

2

to cooperate application developers and content providers.

Using MEC, we can augment critical infrastructure by having

the cloud computing resources more distributed and accessible

close to the wireless network-edge. For instance, it allows for a

base station infrastructure or ‘cloudlets’ to handle computation

requests from mobile devices that are in the geographic

vicinity [6], [7]. Thus, MEC provides options to offload

computation tasks from IoT devices to address application

issues related to energy management on constrained IoT

devices with limited power sources, while also providing low-

latency processing of visual data using sophisticated computer

vision algorithms. Works such as [8] have shown that cloud

server offloading can save power consumption (up to 25 times)

and increase processing speed (by 3X) than processing on a

constrained mobile device. However, there is a need for better

understanding on the MEC paradigm potential in terms of its

benefits or limitations when edge clouds are used with a core

cloud that may have: (a) undesirably long round-trip times,

(b) intermittent connectivity, or (c) excessive congestion, as in

the case of austere or adverse network edge environments.

To address the processing-throughput versus energy-

efficiency tradeoffs in MEC architectures, there is a need for

flexible policy-based edge routing (i.e., a variant of geographic

routing). Such an edge routing protocol should handle dy-

namic network situations, while also being energy-aware. For

instance, the locations of mobile nodes in a Mobile Ad hoc

Network (MANET) at a disaster incident scene could change

frequently or static nodes could become absent within a fixed

infrastructure due to power issues. This in turn can cause

unpredictable topology changes [9] and create challenges for

sustainable service continuity, as well as for maintaining rout-

ing tables. Previously proposed geographic routing protocols

such as [10], [11] are stateful in nature. By maintaining node

positions in a database and by updating them when events

(e.g., high mobility or failure node) occur, stateful protocols

can cause huge communication overheads and drain energy

on power constrained IoT devices. Other stateless geographic

routing protocols such as [12], [13] have been proposed that

do not require maintaing routing tables, but their performance

is found to degrade due to local minima i.e., they can cause

infinite loops in routing.

In this paper, we aim to study the potential of the MEC

paradigm by using the context of a facial recognition ap-

plication in a disaster incident response scenario. Our goal

is to adopt MEC within the facial recognition application

framework and analyze the tradeoffs in computing policies

that offload visual data processing (i.e., to an edge or a

core cloud) at low-to-high workloads, and their impact on

energy consumption under different visual data consumption

requirements.

Our contributions. As part of paper contributions, we par-

ticularly consider visual data consumption for users with thin

client or thick client configurations; thin client configuration

at a user assumes all of the processed images are stored

and viewed at a remote cloud resource, whereas thick client

configuration assumes processed images are downloaded and

further post-processed at the mobile user device level. When

available, we assume the core cloud has the option to provide

multiple compute instances which can help in parallel process-

ing of visual data workloads, versus having limited edge cloud

resources that process the workloads in a sequential manner.

Further, we consider cases where compression is used in the

image transfers, which could save bandwidth consumption in

austere networks, but increases the energy consumption that

could have a negative impact on the power-constrained IoT

device or edge cloud side with limited power sources.

To provide a flexible option for IoT-based applications to

decide whether to offload the visual data processing to an edge

cloud or a core cloud for the above user requirement cases, we

present a novel ‘decision-making algorithm’. Our algorithm

handles cases where a hard real-time processing need exists or

a varying scale of visual data processing workload needs to be

handled at the network-edge, while meeting user requirements

that are energy conscious or demand fast processing.

To address the needs of flexible policy-based edge routing,

we propose a ‘Sustainable Policy-based Intelligence-Driven

Edge Routing’ (SPIDER) algorithm that uses machine learning

techniques on satellite images to learn the geo-information

about existing physical obstacles. We leverage geographic

coordinates obtained via a Global Positioning System (GPS)

to improve the geographic routing in terms of throughput

performance sustainability in a manner that boosts baseline

performance (i.e., avoids the impact of local minima). In ad-

dition, we present our SPIDER routing engine implementation

whose source code is openly avaiable at [14]. Our implemen-

tation provides an edge network routing solution with flexible

policy specification to handle dynamic network situations,

while addressing tradeoffs in user decisions favoring either

processing-throughput or energy-efficiency.

We evaluate our energy-aware and low-latency MEC frame-

work featuring the facial recognition application and our

offloading decision-making algorithm with experiments in a

realistic edge and core cloud testbed. For the edge cloud, we

use a campus server, and we use the GENI Cloud resource [15]

for the core cloud. We leverage the Android-based PowerTu-

tor utility [16] to profile and estimate energy consumption

(Metric: Joules) of our facial recognition application that is

based on OpenCV [17] within the testbed. Our experiment

results show how MEC can provide flexibility to users who

desire energy conservation over low-latency (Metric: Process-

ing Time) or vice versa in visual IoT-based application data

processing. We compare cases where using thin client or thick

client configurations are more effective at low-to-high visual

data processing workloads, and how offloading policies could

affect the energy efficiency or low latency user requirements.

We evaluate our SPIDER algorithm by recreating disaster

scenes within NS-3 (Network Simulator) [18] simulations that

are specifically based on events during the tornado damage

in Joplin areas, Missouri, USA in 2011. Our simulations

feature disaster scenes and situations involving diverse user

preferences, node mobility and severe node failure conditions.

We leverage the ‘average residual power’ (Metric: Joules)

measurements, which are indicative of the network lifetime

in our UDP-based streaming application simulations. Our

simulation results demonstrate that our SPIDER routing en-

gine outperforms existing solutions [19], [20] and can pro-

3

vide flexibility to users who desire energy conservation over

throughput performance sustainability, or vice versa in MEC

environments.

Paper organization. The remainder of paper is organized as

follows: Section II reviews prior related work. In Section III,

we present our facial recognition application and a MEC

framework for studying computation offloading policies to bal-

ance tradeoffs in energy efficiency and low-latency processing

of low-to-high scale workloads from IoT devices. Section IV,

we present our SPIDER algorithm with machine learning to

improve geographic routing baseline performance. We present

performance evaluations with realistic GENI Cloud testbed

experiments, and simulations involving recreated disaster sce-

narios in Section VI. Section VII concludes the paper and

suggests future work.

II. RELATED WORKS

Computation Offloading Decision-Making. Existing litera-

ture on computation offloading can be classified under two

categories of work. First set of works such as [21], [22]

consider the concept of “program partition”, which involves

offloading parts of a given processing task onto edge servers,

and other parts of the task run on user devices. Specifically,

they propose offline heuristic algorithms to support a large-

scale mobile application and thereby reduce the completion

time for all application users. A second set of works, such

as [23], [24], [25], [26] consider a “migration” strategy that

offloads the entire application onto an edge server. Specifically,

the authors in [23] create a device classification for prioritizing

computation that is based on the channel and base station

resource allocation status. In [24], the authors use a Markov

decision process to dynamically offload computation within

services. The authors in [25], [26] use Software-Defined

Networking (SDN) to optimize edge (or fog) server selection

as well as steer traffic. Specifically, they proposed a PRIMAL

framework that uses SDN and integer quadratic programming

to maximize the profit and minimize latency for the purpose of

user application offloading. If offloading is not a viable option,

authors in works such as [27], [28] propose “load shredding”, a

prevalent data-stream management technique. Load shredding

involves automatically either dropping or adapting the quality

of packets on the edge device. Our work differs from existing

works due to the energy-awareness and low-latency user

requirements handling we address that flexibly allows visual

data processing to occur either at the edge cloud or in the core

cloud depending on the tradeoffs involved.

Visual Data Consumption. To display visual data from a

remote system, it is common to use either thin client or

thick client solutions. A thin client [29] can typically run

on local computer hardware (e.g., keyboard, mouse, display)

that is able to remotely connect to a remote desktop that is

either cloud-hosted or on a remote server. The computation

burden in this case will reside on the server side, and screen

scrapes are sent to the client. A thick client, on the other

hand, can be assumed to be a fully functional computer or

device that possess computing resources that are significant for

post-processing visual data based on user drill-down or zoom

in/out. According to [30], a stateless thick client might still

require periodic connection and computation assistance from

the cloud or a remote server. Regardless, user satisfaction in

terms of image rendering quality and interaction depends on

the session latency that depends on the network bandwidth

and computational resources at the client/server sides. The

authors in [31] found from real-world measurements that

even with good bandwidth of 100 Mbps, the latency in thin

clients still falls in range of 33-100 ms across different cities.

Moreover, they recommend the use of “cloudlet” or “Mobile

Edge Computing” architectures as a suitable solution to lower

end-to-end latency. Our work builds upon this recommendation

in our visual data processing workflow that is part of the MEC

architecture based facial recognition application.

Energy-aware Geographic Routing for MANETs. There are

works on geographic routing in MANETs such as Destina-

tion Sequenced Distance Vector (DSDV) [32]. When using

DSDV, each node periodically updates its routing table with

next hop information and the number of hops towards a

destination, without considerations for energy efficiency. In

comparison, works such as [33] propose keeping track of

the network nodes’ battery levels for routing decisions. To

further improve energy-efficiency, more recent works such

as [34], [35] propose clustering based on users’ mobility and

nodes’ energy-consumption and selection of cluster heads to

route packets toward an edge gateway. However, such cluster

heads need to scan neighboring nodes’ signals and store their

information to form clusters, and are not inherently tolerant

to high mobility and severe node failures. Cognitive routing

approaches in works such as [36], [37] apply communication

channels adaptation techniques to optimize energy-efficiency

of the data transmission through use of metrics such as Quality

of Information (QoI) and traffic awareness. All aforemen-

tioned approaches need to maintain some knowledge about

the network i.e., they are stateful in the routing tables manage-

ment. In comparison, our novel SPIDER algorithm is stateless

and builds upon our previous work [38] that benefits from

the physical obstacle knowledge derived from the satellite

imagery by using deep learning-based detectors [39], [40]

available at the edge. Such a knowledge facilitates throughput

sustainability improvements over previous stateful geographic

routing algorithms [19], [20] and stateless geographic algo-

rithms such as [41] by using a notion of recovery for a

local minimum [42]. Moreover, our SPIDER possesses energy-

awareness and throughput performance sustainability attributes

that are crucial for a facial recognition application in disaster

response scenes involving austere MEC and networking envi-

ronments.

III. INCIDENT-SUPPORTING MOBILE EDGE COMPUTING

In this section, we first describe the facial recognition

technology and our application framework implementation

that is important in disaster incident response when used by

incident commanders and first responders. Following this, we

detail our computation offloading decision-making algorithm

that can handle scalable workloads and energy constraints of

IoT devices that use our facial recognition application.

7

mobility and failures (e.g., commonly occurring in the event

of natural or man-made disaster incidents).

In order to satisfy network QoS requirements w.r.t user

policies and various network factors (i.e., severe node failures,

node mobility, traffic congestion, and insufficient bandwidth)

that are common in MANETs, our proposed SPIDER algo-

rithm details are presented in the following section.

B. SPIDER Solution Approach

As mentioned previously, we are interested not only in

improving our routing throughput performance sustainability

in regions affected by disaster aftermath, but also in making

our solution be policy-based in order to better serve MEC user

needs. To this aim, our SPIDER solution approach utilizes the

following information:

1) each packet header contains a target region (e.g., desti-

nation IP address and its GPS location) and its corre-

sponding forwarding policy (i.e., energy-efficient versus

low-latency)

2) each node knows locations and remaining energy levels

of all its neighbors, e.g., by periodically beaconing

them1

3) each node is also aware about local obstacles’ radius

and location detected by the edge cloud gateway

We remark that our SPIDER solution approach has no strong

assumptions on a given MANETs’ topology such as unit-disk

graphs or symmetric links. In addition, our SPIDER solution

improves the baseline performance of the geographic routing

and builds upon our previous work on Attractive, Repulsive

and Pressure Greedy Forwarding (ARPGF) [38]. Similarly to

ARPGF, our SPIDER solution alternates Attraction, Repulsion

and Pressure forwarding modes. When a packet is forwarded

in Attraction mode, it attracts to the destination based on its

geographic proximity. On the contrary, when the packet is

forwarded in Repulsion mode, it can be repealed away from

physical obstacles based on its potential function described in

Section IV-B1. Finally, when nodes fail to forward packets in

both Attractive and Repulsive modes, packets are forwarded

in Pressure mode until either Attractive or Repulsive modes

are recovered.

1) SPIDER Objective: Let us consider the following model

where node n forwards packet p towards destination d. In this

model, node n needs to decide which neighbor should receive

p to firstly progress towards d and secondly balance between

neighbor’s residual energy and the total latency of p w.r.t.

specified policies. Note that the higher latency of p can be

due to a longer path as nodes along a shorter path commonly

have more drained batteries. We do such balancing by picking

node n’s neighbor e with the minimum value of the following

objective function:

f(e, d.x, d.y, λ)=λ‖ϕ(e.x, e.y, d.x, d.y)‖+(1−λ)‖E(e)‖, (2)

1In certain cases, beaconing GPS coordinates and neighbors can lead to a
poor network energy-efficiency that reduces the network lifetime and leads
to a degraded wireless coverage. To avoid this situation, one may consider
adjusting the nodes’ beaconing frequencies w.r.t. nodes’ mobility to enhance
network lifetime and cover larger geographical distances on the order of
e.g., ‘theater-scale’ (≈2 city blocks) or ‘regional-scale’ (> 30 city blocks)
distances.

where ϕ(e.x, e.y, d.x, d.y) is the convex potential function of

node e with respect to the destination node d that allows us to

have theoretical guarantees on packets delivery with O(3.291)
approximation of the shortest path [38]; E(e) is a residual

energy at node e; and λ ∈ [0, 1] is a parameter to balance

between the shortest path approximation ϕ (to have lower p

latency) and its residual energy E level (to get higher overall

network energy-efficiency) based on specified MEC policies.

Note however, that minimization of the objective function

in Equation 2 does not guarantee convergence to the global

optimal solution either in terms of packets’ latencies or the

overall network energy-efficiency. This is due to the fact

that our routing solution is a greedy optimization algorithm,

i.e., it greedy forwards packets towards the destination. On

the contrary, the global optimization needs the full network

topology knowledge which is intractable to get in practice

due to MANETs’ dynamics caused by severe node failures,

high node mobility and other disaster-incident scene related

challenges.

In order to compute ϕ(e.x, e.y, d.x, d.y), SPIDER needs

additional geographic information about physical obstacles

such as man-made buildings or natural ponds/lakes and other

obstacles that can potentially cause packet drops due to lack

of wireless coverage near their geographical locations [38].

We discuss how nodes can get such additional obstacles’ geo-

information of their radius and center coordinates in the next

section. Once node e is aware about its local obstacle j radius

Rj and center coordinates Cj .x and Cj .y, it computes ϕ as

following:

ϕ(e.x, e.y, d.x, d.y) = −
1

dist(e.x, e.y, d.x, d.y)
+

+

M∑

j=1

oj(d.x, d.y)

dist(e.x, e.y, Cj .x, Cj .y)δ

(3)

where dist(x1, y1, x2, y2) is a geographical (e.g., Euclidean)

distance; δ is the attenuation order of obstacles’ potential fields

that has been shown empirically to give best performance

when δ ∈ [1, 2] [38]; and oj(d.x, d.y) corresponds to the

obstacle j potential intensity induced by the destination node

d as following:

oj(d.x, d.y) =
Rδ+1

j

δ · (dist(Cj .x, Cj .y, d.x, d.y) +Rj)
2 (4)

2) SPIDER Algorithm: Algorithm 2 outlines how each node

forwards packets using either Attractive, Repulsive, or Pres-

sure Greedy Forwarding modes. We remark that the Attraction

mode aims to deliver packets without obstacles awareness,

whereas the Repulsive mode aims to deliver packets with

such awareness. Thus, we alternate both modes to maximize

chances of proactively avoiding local minima while perform-

ing greedy forwarding of packets [38]. The Pressure mode was

initially proposed by [42] and can be used to guarantee packet

delivery by reactively recovering packets from local minima

during their greedy forwarding.

8

Thus, node e starts by checking if it has the destination Pd

neighbor. If not, it then checks if it has any local obstacles

known, i.e., e. ~C and e. ~R are not empty (see main()). If so,

it proceeds in Repulsive Forwarding() mode. If it is not true

or e faces a local minimum (i.e., it cannot find the next hop

node), SPIDER proceeds in the Attractive Forwarding() mode.

To this end, it first temporally omits all known obstacles by

setting e. ~C ← ∅ and e. ~R ← ∅) to avoid packets repulsion

(i.e., compute ϕ(e.x, e.y, d.x, d.y) without second term) (see

Equation 3). Finally, if neither attractive nor repulsive for-

warding modes are able to find next hop node (i.e., both are

in local minima), e enters the Pressure Forwarding() mode.

The key idea behind this mode is to forward packets to the

closest to the destination neighbor among the least visited

neighbors. As a result, at some point we should be able to

recover either Attractive or Repulsive modes by hitting a node

n with f(n, Pd.x, Pd.y, Pλ) < f(e, Pd.x, Pd.y, Pλ), where e is

a node that enters the Pressure mode.

The key difference of the SPIDER algorithm in comparison

with our previous ARPGF algorithm is that SPIDER forwards

packets based on minimization of the policy-based objective

function f(e, d.x, d.y, λ) (see Equation 2). However, such

flexibility has a downside as in the general case the convexity

of f is not guaranteed, and hence, packets may not reach

the destination d. This is due to the fact that e.g., a chosen

best neighbor in terms of its residual energy E can fully

disregard shortest path approximation guarantees of ϕ which

has a convexity property required by the Pressure mode [38].

This in turn results in violation of the gradient descent to

improve ϕ. To prevent this, we introduce an extra step to

choose a feasible set of neighbors that guarantees improving

of ϕ (see Feasible Neighbors() function) to deliver packets.

Algorithm 2 asymptotic computational complexity. In the

worst case scenario, Algorithm 2 proceeds in all 3 modes:

Attractive, Repulsive and Pressure modes. The asymptotic

computational complexity of each mode is O(k), where k is

an average node degree. This is because each node checks the

objective value f of all of its neighbors. Thus, Algorithm 2

has the following asymptotic computational complexity:

O(3 · k) = O(k). (5)

Note however that wireless ad-hoc networks usually have

a scale-free nature, i.e., the average node degree k in such

networks follows a power low, e.g., P (k) ∼ k−γ , and have

strong clustering properties. As a result, k doesn’t usually

depend on the network size.

V. MEC FRAMEWORK ARCHITECTURE

In this section, we describe our MEC framework archi-

tecture that combines both our offloading decision making

scheme and our SPIDER solution approach in disaster scenar-

ios featuring: (a) a facial recognition application to improve

the visual situational awareness, and (b) deep learning to

improve SPIDER performance. Our combined MEC Frame-

work architecture shown in Figure 6 is comprised from three

logical components: the MEC Framework itself; its offloading

engine that interacts with user IoT and the dashboard; and the

Algorithm 2 SPIDER

function Repulsive_Forwarding (e, P)
fe ← f(e, Pd.x, Pd.y, Pλ)
/* Get next hop according to ϕ function */

nextNodes ← Feasible Neighbors(e, P)
nextAddr ← argmin

n∈nextNodes
f(n, Pd.x, Pd.y, Pλ)

if fe < f(n, Pd.x, Pd.y, Pλ) then
return nextAddr

else
return NIL

end
end

function Attraction_Forwarding(e, P)

e temporally sets e. ~C ← ∅ and e. ~R← ∅ to omit P repulsion

fe ← f(e, Pd.x, Pd.y, Pλ)
//Get next hop according to ϕ function with only first term

nextNodes← Feasible Neighbors(e, P)
nextAddr ← argmin

n∈nextNodes
f(n, Pd.x, Pd.y, Pλ)

if fe < f(n, Pd.x, Pd.y, Pλ) then
return nextAddr

else
return NIL

end
end

function Pressure_Forwarding(e, P)
//Always return a best effort next hop for forwarding

visitsmin ← min
n∈Nbrs(e)

Pvisits(n)

Candidates← {nextAddr ∈ Nbrs(e) and Pvisits(n) == visitsmin}
Pvisits(n) ← Pvisits(n) + 1
nextAddr ← argmin

n∈Nbrs(e)
f(n, Pd.x, Pd.y, Pλ)

return nextAddr

end function Feasible_Neighbors(e, P)
//Get set of next hop according toward destination

ϕe ← ϕ(e.x, e.y, Pd.x, Pd.y)
foreach n ∈ Nbrs(e) do

ϕn ← ϕ(n.x, n.y, Pd.x, Pd.y)
if ϕn < ϕe then

nextNodes← nextNodes ∪ n

end

end

return nextNodes

end

function main ()
//Upon receiving a packet P at node e, algorithm decides to which neighbor of e
send P next

if Pd ∈ Nbrs(e) then
nextAddr ← Pd

else
nextAddr ← NIL
if e. ~C /∈ ∅ and e. ~R /∈ ∅ then

nextAddr ← Repulsive_Forwarding(e, P)
end

if nextAddr = NIL then
nextAddr ← Attraction_Forwarding(e, P)

end

if nextAddr = NIL then
nextAddr ← Pressure_Forwarding(e, P)

end

send(P, nextAddr)
end

end

MEC routing engine that uses deep learning services in the

Core Cloud to coordinate our SPIDER routing in MANET

environments.

MEC Framework at the Edge. The first core logical compo-

nent of our architecture is our MEC Framework, that we place

at the Edge Cloud for low-latency interactions with user IoT

devices through the gateway. Our MEC Framework has two

main service components - offloading and routing engines that

synergistically decide ‘where’ and ‘how’ to offload IoT data

processing within the hybrid Core/Edge Cloud, respectively.

Particularly, our offloading engine is needed to augment

IoT with demanded storage and compute resources while

taking into account specified user policies and various com-

11

Core:Par|C Core:Par|NC Edge:Par|C Edge:Par|NC Edge:Seq|C Edge:Seq|NC

100 300 500 800 1000
0.04

0.05

0.06

0.07

0.08

0.09

0.1

E
n
er

g
y
 C

o
n
su

m
p
.
[J

]

Number of Images

(a) Thin Client - Energy

100 300 500 800 1000
0

0.2

0.4

0.6

0.8

1

P
ro

ce
ss

in
g
 T

im
e

[s
]

Number of Images

(b) Thin Client - Latency

0 0.2 0.4 0.6 0.8
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Computation Time [s]E
n
er

g
y
 C

o
n
su

m
p
.
[J

]

(c) Thin Client - Low Workload

0 0.2 0.4 0.6 0.8
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Computation Time [s]E
n
er

g
y
 C

o
n
su

m
p
.
[J

]

(d) Thin Client - High Workload

100 300 500 800 1000
0.06

0.07

0.08

0.09

0.1

0.11

0.12

E
n
er

g
y
 C

o
n
su

m
p
.
[J

]

Number of Images

(e) Thick Client - Energy

100 300 500 800 1000
0

0.5

1

1.5

2
P

ro
ce

ss
in

g
 T

im
e

[s
]

Number of Images

(f) Thick Client - Latency

0 0.5 1 1.5 2
0.06

0.07

0.08

0.09

0.1

0.11

0.12

Computation Time [s]E
n
er

g
y
 C

o
n
su

m
p
.
[J

]

(g) Thick Client - Low Workload

0 0.5 1 1.5 2
0.06

0.07

0.08

0.09

0.1

0.11

0.12

Computation Time [s]E
n
er

g
y
 C

o
n
su

m
p
.
[J

]

(h) Thick Client - High Workload

Fig. 8: Average energy consumption (a,e) and processing time (b,f) per image with their trade-offs under a low workload of 300 images (c,g) and under a
high workload of 1000 images (d,h)

based on their specific processing demands. To sum up, all

of these policy combinations do not result in application per-

formance cases that simultaneously degrade in both the energy

consumption and the end-to-end processing time aspects.

The same however does not hold for a high data workload

(i.e., when processing ≈1000 images). Particularly, observing

Figures 8d and 8h, we noticed how parallel processing of

both compressed and non-compressed data at the edge cloud

is not part of the Pareto optimal solution set when a thick

client configuration is used. In this scenario, using parallel

processing of non-compressed data at core cloud is the optimal

solution since it has the lowest energy consumption and third

shortest end-to-end computation time (only consumes 83%

more computation time compared with the shortest solution

but saves 49% energy consumption). The reason for this

result is because of the fact that the edge processing time

dominates higher data export/import latencies to the cloud.

Thus, computation offloading to the edge cloud under a high

data workload for thick clients is always suboptimal to the core

cloud offloading for our facial recognition application context.

C. Edge Routing Evaluation

To evaluate our SPIDER performance, we use realistic

disaster-incident scenarios with severe node failures and high

node mobility in NS-3. We then compare its performance

with the flexible stateless greedy routing GEAR protocol [41].

We also compare our SPIDER with common stateful ad-hoc

routing solutions: the known reactive Ad-Hoc On Demand

Distance Vector (AODV) protocol [19]; and the Hybrid Wire-

less Mesh Network (HWMP) protocol 802.11s standard [20]

that combines reactive (by using AODV) as well as proactive

routing (by using spanning trees).

Simulation Settings. For our evaluation, we have imple-

mented our SPIDER algorithm in NS-3 simulator [18]. We

also use realistic disaster-affected scenes (see Figures 9 (a) and

(b)) of damaged areas due to the tornado that hit the Joplin

High School and Joplin Hospital buildings in Joplin, Missouri

in 2011. We obtained the disaster affected scenes information

from the available satellite imagery maps showing tornado

effects [50]. Using the scene information, we evaluate the

performance of stateless greedy forwarding algorithms under

mobility and severe node failure conditions. We assume that

the information regarding damaged buildings (i.e., their center

coordinates and radius) are provided from the edge cloud

through a Gateway using satellite imagery of the rescue areas

and deep learning obstacle detectors (see Section V) in the

core cloud.

In our disaster-incident experiment scenario, a paramedic

acts as a source sending data to the gateway over a MANETs.

Video streams gathered on-site are sent over a UDP session to

the edge cloud for further data processing in conjunction with

the core cloud. We simulate the 5 Mbps high-definition images

transmission over a UDP connection from a heads-up display

device worn by a paramedic e.g., Google Glass acting as a

visual data source. We remark that such IoT devices do not

have sufficient compute and storage resources to perform facial

recognition functions locally and have to send their captured

streams to the hybrid edge/core cloud. The paramedic stays

for 3 minutes at each patient location and moves at a jogging

speed (≈ 6 mph) between these locations. The simulation is

designed to cause a geographical routing to face an abandoned

wireless coverage zone when the paramedic source is near the

second or third patient locations.

Aside from the source mobility, in the node failure sim-

ulation scenario (see Figure 9a), nodes around an obstacle

can fail for the next 30 seconds due to the possibility of an

intermittently available power supply, or due to a physical

damage near the disaster scene. Their failure probability is

sampled from the interval [5%, 50%], i.e., from low to severe

13

 = 0 = 0.25 = 0.50 = 0.75 = 1

GEAR SPIDER AODV HWMP
400

450

500

550

600

R
es

id
u
al

 E
n
er

g
y
 [

J]

(a) Low Failures (5 %)

GEAR SPIDER AODV HWMP
400

450

500

550

600

R
es

id
u
al

 E
n
er

g
y
 [

J]

(b) High Failures (50 %)

GEAR SPIDER AODV HWMP
400

450

500

550

600

R
es

id
u
al

 E
n
er

g
y
 [

J]

(c) Low Mobility (10 mph)

GEAR SPIDER AODV HWMP
400

450

500

550

600

R
es

id
u
al

 E
n
er

g
y
 [

J]

(d) High Mobility (40 mph)

GEAR SPIDER AODV HWMP
0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

(e) Low Failures (5 %)

GEAR SPIDER AODV HWMP
0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

(f) High Failures (50 %)

GEAR SPIDER AODV HWMP
0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

(g) Low Mobility (10 mph)

GEAR SPIDER AODV HWMP
0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

(h) High Mobility (40 mph)

Fig. 10: The residual network energy (first row) and application level throughput (second row) with 95% confident interval results under low (a, e) and
high (c, f) node failures and in presence of the low (c, g) and high (d,h) node mobility using different routing policies λ.

GEAR SPIDER AODV HWMP
0

20

40

60

80

100

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 [

%
]

(a) Low Failures (5 %)

GEAR SPIDER AODV HWMP
0

20

40

60

80

100

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 [

%
]

(b) High Failures (50 %)

GEAR SPIDER AODV HWMP
0

20

40

60

80

100

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 [

%
]

(c) Low Mobility (10 mph)

GEAR SPIDER AODV HWMP
0

20

40

60

80

100

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 [

%
]

(d) High Mobility (40 mph)

Fig. 11: Application level throughput sustainability (i.e., standard deviation) results under low (a) and high (b) node failures and in presence of the low (c)
and high (d) node mobility using different routing policies λ.

the highest throughput performance sustainability as shown in

Figure 10. This is because – when entering zones with aban-

doned wireless network coverage, common geographic routing

approaches (e.g., GEAR) cannot forward packets using only

geographic coordinates; this problem is known in optimization

literature as a local minimum problem. As a result, GEAR

enters the recovery mode and uses planarization which, in

turn, can significantly stretch paths. However, stretching paths

reduces application level throughput and increases packets’

latency which, in turn, leads to a poor quality of transferred

video streams in a facial recognition or any other disaster

response application.

Even though both AODV and HWMP have advantages

over pure proactive stateful routing solutions, in a challenged

disaster scenario they do not show acceptable throughput level.

This could cause service outages or frequent disconnections.

Recent solutions in stateful geographic routing literature can

help cope with some of these disaster incident challenges [54],

[55]. For example, recent geographic routing solutions have

shown promising results under severe node failures [55].

However, we found no geographic routing algorithms that can

cope with both severe node failures and high node mobility

conditions.

Based on the above results, we conclude that our SPI-

DER algorithm improves routing sustainability, exhibits en-

ergy awareness, and enhances quality of user’s applications –

due to its knowledge of geographic obstacles located within

the rescue area, which in most cases allows local minima

avoidance by using its repulsion forwarding mode.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied how the mobile edge computing

(MEC) paradigm can provide flexibility to users who desire

energy conservation over low-latency or vice versa in visual

IoT-based application data processing. Our work was based on

the rationale that computing should happen in the proximity

of data sources, and cloud services especially moved closer to

the network edge can present opportunities to meet user re-

quirements in terms of energy consumption and fast processing

times. Using a facial recognition application that we developed

for use on mobile devices, we were able to demonstrate

cases where thin client or thick client configurations are more

effective at low-to-high visual data processing workloads, and

how offloading policies could affect the energy efficiency or

low latency user requirements. Particularly, we found from the

results that the edge cloud offloading policy for thick clients is

always sub-optimal in comparison to the core cloud offloading

under high workloads. However, it was not the case for thin

clients under similar conditions.

Also, we addressed the lack of sustainable and flexible

routing approaches for offloading facial recognition appli-

cation processing in MANETs to trade-off between energy-

awareness and low-latency data transferring to an edge cloud

gateway within a damaged infrastructure area. Specifically,

we presented our Sustainable Policy-based Intelligence Driven

Edge Routing (SPIDER) algorithm that builds upon recent

advances in the geographic routing area. To improve its

baseline geographic routing performance, SPIDER uses addi-

14

tional geographic knowledge that we obtain from the publicly

available satellite imagery of the rescue area and from its use

of deep learning detectors in a core cloud. To balance between

energy-awareness and low-latency data transferring in a best-

effort manner, our SPIDER algorithm used a tunable objective

function. Considering a variety cases of actual disaster incident

related scenarios, we have shown how our SPIDER algorithm

is more flexible and is more sustainable than other stateless

geographic routing solutions (i.e., GEAR and GPGF) as well

as stateful reactive mesh routing (i.e., AODV and HWMP).

As part of future work, practical routing protocols with load

balancing can be implemented to allow parallel processing in

cases where there are multiple servers available in a MEC en-

vironment. In addition, interference can be handled in wireless

network when caused by high user activity in MANETs using

channels adaptation techniques that: (a) minimize the chance

of packet drops, and (b) enhance energy-efficiency within IoT

devices.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-

tional Science Foundation (NSF) under Award Number: CNS-

1647182. Any opinions, findings, and conclusions or recom-

mendations expressed in this publication are those of the

author(s) and do not necessarily reflect the views of the NSF.

REFERENCES

[1] Hyunduk Kim, Myoung-Kyu Sohn, Dong-Ju Kim, and Nuri Ryu. User’s
gaze tracking system and its application using head pose estimation.
In Artificial Intelligence, Modelling and Simulation (AIMS), 2014 2nd

International Conference on, pp. 166–171. IEEE, 2014.

[2] John Gillis, Prasad Calyam, Olivia Apperson, and Salman Ahmad.
Panacea’s cloud: Augmented reality for mass casualty disaster incident
triage and co-ordination. In Consumer Communications & Networking

Conference (CCNC), 2016 13th IEEE Annual, pp. 264–265. IEEE, 2016.

[3] Joshua C Klontz and Anil K Jain. A case study on unconstrained facial
recognition using the boston marathon bombings suspects. Michigan

State University, Tech. Rep, 119(120):1, 2013.

[4] Arif Ahmed and Ejaz Ahmed. A survey on mobile edge computing.
In Intelligent Systems and Control (ISCO), 2016 10th International

Conference on, pp. 1–8. IEEE, 2016.

[5] Yaser Jararweh, Ahmad Doulat, Omar AlQudah, Ejaz Ahmed, Mah-
moud Al-Ayyoub, and Elhadj Benkhelifa. The future of mobile cloud
computing: Integrating cloudlets and mobile edge computing. In
Telecommunications (ICT), 2016 23rd International Conference on, pp.
1–5. IEEE, 2016.

[6] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan
Pillai, and Mahadev Satyanarayanan. Towards wearable cognitive
assistance. In Proceedings of the 12th annual international conference

on Mobile systems, applications, and services, pp. 68–81. ACM, 2014.

[7] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
computing: Vision and challenges. IEEE Internet of Things Journal,
3(5):637–646, 2016.

[8] Claudio Ragona, Fabrizio Granelli, Claudio Fiandrino, Dzmitry Klia-
zovich, and Pascal Bouvry. Energy-efficient computation offloading for
wearable devices and smartphones in mobile cloud computing. In Global

Communications Conference (GLOBECOM), 2015 IEEE, pp. 1–6. IEEE,
2015.

[9] Amol Dhumane, Rajesh Prasad, and Jayashree Prasad. Routing issues
in internet of things: A survey. In Proceedings of the International

MultiConference of Engineers and Computer Scientists, volume 1, pp.
16–18, 2016.

[10] Yicong Tian and Rui Hou. An improved aomdv routing protocol
for internet of things. In Computational Intelligence and Software

Engineering (CiSE), 2010 International Conference on, pp. 1–4. IEEE,
2010.

[11] C Li, C Zhao, L Zhu, H Lin, and J Li. Geographic routing protocol for
vehicular ad hoc networks in city scenarios: a proposal and analysis.
International Journal of Communication Systems, 27(12):4126–4143,
2014.

[12] Varun G Menon, PM Jogi Priya, and PM Joe Prathap. Analyzing the
behavior and performance of greedy perimeter stateless routing protocol
in highly dynamic mobile ad hoc networks. Life Science Journal,
10(2):1601–1605, 2013.

[13] Ritesh Gupta and Parimal Patel. An improved performance of greedy
perimeter stateless routing protocol of vehicular adhoc network in urban
realistic scenarios. Int. J. Scientific Research in Computer Science,

Engineering and Information Technology, Vol. 1, No. 1, pp. 24-29, 2016.
[14] Openly accessible Source Code Repository. Spider (sustainable policy-

based intelligence driven edge routing) routing engine. https://github.
com/huytrinh93/SPIDER, Last Accessed in August 2018.

[15] Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao,
Max Ott, Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. Geni:
A federated testbed for innovative network experiments. Computer

Networks, 61:5–23, 2014.
[16] Lide Zhang, Birjodh Tiwana, Robert P Dick, Zhiyun Qian, Z Morley

Mao, Zhaoguang Wang, and Lei Yang. Accurate online power estimation
and automatic battery behavior based power model generation for
smartphones. In Hardware/Software Codesign and System Synthesis

(CODES+ ISSS), 2010 IEEE/ACM/IFIP International Conference on,
pp. 105–114. IEEE, 2010.

[17] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision
with the OpenCV library. O’Reilly Media, Inc., 2008.

[18] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell,
and Joseph Kopena. Network simulations with the ns-3 simulator.
SIGCOMM demonstration, 14(14):527, 2008.

[19] Charles Perkins, Elizabeth Belding-Royer, and Samir Das. Ad hoc on-
demand distance vector (aodv) routing. In Proc. IEEE Workshop on

Mobile Computing Systems and Applications, 1999.
[20] Guido R Hiertz, Dee Denteneer, Sebastian Max, Rakesh Taori, Javier

Cardona, Lars Berlemann, and Bernhard Walke. Ieee 802.11 s: the wlan
mesh standard. IEEE Wireless Communications, 17(1), 2010.

[21] Gabriel Orsini, Dirk Bade, and Winfried Lamersdorf. Computing at
the mobile edge: designing elastic android applications for computation
offloading. In IFIP Wireless and Mobile Networking Conference

(WMNC), 2015 8th, pp. 112–119. IEEE, 2015.
[22] Lei Yang, Jiannong Cao, Hui Cheng, and Yusheng Ji. Multi-user

computation partitioning for latency sensitive mobile cloud applications.
IEEE Transactions on Computers, 64(8):2253–2266, 2015.

[23] Ke Zhang, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li,
Xin Peng, Li Pan, Sabita Maharjan, and Yan Zhang. Energy-efficient
offloading for mobile edge computing in 5g heterogeneous networks.
IEEE Access, 4:5896–5907, 2016.

[24] Shiqiang Wang, Rahul Urgaonkar, Murtaza Zafer, Ting He, Kevin Chan,
and Kin K Leung. Dynamic service migration in mobile edge-clouds. In
IFIP Networking Conference (IFIP Networking), 2015, pp. 1–9. IEEE,
2015.

[25] Xiang Sun and Nirwan Ansari. EdgeIoT: Mobile Edge Computing for
Internet of Things IEEE Communications Magazine, volume 54, pp.
22–29, 2016.

[26] Xiang Sun and Nirwan Ansari. PRIMAL: PRofIt Maximization Avatar
pLacement for Mobile Edge Computing. In IEEE International Confer-

ence on Communications (ICC), pp. 1–6, 2016.
[27] Dan Andersson, Peter Elmersson, A Juntti, Z Gajic, D Karlsson, and

L Fabiano. Intelligent load shedding to counteract power system
instability. In Transmission and Distribution Conference and Exposition:

Latin America, 2004 IEEE/PES, pp. 570–574. IEEE, 2004.
[28] N Perumal and Aliza Che Amran. Automatic load shedding in power

system. In Proc. of IEEE Power Engineering Conference (PECon), pp.
211–216, 2003.

[29] Ali Asghar Alesheikh, Hussein Helali, and HA Behroz. Web gis:
technologies and its applications. In Symposium on geospatial theory,

processing and applications, volume 15, 2002.
[30] Niraj Tolia, David G Andersen, and Mahadev Satyanarayanan. Quanti-

fying interactive user experience on thin clients. Computer, 39(3):46–52,
2006.

[31] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel
Davies. The case for vm-based cloudlets in mobile computing. IEEE

pervasive Computing, 8(4), 2009.
[32] Pankaj Rohal, Ruchika Dahiya, and Prashant Dahiya. Study and analysis

of throughput, delay and packet delivery ratio in manet for topology
based routing protocols (aodv, dsr and dsdv). International journal for

advance research in engineering and technology, 1(2):54–58, 2013.

15

[33] Michael Frey, Friedrich Grose, and Mesut Gunes. Energy-aware ant
routing in wireless multi-hop networks. In Proc. of IEEE International

Conference on Communications (ICC), pp. 190–196, 2014.
[34] Haoru Su, Zhiliang Wang, and Sunshin An. Maeb: routing protocol for

iot healthcare. Scientific Research Publishing, 2013.
[35] Mian Ahmad Jan, Priyadarsi Nanda, Xiangjian He, and Ren Ping Liu. A

sybil attack detection scheme for a forest wildfire monitoring application.
Future Generation Computer Systems, 80(Supplement C), pp. 613 – 626,
2018.

[36] Gayathri Tilak Singh and Fadi M Al-Turjman. Cognitive routing
for information-centric sensor networks in smart cities. In Proc. of

IEEE International Wireless Communications and Mobile Computing

Conference (IWCMC), pp. 1124–1129, 2014.
[37] Athina Bourdena, Constandinos X Mavromoustakis, George Kor-

mentzas, Evangelos Pallis, George Mastorakis, and Muneer Bani Yas-
sein. A resource intensive traffic-aware scheme using energy-aware
routing in cognitive radio networks. Future Generation Computer

Systems, 39:16–28, 2014.
[38] Dmitrii Chemodanov, Flavio Esposito, Andrei Sukhov, Prasad Calyam,

Huy Trinh, and Zakariya Oraibi. Agra: Ai-augmented geographic
routing approach for iot-based incident-supporting applications. Future

Generation Computer Systems, 2017.
[39] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You

only look once: Unified, real-time object detection. In Proc. of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 779–788,
2016.

[40] Spyros Gidaris and Nikos Komodakis. Object detection via a multi-
region and semantic segmentation-aware cnn model. In Proc. of the

IEEE International Conference on Computer Vision, pp. 1134–1142,
2015.

[41] Yan Yu, Ramesh Govindan, and Deborah Estrin. Geographical and
energy aware routing: A recursive data dissemination protocol for
wireless sensor networks. Technical report ucla/csd-tr-01-0023, UCLA

Computer Science Department, 2001.
[42] Andrej Cvetkovski and Mark Crovella. Hyperbolic embedding and

routing for dynamic graphs. In Proc. of IEEE INFOCOM 2009, pp.
1647–1655, 2009.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun Deep
Residual Learning for Image Recognition In IEEE Computer Vision

and Pattern Recognition, pp. 770-778, 2016.
[44] Davis E King. Dlib-ml: A machine learning toolkit. Journal of Machine

Learning Research, 10(Jul):1755–1758, 2009.
[45] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep Face

Recognition British Machine Vision Conference, 2015.
[46] Gary B. Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller.

Labeled faces in the wild: A database for studying face recognition in
unconstrained environments. Workshop on faces in ‘Real-Life’ Images:

detection, alignment, and recognition, 2008.
[47] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf.

Deepface: Closing the gap to human-level performance in face verifica-
tion. In IEEE Computer Vision and Pattern Recognition, pp. 1701-1708,
2014.

[48] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet:
A unified embedding for face recognition and clustering. In IEEE

Computer Vision and Pattern Recognition, pp. 815-823, 2015.
[49] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert.

Deep learning via semi-supervised embedding. In Neural Networks:

Tricks of the Trade, pp. 639–655. Springer, 2012.
[50] National Oceanic and Atmospheric Organization. - Last accessed in

August 2018.
[51] Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic routing in

intermittently connected networks. ACM SIGMOBILE mobile computing

and communications review, 7(3):19–20, 2003.
[52] Erik Kuiper and Simin Nadjm-Tehrani. Geographical routing in intermit-

tently connected ad hoc networks. In Advanced Information Networking

and Applications-Workshops, 2008. AINAW 2008. 22nd International

Conference on, pp. 1690–1695. IEEE, 2008.
[53] Sahel Sahhaf, Wouter Tavernier, Didier Colle, Mario Pickavet, and

Piet Demeester. Experimental validation of resilient tree-based greedy
geometric routing. Computer Networks, 82:156–171, 2015.

[54] Simon S Lam and Chen Qian. Geographic routing in d-dimensional
spaces with guaranteed delivery and low stretch. In Proceedings of the

ACM SIGMETRICS joint international conference on Measurement and

modeling of computer systems, pp. 257–268, 2011.
[55] Michal Król, Eryk Schiller, Franck Rousseau, and Andrzej Duda. Weave:

Efficient geographical routing in large-scale networks. In EWSN, pp.
89–100, 2016.

Huy Trinh received the BS degree in Computer Sci-
ence at University of Missouri, Columbia, USA, in
2015. He is currently a Graduate Research Assistant
working toward the M.S degree in the Department of
Electrical Engineering and Computer Science, Uni-
versity of Missouri, Columbia, USA. His research
interests include image processing, cloud computing
and networks.

Prasad Calyam received his MS and PhD degrees
from the Department of Electrical and Computer
Engineering at The Ohio State University in 2002
and 2007, respectively. He is currently an Associate
Professor in the Department of Electrical Engineer-
ing and Computer Science at University of Missouri-
Columbia. His current research interests include dis-
tributed and cloud computing, computer networking,
and cyber security. He is a Senior Member of IEEE.

Dmitrii Chemodanov received his MS degree from
the Department of Computer Science at Samara
State Aerospace University, Russia in 2014. He is
currently a PhD student in the Department of Electri-
cal Engineering and Computer Science at University
of Missouri-Columbia. His current research interests
include distributed and cloud computing, network
and service management, and peer-to-peer networks.

Shizeng Yao received his B.S. degree from the
Department of Electrical Engineering at Northeast-
ern University, China in 2012, and received his
M.S. degree from the Department of Electrical and
Computer Engineering at University of Missouri-
Columbia, USA, in 2015. He is currently a Grad-
uate Research Assistant working toward his Ph.D.
degree in the Department of Electrical Engineering
and Computer Science at University of Missouri-
Columbia. His research interests include digital im-
age processing, computer vision, and multi-view

stereo reconstruction.

Qing Lei received her Bachelor Degree of Engineer-
ing in Computer Science and Technology at Shang-
hai University in 2015. She is currently pursuing her
MS degree in Electrical Engineering and Computer
Science and working for Computer Graphics and Im-
age Understanding Lab at the University of Missouri
Columbia. Her current research interests include
image processing, computer vision and computer
graphics.

