S) =
�({t 2 T | f( t(x)) 2 S})

�t
, S ⇢ Rd, (1)

where � is the Lebesgue measure over T .
The set S = {px | x 2 X} of these probability

measures forms a statistical manifold equipped with a
natural Riemannian metric, i.e., the Fisher information
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metric. This allows us to further use techniques from
information geometry to study the evolution of observ-
ables of the dynamical system. In practice, we work
with discrete probability measures, and make no as-
sumptions on the shape of the probability distributions.
This positions the present work in the nonparametric
case where we use kernel density estimation (KDE)
techniques [20] to estimate the PDFs in eq. (1).
Statistical distances, i.e., divergences, on a statistical

manifold, such as the Hellinger distance further used in
this paper, measure the amount of information between
two probability density functions (PDF). The squared
Hellinger distance between two discrete d-dimensional
distributions p̂xi

and p̂xj
with densities ⇢̂xi

and ⇢̂xj
,

respectively, is defined as

d2H(p̂xi
, p̂xj

) =
1

2

���
p

⇢̂xi
�
q

⇢̂xj

���
2

2

=
1

2

QX

l=1

✓q
⇢̂l
i
�
q

⇢̂l
j

◆2

,
(2)

where Q is the number of evaluation points in KDE.
The Hellinger distance is used to define a symmetric

and positive definite kernel over the space of these
probability measures px. The squared Hellinger distance
is negative definite [21], and any negative definite kernel
can be used to define a positive definite kernel using
the Gaussian kernel kH = e�

d
2
H

2"2 , where " is the kernel
width.
A natural class of scalar-valued observables on S

are eigenfunctions of the Laplace-Beltrami operator
associated with the Fisher information metric and the
Gaussian kernel, which we approximate here using the
Diffusion Maps algorithm of Coifman and Lafon [22]:

L�j = �j�j , (3)

where L is a discrete Laplacian operator associated
with kH (constructed using the Diffusion Maps with
normalization parameter ↵ = 1), �j are the eigen-
functions, and �j are their associated eigenvalues. The
Laplace-Beltrami eigenfunctions capture temporal and
spatiotemporal patterns of interest of the dynamical
system, and are useful for dimension reduction and
feature extraction.

III. EXPERIMENTS

A. Lorenz attractor
In this first experiment, we consider the Lorenz 63

mathematical model [23] initially proposed as a simple
model for atmospheric convection, which consists of
three ordinary differential equations:

d!1

dt
= �(!2�!1),

d!2

dt
= !1(⇢�!3)�!2,

d!3

dt
= !1!2��!3,

where !1,!2,!3 are the system states, t is the time,
and �, ⇢,� are the system parameters. We consider here
the typical parameter values for the Lorenz system: ⇢ =
28,� = 10,� = 8/3. The embedding in R3 is given by

F : X 7! R3, F = (f1, f2, f3),

f1(x) = !1(x), f2(x) = !2(x), f3(x) = !3(x).

We generated N = 66, 828 points starting at the ini-
tial point (0, 1, 1.05) for the time interval T = [0, 500],
after having removed the first 150 (transient) points.
The probability measures were estimated using KDE
with an embedding window of �t = 30 timesteps
and q = 50 evaluation points per dimension. The
parameters of the Diffusion Maps algorithm were set
to k = 2, 000 nearest neighbors, and " = 0.4 the width
of the Gaussian kernel. The Lorenz 63 system is highly
nonlinear and non-periodic, and feature extraction is
therefore a challenging problem.

Fig. 1. Leading Diffusion Maps eigenfunctions of the Lorenz
63 system partially observed through f = (f1, f2). The first
eigenfunction is the constant vector of ones.

The leading Laplace-Beltrami eigenfunctions for the
system partially observed through f = (f1, f2) are
shown in Fig. 1. The eigenfunctions �j capture different
patterns of slowly varying timescales of the system,
while faster varying timescales emerge as we go deeper
in the eigenfunction spectrum. Figure 2 shows examples
of one-dimensional time series and two-dimensional
representations of the Diffusion Maps eigenfunctions
for the system partially-observed through f = (f1, f2).
In this case, eigenfunction �2 represents the two wings
of the Lorenz attractor, i.e., positive and negative values
correspond to the left and right wing of the attractor,
respectively (see also Fig. 1); eigenfunction �3 repre-
sents the variation within each wing with positive values
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corresponding to points further apart from the inter-
section of the wings, while negative values correspond
to points closer to the intersection; and eigenfunction
�4 represents a switch between the wings. We tested
our algorithm for robustness using the following values:
�t 2 [30, 50], k 2 [1000, 5000], " 2 [0.2, 1], and the
results are robust within these ranges.
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Fig. 2. Top: Time series of the Diffusion Maps eigenfunctions of
the Lorenz 63 system partially observed through f = (f1, f2) used
in the spatial reconstructions in Fig. 1 for the first 10,000 samples.
The first eigenfunction is the constant vector of ones. Bottom:
Examples of two-dimensional representations of the eigenfunctions.

B. Realtime multivariate MJO (RMM) index
In the second experiment we extract temporal pat-

terns of the realtime multivariate Madden-Julian oscil-
lation (RMM) index [24]. The dominant boreal winter
tropical intraseasonal oscillation (ISO) is the well-
known Madden-Julian oscillation (MJO; [25], [26]),
a 30-90-day eastward-propagating pattern with zonal
wavenumber 1-4. Among the multitude of indices for
MJO, the RMM index is the most common measure
of ISO activity used all year-round, both for boreal
winter and boreal summer activity. RMM is a combined
measure of the first two empirical orthogonal functions
(EOFs) of bandpass-filtered, and equatorially averaged
outgoing longwave radiation (OLR) and 200hPa and
850hPa zonal wind data.
The dataset for the RMM index covers 23 years from

September 1983 to June 2006, sampled once a day. The
parameters that we use for extracting the eigenfunctions
are as follows: k = 100 the number of nearest neigh-
bors, " = 0.1 the width of the Gaussian kernel, and

�t = 60 days the embedding window. We chose �t =
60 days as it represents the average time of an MJO (30-
90 days). The correlation between the first non-constant
eigenfunction �2 and the averaged RMM index shown
in Fig. 3 is of 0.9359 (both have been normalized).
This shows that the eigenfunctions detected using our
framework recover intrinsic properties of the statistical
manifold, i.e., here �2 recovers the mean of the PDFs
on the manifold. The next two eigenfunctions {�3,�4}
are shown in Fig. 4. We are working on interpreting the
other eigenfunctions in the spectrum [27]. For example,
we find that some of the eigenfunctions are strongly
correlated (⇡ 0.6� 0.7) with the standard deviation of
the RMM index over time windows. Having the mean
and the standard deviation could be very useful for
example for prediction when the past trajectory of the
dynamical system is known. We tested our algorithm for
robustness using the following values: �t 2 [30, 90],
k 2 [50, 1000], " 2 [0.05, 1], and the results are very
robust within these ranges.
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Fig. 3. The second eigenfunction �2 vs. the averaged RMM index
over a sliding window with �t = 60 days.
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Fig. 4. Eigenfunctions {�3,�4} associated with the RMM index.

IV. CONCLUSION

We introduced a new framework for pattern ex-
traction in dynamical systems that relies on machine
learning and new concepts from information geometry
on statistical manifolds. We demonstrated on a mathe-
matical model, i.e., the Lorenz 63 system, and on real-
world observations of the realtime multivariate MJO
index, the efficiency and robustness of our technique.
In ongoing work [27], we are interested in better
understanding the eigenfunctions and their connection
to intrinsic properties of the dynamical system.
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SZÉKELY, GIANNAKIS

ACKNOWLEDGMENTS

This research was supported by ONR MURI grant
N00014-12-1-0912 and ONR grant N00014-14-1-0150.

REFERENCES

[1] N. H. Packard et al., “Geometry from a time series,” Phys.
Rev. Lett., vol. 45, pp. 712–716, 1980.

[2] D. S. Broomhead and G. P. King, “Extracting qualitative
dynamics from experimental data,” Phys. D, vol. 20, no. 2–3,
pp. 217–236, 1986.

[3] M. Ghil et al., “Advanced spectral methods for climatic time
series,” Rev. Geophys., vol. 40, 2002.

[4] D. Giannakis and A. J. Majda, “Nonlinear Laplacian spectral
analysis for time series with intermittency and low-frequency
variability,” Proc. Natl. Acad. Sci., vol. 109, no. 7, pp. 2222–
2227, 2012.

[5] T. Berry, R. Cressman, Z. Greguric Ferencek, and T. Sauer,
“Time-scale separation from diffusion-mapped delay coordi-
nates,” SIAM J. Appl. Dyn. Sys., vol. 12, pp. 618–649, 2013.

[6] F. Takens, “Detecting strange attractors in turbulence,” in
Dynamical Systems and Turbulence, Warwick 1980, vol. 898 of
Lecture Notes in Mathematics, pp. 366–381, Berlin: Springer,
1981.

[7] T. Sauer, J. A. Yorke, and M. Casdagli, “Embedology,” J. Stat.
Phys., vol. 65, no. 3–4, pp. 579–616, 1991.
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A PHYSICS-BASED APPROACH TO
UNSUPERVISED DISCOVERY OF COHERENT
STRUCTURES IN SPATIOTEMPORAL SYSTEMS

Adam Rupe1,2, James P. Crutchfield1, Karthik Kashinath2, Mr Prabhat2

Abstract—Given that observational and numerical cli-
mate data are being produced at ever more prodigious
rates, increasingly sophisticated and automated analy-
sis techniques have become essential. Deep learning is
quickly becoming a standard approach for such analyses
and, while great progress is being made, major challenges
remain. Unlike commercial applications in which deep
learning has led to surprising successes, scientific data
is highly complex and typically unlabeled. Moreover,
interpretability and detecting new mechanisms are key
to scientific discovery. To enhance discovery we present a
complementary physics-based, data-driven approach that
exploits the causal nature of spatiotemporal data sets
generated by local dynamics (e.g. hydrodynamic flows).
We illustrate how novel patterns and coherent structures
can be discovered in cellular automata and outline the
path from them to climate data.

I. MOTIVATION

Incredibly complex and sophisticated models are cur-
rently employed to simulate the global climate system
to facilitate our understanding of climate as well as
increase our predictive power, most notably in regards
to the effects of increased carbon levels. Our ability
to simulate however has rapidly outpaced our ability to
analyze the resulting data. Often the climate community
resorts to rather simplistic data analyses, such as linear
decomposition methods like EOF analyses [1], [2] or
detecting (linear) trends in climate data time series [3].
Nonlinear and more sophisticated techniques are rarely
brought to bear. Here we focus on one particular aspect
of nonlinear dynamical systems analysis, the detection
and discovery of coherent structures, such as cyclones
and atmospheric rivers in climate data.
Coherent structures were introduced in the study of

fluid dynamics and were initially defined as regions
characterized by high levels of coherent vorticity, i.e.

Corresponding author: A Rupe, atrupe@ucdavis.edu 1Complexity
Sciences Center, Department of Physics, University of California
Davis 2NERSC, Lawrence Berkeley National Laboratory

regions where instantaneously space and phase cor-
related vorticity are high. The contours of coherent
vorticity constitute an identifier to the structure’s bound-
aries. However, pinning down this concept of coherent
structures with rigorous and principled definitions or
heuristics which produce consistent results across a
wide class of physical systems is a challenging and
open problem [4]. Climate practitioners are left with
more ad hoc approaches [5], [6], [7] which can make it
difficult to draw meaningful conclusions from analysis
[8].
Deep learning attempts to sidestep this issue by learn-

ing how to identify coherent structures from labeled
data [9]. However, we currently can not peer into the
box to find out exactly what the defining characteristics
a deep net uses to identify structures. Current state of
the art achieves semi-supervised bounding box identi-
fication [10]. The ultimate goal would be unsupervised
segmentation; that is, a pixel-level identification without
reliance on labeled training data. It is not yet clear how
to achieve this.
Like deep learning, our theory [11] approaches coher-

ent structures from a rather different (and more general)
perspective than the original context of Lagrangian
coherence principles in fluid flows.

II. METHOD

Starting from basic physics principles, coherent
structures can most generally be seen as localized

broken symmetries. Two questions naturally arise; what
are the symmetries which are broken and how can we
identify such symmetry in a diverse range of spatiotem-
poral systems? Coherent structures can be found in a
variety of systems with different physical properties.
Convection cells in hydrodynamic systems and spiral
waves in reaction-diffusion systems, for example. It
is clear that the common thread is the underlying
nonlinear dynamics of these systems [12], [13], [14].
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A framework known as computational mechanics

[15], [16] has been developed to study pattern and struc-
ture in this dynamical context. The canonical object of
computational mechanics is the ✏-machine [17], a type
of stochastic finite-state machine known as a hidden
Markov model, which consists of a set of causal states
and transitions between them. The causal states are
constructed from the causal equivalence relation.
 �x i ⇠✏

 �x j () Pr(
�!
X | �X =  �x i) = Pr(

�!
X | �X =  �x j).

In words, two pasts  �x i and  �x j are causally equivalent
if and only if they make the same prediction for
the future

�!
X ; that is, they have the same conditional

distribution over the future. The causal states are the
unique minimal sufficient statistic of the past to predict
the future.
For our application to coherent structures we use a

straightforward spatiotemporal generalization known as
the local causal states [18]. For systems which evolve
under some local dynamic and information propagates
through the system at a finite speed, it is quite natural
to use lightcones as local notions of pasts and futures.
Formally, the past lightcone of a spacetime point x(~r, t)
is the set of all points at previous times that could
possibly influence it. That is,

`�(~r, t) ⌘
�
x(~r0, t0) | t0  t and ||~r0 � ~r||  c(t0 � t)

 

where c is the finite speed of information propagation
in the system. Similarly, the future lightcone is given
as all the points at subsequent times that could possibly
be influenced by x(~x, t).

`+(~r, t) ⌘
�
x(~r0, t0) | t0 > t and ||~r0 � ~r|| < c(t� t0)

 

The choice of lightcone representations for both
local pasts and futures is ultimately a weak-causality
argument; influence and information propagate locally
through a spacetime site from its past lightcone to its
future lightcone.
The generalization of the causal equivalence relation

is straightforward. Two past lightcones are causally
equivalent if they have the same conditional distribution
over future lightcones.

`�i ⇠✏ `
�
j () Pr

�
L+|L� = `�i

�
= Pr

�
L+|L� = `�j

�

This local causal equivalence relation over light-
cones is designed around an intuitive notion of optimal
local prediction [18]. At some site x(~r, t) in spacetime,
given knowledge of all past spacetime points which
could possibly affect x(~r, t), i.e. its past lightcone
`�(~r, t), what might happen at all subsequent spacetime
points which could be affected by x(~r, t), i.e. its future

lightcone `+(~r, t)? Local causal states are minimal suf-
ficient statistics for optimal local prediction. Moreover,
the particular local prediction done here uses lightcone
shapes, which are associated with local causality in the
system. Thus it is not direct causal relationships (e.g.
learning equations of motion from data) that the local
causal states are discovering. Rather, they are exploiting
a kind of causality in the system (i.e. that the future
follows the past and that information propagates at a
finite speed) in order to discover spacetime structure.
Once local causal states have been inferred from

data, each site in a representative spacetime field can
be assigned its local causal state label in a process
known as causal filtering [11]. This is how we achieve
unsupervised image segmentation. Though it must be
clearly stated that this is a spacetime segmentation, and
not a general image segmentation algorithm, exactly
because it works only in systems for which lightcones
are well-defined.
Using the local causal states we can, in a general and

principled manner, discover dynamical spatiotemporal
symmetries in a system from data. These symmetry re-
gions are known as domains and are defined as regions
where the associated local causal state field, after causal
filtering, has spacetime symmetry tilings. A coherent

structure is then defined as a set of spatially localized,
temporally persistent (in the Lagrangian sense) non-
domain local causal states.
From prior work by Hanson and Crutchfield [19],

[20], [21], the domains of 1-D cellular automata are
well understood as dynamically invariant sets of ho-
mogeneous spatial configurations. There is strong em-
pirical evidence [11] that the domains of cellular au-
tomata discovered by the local causal states are exactly

the domains as described by Hanson and Crutchfield.
Therefore the local causal states are discovering spa-
tiotemporally symmetries which are externally well-
defined. In turn there is a strong agreement between the
description of coherent structures in cellular automata
discovered by local causal states and the coherent
structures as described by Hanson and Crutchfield.

III. TOWARDS CLIMATE

With consistent and readily interpretable results on
cellular automata we are now working on generalizing
to real-valued spatiotemporal systems, with specific
emphasis on canonical fluid flows. Others have done
preliminary work on this generalization, where an extra
discretization (typically via clustering) step is needed
during reconstruction [22], [23].
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(a) Raw spacetime field of ECA 54

(b) Local statistical complexity filter of (a)

(c) Local causal state coherent structure filter of (a)

(d) Vortex street in atmosphere

(e) Vortex street complexity field

(f) Colored vortices on Cori

Fig. 1. Visualization of results on 1D cellular automata (fully-discrete spatiotemporal models) and projected analogous results for fluid
systems. CA results for elementary cellular automaton rule 54 are given in (a)-(c). The raw spacetime field is shown in (a) and a
corresponding local statistical complexity field in (b). From the local statistical complexity filter, which is a qualitative information-
theoretic “rare event” filter, it is clear there are coherent structures on top of a background domain, but the four different structures can
not be explicitly distinguished and identified. Thus a more detailed coherent structure filter using our unsupervised local causal state
segmentation analysis is given in (c). Here states participating in the domain spacetime symmetry tiling are colored green, and other
non-domain states which satisfy our definition for a coherent structure are colored according to the structure(s) they belong to. Interaction
states not associated with domain or a coherent structure are in black. An outline of analogous results for vortex shedding is shown in
(d)-(f). (d) A vortex street in the cloud layer over the arctic (Source: https://photojournal.jpl.nasa.gov/catalog/PIA03448). (e) The local
statistical complexity of the vorticity field for a canonical vortex street simulation, taken from [22], analogous to the qualitative structure
filter of (b). (f) Closer to the more detailed and principled coherent structure filter of (c) are the colored vortices displayed on the cover
of the NERSC Cori HPC system. We emphasize the analogy is not that learning about coherent structures in CAs will give insight into
fluid and climate structures. Rather, it is to illustrate how we foresee our approach will discover coherent structures in fluids and climate,
in much the same way we can currently discover structures in CAs.

These groups have also used local causal states
for coherent structure detection, including real-valued
applications like fluids and even climate [22]. However,
they have all relied on the “local statistical complexity”
[24], which is the point-wise entropy over local causal
states. At best this is simply a qualitative filtering tool
which aides in visual recognition of structures and at
worst can give both false positive and false negative
misidentification. We are the first to give a principled

and rigorous method for coherent structure discovery
and description using the local causal states, and are
working to generalize this more detailed analysis to
real-valued systems. In doing so we hope to move
beyond the scope of data visualization these prior
groups were working in, and facilitate novel scientific
discovery, particularly in climate science.

On the theory side, we must confirm our methods
on known fluid structures. As the theory is founded in
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basic dynamical principles it is likely to apply without
much modification in fluid systems. We will also begin
to explore whether our methods can facilitate addi-
tional mechanistic insight beyond structure discovery.
For example, whether there are any links between the
local causal state analysis and thermodynamic consid-
erations.
On the implementation side, the computational costs

of local causal state reconstruction in more complex
systems will require fully-distributed execution on large
HPC machines. This will certainly be the case for TB
scale climate data sets we ultimately are interested
in. As our primary objective is automated coherent
structure discovery, moving from canonical fluid flows
to large-scale climate data will largely be a matter
of computational scaling. With access to HPC experts
from the Intel Big Data Center and the NERSC Cori
system at Lawrence Berkeley National Laboratory we
feel well-positioned to tackle these computational chal-
lenges.
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TOWARDS A STATISTICAL MODEL OF TROPICAL
CYCLONE GENESIS

Arturo Fernandez1,2, Karthik Kashinath2, Jon McAuliffe1, Prabhat2, Philip B. Stark1, Michael Wehner2

Abstract—Tropical Cyclones (TCs) are an important
class of extreme weather phenomenawith a high impact
on humans. Their formation/genesis, evolution, intensifi-
cation, and dissipation over land are important problems
in climate science. This paper explores how accurately
a statistical model can predict TC genesis in numerical
models. We use the TECA software to extract TC
trajectories from CAM5.1 model output, then apply L1-
regularized logistic regression to create a predictive model
with interpretable results. The active variables selected by
the analysis confirm earlier hypotheses about TC genesis.

I. MOTIVATION

Numerical global circulation models allow re-
searchers to explore the contributions of environmental
variables that are inaccessible to direct measurement.
The space-time resolution of CAM5.1 is especially
useful for simulating real-world weather dynamics and
allowing statistical methods to discern what lead times,
time intervals, space resolution, and measured variables
are the most useful in predicting genesis events. The
goal of this study is to develop accurate TCG forecasts
as well as test the relationship between measured vari-
ables and TC formation globally. Several studies have
investigated TCG. Typically, studies reduce the high-
dimensional collection of spatio-temporal and environ-
mental variables to aggregate measures motivated by
previous climatological studies. Notably, recent genesis
potential metrics [1] have foregone Sea Surface Tem-
perature (SST or TS) in favor of alternative intensity
measures [2]. Other studies replace climatological in-
tensity metrics with probabilities from statistical models
([3], [4], [5], [6]).
Analysis of TC activity in a single basin does not

provide much insight into the mechanism that leads to
TCG. An analysis of the Northwest Pacific (NWP) [6],
Australian (AUS) [7], or North Atlantic (NATL) ([8],
[9]) basin will often say more about a seasonal weather

Corresponding author: Arturo Fernandez, arturof@berkeley.edu
1Department of Statistics, University of California, Berkeley
2Lawrence Berkeley National Lab, Berkeley, CA

phenomenon, such as the Madden-Julian Oscillation
(MJO) or the African Easterly Waves (AEW), than
the actual physical variables that influence genesis.
The present study is unique and expands on previous
works by developing a single probabilistic model for
TCG across the globe. Such a framework makes it
possible test the uniformity of the relationships be-
tween the physical environment and TCG probabilities
across space and time. Previous studies have had a
limited ability to discover TCG mechanisms because
they have included variables such as the specific time
and position. Although these models are predictive, the
space-time variables are proxies for important physical
features such as temperature and precipitation, and
therefore mask their role in TCG. Here, we transform
the raw data into a standardized form that retains the
interpretability of the original measurements.

II. METHOD

We analyze data from two sources. The first is
the Community Atmospheric Model (CAM5.1), run
at Lawrence Berkeley National Lab’s (LBNL) Na-
tional Energy Research Scientific Computing Center
(NERSC) facility. It consists of a 17-year simulation
that emulates global climate conditions starting in 1990.
This dataset includes 16 state variables (winds, tem-
perature, humidity, etc.) at 3 hour intervals at a spatial
resolution of 0.23� by 0.31� or approximately 25 km at
the equator. The second data source consists of tropical
cyclone trajectories detected by the Toolkit for Extreme
Climate Analysis (TECA 1.0) [10]. We define Tropical
Cyclone Genesis (TCG) Events to be the first recorded
track for a given storm system.
To investigate the physical factors that lead to TCG,

we piece together lag vectors that correspond to se-
quential lead times for a 24-hour history. These lag
vectors are formed by piecing together dv state vectors.
A state vector contains the values of a state variable
in a grid of height dy by width dx, centered around
a TCG event, that has been flattened. Ultimately, the
covariate vector used for training the models is of size
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Fig. 1: Converting data to a covariate vector in Rd

d = dt ⇥ dv ⇥ dy ⇥ dx = 76880 since dt = 8,
dv = 10 (reduced from 16 due to redundancies), and
dy = dx = 31. This process is explained in Figure 1.

We use `1-regularized Logistic Regression (L1LR)
to predict and describe TCG events. Other tree-based
machine learning methods such as Extreme Gradient
Boosting (XGBoost) [11] were tried as well. L1LR
gave comparable accuracy results to XGBoost and is
easier to interpret, so only it is discussed here. This
linear, statistical model is used to predict whether an
environment will provide favorable conditions for TCG,
and not to model the physics of the real system. As seen
in Section III, the model’s performance justifies its use.
Consider a dataset {xi, yi}Ni=1, where xi 2 Rd is

covariate information (feature vector), yi 2 {0, 1} is
a class label, and N is the number of observed exam-
ples. Logistic regression (LR) models the probability
distribution of y, given covariate information x, as

p(y = 1|x; ✓) = �(✓Tx) =
1

1 + exp(�✓Tx)
(1)

where ✓ 2 Rd is the parameter vector for the model
and �(·) is the sigmoid function. Such a model is
typically fit by maximum likelihood estimation (MLE):
✓̂ = argmax✓

QN
i=1 p(yi|xi; ✓). This optimization prob-

lem can be regularized by adding an `1 penalty to bias
the estimate towards a sparse ✓̂. Expressed using the
log likelihood, the L1LR estimate is :

✓̂ = argmin
✓

NX

i=1

� log p(yi|xi; ✓) + �k✓k1 (2)

Adjusting � trades off between sparsity and model

Parameters Min Min Min Min
Vorticity TWC Thickness PSL

Strong Storms 1.6⇥ 10�4 0.8 50 400
Weak Storms 0.2⇥ 10�4 0.1 6.25 50

TABLE I: Storm Parameters

Examples Positive Negative
Training (years 1-13) 1149 1333
Test (years 14-17) 355 397

TABLE II: Sample Sizes

accuracy.
Here we define a positive example y = 1 as a strong

system and y = 0 as a weak system. Strong systems are
defined to have standard threshold parameters used by
TECA, whereas weak storms are captured by relaxed
parameters (see Table I).
Lastly, we note that there are clear differences be-

tween tropical cyclones in the Northern (NH) and South
Hemispheres (SH): their trajectories move away from
the equator in opposite directions and their vorticities
have opposite signs. We remedy this situation by simply
flipping state-variable grids along their vertical axis for
TCs in the SH (i.e. working with their mirror image).

III. EVALUATION

To arrive at our final model, we assessed the classi-
fication error, Receiver Operating Characteristic (ROC)
Area Under the Curve (AUC), and sparsity. First, we
compared different lag times and incrementally added
lag times to decide how much temporal information to
use. As lead times were increased, accuracy went down.
When additional lags were included, accuracy metrics
did not increase noticeably thus we decided to focus on
information available at a 3 hour lag time.
We evaluated our model’s accuracy on two test

datasets that were not used to fit the model. First, we
assessed its accuracy on a test set with strong and weak
systems (see Table II) . Secondly, we tested its ability
to classify randomly sampled points, in space and time,
with no TC track association as negative examples. We
call this the inactive data, or Test Set 2 in Table III.

Eval Set n Error AUC # Mis.
Test Set 752 0.165 0.916 124
Test Set 2 13,134 0 - 0

TABLE III: Model Accuracy
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Table III shows that the genesis of strong versus
weak systems can be classified with reasonably high
accuracy. Limits are expected since there exist strong
systems with no preceding weak tracks. The model
has an excellent AUC, which suggests that we can
obtain high accuracy for predicting strong systems with
relatively low cost in mis-labeling some weak systems
as strong. Nonetheless, the evaluation on inactive data
shows the model’s ability to control false alarms. Out of
the inactive evaluation points, none is misclassified. By
focusing on a difficult problem (differentiating between
strong and weak TCG), inactive points are much less
likely to be classified as leading to TCG.
Figure 2 displays the most accurate model on the

test set. Although the model has at least one non-
zero coefficient for every state variable, U850 (Zonal
wind at 850 mbar) and PSL (Sea Level Pressure) have
the largest coefficients. This suggests that U850 and
PSL are the most predictive state variables for TCG.
To confirm this, we developed a variable importance
measure by permuting the data spatially and across
samples, and then measuring the change in training
accuracy. Figure 3 confirms that U850 and PSL are the
most predictive variables with TS (Sea Surface Tem-
perature), QREFTH (Reference Height Humidity) and
PRECT (Total, convective and large-scale, precipitation
rate) also having recognizable importance. The model’s
wind patterns are related to known mechanisms such as
vorticity and the sea surface temperature pattern reflects
the warm core we would expect. Notably, stronger
systems are preceded by a more pronounced PSL local
minima and also have increased levels of humidity and
precipitation.

IV. CONCLUSION

Our results and the current literature make it clear
that much work remains to be done to understand
TCG. The current research helps connect global climate
models to the physics of TCG and might be useful
for developing early warning systems. Of course, the
current work addresses only model output and not ac-
tual atmospheric data; performance on real-world data
remains to be determined. We show that `1-regularized
logistic regression applied to a high-dimensional vector
of state variables can accurately differentiate between
strong and weak systems and correctly classify inactive
data. Future work includes testing on larger datasets and
testing more complex statistical methods, such as deep
neural nets.

Fig. 2: Final Model

Fig. 3: Variable Importance
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