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Abstract—New virtualization technologies allow Infrastructure
Providers (InPs) to lease their resources to Application Service
Providers (ASPs) for highly scalable delivery of cloud services
to end-users. However, existing literature lacks knowledge on
Quality of Experience (QoE)-oriented cloud service orchestration
algorithms that can guide ASPs on how to plan their budget to
enhance satisfactory QoE delivery to end-users. In contrast to
the InP’s cloud service orchestration, the ASP’s orchestration
should not rely on expensive infrastructure control mechanisms
such as Software-Defined Networking (SDN), or require apriori
knowledge on the number of services to be instantiated and
their anticipated placement location within InP’s infrastructure.
In this paper, we address this issue of delivering satisfactory
user QoE by synergistically optimizing both ASP’s management
and data planes. The optimization within the ASP management
plane first maximizes Service Level Objective (SLO) coverage
of users when application services are being deployed, and are
not yet operational. The optimization of the ASP data plane
then enhances satisfactory user QoE delivery when applications
services are operational with real user access. Our evaluation of
QoE-oriented algorithms using realistic numerical simulations,
real-world cloud testbed experiments with actual users and ASP
case studies show notably improved performance over existing
cloud service orchestration solutions.

Index Terms—QoE-oriented cloud service orchestration, multi-
constrained path-aware possibilistic C-mean clustering, 3Q inter-
play model, least cost-disruptive decision tree.

I. INTRODUCTION

The advent of network virtualization has enabled new busi-
ness models that allow Application Service Providers (ASPs)
to run their users’ multimedia-rich data-intensive application
services upon leased resources from infrastructure providers
(InPs) [1], [2]. ASPs have to balance between delivering
satisfactory user QoE and renting excessive resources from
InPs for running many service instances, which can be very
expensive. This in turn can lead to high service costs for users,
which may end up impacting customer retention efforts for
ASPs. In addition, new business models require ASPs to also
address limitations of the best-effort nature of the Internet.
Specifically, they need to support users when they access
remote services over Internet paths that could degrade the user
QoE delivered due to congestion or resource misconfiguration
issues [3]. Generally, QoE reflects the user opinion score
ranging from bad—1 to excellent—5 quality.

Although many cloud service orchestration approaches for
InPs have been proposed, including application-aware net-
working, cloud service placement, and virtual network em-
bedding, there is still a lack of ‘QoE-oriented cloud service
orchestration’ algorithms for ASPs that can build upon recent
advances of network virtualization and related business mod-

els. In contrast to InP cloud service orchestration schemes,
the ASP service orchestration should not require expensive
infrastructure control mechanisms such as SDN-based applica-
tion aware-networking [4]. Moreover, such orchestration also
should not require a priori knowledge on the number of ser-
vice instances that need to be instantiated, and their anticipated
placement location within InPs’ infrastructure to deliver satis-
factory user QoE such as cloud service placement [5] or virtual
network embedding [1]. Thus, QoE-oriented cloud service
orchestration algorithms are particularly crucial for ASPs to
solve their general optimization problem — maximization of
the satisfactory QoE service delivery to users that is limited
by the ASP’s cost budget.

Consequently, ASPs have to plan their budget by making
control decisions in their management plane such as how
many running service instances are needed (i.e., the amount of
InPs’ resources), where to run them within an infrastructure
(preferably close to user locations) and how to assign (or
cluster) users to the instantiated services. Doing so, they
can overcome inefficient network design (e.g., high latency)
that prevents a service delivery with satisfied Service Level
Objectives (SLOs) to the end users. Further, ASPs need to
continually monitor that their services are delivered to the end
users with satisfactory QoE levels within the data plane by
pertinent tuning of rented resources.

A concrete example scenario where ASPs need to overcome
inefficient infrastructure utilization within their management
plane and ensure that their user traffic traverses network
paths with required SLOs can be seen from an exemplar
use case of the “Skytap” ASP [6]. Education organization
customers of Skytap request virtual environments for geo-
spatially dispersed users at large-scale to deliver fast, easy, and
secure training sessions. Hence, the user QoE of such a service
delivery is highly sensitive to bandwidth, delay, and losses of
the users’ network path from their thin-clients to the cloud-
hosted Skytap services. Another example scenario where ASPs
need to overcome inefficient infrastructure utilization within
the data plane by tuning (or adapting) allocated resources
can be seen in the LOFT (Likelihood of Features Tracking)
application [7] for public safety organization customers. In
order to deliver real-time visual situational awareness such
as tracking objects of interest from civilian smartphones or
surveillance cameras using the LOFT, ASPs should adapt to
the changes arising from customer needs involving trade-offs
between cost, quality, and real-time context of the service.
This tradeoff situation in balancing cost and quality can
cause disruptive effects on user QoE delivery due to frequent
resource adaptations by the ASPs.



Our Approach. In this paper, we address the lack of ‘QoE-
oriented cloud service orchestration’ algorithms tailored to
the ASP business model to maximize satisfactory user QoE
delivery within the ASP’s budget constraints. Our approach
is to synergistically optimize the ASP’s management and data
planes as follow: (i) first maximize the number of users with
fully satisfied SLOs within the ASP management plane (upon
renting resources leased from InPs); (ii) then maximize the
number of users with satisfied QoE within the ASP data
plane (during its service delivery to end-users). By solving
(i), ASPs first determine the amount of rented resources from
InPs, their placement and the user clustering between them
which is subject to ASPs’ budget, then by solving (ii), ASPs
synergistically adapt their rented resources to enhance their
service delivery to end-users and reconsider their budget for
solving (i) as needed.

Contributions. Our contributions are as follows:

— To solve (i), we first propose the optimal integer linear
programming (ILP) approach, which can be the best choice
for moderate-scale ASPs. To solve (ii), we then devise a set
of predictive models for user QoE and Quality of Application
(QoA) estimation, which can be considered as common open-
loop (no user feedback required) and closed-loop (requires ap-
plication feedback) control systems [8], respectively. Opposite
to widely used static QoE profiles [9], these models capture
dynamics in a Quality of Service (QoS), QoA and user QoE
(3Q) interplay. (Section III)
— To overcome NP-hard ILP solution intractabilities for large-
scale ASPs, we also propose its polynomial greedy heuristic
counterpart that leverages a novel Multi-Constrained Path
(MCP) aware Possibilistic C-Means (PCM) approach for in-
frastructure clustering. Our MCP-PCM ensures the possibility
of having satisfactory user SLOs (which caters to user QoE
expectations) during cloud service placement. (Section IV)
— To utilize our 3Q model for solving (ii), we propose
another polynomial greedy heuristic algorithm that leverages
a decision tree scheme which applies adaptations in a least
cost-disruptive (LCD) manner. Our LCD decision tree scheme
manages the 3Q interplay for handling trade-offs between
satisfactory service delivery, cost of adaptations, and user
disruption level factors. (Section V)
— Using numerical simulations in the NS-3 simulator [10]
with realistic Internet topologies generated with the BRITE
tool [11], we evaluate our QoE-oriented cloud service orches-
tration algorithms within both management and data planes.
Particularly, we show how our management plane solution
with MCP-PCM clustering scheme is superior than related
topological and geographical clustering schemes [12] for the
service resource provisioning by allowing more users to ex-
perience satisfactory SLOs. Using various workload scenarios
(from sequential to full user access rates), we also show how
our LCD decision tree is adaptable to these scenarios (by
leveraging our 3Q model) and gains of up to 50% in (profiled)
user QoE than related solutions. (Section VI-A)
— Using a real-world GENI Cloud testbed [13] with actual
users, we show how QoE-oriented service orchestration im-
proves overall system QoS and (actual) user QoE for our
Skytap and LOFT application case studies. (Section VI-B)

II. RELATED WORK

The literature of the QoE-oriented application service or-

chestration is vast, and we only focus here on a few prior
works that are related to our work. A complete survey of
QoE management challenges for cloud services is discussed
in HoBfeld et al. [3].
QoE Enhancement within the ASP Management Plane.
Moving application services to the cloud makes network
management a major challenge for delivering satisfactory user
QoE [3]. Solutions to this problem can be found in both com-
plementary subareas - application-aware networking [4], [14]
and cloud service placement [5]. Application-aware network-
ing aims to enhance user QoE by improving network QoS.
It can be used within both management (when services are
unavailable) and data (when services are operational) planes.
For example, Google [4] fair shares its global data center
backbone bandwidth, prioritizing different application traffic,
and assigns highest priority to users’ data. Georgopoulos et
al. [14] in turn fair schedule their network traffic by using
video QoE models. However, application-aware networking re-
quires expensive infrastructure control, and thus can be mainly
used only by InPs. Although the cloud service placement
does not require infrastructure control, it is commonly done
by InPs to maximize their revenue within their management
plane, e.g., to maximize resource utilization and/or energy
efficiency instead of maximizing the satisfactory user QoE
delivery of services. Similarly, InPs increase their network
scalability and flexibility using a virtual network function
placement algorithm [2]. Thus, Calyam et al. [S] minimize
financially expensive cloud resources, by over provisioning
during virtual desktop service placement, which allows InPs
to accept more virtual desktop requests. Another more general
management protocol example for InPs is a Virtual Network
Embedding (VNE) [1] that is an NP-hard graph matching
problem of mapping a constrained virtual network on top of
a shared physical infrastructure. However, both cloud service
placement and VNE require virtual network or cloud service
requests, i.e., requests with specified number of virtual nodes,
links and their demands. In contrast to VNE, the general
ASP problem assumes no apriori knowledge of the required
number of application service instances (i.e., virtual nodes),
but tries to maximize a satisfactory QoE delivery to users
subject to the ASP budget by deciding how many service
instances should be rented from the InP, where to place them
within its infrastructure and how to dynamically orchestrate
them within the ASP data plane.

In this paper, we use the synergy of both subareas to fill the
gaps of QoE-oriented cloud service orchestration algorithms
within both the ASP management and data planes tailored
for an ASP’s business model presented in Section I. Thus,
we assume we have as input the ASP’s budget and have
application service demands expressed as SLOs (e.g., network
bandwidth, delay, losses and jitter), which can be derived from
users’ QoE profiles for a particular cloud service.

QoE Enhancement within the ASP Data Plane. To further
enhance a satisfactory user QoE delivery within the ASP data
plane by dynamically orchestrating its services (running on



resources rented from InPs), there are plenty of candidate
adaptations proposed in the literature. Since not all adap-
tation are suitable for ASPs, we describe a few adaptation
strategies that are broadly applicable and illustrate using the
LOFT application case study, to highlight our contributions to
the ASP optimization problem. Examples of unsuitable ASP
adaptations include those that require expensive infrastructure
control, which can result in excessive or potentially disruptive
outcomes, or cannot be used by a particular application. Park et
al. [15] proposed a mechanism for adaptations at the client side
where they apply certain bit rate adaptation schemes and are
mainly focused on improving user QoE. However, the authors
show only QoE improvement results and do not show the effect
of their adaptations on other factors such as the total cost and
the overall disruption impact on other users. Ma et al. [16]
used path switching adaptations for the streaming application
to enhance user QoE. Similarly, they show improvement in
user QoE, but do not evaluate the impact of their approach
on the total cost or the overall user disruption. We remark
that — provisioning enough infrastructure control needed for
path switching can be a very expensive proposition for ASPs.
Van Beek et al. [17] proposed adaptations at the server-side,
where a bit rate adaptation scheme was applied for all clients
attached to a particular server. Although their adaptation
strategy shows user QoE benefits with no extra cost, reducing
bit rates for all users on an affected server can result in higher
overall user disruption. ASPs generally can also benefit from
applying adaptations that can scale up or scale down resources
rented from InPs to elastically orchestrate them based on
their budget. For example, such adaptations can use queuing
models to analyze the QoS levels and decide on servers to
scale up as shown by Xiong et al. [18]. Another example of
such adaptations includes reactive model adaptations (based
on the profiled CPU utilization and regression mechanisms),
that can dynamically scale up and down a service instance’s
resources [19].

Although these adaptations are generally applicable for
visual-processing applications [20], they are designed for a
single service instance and do not take overall ASP budget and
user disruption factors into account. To overcome the above
limitations tailored to the ASP business model, we propose
a least cost-disruptive scheme that manages QoS, QoA and
user QoE interplay dynamics and can incorporate all of these
specific adaptations to enhance QoE delivery within the ASP
data plane while mitigating user disruption level.

III. APPLICATION SERVICE PROVIDER PROBLEMS

In this section we formally state and discuss two main
ASP optimization problems that synergistically maximize the
satisfactory QoE service delivery to users under constraints
in the ASP’s cost budget as illustrated in Figure 1. The two
classes of problems are: (i) maximization of the user SLO
coverage within the ASP management plane when services are
unavailable; and (ii) maximization of the user QoE coverage
within the ASP data plane when services are operational.

ASP Problem Space

maximize
user QoE coverage

(during their service delivery
by adapting utilization of
rented resources,

maximize
user SLO coverage

(upon renting resources
from InPs and subject to

ASP budget)

Fig. 1: Overview of the main ASP optimization problems: (i) ASPs can first
maximize the number of users with fully satisfied SLOs (i.e., SLO coverage)
by determining the number of rented resources from InPs subject to the
ASPs’ budget, their placement and the user clustering between them; and
(ii) ASPs can then maximize the number of users with satisfied QoE (i.e.,
QoE coverage) by synergistically adapting their rented resources to enhance
the service delivery to end-users and update their budget if needed.

A. ASP optimization problem within management plane.

While deploying service instances within the ASP manage-
ment plane, we can maximize the user SLO coverage, i.e.,
the agro percent of users with fully-satisfied SLO obtained
directly from a corresponding QoE profile of a particular cloud
service [9]. To optimally solve the ASP management plane
problem, we use a well-known multi-commodity flow prob-
lem [21], where each commodity can represent a particular
client-server pair. To ensure user SLO coverage, we need to
check only if both the assigned service instance and a path to
it have required SLO guarantees. There are two common ways
of formulating multi-commodity flow problems: (i) arc-based
and (ii) path-based. The arc-based formulation can result in an
infeasible solution for the ASP, i.e., it can assign users to a path
which violates routing policies of InPs. Thus, in this paper we
use the path-based multi-commodity flow formulation where
available paths are obtained based on the routing policy of
InPs. Note that ASPs with full infrastructure control can
benefit from changing our path-based formulation to the arc-
based. Formally, we have:

Definition 1 (ASP management plane optimization problem):
Given an infrastructure topology 7 = T (V,C,P) provided
by an InP, where V is a set of physical nodes, ¢, € C is
a cost of renting resources at v € V and Pf} € Pisa
set of k paths available between source v; and destination
v; vertices based on InP’s routing policy; let x; be 1 if a
service instance is allocated at vertex v; (or O otherwise),
let fi’E- be 1 if a flow between an allocated at vertex v;
service and a connected through vertex v; user is mapped
on a k-th path € P (or 0 otherwise), and let o; be 1 if a
connected through vertex v; user is mapped on a path with
fully satisfied SLO constraints (or O otherwise); finally, let Lp
and 5 denote vectors of link, path and server SLO constraints,
respectively; where [ corresponds to min/max path PZ} weights
wij «» P corresponds to additive/multiplicative path Pz-’;- weights
wfj . » and § corresponds to physical node weights wf (i.e.,
that > or < than SLO constraints); the ASP SLO coverage
asro maximization problem within management plane can
be formulated as following:

1
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where symbols and notations of sets, parameters, variables and
functions are summarized in Table I. A compact notation is
used to cover either upper (i.e., <) or lower (i.e., >) bounds
in the SLO constraints (see Equations 5, 6 and 7).

Note that to simplify the management plane problem solu-
tion, server SLO constraints in Equation 7 can be omitted and
all binary x; variables that do not satisfy them can be set to
0. Note also that if splittable flow is acceptable, il} € {0,1}
can be relaxed as i’} € [0,1] to further simplify this problem
solution. Hereon, we assume the unsplittable flow ASP policy,
i.e., the end-to-end traffic can traverse only a single path.

When maximizing asro (see Equation 1), the management
plane ASP problem solution forces more users to choose paths
with fully satisfied SLO (see Equations 5 and 6), which in turn
can increase number of service instance placements (see Equa-
tion 4) which are constrained by the ASP budget (see Equa-
tion 2). Finally, all users have to be assigned to exactly one
service instance (see Equation 3). We illustrate a management
plane problem solution using our Skytap case study example in
Section IV-C. Furthermore, as proposed solution uses integer
linear programming, it is NP-hard and can be intractable for
large-scale ASPs. To cope with these scalability limitations,
we propose a polynomial greedy heuristic algorithm based on
unsupervised learning clustering techniques in Section IV.

B. ASP optimization problem within data plane.

To further enhance user QoE coverage within data plane
(when services are operational), ASPs can periodically op-
timize their usage of rented resources from InPs by ap-
plying various service adaptations including client, network
and server side adaptation strategies for unsatisfied users.
On the contrary, applying all possible service adaptations for

TABLE I: Symbols and Notations for Optimization Problems

Sets

\4 £ Set of physical nodes within the infrastructure

C £ Set of corresponding node rental costs

PZ} £ Set of k paths available between source v; and destination v; vertices
based on InP’s routing policy

R £ Set of rented resources within the infrastructure

A(R) £ Set of all possible adaptations for resources R

Ut £ Set of accessing at time ¢ users

Dt £ Subset of disrupted users Dt C Uf i.e., whose QoA (or QoE) was
affected by previously made adaptations

Variables

T 2 Binary variable that equals to 1 if a service instance is allocated at vertex
U‘l,

f;”] 2 Binary variable that equals to 1 if a flow between an allocated at vertex v,
service and a connected through vertex v; user is mapped on a k-th path
€ Py

a; £ Binary variable that equals to 1 if a connected through vertex v; user is

mapped on a path with fully satisfied SLO constraints
£ Ppositive variable that equals to the percent of users with fully-satisfied SLO
£ Positive variable that equals to the percent of users with fully-satisfied QoE

“Qop (or QoA) at time ¢

Vectors

T £ Vector of link SLO constraints

D £ Vector of path SLO constraints

s £ Vector of server SLO constraints

Parameters

wij 5 £ Parameter that corresponds to the min/max path PZ weight of the I € [

N link SLO constraint (e.g., bandwidth)

wfjk_ £ Parameter that corresponds to the additive/multiplicative path Pllj weight
of the p € p path SLO constraint (e.g., latency)

wf £ Parameter that corresponds to the physical node v; weight of the s € §
server SLO constraint (e.g., CPU)

M £ Parameter that corresponds to a practically big number used to relax SLO

constraints for non-covered users (i.e., the big M method)
Budget £ Parameter that corresponds to ASP budget

A £ Ppositive parameter that corresponds to a user disruption penalty
Functions

C(A*') £ Cost function of a subset of adaptations A* C A(R) at time ¢

ftQuE £ Binary function that equals to 1 if a user u € U? has a fully satisfied QoE
(R, At u) under a set of rented resources I after ASP management plane optimization
""" 7 with the applied at time # adaptations A*

unsatisfied users can disrupt other (satisfied) users. Thus, the
goal of the ASP optimization data plane problem is to pick
a subset of adaptations at some period of time that can best
improve users’ QoA and QoE coverage for the next period
of time with a minimum disruption level. Thus, the ASP data
plane optimization problem can be formulated as the NP-hard
nonlinear Knapsack problem [22]. Formally, we have:

Definition 2 (ASP data plane optimization problem): Given
a subset of rented resources R, a set of all possible adaptations
for these resources A(R), a cost function C'(A") of a subset of
adaptations At C A(R) at time ¢, a set of accessing at time ¢
users U? with a subset of disrupted users D* C U? i.e., whose
QoA (or QoE) was affected by previously made adaptations,
subject to ASP Budget, the ASP optimization problem within
the data plane can be formulated as follows:

1

. . t t
maximize |« _ R A " - )\
ALCA(R) | @oF |Ut|u§thoE( AN u)

subject to C(A") < Budget

where symbols and notations of sets, parameters, variables
and functions are summarized in Table I. Note that the above
optimization problem solution finds an expected optimal (not
the actual one) as user QoE is unknown in advance, and
function féo p can only estimate its expected value.

3Q interplay model for ASP data plane problem. In order to
enhance user QoE coverage and minimize user disruptiveness,
we aim to develop a model for ff, (R, A*,u) that describes
the relationship between the InP’s data plane QoS and the
ASP’s data plane QoA so that we can decide on service adap-
tation strategies for various scenarios (e.g., congestion in the

2

Ut ®



InP data plane or a high user access rate in ASP data plane).
However, the QoS, QoA and user QoE interplay itself is highly
dynamic and depends on many factors including the type of
applications, time periods of use (e.g., Friday night vs Saturday
morning), etc. To this end, our 3Q interplay model dynamically
adapts the 3Q interplay based on the feedback from both user
(optional, if available) and application (required), where the
former and the latter can be considered as classical open-loop
and closed-loop control systems [8], respectively. Note that
an application’s feedback can be obtained from tools such
as VDBench [23] in operational environments. This is how
the 3Q model varies from common QoE profiles where this
interplay is assumed to be static [9]. Finding the best open-
loop and closed-loop control systems for the 3Q model (e.g.,
using machine learning approaches) is the out of scope for
this paper and we leave it as an open area for future work.
Our 3Q model is also different than existing QoE predictive
models. Thus, Menkovski et al. [24] proposed a predictive QoE
model based on QoS conditions. Our model is in turn prescrip-
tive with regards to how to change QoS and QoA to optimize
QoE. For example, in the context of a multimedia application,
bandwidth rate of an Internet connection will affect the actual
framerate of the application, and the delay of a connection will
directly affect the application’s responsiveness. To avoid the
NP-hard non-linear Knapsack problem solution for the ASP
data plane optimization (see Definition 2), we propose another
greedy heuristic algorithm in Section V, which is based on the
least cost-disruptive decision tree scheme and our 3Q model.

IV. MCP-AWARE PCM CLUSTERING
FOR ASP MANAGEMENT PLANE

A. Background

Maximizing user SLO coverage under constrained ASP’s
budget for rented resources by solving the ASP management
plane problem (see Definition I) corresponds to an infras-
tructure clustering for service placement and consequent user
mapping to these service instances with SLO satisfaction.

Existing graph clustering approaches, however, minimize
only a single metric as a cluster distortion, and hence can
facilitate only a single path SLO satisfaction such as latency,
packet loss, etc.; e.g., K-Means method [12] can cluster a
set of vertices using a topological order while taking into
account an arbitrary number of link SLO constraints such as
bandwidth. In contrast to K-Means, we devise a MCP aware
clustering scheme by extending a common PCM method [25]
to minimize multiple distances related to multiple SLOs (clus-
ter distortion). This in turn allows MCP-PCM to maximize
possibility of finding multi-constrained network paths with
fully satisfied (both link and path) SLOs between infrastructure
nodes and corresponding cluster centers.

B. MCP-PCM Clustering Scheme

Based on prior knowledge of required number of clusters
k (amount of resource to be rented by ASPs) and given a
cloud infrastructure, we cluster it with a cloud service SLO
awareness. To this end, we use a PCM algorithm to estimate
possibility U?, of each vertex v € V of having a path which
satisfies a particular SLO path constraint p € p to the k cluster
center of an underlying infrastructure graph:

_ 1
L+ (S

vk

14
ka

; (©))

where m € (1,00) is a pre-specified fuzzifier whose increase
blurs cluster borders (i.e., degrades users’ membership in their
most possible clusters), and 7, is a scaling factor for a
particular path constraint p, vertex v and cluster center k cost.
By default, m is set to a common value of 2 [25], which is
service/infrastructure specific, and impacts cluster quality. 7?,
is empirically chosen to have 0.5 possibility if k-th cluster
center has a unitary cost, and a path distance d, equals to a
half of p SLO constraint: ?, = (p/2)?. Note how our model
assumes having different scaling factors 7", for a particular
vertex v to cover cases with different application service types
and underlying physical resource costs. In addition, to ensure
! € [ SLO constraints are satisfied, all edges e which do not
satisfy [ are removed before clustering is performed. In this
scheme, we use the Dijkstra algorithm as our distance function
dp(v, k) for additive path metrics'. Moreover, if d,(v, k) > p
we set d;(v, k) = oo. Finally, we estimate overall possibility
U, for all path constraints p to be satisfied for a vertex v
using the product rule:

Usk = [ U,

PED
We then cluster an infrastructure by assigning a center K, that

has the highest possibility of all path constraints to be satisfied
at each vertex v € V:
K, =arg mgx Uyt

(10)

(1)

To update centers, we run the Dijkstra algorithm from each
vertex v € V to all other vertices within cluster k£ and choose v
with the minimum normalized distortion o as the new center,
where we calculate the distortion as:

o~ dy(v.)

P=22 T
g, = .

vepj=1 P
How complex is our MCP-PCM scheme? The MCP-PCM
model runs Dijkstra exactly two times for each vertex v € V'
and for a particular p € p constraint: once during possibility
estimation and then during center updates. Taking into account
that Dijkstra complexity is O(|V|log|V| + |E|), the final

complexity of this step is:

O(e - |pl - V] - [VIlog|V| + | E[) = O(e[p|V *log|V']), (13)

(12)

where € is the maximum number of iterations. Based on our
empirical observations, we observed that, e < |V, so we use
the initialization, € = |V|.

C. Skytap Case Study Example

Considering a Skytap case study of a virtual learning
environment as an example, our goal is to place up to 2 Virtual
Desktop (VD) servers (based on the ASP budget) by clustering
an infrastructure so that all users will have a path to at least one
VD server with the following SLOs: bandwidth > 15 Mbps
(to support high-definition video streaming), delay < 50 ms

Note that multiplicative network metrics (e.g., losses) can be converted to
additive metrics by composing them with a logarithmic function.
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TABLE II: Clustering results
[ Model [ Cluster |

Network Path T SLO Violation [ SLO Coverage |

3 1 Delay, Losses
‘ 41 Delay, Losses
Cluster 1 5541 Delay, Losses
i 6 — 5 — 4 — 1 | Delay, Losses
K-Means =) No 2/8
] 8 — 2 No
Cluster 2 9 — 10 — 8 — 2| Delay, Losses
10 -8 — 2 Delay, Losses
35455 No
Cluster 1 45 No
6—5 No
T 52-=38 No
PCM/ILP 28 No 8/8
Cluster 2 T—8 No
9—10—8 No
10 =8 No

(for seamless remote control) and packet loss < 0.05% (to
have imperceptible service impairments).

Given an infrastructure of 5 availability zones (AZs) and 10
nodes as shown in Figure 2a, we assume that all intra-AZ links
have 1 ms one-way delay and 0.01% packet loss, and all inter-
AZ links have 40 ms delay and 0.04% losses. Moreover, we
assume that inter-AZ links between AZ 1 and AZ 3 have high
delay (100 ms) and losses (1%), and inter-AZ links between
AZ 2 and AZ 3, and between AZ 5 and AZ 3 have very
high packet loss (10%). Finally, all links have more than the
15 Mbps bandwidth required for service provisioning.

The topological proximity graph clustering with K-
Means [12] ignores path SLO constraints and places cluster
centers to the nodes with the highest node degree (see Fig-
ure 2b). As a result, the MCP algorithm [26] finds only 2 paths
out of the 8 possible paths which satisfy all SLOs. Our MCP
aware PCM clustering (see Figure 2c) places cluster centers
in a manner that allows the same MCP algorithm to find all
paths with fully satisfied SLOs (see Table II). Note that in this
case, PCM service placement also matches with the optimal
ILP solution for the ASP management plane (see Definition I).

D. Algorithm for ASP optimization within management plane

To solve the ASP management problem (see Definition 1),
we propose a scalable greedy heuristic algorithm which uti-
lizes our MCP-aware PCM clustering scheme outlined in
Algorithm 1. As SLO coverage improves with the number of
increased service instances (that we allocate from InPs), our
algorithm starts by estimating the largest number of clusters

Cluster 2

(b)
Fig. 2: Tllustrative example of an infrastructure clustering (shown in (a)) with K-Means topological proximity (shown in (b)) and Multi-Constrained Path
aware PCM-based models (shown in (c)); K-Means approach ignores path SLO constraints during clustering, and as a result, only 2 amongst 8 nodes have
paths to the their cluster centers with satisfied SLOs; switching to the proposed MCP-PCM clustering allows all nodes to have network paths with satisfied
SLOs (see Table II).

(service instances) which can fit into the ASP budget (line
3). At each iteration, we first cluster the infrastructure with
[ and p SLO constraints awareness (line 5) and then check
the feasibility of clustering results (line 6), i.e., if mapping of
service instances (or cluster centers) K satisfies ASP budget
constraint. Once a feasible solution is found, the proposed
algorithm finds the best user SLO coverage asro (although
it is still suboptimal w.r.t. the IP solution in Definition 1). We
finally estimate aspo using coveragesro(U, K,V,E,l, p)
function (line 9) that checks all paths between user-to-service
clusters U and their corresponding cluster centers K (service
placement) for SLO satisfaction using InPs’ routing policies
such as OSPF, BGP, etc.

Algorithm 1: ASP management plane optimization

Input: InP topology with V' nodes, E links and cost vector C, ASP Budget
and SLO [/p constraints.
Output: User-to-service clusters U, their center locations K (service placement),
user SLO coverage asro.

1 begin
2 sort vertices V' in ascending order by their cost C
3 k « argmax(Zf’;"i"m civ; < Budget)
4 isBudgetSatisfied < 0
5 while is BudgetSatisfied == 0 and k > 1 do
6 U,K] + MCP_PCM(k,V,E,L,p)
7 if > cjv; < Budget then
v EK
8 isBudgetSatisfied < 1
9 asro = coveragesro(U, K, V, E,l,p)
10 end
1 else
12 | k« k-1
13 end
14 end
15 end

V. LEAST COST-DISRUPTIVE DECISION TREE

FOR ASP DATA PLANE
A. Background

ASPs need to maintain good standing in their client relation-
ships in terms of service reliability, security and adaptability.
They also have to service the clients by adapting to different
strategies that solve the issues which arise while supporting
a particular application at cloud-scale. Thus, ASPs have to
balance between enhancing user QoE through various adapta-
tion strategies and mitigating a potential user disruption caused
by these adaptations. To preserve this balance, ASPs typically
require sophisticated engineering and operations groups, which
in turn increases the cost charged to the clients. On the
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Fig. 3: Least Cost-Disruptive decision tree scheme example for the LOFT case study: adaptation strategies are applied in a greedy fashion where cost and

potential user disruption increase.

contrary, we can minimize the complexity of ASP’s engineer-
ing operations by using the proposed 3Q interplay model in
Section III to predict potential QoE enhancement by applying
adaptation strategies that consider user disruption level as well.
To this aim, we propose an assessment technique that is based
on a LCD decision tree scheme for leveraging adaptation
strategies to trade-off between the service quality, cost and
user disruption factors.

B. LCD Decision Tree Scheme

While the 3Q model predicts the anticipated service quality
changes after an applied adaptation strategy for a particular
user, there is still the need to pick a subset of such adaptations
to maximize satisfactory QoE delivery to all users of the
ASP while tolerating some user disruption level based on
the \ penalty coefficient in the ASP data plane optimization
problem (see Definition 2). To address this limitation, we
propose a decision tree model that applies various adaptation
strategies in a least cost-disruptive manner by leveraging our
3Q model. Particularly, our LCD decision tree classifies all
adaptations based on a measurement of user disruptiveness
and cost, where adaptations that are made on the server side
are commonly more disruptive and potentially more expensive
than adaptations made on the client side. Thus, applying the
LCD decision tree to our 3Q model solves the ASP data plane
optimization problem in a greedy manner.

Figure 3 shows our LCD decision tree scheme, where all
adaptation strategies are applied based on their level of disrup-
tiveness (e.g., from the client to the server side adaptations)
as well as on their cost. Thus, the LCD scheme tries to
first apply the cheapest client side adaptation, whereas the
most expensive and disruptive server side adaptations are
likely going to be applied in the last iteration. We remark
that decisions of whether or not it is worth applying some
adaptations are based on the 3Q interplay model. We refer to
all adaptation strategies that involve the renting of additional
resources from InPs as ‘promotion’ adaptation strategies, and
we refer to all adaptation strategies that reduce the amount of
rented resources from InPs as ‘demotion’ adaptation strategies.

How complex is our LCD scheme? The above described
LCD decision tree scheme executes the 3Q interplay model at
most once for each possible adaptation a € A(R) applicable
to a set of rented resources R to estimate adaptation impact
on each user v € U! QoE at time t. Assuming the control
system asymptotic complexity O(§) (used in the 3Q model),
the final complexity of LCD is:

02 [AR)|-|U") =0 AR - [U"]). (14

Note that the O(£) asymptotic complexity is a control system-
specific [8] and can vary for different control system types that
can be utilized in our 3Q model.

C. LOFT Case Study Example

Considering the LOFT object tracking application [7] as
an example, our goal is to adapt allocated InPs resources
within the ASP data plane in a least cost-disruptive manner
to further enhance user QoE. To further enhance LOFT QoA
delivery within the data plane right after the initial service
placement is done, LCD proceeds with the three adaptation
scenarios at client, network and server sides. Strategies such
as bit rate reduction (by decreasing image quality) at the client-
side, traffic steering to mitigate congestion at the network-side,
promotion of hardware resources to speedup image tracking
at the server-side are considered for LOFT. Figure 4 shows an
example workflow of the LOFT cloud service setup, where a
client sends unprocessed images to a server running LOFT for
object tracking and receives processed images back for further
analysis.

Table III describes potential issues that can arise during
LOFT service delivery, and how our decision tree resolves
these issues in the least cost-disruptive manner. To assess QoA
for our case study, we use the tracking speed (framerate) of
the LOFT application measured in frames per second (fps).
In this example, we also assume the network bandwidth is
2 Mbps for all physical links. To represent QoA adaptation,
we have created two identical video datasets at two frame
resolutions. Data type 1 uses images at a frame resolution of
240x180 pixels, and data 2 type has images with a resolution
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Fig. 4: Tllustrative example of LOFT cloud service adaptations at the client (left), network (center) and server (right) sides: all adaptations can improve
service quality at the expense of cost and/or other users’ QoE disruption (see Table III).

TABLE III: LCD Adaptation results

Adaptation| Status | Data Network Server[QoA Tracking| SLO Users
Type Path Cores| Speed (fps) |Violation|Disrupted

. 1 {C1,1,2, 51} 2 ~ 3 Delay | None

Client Before) | roo 12,511 | 2 ~ 3 None | None

en ater| 2 | {CL L2551} | 2 ~3 None | C2

1o | {C2,1,2,51} | 2 ~3 None | None

. 1 {C1,1,2, 51} 2 ~1 Delay | None

Network Beforel » | fc2.1.2,51} | 2 ~ 3 None | None

Aft I [{C1,1,3,2,S1}| 2 ~3 None C3

2| {c2,1,2,81} | 2 ~3 None | None

Before] 1 | 1CL 1,291} [ 1 ~1 CPU | None

Server 1| {C2,1,2,51} | 1 ~1 CPU | None

aer| 1| 1CL1,2,51) | 4 ~3 None | C1

1 {C2,1,2, 51} 4 ~3 None Cc2

of 120x90 pixels. We also assume that data types 1 and 2
consume 2 and 1 Mbps of bandwidth, respectively.

In the client side adaptation scenario, two clients that are
concurrently accessing LOFT services running on a single
physical server are considered (see Figure 4-left). Moreover,
client C'1 uses data type 1, and client C2 uses data type
2. As bandwidth is fair shared between C1 and C2, C1
tracking speed is affected due to network congestion between
switches 1 and 2, C1 has 1 Mbps of bandwidth while the
data type 1 requires 2 Mbps. Based on our decision tree, we
first reduce the image resolution at the C'1 (client) side to be
exchanged between the client and the server. After adaptation,
C1 tracking speed increases at the expense of image quality
and tracking accuracy. In the network side adaptation scenario
(see Figure 4-center), two clients requesting LOFT services
are used to run on a single physical server, but now C1
is restricted to use data type 1. In this case, a client side
adaptation cannot be applied, and hence, LCD decision tree
proceeds with a traffic steering adaptation to reroute C'1 data
through a different path. This adaptation strategy improves C2
tracking without affecting the image quality, but can disrupt
the C'3 user who was unaffected before the adaptation took
place. The server side adaptation scenario (see Figure 4-right)
involves a situation of under-provisioned hardware. In this
example, C'l1 and C2 concurrently request LOFT services
using data type 1 from the same server. However, we assume
server hardware resources are not sufficient for the given
workload, and hence, service quality (tracking speed) of both
C1 and C2 is not satisfied. Thus, our decision tree applies
the only possible server side adaptation to promote server
hardware resources to accommodate for computation loads.
This adaptation significantly improves both C'1 and C2 QoA,
but is the the most expensive and disruptive option for the

users (as service becomes temporarily unavailable for all users
during resource promotion).

D. Algorithm for ASP optimization within the data plane

To avoid the NP-hard non-linear integer programming so-
Iution for the ASP data plane optimization problem (see
Definition 2) for a period of time ¢, we propose a scalable
greedy heuristic algorithm that utilizes our 3Q-based LCD
decision tree scheme outlined in Algorithm 2. As users with
higher QoA (or QoE) have higher chances of being fully
satisfied after applied adaptations, our algorithm starts by
sorting them in descending order by their QoA (or QoE) (line
2). For each user v € U?, we first check its satisfaction (line
6), and if w is satisfied we try to apply resource R demotion
adaptations without however affecting v satisfaction to procure
more available budget B4 (line 8) for future R promotion
of unsatisfied users (line 13). Moreover, for each unsatisfied
user u, we apply our LCD decision tree scheme that applies
adaptations in a least-cost disruptive manner (by leveraging
3Q model) and prescribes 3Q""! metrics for the next period
of time (line 11). Finally, proposed algorithm estimates the
user QoA (or QoE) coverage an 0A|QoE at time .

Algorithm 2: ASP data plane optimization

Input: Set of accessing users U, rented from InP resources R with cost C, set
of BQZ metrics (QoS/QoA/QoE) at time ¢ for each user u and ASP
Budget constraint.

Output: Prescribed 3QL+1 metrics for a period of time ¢ + 1, user Q0A/QoE

coverage aZJOA‘QoE.

1 begin

2 sort users U in descending order by their QoA (or QoE if available)

3 satis fiedUsers < 0

4 Bavail < Budget — C(R)

5 for u € U? do

6

7

8

9

if QoA (or QoE) of w is satisfied then
satisfiedUsers < satisfiedUsers + 1
Bavait < Bavait + demotion(u, 3Qiu R)
end
10 else
1 3Q « LOD(u,3Q%, R)
12 if Byyaii > 0 then
13 |  Bavait ¢ Bavait — promotion(u, 3Q%,, R, Bavait)
14 end
15 end
16 aZ)oA\QoE — |satisfiedUsers|/|U]|
17 end
18 end

VI. PERFORMANCE EVALUATION
In this section, we establish the effectiveness of our cloud
service orchestration algorithms for ASPs. We evaluate the
performance of our PCM-based clustering scheme for the
management plane and our LCD decision tree scheme for



the data plane using both numerical simulations and event-
driven experimental testbed evaluations (based on Skytap and
LOFT use cases). Our evaluation results fall under three salient
thrusts of findings: (i) MCP-PCM clustering fits best for large-
scale ASPs; (it) LCD decision tree best improves the profiled
QoE coverage (gains of up to 50%) with a low disruption and
is adaptable to different scenarios due to 3Q model; and (147)
both our proposed MCP-PCM clustering and LCD decision
tree enhance overall QoS and user QoE in real settings.

A. Numerical simulations under demanding SLO requirements
for service delivery

Simulation Settings. For our simulations, we used the Matlab
2014r environment (to cluster infrastructure within manage-
ment plane) and the NS-3 [10] simulator (to adapt rented
resources of a particular service within data plane based on
QoE profile).> We use the BRITE [11] topology generator to
create a realistic infrastructure topology that is rented from an
InP. Our results are consistent across infrastructure network
topologies that follow both Waxman and Barabasi-Albert
models that possess salient properties of realistic Internet
topologies [27]. Each graph has 100 vertices and 200 edges
(the common edge density for Internet topologies [27]). Fur-
ther, each edge has randomly distributed bandwidth capacity
ranging between 1 and 9 Mbps (as a link SLO), arbitrary cost
that is randomly distributed between 1 and 9, and propagation
delay proportional to the edge length (as path SLOs).

For management plane performance evaluation, we assume
that we have only one type of an application service whose
SLOs are as follows: the bandwidth SLO > 2.5 Mbps (=~ 28%
of maximum corresponding link metric), the cost SLO < 18
(200% of maximum corresponding link metric), and the delay
SLO < 75% of maximum corresponding link metric. We in-
tentionally choose demanding SLO requirements to stress test
our clustering schemes at high application delivery scales. To
stress clustering schemes under different InP routing schemes
we use common inter-domain BGP routing, common intra-
domain OSPF routing and MCP routing [26] policies to find
paths with fully satisfied SLO. For data plane performance
evaluation, we assume that we have the LOFT application
service whose SLOs constraints are as follows: the bandwidth
SLO > 2 Mbps (for data type 1) and > 1 Mbps (for data
type 2), and the delay SLO constraint < 100% of maximum
corresponding link metric. We use common OSPF routing as
an InP routing scheme. In all simulations, we assume that InPs
have a k = 1 routing policy, i.e., they use only a single shortest
path for each source destination pair. For results clarity,
we also assume that all provisioned servers have a unitary
cost. All our results show 95% confidence intervals, and our
randomness lays in the generated infrastructure topologies, as
well as in the initialization setup.

1) MCP-PCM performance within management plane:
Comparison Methods and Metrics. To solve the ASP
management optimization problem, we use the Geo-location
infrastructure clustering based on geographical proximity; the

2The source code of both matlab and NS-3 simulations is available under
GNU license at a public GitHub repository - https://github.com/duman190/
goe_orchestration_tomm.

K-Means infrastructure clustering based on hop count (or topo-
logical) proximity; our MCP-PCM infrastructure clustering is
based on multidimensional (i.e., SLO) proximity; and finally
the optimal integer programming solution (see Definition 1)
with CPLEX [28]. We vary the number of rented servers (i.e.,
the ASP’s budget), and while placing services, we calculate
the following metric (the higher the better):

# of users with satisfied SLOs
total # of users

where we use BGP, OSPF, or MCP [26] routing protocols to
find paths. These paths are then used to connect users with
their corresponding service instances.

(i) MCP-PCM clustering fits best for large-scale ASPs.
Figure 5 shows SLO coverage (aspo) results for Geo-
location, K-Means, MCP-PCM clustering schemes and for
the optimal integer programming solution that are consistent
across infrastructure graphs of both Waxman and Barabasi-
Albert models. PCM does not show significant SLO coverage
gains in comparison with other clustering schemes in two
cases: (i) if an ASPs’ budget is restricted for renting very
limited amount of resources (e.g., 1 or 2 servers) from InPs,
or (ii) the ASP budget is unrestricted for placing service
instance replicas at all possible locations with the closest
user proximity. In all other cases, PCM shows better SLO
coverage performance than the compared clustering solutions
to enhance satisfactory user QoE delivery subject to the ASP’s
budget. This is due to the fact, that our PCM clustering
takes into account multiple path distances (that correspond
to multiple path SLO constraints) in contrast to the compared
graph clustering approaches that use a single distance metric.
However, we found that PCM benefits degrade when InPs use
less advanced routing protocols e.g., MCP versus OSPF or
BGP. Due disregarding network design of InPs, the common
Geo-location approach performs the worst in comparison with
other clustering schemes.

Although the optimal solution with ILP achieves the best
possible SLO coverage under ASP’s budget constraint, we
can conclude that our suboptimal but polynomial MCP-PCM
clustering fits best for large-scale ASPs, as their service
placement with NP-hard integer programming can take from
several hours up to several days (or can be intractable at all)
causing long outages that translates to the ASPs’ revenue loss.

2) LCD decision tree performance within data plane:
Comparison Methods and Metrics. To estimate an impact of
the online adaptations to be included in LCD decision tree (i.e.,
within data plane) on the (profiled) QoE coverage (aqor),
disruption and (profiled) user QoE, we compare adaptations
suitable for LOFT such as a common bit rate reduction on
the client side (BR [15]); client migration to the second best
server based on the MCP-PCM clustering results (C'M [16])
which is equivalent to use the second best path to server,
but does not require an infrastructure control; and a bit rate
reduction on the server side (SM P [17]) to reduce network
load within an infrastructure cluster (formed within manage-
ment plane). In addition, we use a straightforward combination
of all these adaptations that are applied sequentially (All).
Finally, we apply all these adaptations based on our LCD

SLO coverage (asro)=

5)
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Fig. 5: SLO coverage (agro) results of Geo-location (GEO), K-Means (K M), and MCP-PCM (PC M) clustering algorithms versus the optimal ASP
management plane solution (OPT) (see Definition 1) using MCP (a), common intra-domain OSPF (b) and common inter-domain BGP (c) routing protocols
on both Waxman (W) and Barabasi-Albert (B) infrastructure graphs: unless ASPs’ budget is heavily restricted or unrestricted, PC'M infrastructure clustering
is the second best choice after optimal O PT" solution to enhance satisfactory user QoE delivery subject to the ASP’s budget. As expected, PC'M benefits
degrade when InPs use less advanced routing protocols e.g., MCP versus OSPF or BGP.

TABLE IV: LOFT QoE profile

Application Estimated Application Estimated
Throughput [Mbps] QoE Throughput [Mbps] QoE
Data Type 1 Data Type 2
>1.8 5 > 0.9 4
1.8>.-->15 45 0.9>..-->0.75 3.5
1.5>--->1.25 4 0.75> .-+ >0.5 3
1.25>---2>1 35 05>.-->0.25 2.5
1>..->0 2 0.25>--->0 1

decision tree scheme using our greedy heuristic Algorithm 2
for ASPs’ data plane (LC' D). All adaptations are applied after
solving the ASP management plane optimization problem (see
Definition 1) with our greedy heuristic Algorithm 1 that uses
MCP-PCM clustering. We also show baseline results with no
adaptations (N/A).

To represent different operational time periods (e.g., during
24 hours), we use several workload scenarios based on the
user access rate — from a sequential (or 1-by-1) to the full
access where all clients accessing ASP services concurrently
(e.g., during peak hours). Moreover, each server can serve
only 25 clients simultaneously without tracking speed (QoA)
degradation at the server side, and degrades gracefully after
exceeding that limit. We also assume that all servers allow an
elasticity policy, i.e., they allow elastic scale up (promote) and
scale down (demote) their capacities. For example, promoting
some server capacity by one unit (to serve 26 users without
performance degradation) requires an additional cost of 1/25.
We then use this policy in our proposed Algorithm 2 to
perform promotion/demotion adaptation strategies.

For each data plane service orchestration scheme and each
workload scenario, we calculate the following metrics:

# of satisfied users
QOE coverage (agor) =

1
total # of users (16)

S°N | QoE profile(throughput;)
total # of clients

Profiled QoE = a7

# of clients affected by any adaptation
(total # of clients) - (total # of adapts)

Disruption = (18)
where we use derived from the realistic testbed setup the user
QoE profile shown in Table IV of LOFT application (see
details in Section VI-B) to determine user QoE. Note that the
higher metric values in Equations 16 and 17 the better ASP
data plane optimization, whereas the higher metric value in
Equation 18 the worse such optimization performance.

(ii) LCD decision tree gains the highest QoE coverage with
a low disruption. Figure 6 shows (profiled) QoE coverage
(aqoE), (profiled) average QoE and disruption results when
ASP’s data plane service orchestration has no adaptations
(N/A), only client-side bitrate reduction (BR), only client
migration (CM), only server-side bitrate reduction (SMP),
all aforementioned adaptations used sequentially (All) and
our LCD decision tree scheme (LCD) applied on Barabasi-
Albert infrastructure graphs. Unless ASPs’ budget is heavily
restricted or unrestricted or the user access rate is low, applying
adaptations within ASP’s data plane service orchestration with
using our LC' D decision tree best improves the profiled QoE
coverage (e.g., gains of up to 50%) at expense of a low user
disruption level. Moreover, our service orchestration scheme
is adaptable to the different scenarios and ASPs’ budget due
use of the 3Q interplay model (see Section III).

On the contrary, applying only a single adaptation (e.g.,
C M) can improve QoE coverage in one scenario (e.g., for 50%
access rate), but can diminish it in another scenario (e.g., for
full access rate). Observed poor performance of the network
side adaptation with C'M is due to superior clustering which
places servers in a way to maximize probability of finding
paths which fully satisfy SLO constraints. Thus, moving a
client to the second best server (or the second best path) has
lower probability of satisfying all SLOs and a high chance of
other users disruption. The latter can be mitigated by renting
larger number of resources or when user access rate is low.
Another example is SM P that causes unnecessary user dis-
ruptions, e.g., it has the highest user disruption level among all
adaptations and can be significantly mitigated when combined
with other adaptations (i.e., included in LC'D decision tree).
We conclude that applying all adaptations sequentially (All)
without relying on 3Q model is a risky proposition that can
lead to a poor service orchestration or a high user disruption.

B. Skytap and LOFT Case Studies Experimental Evaluation

Experiment Settings. To analyze the impact of SLO viola-
tions on QoS/QoA and resulting user QoE within management
and data planes, we recreated both our Skytap example of a
virtual learning environment shown in Section IV-C and our
LOFT example of an on-demand computer vision tracking
system shown in Section V-C by allocating corresponding
resources in a GENI Cloud (Global Environment for Network
Innovations [13]) testbed (see Figures 7a and 7b, respectively).
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Flg 7. Skytap (a) and LOFT (b) experimental testbeds provisioned in GENI
Cloud: these testbeds matches our examples in Sections IV-C and V-C to
estimate impact of SLO violations on overall QoS and user QoE.

We used the Stanford InstaGENI data center site as our
availability zone (AZ) 1, the Utah Downtown Data Center
InstaGENT site as AZ 2, the University of Missouri InstaGENI
as AZ 3, the University of Wisconsin InstaGENI as AZ 4,
and the University of Kentucky PKS2 InstaGENI as AZ 5.
All link weights (bandwidth, one-way delay and packet loss)
were allocated or adjusted (when needed) using a Linux-
based netem emulator to match with corresponding links in
the example.

To recreate Skytap example, all paths were bridged with a
Linux bridge-utils tool. To recreate LOFT example, we run our
server S1 in AZ 4, and we connect users via clients C'1 and
C2 at AZ 3. All AZs are connected via OpenFlow switches
to steer the traffic (e.g., to route traffic in best-effort manner,
or to redirect it through an alternative paths during network
adaptation scenario). To control OpenFlow switches, we use
OpenFlow Floodlight controller [29]. Finally, S1 has dual core
CPU and 2GB of RAM for client and network side adaptation
scenarios. For server side adaptation scenario S1 is promoted
from single core CPU and 1GB of RAM to quad core CPU
and 4 GB of RAM.
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Fig. 8: Tiled images from a tracking dataset [30] were used: (a) the baseline
data type 1 includes 240x180 resolution frames and provides best video quality
and tracking accuracy (LOFT tracks all 300 frames) at the expense of tracking
speed (/2-3 fps), and (b) the baseline data type 2 includes 120x90 resolution
frames providing best tracking speed (~3-5 fps) at the expense of video
quality and tracking accuracy (LOFT tracks only 200 frames) [7].

Comparison Methods and Metrics. To demonstrate the
impact of SLOs adherence on the overall QoS and users’
QoE within management plane, we use clustering results of
K-Means and PCM schemes from our Skytap example (see
Table II). We transfer a 100 MB file between each node and
the corresponding cluster center by using the TCP protocol
to measure the path Round-Trip Time (the lower the better)
and throughput (the higher the better) for QoS estimation. We
then stream a full-motion video® using UDP protocol to obtain
user QoE assessments. To demonstrate the impact of SLOs
adherence on the overall QoS and users’ QoE within data
plane, we use adaptation results from our LOFT example (see
Table III). We transfer a 300 frames of either type 1 or type
2 baseline visual data (see Figure 8) by using TCP protocol
for both LOFT QoS and user QoE estimation.

We use Linux scp tool for file transfer, and to stream the
video (in Skytap example) we use the common vic player. We

3This video was used previously to demonstrate benefits of Software-
Defined Networking paradigm over regular Best-Effort Networking as part
of a GENI QoE Lab exercise - https://youtu.be/f3FG_DkskyY.
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Fig. 9: Cumulative distribution function (CDF) of paths’ (a,c.e) throughput
and (b,d,f) round-trip time (RTT) within cluster 1 (first row), cluster 2 (second
row) and both clusters (third row): in contrast to K-Means clustering where
6 of 8 nodes’ paths violate SLOs (see Table II), after PCM clustering all
nodes have a path to the corresponding cluster center with satisfied SLOs.
That translates into higher overall QoS.
have recruited 20 human subjects* by following an approved
Institutional Review Board (IRB) protocol that involves asking
the users to provide mean opinion score (MOS) rankings on
a 1 (Poor) - 5 (Excellent) scale to assess their subjective user
QOoE (the higher the better). We estimate user QoE results with
95% confidence intervals.
(iii) Proposed ASP service orchestration enhances overall
QoS and user QoE. Figure 9 illustrates how PCM cluster-
ing with MCP awareness improves overall QoS within the
management plane in comparison with the K-Means scheme.
Upon clustering infrastructure to PCM, all nodes have a path
to the corresponding cluster center which does not violate any
SLOs, i.e., the one-way delay SLO constraint < 50 ms (< 100
ms of TCP RTT) and the bandwidth SLO (TCP throughput)
= 15 Mbps. In contrast to PCM clustering, K-Means clustering
results in 6 of 8 nodes’ paths violating at least one SLO.
This in turn translates into poor overall QoS: the overall one-
way delay SLO violation (RTT > 100 ms) and the overall
bandwidth SLO violation (80% of time TCP throughput < 3
Mbps).

Figure 10 illustrates how the LCD decision tree scheme
improves overall QoS within data plane after infrastructure

4The International Telecommunication Union recommends 4 human sub-
jects for testing as a minimum total for statistical soundness [31].
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Fig. 10: Cumulative distribution function (CDF) of the LOFT tracking speed
(LOFT QoS) for clients C (a,c,e) and C2 (b,d,f) during client (first row),
network (second row) and server (third row) side adaptations: to improve QoS,
data plane adaptations in LCD decision tree have to sacrifice the video quality
and tracking accuracy, or disrupt other users, or require more resources to be
rented from InPs.

clustering been made within the management plane. From
the LOFT case study, a smaller image can result in faster
computation time and lower bandwidth consumption. This
explains why the tracking speed of C'1 is increasing after
the client-side adaptation. Similarly, finding an alternative (not
congested) route allows to use more bandwidth which in turn
again enhances LOFT tracking speed of C1. During server-
side adaptation, we increase tracking speed on the server side
which improves QoS of both C'1 and C'2. However, to improve
QoS, data plane adaptations in LCD decision tree have to
sacrifice the video quality and tracking accuracy, or disrupt
other users, or require more resources to be rented from InPs.
Thus, improvements in overall QoS do not necessarily translate
to improvements in overall user QoE.

Figure 11 illustrates how we assessed user QoE of video
streams within both clusters: In our example (see Sec-
tion IV-C), K-Means clustering causes significant SLO viola-
tions within cluster 1, and insufficient SLO violations within
cluster 2 (see Table II). As a result, we can see poor user
QoE results within cluster 1 (low MOS for all 6 metrics)
and acceptable user QoE results within cluster 2 (slightly
lower video quality). In contrast to K-Means clustering, the
PCM clustering results does not cause SLO violations in both
clusters, which in turn results in satisfactory user QoE.
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Fig. 11: User MOS assessments of video streams within: (a) cluster 1, (b)
cluster 2 and (c) both clusters: K-Means clustering causes significant SLO
violations within cluster 1 and insufficient SLO violations within cluster 2,
whereas after PCM clustering there is no SLO violations in both clusters,
which in turn results in satisfactory user QoE.

The results in Figure 12 illustrate how in every experiment,
our data plane adaptations improve overall QoE. Although,
data plane adaptations can disrupt other users (e.g., users
connected at AZ 5 after C'1 network adaptation, or all S1
clients during its promotion due to server-side adaptation), one
of the most important results from our experiments is that as
each of our LCD decision tree adaptations take place, QoE is
either improved or remains stable and the other network users
also have no perceivable loss and in some cases can actually
experience improved QoE.

VII. CONCLUSIONS

In this paper, we addressed the lack of QoE-oriented ser-
vice orchestration algorithms for Application Service Provider
(ASP) business models that guide them on how to rent less
resources from infrastructure providers (InPs), while delivering
satisfactory user QoE. Such algorithms allow ASPs to offer
higher QoE in service delivery under larger scale user loads
in a cost-effective manner.

Specifically, we used integer linear programming to find
an optimal solution to the ASP management plane problem
of service placement and maximization of SLO coverage for
users. To further avoid ILP NP-hardness, we also proposed
a heuristic algorithm which is based on a novel Possibilistic
C-Means (PCM) infrastructure clustering algorithm that is
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Fig. 12: User MOS assessments of remote LOFT tracking service for (a)
client, (b) network and (c) server side adaptations: all online adaptations in
LCD decision tree result in either an improved or same user QoE, while other
network users also have no perceivable loss and in some cases can actually
have improved QoE.

polynomial and can be used to optimize resource provisioning
within a large-scale ASP’s management plane. The novelty of
our approach lies in its ability to minimize multiple distances
related to service level objectives (SLOs) that demand close
proximity of users to the service instances. Such a strategy
in turn allows our PCM method to maximize the possibility
of finding multi-constrained network paths (which satisfy all
SLOs) between infrastructure nodes and corresponding cluster
centers in order to deliver satisfactory user QoE. We also
proposed a least cost disruptive decision tree (for client,
network, or server side adaptations) to optimize the ASP data
plane based on the dynamic QoS/QoA/QoE interplay model.

Using extensive numerical simulations under various SLO
demands, NS-3 simulator and realistic Internet topologies, we
have shown how our proposed ASP service orchestration al-
gorithms outperform related solutions in terms of SLO (within
the management plane) and QoA/QoE (within the data plane)
coverage of users connected to the corresponding cluster
centers (ASP’s service instances). This in turn leads to ASPs
needing to rent less resources from InPs in order to deliver
satisfactory user QoE at a large-scale of application service
delivery. Considering case studies featuring an actual Skytap
virtual learning environment (e.g., for education organization
customers) and a LOFT computer vision object tracking



system (e.g., for public safety organization customers), we
conducted GENI Cloud testbed experiments that show how
our proposed ASP service orchestration algorithms improve
overall QoS and enhances user QoE.

Future work will involve applying our ASP service or-
chestration to other applications such as depth sensor video
applications for smart health and patient monitoring. Our goal
is to consider other QoE-sensitive ASP use cases that involve
large data handling, large-scale video delivery and intelligent
resource adaptations to study optimization tradeoffs in the
delivery of satisfactory QoE levels. Another interesting avenue
to explore is to use machine learning techniques to better
model the 3Q interplay during continuous periods of time
(e.g., daily or weekly) which in turn can enhance a selection
of adaptation strategies in order to improve ASP delivery of
satisfactory QoE.
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