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A B S T R A C T

Chemical contamination is ubiquitous in the indoor environment, but measurement options are often limited
outside of research studies. This is especially true for formaldehyde, a known carcinogen and irritant. The goal of
this project was to develop a novel screening tool: a smartphone-based app that can be paired with low-cost
colorimetric badges for detection of indoor formaldehyde. The target users include citizen scientists, concerned
citizens, public health nurses visiting homes, and researchers with relevant measurement needs. The user in-
terface was designed using a collaborative development model. Badges were exposed to air for 72 h, and the user
takes images that are analyzed in the phone. The app itself measures illumination (lightness) to determine color
change, which was associated with formaldehyde concentration (R2 = 0.8811, P < 0.0001). The detectable
range was 20–120 ppb and the standard deviation of readings was 10.9 ppb. Warnings were integrated into the
app to address current limitations, including sensitivity to extreme lighting conditions and elevated (> 80%)
relative humidity. Co-exposure to acetaldehyde or a VOC mixture did not interfere with measurement (P = 0.93,
P = 0.07, respectively). Overall, this screening tool can provide inexpensive, accessible information to users
about their formaldehyde exposure, which can inform further testing and potential remediation activities.

1. Introduction

Formaldehyde is ubiquitous in the indoor environment, where this
contaminant is released from various consumer products such as
pressed wood, adhesives, paints, cleaners, and more [1]. Exposure to
this compound can result in eye, nose, and throat irritation, and a range
of other non-clinical ailments. Formaldehyde is also a known human
carcinogen. Research began demonstrating the toxicity of this com-
pound more than 100 years ago [2]. Recent concerns have arisen due to
elevated presence in Federal Emergency Management Agency (FEMA)
trailers such as those provided after Hurricane Katrina in 2005–2006
and in flooring retailed by Lumber Liquidators in 2015 [3–6].

1.1. Formaldehyde measurement options

Currently, measurement options for citizen scientists and concerned
members of the general public are limited. A commonly-used method
for formaldehyde measurement involves collecting samples in 2,4-di-
nitrophenylhydrazine (DNPH) cartridges to derivatize formaldehyde
with later laboratory-based detection using high performance liquid
chromatography [7,8]. This technique requires specific sampling
equipment, uses expensive and complex analytical instruments, is prone
to contamination, and is nearly impossible for a citizen scientist to
perform. Other sampling technologies have recently been developed
[1,9–13], but to our knowledge, are not commercially available or
widely used by citizen scientists, and may also suffer from
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contamination either during transport or due to other compounds.
Right now, we are missing a low-cost, accessible screening tool for
formaldehyde in homes that may not require the same level of precision
as the DNPH method. Our previous survey of 147 individuals indicated
broad public interest in formaldehyde testing using smartphone tech-
nology. Poor reported health status was associated with increased de-
sire for testing (odds ratio for very good to excellent health 0.31, 95%
confidence interval 0.12–0.81). Location in our targeted area of com-
munity engagement was also associated with interest in testing [14].

1.2. Smartphone-based measurement

Smartphone technologies provide a new opportunity for for-
maldehyde detection. One downside to the currently available colori-
metric badges is the low accuracy due to visible color comparisons by
the human eye. This allows for concentration “binning” but not accu-
rate, quantitative results. Fortunately, the use of digital image proces-
sing technologies provide the opportunity to more accurately read the
color change on the badges that results from formaldehyde exposure as
a continuous variable. This is especially important for a compound such
as formaldehyde that is ubiquitous in the indoor environment, such that
concentration level is more informative than simple detection (yes vs.
no).

Others have also recognized the opportunity to pair colorimetric
sensors with Smartphone detection for accurate measurements [15–18].
In this paired system, the camera function of the smartphone is utilized
to record and analyze the color changes on the badge that occur as a
result of contaminant exposure. An image formation model describes
how the color images are produced by the camera that received light
reflected from the badge surface. Colors are dependent upon both the
material reflectance and the intensity of the environmental light. It is
generally impossible to measure the exact environmental lighting
conditions, so the colorimetric change is quantified using a color
change ratio (based on measurement of lightness or illumination) of
badge to a calibration patch [19,20]. Here, we refer to this as the color-
change ratio of lightness, where lightness is a relative value (unitless)
and is computed from standard RGB images with fixed value ranges. In
this case, the variant of the environment lighting is the same on the
reaction and calibration areas, leaving the material property as the only
variant accounting for the colorimetric change. This material property,
also known as the surface albedo, can be easily computed by analyzing
digital photos through extracting the color values of the reacting and
referencing area. The surface albedo correlates with the measured
formaldehyde concentration.

1.3. Goal of this work

The goal of the work described here was to develop a novel
screening tool for formaldehyde detection by pairing a color-changing
badge with a smartphone app (Fig. 1). The target user is a citizen sci-
entist or person concerned about formaldehyde exposure in their home
environment. The system may also be useful for visiting nurses in
asthma homecare programs [21], environmental health professionals,
or in certain epidemiological research studies depending on measure-
ment requirements. User input was invited at every stage of develop-
ment of the low-cost smartphone-based formaldehyde measurement
system to ensure that this technology is accessible and useful to the
public. Community engagement was sought from both a national net-
work of citizen scientists with high technological literacy and a com-
munity environmental group in a small city in southern Georgia with
average to low technological literacy. Existing colorimetric badges used
in occupational settings were modified by our industry partner for en-
hanced sensitivity in the residential environment and for an app-
friendly configuration. The system was calibrated on both Android and
iOS devices using exposure to known concentrations of formaldehyde.
Community feedback had been collected previously to assess public

interest in residential formaldehyde and home testing, willingness to
pay for test kits, smartphone access, and capacity to implement a multi-
day sampling protocol [14]. Upon completion of a beta version of the
app, community members were solicited to provide feedback about the
design, clarity, and functionality of this novel system; that feedback was
then incorporated into the app. The system was then field tested in 17
locations.

2. Methods

Our goal was to develop a smartphone app to measure changes in
color (illumination or lightness) of low-cost colorimetric badges due to
exposure to formaldehyde. Steps in this process included badge mod-
ification, prototype app development, quantification of color change
(also see information on the lighting model in supporting information),
system calibration, beta testing with feedback integration, field testing,
and statistical analysis.

2.1. Badge modification

We used modified SafeAir® [22] formaldehyde detection badges
(Morphix Technologies, Virginia Beach, VA) to detect formaldehyde
concentrations typically found in the indoor environment. The badges
are commonly used in occupational settings and were modified for use
with our system. Formaldehyde concentrations in indoor environments
may vary with time. These badges will measure the average con-
centration over the measured time period because they respond linearly
to the cumulative exposure. We requested that the badges display a
greater intensity of color change for a lower range of formaldehyde
exposure concentrations more common in residential environments. We
also requested adjustments to the layout of the badges to be more easily
read with the app and to incorporate a calibration area that does not
change color. We also evaluated a modified version of the ChromAir®

badges (referred to as “version 2” of the badge), but selected the
SafeAir® badges for use with our system due to increased precision and
a lower detection limit.

2.2. Prototype app development

The first steps of app development were to create a back-end image
processing method to measure formaldehyde concentration based on
substrate color change, and a front-end user interface for the app. The
required functionalities included: create multiple tests, take badge
image via camera before and after badge exposure, convert badge

Fig. 1. System overview.
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image into color change ratio and calculate the concentration result,
save multiple tests containing badge images and formaldehyde con-
centration results, request test data and user experience feedback from
users and incorporate relevant changes.

2.2.1. Prototype
The first step of app design was creating the framework of our

prototype. To facilitate organizing multiple tests, the main layout was
designed with a master-detail two-panel structure: table view and detail
view. The table view contains all existing tests with titles and dates, and
the detail view displays the whole process of a badge test, including
user input parameters, images taken by the camera, and access to data
upload surveys.

Our design strategy was closely related to the functional require-
ments and utilized object-oriented design, which is the process of
planning a system of interacting objects. The object-oriented design
structure was focused on the badge test, and for each test, we included
the unique ID, title, date, images as inputs, and result as output. For
memory efficiency, the test objects were stored in JSON format and
images were referred by path in the internal storage.

The main functional requirements fall into two categories: test
management and image processing. As shown in Fig. 2, the app allowed
the user to create a new test by inputting the test title, and the start time
was recorded after taking the “before” image. Afterward, the user has
access to view all existing tests via the table view and check details by
clicking a test in the list. For camera setup, the original plan was to use

the default camera embedded with the smartphone. However, default
parameters vary by phone manufacturer and model, and many of the
smartphone cameras in different systems are rather restrictive in the
customizable function settings (e.g. ISO level, aperture control). Thus it
is challenging to realize homogeneity in terms of colors and lighting
sensitivity across different smartphone cameras in different systems.
Therefore, in our app, we experimented with taking images with dif-
ferent parameters on different phones, and selected a set of the most
common parameters each for Android and IOS systems to minimize
variation (see Lighting Experiments section below). Our mathematic
model uses the calibration patch on the badge to account for environ-
mental variation, and thus we expect the differences in camera para-
meters can be partially addressed. For details on the mathematical
model used, please refer to the supporting information (Fig. S1). Briefly,
color change is measured by the color change ratio of lightness by
comparing the color changing area to the calibration (non-changing)
patch. Lightness is a relative value (unitless) and is computed from
standard RGB images with fixed value ranges. Normally the lightness of
the actual environment is measured through the magnitude of the
analogue electrical pulses of the light sensor chips (with units
W∙m−2∙sr−1 where sr refers to steradian). However the digitization
process of the smartphone built-in camera quantifies these pulses into
the unitless RGB values. Therefore the lightness values represent the
magnitude of the lighting condition in a relative sense (up to a scale).
The “color change ratio” in our model takes advantage of the fact that
the reaction and calibration patch undergo the same light illumination
and by dividing these values, their units can be cancelled.

2.2.2. User interface design
The initial user interface for the detail page contained multiple

functionalities, such as taking a photo of the surroundings of the test,
taking pre-exposure (“before”) and post-exposure (“after”) images, and
uploading data to a survey platform (Qualtrics). Surveys were intended
to engage users in creating a database of formaldehyde exposure in-
formation, and these included a survey about personal health and a
survey about environmental characteristics of the sampling location. A
unique non-identifiable code is automatically copied to user phone's
clipboard when leaving the app and can be pasted into the ID field in
the survey, which allows multiple survey and formaldehyde test entries
to be linked together without additional personal identifying informa-
tion.

2.3. Quantification of color change

2.3.1. Integration of user warnings
We identified key conditions that could lead to erroneous readings

throughout app development (Table 1). For each condition, we ana-
lyzed images taken under both suitable (no error) and unsuitable (may
cause an error) conditions. The parameter associated with each error,
such as lightness or saturation, was chosen based on the value with the
most substantial difference between conditions. Boundaries for warn-
ings were selected to be about halfway between extreme points mea-
sured in suitable and unsuitable conditions.

2.3.2. Lighting experiments
We also conducted lighting experiments to determine limits on

lighting conditions in the indoor environment for accurate calculation
of illumination values for the badge. When developing this application,
we needed to take clear images with no shadows and correct color
composition. We also tested the accuracy of the automatic camera
settings on the iOS and Android phones and compared to alternative
settings. To do this we purchased different types of lightbulbs and a
desk lamp, setting up the lamp 30.5 cm from the badge with the
lampshade horizontal to avoid shadows covering the badge. The types
of lightbulbs purchased were: 25 W Soft White, 40 W Clear, 40 W LED,
50 W Soft White, 60 W Crystal Clear and 60 W LED Soft White.

Fig. 2. Flow within app. Note that the research version also contained a man-
datory consent form upon the application start. If the user did not consent, then
the application would end.

S. Zhang et al. Building and Environment 148 (2019) 567–578

569



We photographed the color grid paper under three different manual
camera settings and auto adjust. Four settings (Table S2) were tested
using special color grid paper (Fig. 3). After each image was taken, they
were imported into Matlab and cropped by reaction area and calibra-
tion area. These cropped bitmaps from the orange and yellow blocks
were converted into the HSI (Hue, Saturation, and Intensity) color
model [23]. We found that the color-changing reaction of the badge
changes the color lightness. Lightness is correlated with the intensity
value of the HSI transformation, so we then calculated the ratios of the
means of color intensity (I) of each image. We used the color grid paper
instead of the actual badge because the printed color will not change,
thus providing a good reference to determine the influence caused by
the camera settings.

2.3.3. Algorithm
The mathematical model is based on the color change ratio (illu-

mination or lightness) between the calibration patch and the chemical
badge. Fig. 4 highlights the areas in green and red, respectively. These
two blocks of bitmap were cropped and calculated for the mean value of
the color intensity I, and the ratio = I(red)/I(green). We confirmed a
linear relationship between exposure (formaldehyde concentration in
ppb∙hr) and the color change ratio.

2.4. Calibration

Calibration was performed by subjecting the badge sensor to several
known concentrations of formaldehyde maintained in a 50 L small-scale
environmental chamber (0.5 m by 0.4 m by 0.25 m, Fig. S2). The test
system included a pressurized clean air supply and a Dynacalibrator
containing a permeation tube at a constant temperature and flow rate to
provide the desired formaldehyde generation rate (Fig. S3). Different
concentrations in the chamber were obtained by adjusting the total
airflow rate through the chamber, and were verified by air sampling

with DNPH cartridge followed by HPLC analysis (Table 2). We con-
ducted 6 different tests (Table 2), each with three badges of the two
types (six total) inside the chamber. Each test had many images taken
over the time period that the badge was exposed. For each test, a set of
three badge sensors were placed inside the chamber (Fig. S4), and their
color change was measured over time. Images were taken before the
badges were placed in the chamber, after exposure inside the chamber
over the different time periods through a pane of glass, and after they
were removed from the chamber by using the mobile phone app

Table 1
SmART-Form app warning list. Boundary levels are listed in Table S1.

Warning Type Conditiona Solution Suggested to User

Overexposure Average lightness > 0.8 Retake the badge photo with less light
Low-light Average lightness < 0.4 Retake the badge photo with more light
Badge Contamination Lightness ratio > 1.0 Redo the test with a new badge
Blue tint due to high relative humidity Average saturation < 0.4 Redo the test with a new badge
Short exposure time Exposure time < 12 h Wait for 72 h of total exposure
Below detection limit Concentration < 20 ppb Concentration too low to detect
Above detection limit Concentration > 120 ppb Concentration higher than detectable limit

a Lightness refers to the lightness values of the converted HSI (Hue, Saturation, intensity) space from RGB, unitless.

Fig. 3. Color grid paper used to evaluate lighting conditions. (For interpretation
of the references to color in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 4. The cropped badge image from the SmART-Form application camera.
The calibration patch noted in green and the color-changing area is noted in
red. Each block contains 50 × 50 pixels in the 250 × 250 cropped badge image.
(For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Table 2
Calibration test conditions. All tests were conducted at 23 ± 0.5 °C for 72 h.
The “Low Concentration” test was extended to measure continued color change.
The “VOC co-exposure” test was used to simulate a realistic indoor condition
with VOC emissions from a piece of particleboard placed inside the chamber.

Test name Formaldehyde
Concentration (ppb)

Co-exposure conditions Relative
humidity

Target Actual
(HPLC)

Acetaldehyde
(ppb, HPLC)

VOCs

High Concentration 100 109 0 No 50 ± 5%
Medium

Concentration
50 68 0 No 50 ± 5%

Low Concentration 25 18 0 No 50 ± 5%
Acetaldehyde co-

exposure
50 68 26 No 50 ± 5%

VOC co-exposure 50 54 18 Yes 50 ± 5%
High relative

humidity
50 67 0 No 75 ± 5%
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(Huawei Mate 8 Android 7.0 and iPhone 6s iOS 11.2) and a high re-
solution digital camera (Casio Exilim- F1). Data were analyzed to obtain
the mean color change ratio of the three badges as a function of the
amount of cumulative exposure (i.e., concentration multiplied by the
cumulated exposure time, = ×( E C T): = = ×f E f C TCCR ( ) ( ), where
CCR is the color change ratio, E is total exposure, C is formaldehyde
concentration, and T is time. Given this calibration curve, the con-
centration can be determined from the color change ratio and exposure
time. The uncertainty of the badge response was quantified by the
standard deviation of the color change ratio measured by the three
badge sensors. Taking images through the glass had a small effect on
the measured values, so the mathematical model was adjusted for this
“glass effect” by comparing images taken without the glass (out of the
chamber) and through the glass (in the chamber) at the same time
point, both before and after testing.

2.5. Beta testing

We conducted a user test of the app's beta version to ensure that the
SmART-Form app is useful for and accessible to interested members of
the public. We followed the principles of user-centered design [24]. We
asked participants to download and use the app with an image of an
exposed badge, and to provide feedback on the app's design, clarity, and
functionality. Participants provided feedback to study staff through a
survey in Qualtrics with questions about whether or not they had
trouble at each step of the app, from initial downloading through
survey completion, and were asked for general feedback and sugges-
tions. We recruited beta test participants through: (1) email solicitation
of people who had participated in the initial feasibility assessment
study, (2) social media solicitation of an environmental community
science network, (3) solicitation on the project website. Recruitment
targeted both a national network of citizen scientists with high tech-
nological literacy and a community environmental group in a small city
in southern Georgia with average to low technological literacy. One
purpose of the beta test was to evaluate image collection on different
smartphone systems. Another core component of the beta test was to
investigate whether or not the intended flow of the app, including ex-
iting the app in order to provide health and environmental data through
a secure browser-based platform Qualtrics, was intuitive, confusing, or
caused technical challenges for users.

The user feedback portion of the beta test was conducted through an
analogous survey on Qualtrics. The survey was available from
September 2017 to May 2018. Feedback was then integrated into app
design. To support improvements, a user interface consultant was hired
to provide guidance, as the usability of the app is of fundamental im-
portance. This study was approved by the Ohio State Institutional
Review Board (IRB).

2.6. Field test

Following incorporation of the beta test feedback, we conducted a
field test of the new system in 17 homes. The main objective of this field
test was to confirm feasibility of the app and badge system. We re-
cruited participants for a community-based case study in Waycross, GA.
This community was selected due to enhanced community interest in
environmental exposures due to local concerns. We targeted three
neighborhoods with low to medium income levels. Postcards with study
information were mailed to residents in advance, and a study team
member and community leader then visited homes to allow residents to
test the system. The system was tested in 17 homes, with 20 unique
sampling events. In seven events, a single image of a single exposed
badge was collected. In six events, multiple images of a single exposed
badge were collected. In seven events, images of multiple co-located
badges were collected. This study was approved by the Ohio State
Institutional Review Board (IRB).

2.7. Statistical analysis

Statistical analysis of the calibration data was conducted in SAS,
version 9.4 and Microsoft Excel. Formaldehyde concentrations were
evaluated as ppb∙hr and badge color change was evaluated as the color
change ratio of the color changing area to the calibration area (referred
to throughout as the color change ratio). The method detection limit
was calculated as 3 times the standard deviation of blank readings.
Blank badges were defined as those that had just been opened and not
yet exposed to any air. In a separate analysis, we also exposed badges to
air containing no formaldehyde and did not observe measurable color
change. The standard deviation of all the data was calculated by com-
paring the actual formaldehyde concentration to the calculated for-
maldehyde concentration based on the color change ratio and our
mathematical model. Cross-contamination of acetaldehyde and VOCs
were evaluated using the GENMOD procedure in SAS by considering
the interaction term based on grouping reading based on presence or
absence of acetaldehyde and using the “no intercept” option.

For the field test data, we calculated the mean and standard de-
viation of both 1) images taken of the same badge and 2) images taken
from co-located badges. The relative standard deviation is also re-
ported.

3. Results

Our testing of the badges demonstrated the ability of smartphone
cameras to accurately determine changes in lightness (color change)
associated with formaldehyde exposure under controlled laboratory
conditions. Some variability in initial field testing of our badge and
smartphone system indicates the need for additional, larger field tests
that include side-by-side sampling with an established sampling and
analysis method such as DNPH cartridge sampling followed by HPLC
analysis.

3.1. App development

The app user interface (Fig. 5, Fig. 6) was developed and refined
using a collaborative development model to allow both measurements
of the color change of the badges and access to surveys that can be
made publicly available (Figs. 3 and 4). Modifications were made to the
user interface throughout the app design process (Table 3), resulting in
improved usability and flow (Figs. 5 and 6).

3.2. Necessary user warnings and education

3.2.1. Integration of user warnings
The image output relies on the camera settings and the lighting

conditions, and it is important to reduce the possibility of overexposure
or low lighting conditions. To avoid such test errors, we identified a list
of warnings to test and subsequently notify the user to instruct them on
the appropriate use of the app (Table 1).

The values in Table 1 were determined from a series of experiments
on the badges. Different experimental conditions were tested, and
boundaries for warnings were selected to be about halfway between
extreme points measured in suitable and unsuitable conditions.

For instance, we noted that high relative humidity conditions above
about 75–80% will interfere with the color change of the badge and can
potentially cause erroneous readings in the app. Fortunately, under
these conditions the badge also develops a blue/purple tint that is de-
tectable in the image. We incubated badges at various relative humidity
conditions to determine when an interfering blue color appeared on the
badge. The lowest saturation value detected in suitable conditions was
0.80 and the highest saturation value detected in unsuitable conditions
was 0.52. Therefore, we selected 0.6 as the boundary for activation of
this warning. We also subjected badges to long-term, high-temperature
storage conditions to produce contamination and quantified detection
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with the app.
For exposure time, we selected a 72 h period to balance detection

capabilities with user time and consistency in the color-changing area
of the badge. The badge can theoretically be read at different times that
allow for sufficient color change (at least about 12 h), but those para-
meters were not validated here. Taking an image in a very short amount
of time (for instance, 5 min) will result in an artificially high value by

dividing by a very small time value due to the algorithm used, and thus
we also wanted to prevent this error. We also placed a limit on the
reported values so that high and low values will be reported as > 120
ppb and < 20 ppb, respectively. This range represents the calibration
range above the method detection limit. Values above 120 ppb may
have also experienced saturation on the badge, but this needs further
evaluation to confirm.

Fig. 5. Final wireframe.
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3.2.2. User education
We integrated a formaldehyde information sheet into the app, with

the intention of providing necessary information to users to interpret
their results and take appropriate action if necessary. The informational
page lists typical formaldehyde concentrations and potential sources
and remediation strategies.

3.2.3. Camera parameters and lighting conditions
Our results at different lighting conditions and camera settings in-

formed our decisions related to app design. Overexposure was a chal-
lenge that could potentially result in inaccurate readings, but for-
tunately, we could prevent these inaccuracies by incorporating warning
messages into the app. Under our experimental conditions with a close
light source 30.5 cm from the badge, the ratio of color intensity be-
tween “orange” and “yellow” is quite stable with different camera
settings under 25 W, while the results of 60 W show more variations
(Fig. S5). In our setup, the 25 W or 40 W non-LED light bulb worked
best (Fig. S6), and we were able to determine the optimal bounds for
lighting conditions. The variations are possibly caused by overexposure
as well, so the ideal camera settings should eliminate such over-
exposure. We also determined that it was necessary to use fixed camera
settings as opposed to automatic settings, which vary by phone. We
selected White Balance: 4000 K, ISO: 200, Exposure Duration: 1/60s or
1/125s depending on external lighting conditions, to avoid any over-
exposure (Table S2). Other uncontrolled camera settings may cause
small differences in image quantifications, especially under extreme
lighting conditions. However, we expect the system to perform well

under most “normal” indoor lighting situations. We incorporated error
messages into the app to alert the user if lighting conditions exceed
acceptable bounds, allowing them to take a better picture for more
accurate results.

3.3. Calibration

The results of color change ratio as a function of exposure time,
CCR = f(t), for the three different levels of formaldehyde concentra-
tions under the same temperature (23 °C) and relative humidity (50%
RH) are shown in Fig. S8. A total of 216 individual readings were used
to calibrate the system. The badge sensors did not appear to suffer from
saturation up to the 72 h tested. The sensors of the low concentration
test showed only minimal color change at 72 h because this was close to
the limit of detection. In order to test the limit of sensor under the low
indoor concentration level, we extended the test of the low con-
centration test to 360 h until it reached the saturation state. The results
show that the function CCR = f(t) shows the trend of linear relation for
all the three levels of formaldehyde exposure conditions (Fig. S8). The
results also show that the color change of version1 (SafeAir®, Morphix
Technologies, Virginia Beach, Virginia) of the badge sensor is more
sensitive to the formaldehyde exposure than version2 (ChromAir®,
Morphix Technologies, Virginia Beach, Virginia).

The results of high relative humidity test are plotted in Fig. S9.
Under high RH condition, the CCR value increased instead of decreased
with time, indicating a RH interference. This was partially due to a
blue/purple tint that occurs under this condition. The CCR at the high

Fig. 6. Screenshots from the app. The first screen is the test display screen. Each test will bring the user to the test detail page (second screenshot). The third screen is
accessed via the “data survey” link and will send the user to the external survey after clicking the “go to survey” link.

Table 3
Comparison of app layouts before and after refinement.

Initial Version Final Version

Two layouts, with many features located on test page Three layouts, move surveys to additional page
Simple list view, only titles and dates Add intuitive color signs and result information
Three ambiguous steps to take photos Remove capability to take image of surroundings, highlight the two before/after steps
Evenly distributed user interface spaces for all elements Assign weighted space to each element
Simplified camera process, hard to handle Redesign camera function, show badge icons
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RH also varied with time or exposure amount, but in a non-linear
fashion. It is therefore recommended not to use the current sensor at
high RH, and a warning was integrated into the app that detects this
blue/purple color.

Fig. 7 shows the exposure as a function of CCR and time for all the
tests conducted at 23 C and 50% RH without potential contaminants,
including a linear correlation function that was implemented in the
app. Illumination (lightness) from the color change was associated with
formaldehyde concentration (R2 = 0.8811, P < 0.0001).

We calculated the method detection limit to be 20 ppb at 72 h. We
also placed an upper limit of 120 ppb detection due to concerns about
saturation of the reaction area beyond what was tested. The standard
deviation of the data was calculated to be equivalent to 10.9 ppb if
measured at 72 h of exposure. Assuming a normal distribution, we ex-
pect 68% of the measured values to fall within 10.9 ppb of the true
value at 72 h of exposure, and 95% of the data will be within 21.8 ppb
of the true value.

The data in Fig. 7 are from the Android system, and a similar graph
with nearly equivalent linear model resulted from the DLSR camera
images. The iPhone that was used in testing developed an artificial blue
tint only when images were taken through the glass that interfered with
analysis, and thus the Android results were used for all versions of the
app. Further testing indicated that Android and iOS systems yielded
similar results within error limits when imaging the same badge under
appropriate lighting conditions (P = 0.70). We do not expect the blue
tint to interfere in future use of the app on iOS systems because 1) it
appeared to be limited to the phone used and 2) we do not expect users
to be taking images through glass under normal circumstances.

We also tested the badges under two additional conditions at the
mid-concentration level to examine the possible interface effect of the
co-existence of acetaldehyde, which is another major VOC contaminant
in buildings, and other VOCs from the composite wood product source

such as a particleboard. The results were not statistically different with
and without co-exposure to acetaldehyde (P = 0.93) or with and
without co-exposure to a VOC mixture from the particleboard
(P = 0.07) (Fig. 7B). We note that the p-value for the VOC mixture is
low. While we collected 60 data points for this test, it is possible that
some low-level interference is present that could be seen if more data
had been collected. This could be evaluated further in future field tests.

3.4. Beta testing

We received 10 responses to our beta test survey that both con-
sented and completed at least one question on the survey. Four users
reported their age with a mean age of 33 years. We received three other
responses where users did not consent to participate, and we are unable
to determine how many people in total attempted the beta test. Users
rated the usability of the app at the time of testing with a mean of 8.1
on a 1 (difficult) to 10 (easy) scale. Users cited “ease of use,” “simple
use,” and “clean layout and intuitive” as the main strength of the app
(Table 4). The biggest challenge occurred with accessing the survey.
Importantly, beta testers reported a bug that impeded the Unique ID
assigned to their app from being automatically copied to the Qualtrics
survey, which is essential for contextual data collection while pro-
tecting personally identifiable information. Because of this issue, many
users had difficulty submitting their feedback within the beta test
survey and 9 additional beta testers emailed feedback directly to re-
search team members. Other more minor technical glitches included
compatibility with down market and older phones. These glitches were
addressed to ensure the app functioned properly.

Another suggestion received from three beta testers and others who
reviewed the app was the need for more clear instructions, both with an
overview instruction page and step-by-step instructions for each phase.
The user interface was substantially transformed following beta testing
to address the app's clarity by adding instructional pages, improving the
screen layout to emphasize key information, utilizing familiar icons,
and ensuring more intuitive user pathways.

Overall, the app and beta test had global appeal. There were 136
app downloads from September 2017 to May 2018, although a small
but unknown number of those included from the study team. Country of
download included the United States, India, South Korea, South Africa,
Mexico, China, Italy, Canada, United Kingdom, Turkey, Afghanistan,
Brazil, Czech Republic, Chile, Germany, Japan, Namibia, Malawi,
Niger, Taiwan, Ukraine, and Russia.

3.5. Field test

We tested the novel formaldehyde detection system at 17 homes in
southern Georgia, with 20 unique sampling events. We obtained mul-
tiple images of an exposed badge (six events) to test the variation in
calculated formaldehyde concentration from an individual badge. We
also obtained images of co-located badges (seven events) to test the
consistency of badge exposure results. Finally, we obtained a single
image of a single exposed badge (seven events) as part of a larger study

Fig. 7. Calibration of the app. A. The best-fit line to the data was y = −36301x
+ 36671 (R2 = 0.8811 and P < 0.0001) and is shown in small blue dots.
Standard deviation lines (dashed outer lines) are shown in green around data.
The standard deviation of the data was equivalent to 10.9 ppb at 72 h of ex-
posure. B. Co-exposure to acetaldehyde or a VOC mixture did not interfere with
measurement (P = 0.93, P = 0.07, respectively). (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the Web version
of this article.)

Table 4
Beta test results. A total of 10 people consented to the survey and completed at
least one question.

Question Yes (n) No (n) No response (n)

Did you have trouble opening the app? 0 10 0
Did you have trouble taking images? 0 9 1
Did you have trouble taking survey? 6 3 1
Was any part confusing?a 2 6 2
Were you able to get a formaldehyde

concentration?
8 0 2

Did you receive an error taking survey? 3 1 6

a Comments indicated confusion was related to survey access or questions.
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to test whether the system quantification limits are appropriate for
residential exposure and how environmental and health factors may
relate to residential formaldehyde exposure.

Of the 20 sampling events, 15 collected data that was within the
quantification limits of system (20–120 ppb formaldehyde); one sample
was below detection limits, and four were above quantification limits.
The four sampling events that surpassed the quantification limit oc-
curred in two homes, with one reading taken after 72 h badge exposure,
and a second reading taken with new badges after 48 h. For these
homes, the upper quantification threshold is too low for accurate
readings, but is sufficient to indicate there is significant formaldehyde
exposure occurring in the homes. Both homes had detectable odors. For
the majority of homes samples (14 of 17), the system quantification
limits were appropriate. Only data within the quantification limits of
the system were further analyzed for system precision.

Where multiple images of the same badge were obtained, the or-
ientation of the badge to the light source may be a key factor driving
variation in calculated formaldehyde exposure (Table 5). For image
pairs taken with similar orientation of the badge to the light source,
standard deviations ranged from 1.4 to 9.6 ppb, with relative standard
deviations (RSDs) of 2%–14%. For image pairs that were taken with one
image in a standard orientation and one in a different orientation,
standard deviations ranged from 1.0 to 20 ppb, with RSDs of 2%–42%.
This includes image pairs of two sets of co-located samples, which
ranged from 1.0 to 3.5 ppb (2%–6% RSD) in one lighting setup, and
from 4.5 to 20 ppb (13%–42% RSD) with a different lighting setup.

Where images of co-located badges were obtained, the for-
maldehyde concentrations calculated from multiple badges with similar
orientations to light sources were more precise than images of a single
badge with different orientations (Table 5). When three co-located
badges were arranged with the standard orientation, the standard de-
viation of their calculated values ranged from 2.0 to 4.6 ppb (1%–7%
RSD). At two locations, the threesome of badges were arranged in an
additional formation with a variable orientation to the light source.
With these alternate orientations, the standard deviations were 3.4 and
17 ppb, as opposed to 2.8 and 2.1 ppb, respectively (6% and 33% versus

5% and 6%, respectively). There were two sets of co-located badges
with higher standard deviations, of 9.8 and 16 ppb (16% and 28%
RSD), however images of these sets were taken with complex lighting
conditions that likely included shadows. Formaldehyde concentrations
calculated from images of co-located badges under consistent lighting
conditions were as precise as formaldehyde concentrations calculated
from images of a single badge under similarly consistent lighting con-
ditions. Thus, any imprecision due to badge variation was not ob-
servable in the field test beyond the imprecision introduced by image
capturing.

For two sampling events, images were collected under indoor
lighting conditions and natural lighting conditions. In both of these
instances the images taken under natural lighting conditions calculated
significantly higher formaldehyde concentrations, but the extent to the
formaldehyde elevation varied. At location 14, the images taken under
natural light calculated a formaldehyde concentration that was 19 ppb
higher compared to calculated from images taken under indoor light
(80 vs. 61 ppb, 130% higher), while at location 10 the images taken
under natural light calculated a formaldehyde concentration that
was > 64 ppb higher than that calculated from the same badges under
indoor light (> 120 vs. 56 ppb, 220% higher). We have now adjusted
the app to contain lighting condition warnings based on these results.

4. Discussion

We have developed a novel measurement system for formaldehyde
in the indoor environment. Our current results indicate that this system
can provide accurate results and is amenable to use by citizen scientists
and concerned members of the general public, as well as visiting nurses
and researchers [14,25]. Our initial small field test indicated some
variability in measurement, and our system would benefit from more
extensive field testing in the future. Eventually, this technology, which
is openly-licensed and open sourced (https://github.com/publiclab/
SmART-Form), can be expanded to detect additional compounds of
concern in the indoor environment. Integration into a smartphone app
also provides an important venue for user education.

Table 5
Field test formaldehyde concentration data for sites with multiple images or co-located badges within the quantification limits of the system. The number in the
badge name indicates the site and a letter indicates that badges were different, co-located badges. Analyses in the table with just one badge name indicate a
comparison of multiple images collected from the same badge. Analyses in the table with multiple badge names indicate that one image from each badge was
compared. In the lighting conditions column, “similar orientation” refers to badges placed in equidistant radial locations around a light source. “Different or-
ientation” refers to badges places in a line with the light source on the right side of the line, so badges were different distances away from the light source. We note
that lighting conditions warnings were not included in the app used to conduct some of these tests.

Analysis Site Badge Number of images
compared

Average
Formaldehyde
Concentration (ppb)

Formaldehyde
Concentration Standard
Deviation (ppb)

Formaldehyde Concentration
Relative Standard Deviation
(%)

Lighting conditions

A 3 3 3 71 9.6 14 Similar orientation
B 4 4 2 85 1.4 2 Similar orientation
C 6 6 2 61 4.9 8 Similar orientation
D 8 8a 2 35 4.5 13 Different orientation
E 8 8b 2 47 13 27 Different orientation
F 8 8c 2 49 10 42 Different orientation
G 8 8a, 8b, 8c 3 37 2.1 6 Standard orientation
H 8 8a, 8b, 8c 3 50 17 33 Different orientation
I 9 9 2 92 6.4 7 Similar orientation
J 10 10a 2 62 3.5 6 Different orientation
K 10 10b 2 57 1.0 2 Different orientation
L 10 10c 2 56 3.5 6 Different orientation
M 10 10a, 10b, 10c 3 56 2.8 5 Standard orientation
N 10 10a, 10b, 10c 3 50 3.4 6 Different orientation
O 10 10a, 10b, 10c 3 130a 8.2 6 Natural light; Different orientation;
P 14 14a, 14b, 14c 3 61 9.8 16 Light impacted by shadows
Q 14 14a, 14b, 14c 3 80 7.2 9 Natural light; light impacted by shadows
R 15 15a, 15b, 15c 3 58 16 28 Light impacted by shadows
S 19 19a, 19b, 19c 3 68 4.6 7 Similar orientation

a Above quantification limit.
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Formaldehyde is present in most indoor environments [1,8,26,27],
and is notoriously difficult to measure. The contaminant is too volatile
to effectively adhere to many common sorbents, and also requires de-
rivitization for detection by gas chromatography/mass spectrometry.
Ubiquitous presence also increases the possibility for ambient con-
tamination during sampling.

4.1. Challenges

Uncontrolled lighting conditions present the greatest challenge for
use of this system. The user warning about ambient lighting conditions
is critical to successful use of the app. Shadows, overexposure, multiple
light scattering, and low light are situations that could affect the
reading of the badge. Previous work has considered these challenges in
applications of surface material and optical property measurement.
Normally, measuring the albedo of a surface requires a lab-based re-
flectance measurement [28,29], with a single light source and an object
with known shape (i.e. a perfect sphere) in a dark room. In a natural or
indoor environment, surface albedo measurement requires physical-
model based disturbance correction (e.g. atmosphere and light scat-
tering) with in situ information such as scene geometry (walls, tables,
etc. in the room) or humidity/weather conditions [30–32]. In our
system, we know that the badge is a flat surface, while the environment
and its lighting are unpredictable. We designed the badge to include a
calibration patch, where we assumed that this portion in the smart-
phone image encodes variants of the environment. Using this, we are
able to approximate the albedo computation through calculating the
ratio of lightness of the reaction and calibration areas. We also in-
tegrated warnings to the user within the app to account for some of
these conditions, but potential still remains for introduced error, which
was observed in our field test when taking images of the badge with a
different orientation to a light source. The mathematical light re-
flectance model we used in our algorithm is a simple linear color
change ratio between the calibration patch and the reaction patch. This
is based on the assumption that the indoor environment contains only
homogeneous and ambient light. Although the calibration patch is able
to capture most of the environment lighting, this model is not able to
account for complex and often non-linear lighting environments and
non-standard image-taking practices, such as non-orthogonalized view,
concentrated light sources, and inhomogenous shadows. In this work,
our capability is limited to a standard and commercial product for de-
signing a more capable calibration patch accounting for more complex
lighting environment, which could be attempted in future work. Future
enhancements of the system can focus on further improving mathe-
matical models used for color calculation, and improving and system-
atizing conditions under which images are taken.

We also noted that the formaldehyde levels measured in our field
test were, on average, slightly higher compared to those found in some
other studies but still within a similar range [26,27,33–37]. It is unclear
whether this is due to systemically higher formaldehyde levels in this
particular community with environmental concerns, or if other co-
contaminants not considered in the chamber study may inflate values. A
future side-by-side field test with the DNPH measurement method
would help to identify the reason for these levels and also potentially
indicate additional improvements for the system.

The standard deviation of our data was 10.9 ppb if the badge has
been exposed for 72 h and the image is taken with a standard orienta-
tion to the light source. For example, this means that a reading of
35 ppb is 68% likely to have a true value between 24 and 46 ppb, and a
reading of 85 ppb is 68% likely to have a true value between 74 and
96 ppb. It is always desirable to obtain a more precise reading.
However, the accuracy and precision available here is most likely ac-
ceptable to citizen scientists or concerned citizens who want to quickly
determine the general range of their formaldehyde exposure with an
inexpensive and easily-accessible method. This device is best used as a
screening tool to determine if their exposure is high or low, and can

inform decisions about further testing or potential remediation.
Colorimetric badges have well-established limitations that will also

impact the use of this system. This includes dependence on tempera-
ture, relative humidity, and pressure/air flow in the ambient environ-
ment [38,39]. Another general limitation is the interpretation of color
change intensity by the human eye [38], which we are able to overcome
with the use of the smartphone app. These well-established limitations
should be weighed against the benefits of using this system for mea-
surement, including ease of use and low cost.

4.2. Future use and interventions

This system is not as precise as the gold-standard DNPH cartridge
sampling and HPLC analysis method [40], but it does serve as an im-
portant screening tool for formaldehyde in the environment. By com-
parison, the DNPH cartridge method has a reported coefficient of var-
iation of 1.02% and a method standard deviation of 0.71 μg/m3

(approximately 0.57 ppb) [41]. Such extreme precision is not necessary
in all situations, especially when other factors such as ventilation
changes or occupant activity may alter formaldehyde levels over dif-
ferent periods of time. An interested user will need to weigh cost, us-
ability, accessibility, and accuracy/precision when deciding which
measurement tool to employ. In some cases, the smartphone-based
system described here may provide the best combination of these fac-
tors, and also provides additional information to the user related to
interpretation of results and options for remediation. After utilizing the
SmART-Form system, the user can decide to either 1) pursue more
expensive/difficult but more precise testing, 2) conduct additional tests
with the SmART-Form system, 3) do nothing, or 4) take remedial action
to reduce exposure. More precise and more expensive/cumbersome
methods can be employed if desired. Additionally, future improvements
can potentially increase precision in future iterations of this system.
Future work based on the results of the field test should include in-
struction to guide the user to orient the badge to the lighting source in a
standard fashion, and to capture images of the badge under indoor
lighting conditions instead of under natural light. These additions
should preempt errors introduced by image capture variables.

The use of a smartphone for measurement of environmental ex-
posures presents a novel opportunity for user education and engage-
ment. Increasing viability of low-cost and easy-to-use monitoring sys-
tems is already changing the current paradigm of air quality
monitoring, according to the U.S. Environmental Protection Agency and
others. The historical monitoring model relied on highly expensive and
complex instruments with limited input from the public on where they
are deployed and limited access of the data once collected. A new
paradigm is variously influenced by citizen science, participatory civic
engagement, and the popularity of ‘quantified self’ technologies and is
seen to bear the possibility of bringing communities and members of
the general public into closer dialog with scientists about air quality.
This can enhance source compliance monitoring and yield more robust
understandings of personal exposures [42,43]. Most of the “next gen-
eration” air quality monitors are electronic real-time sensors that pose
ongoing calibration and drift issues, and are relatively inexpensive (150
USD or more) but still too expensive for the communities that bear the
highest burdens of environmental exposure. Even highly motivated and
scientifically literate users are finding that they are “drowning in data”
due to the large volumes of data produced by real time sensors [44,45].
For smartphone colorimetric systems, the analytical technology is al-
ready owned by 77% of the U.S. population (with higher rates in some
Asian, Middle Eastern, and European countries), allowing a truly ac-
cessible price point with badges costing approximately 5 USD and the
app being free. Further, these badges represent discrete averages of
exposure that are more easily understandable, meaningful, and ac-
tionable for the general public than thousands of real-time data points.
Information in the app can also assist users in result interpretation and
decision-making related to remediation.
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Fortunately, there are interventions available that can reduce for-
maldehyde exposure once it is detected. These include primarily source
removal or avoidance, but may also involve increasing ventilation rates
[1]. Future work might explore how occupants respond to detecting
high levels of formaldehyde with this app, and if they are likely to take
action to reduce their exposure.

4.3. Limitations

Limitations of our system include potential error introduced due to
uncontrolled and potentially untested lighting conditions, including
different orientations of the badge and camera to the lighting source
while capturing an image for calculation. We expect our system to
function properly under most indoor lighting conditions and provide a
warning to the user when lighting conditions are outside of system
requirements. We also plan to provide instructions on badge and
camera orientation in future work. However, it is still possible that
shadows or other untested conditions could affect results. We tested the
badges under various lighting conditions, but the lightbulbs in our test
were placed close to the badge (30.5 cm) and this will generally not
reflect the typical light distance in a given room. Thus, the bulbs used
are reported here for reproducibility, but may not indicate the bulbs
that are necessary to use in a room where the light source is placed
further away from the badge.

Error in the final reading could potentially be reduced with future
badge enhancements such as by controlling the position in which the
user takes the image, taking multiple images from which to calculate
the final value, and further refining our mathematical model. We tested
and did not see interference from co-exposure to acetaldehyde or other
compounds present in pressed wood products. However, it is also pos-
sible that other untested compounds, such as acetone or ammonia, may
cause interference in the color change of the badge. Our system is not
able to be used under conditions of elevated relative humidity, above
about 75–80%, which causes an artificial blue tint to the color changing
area of the badge. Additional work needs to be done to ensure sufficient
communication of measurement precision and error within the app.
Further development and testing of this technology may be able to
overcome some of the limitations listed here.

4.4. Strengths

Strengths of this study include the development of a novel screening
tool to use a smartphone and color-changing badge to measure for-
maldehyde concentration in the air. This system was developed in
conjunction with end-users across the spectrum of technological lit-
eracy to expand potential use. We found a strong correlation between
exposure to formaldehyde and color change in the badge as read by the
smartphone camera. Thus, the badge is useful as an inexpensive in-
dicator that formaldehyde is present and detectible, while additional
modification is required to enhance the precision of the quantitative
results. Given the wide range of plausible values from each reading, and
levels of uncertainty, we recommend use by well-informed users, pro-
fessionals, or paraprofessionals with risk communication training to
interpret results and recommended actions until greater quantitative
precision can be achieved. However, information in the app can also
assist with interpretation of results and user education. This app is
currently available for download on both Android and iOS devices. This
system can be further improved upon to provide results that are more
precise in the future. Our system makes formaldehyde measurement
more accessible to community scientists and other interested users and
also provides a new opportunity for both scientific engagement and
education.

5. Conclusions

Here, we developed a novel system for smartphone-based

formaldehyde measurement for testing of residential formaldehyde le-
vels. This new method can expand measurement options for a range of
future users and potentially also be applied to additional compounds of
interest. This current system is best used as a screening tool to de-
termine the general level of formaldehyde in an environment when
cost, usability, and accessibility are the most important considerations.
We expect that future improvements to this and similar systems can
improve precision. The use of a smartphone encourages engagement of
community scientists and concerned citizens, and also provides an ad-
ditional opportunity for education about formaldehyde exposure. This
platform can also be used by researchers in epidemiological studies as
well as medical providers conducting home visits for vulnerable po-
pulations, such as people with asthma. Finally, this system can be used
to respond to future widespread concerns that might occur related to
formaldehyde exposure.
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