Energy-aware Mobile Edge Computing and Routing
for Low-latency Visual Data Processing

Huy Trinh, Prasad Calyam, Dmitrii Chemodanov

Shizeng Yao, Qing Lei, Fan Gao, and Kannappan Palaniappan
University of Missouri-Columbia, USA;
Email: {hntzq4, dycbrd, syyh4, qlzm3, fgyf8} @mail.missouri.edu, calyamp@missouri.edu, pal @missouri.edu

Abstract—New paradigms such as Mobile Edge Computing
(MEC) are becoming feasible for use in e.g., real-time decision-
making during disaster incident response to handle the data
deluge occurring in the network edge. However, MEC deploy-
ments today lack flexible IoT device data handling such as e.g.,
handling user preferences for real-time versus energy-efficient
processing. Moreover, MEC can also benefit from a policy-based
edge routing to handle sustained performance levels with efficient
energy consumption. In this paper, we study the potential of MEC
to address application issues related to energy management on
constrained IoT devices with limited power sources, while also
providing low-latency processing of visual data being generated
at high resolutions. Using a facial recognition application that
is important in disaster incident response scenarios, we propose
a novel ‘offload decision-making’ algorithm that analyzes the
tradeoffs in computing policies to offload visual data processing
(i.e., to an edge cloud or a core cloud) at low-to-high workloads.
This algorithm also analyzes the impact on energy consumption
in the decision-making under different visual data consumption
requirements (i.e., users with thick clients or thin clients).
To address the processing-throughput versus energy-efficiency
tradeoffs, we propose a ‘Sustainable Policy-based Intelligence-
Driven Edge Routing’ (SPIDER) algorithm that uses machine
learning within Mobile Ad hoc Networks (MANETS). This
algorithm is energy-aware and improves the geographic routing
baseline performance (i.e., minimizes impact of local minima)
for throughput performance sustainability, while also enabling
flexible policy specification. We evaluate our proposed algorithms
by conducting experiments on a realistic edge and core cloud
testbed in the GENI Cloud infrastructure, and recreate disaster
scenes of tornado damages within simulations. Our empirical
results show how MEC can provide flexibility to users who
desire energy conservation over low-latency or vice versa in the
visual data processing with a facial recognition application. In
addition, our simulation results show that our routing approach
outperforms existing solutions under diverse user preferences,
node mobility and severe node failure conditions.

Index Terms—Mobile Edge Computing, Policy-based Cloud
Management, Energy-aware Edge Routing, Low-latency Visual
Data Processing

I. INTRODUCTION

The Internet of Things (IoT) is becoming increasingly
relevant for innovations in smart city applications such as
manufacturing and public safety. Mobile devices, wearable
smart devices and sensors are being connected with diverse
network connectivity options (e.g., austere infrastructure, Gi-
gabit network speeds at the network edge), and applications
can benefit from the insights in the data from these IoT
devices. Especially for applications such as disaster incident
response or law enforcement, visual data (e.g., high-resolution

images, video clips) from IoT devices needs to be processed
in real-time. The real-time requirement can imply e.g., a
facial recognition application processing at a speed of 15
frames/second or ~0.1 seconds/image [1]. Relevant insights
from the visual data can help incident commanders to quickly
analyze scenes and deploy resources (e.g., paramedics, am-
bulances, medical supplies) [2]. Through convergence with
cloud computing, IoT-based application data can be handled at
large scale from multiple network edge sites with on-demand
computation capabilities.

However, it is not always reasonable to assume that fully
functional computing/networking infrastructure, and unlimited
power sources exist to handle the visual data processing
needs. In natural disaster situations involving earthquakes,
tornadoes, wildfires, hurricanes, or man-made disasters involv-
ing terrorism, edge infrastructure may be lost. Consequently,
computation for disaster incident response decision-making
might require relying on constrained mobile devices in terms
of computing, networking or power resources. One important
IoT-based application we can envisage that is useful involves
facial recognition technology, which provides fast and accurate
identification when high-resolution image data, and high-
performance computing/networking exist to match against a
large/distributed database of images. The identification can
help find ‘lost persons’ or identify ‘bad actors’ [3] or account
for first responder presence levels in disaster scenes. Typically,
the identification actions needs to be achieved in real-time and
through processing of a high volume of images with varying
resolutions at the network edge on a limited power budget.

.}

Core Cloud

Request |

Upload :

Request |

!

Mobile Edge
Cloud

Fig. 1: Illustration of disaster scene related visual data processing by use of
wireless network, mobile edge and core cloud resources to upload images and
request processed images using sophisticated computer vision algorithms.

Figure 1 shows an illustration of how new paradigms of
Mobile Edge Computing (MEC) [4], [5] are emerging that
allow for upload of raw images and download requests of pro-
cessed images in the exemplar facial recognition application
context. MEC architectures allow for distributed computing in
Radio Access Networks (RANs) by having cellular operators

to cooperate application developers and content providers.
Using MEC, we can augment critical infrastructure by having
the cloud computing resources more distributed and accessible
close to the wireless network-edge. For instance, it allows for a
base station infrastructure or ‘cloudlets’ to handle computation
requests from mobile devices that are in the geographic
vicinity [6], [7]. Thus, MEC provides options to offload
computation tasks from IoT devices to address application
issues related to energy management on constrained IoT
devices with limited power sources, while also providing low-
latency processing of visual data using sophisticated computer
vision algorithms. Works such as [8] have shown that cloud
server offloading can save power consumption (up to 25 times)
and increase processing speed (by 3X) than processing on a
constrained mobile device. However, there is a need for better
understanding on the MEC paradigm potential in terms of its
benefits or limitations when edge clouds are used with a core
cloud that may have: (a) undesirably long round-trip times,
(b) intermittent connectivity, or (c) excessive congestion, as in
the case of austere or adverse network edge environments.

To address the processing-throughput versus energy-
efficiency tradeoffs in MEC architectures, there is a need for
flexible policy-based edge routing (i.e., a variant of geographic
routing). Such an edge routing protocol should handle dy-
namic network situations, while also being energy-aware. For
instance, the locations of mobile nodes in a Mobile Ad hoc
Network (MANET) at a disaster incident scene could change
frequently or static nodes could become absent within a fixed
infrastructure due to power issues. This in turn can cause
unpredictable topology changes [9] and create challenges for
sustainable service continuity, as well as for maintaining rout-
ing tables. Previously proposed geographic routing protocols
such as [10], [11] are stateful in nature. By maintaining node
positions in a database and by updating them when events
(e.g., high mobility or failure node) occur, stateful protocols
can cause huge communication overheads and drain energy
on power constrained IoT devices. Other stateless geographic
routing protocols such as [12], [13] have been proposed that
do not require maintaing routing tables, but their performance
is found to degrade due to local minima i.e., they can cause
infinite loops in routing.

In this paper, we aim to study the potential of the MEC
paradigm by using the context of a facial recognition ap-
plication in a disaster incident response scenario. Our goal
is to adopt MEC within the facial recognition application
framework and analyze the tradeoffs in computing policies
that offload visual data processing (i.e., to an edge or a
core cloud) at low-to-high workloads, and their impact on
energy consumption under different visual data consumption
requirements.

Our contributions. As part of paper contributions, we par-
ticularly consider visual data consumption for users with thin
client or thick client configurations; thin client configuration
at a user assumes all of the processed images are stored
and viewed at a remote cloud resource, whereas thick client
configuration assumes processed images are downloaded and
further post-processed at the mobile user device level. When
available, we assume the core cloud has the option to provide

multiple compute instances which can help in parallel process-
ing of visual data workloads, versus having limited edge cloud
resources that process the workloads in a sequential manner.
Further, we consider cases where compression is used in the
image transfers, which could save bandwidth consumption in
austere networks, but increases the energy consumption that
could have a negative impact on the power-constrained IoT
device or edge cloud side with limited power sources.

To provide a flexible option for IoT-based applications to
decide whether to offload the visual data processing to an edge
cloud or a core cloud for the above user requirement cases, we
present a novel ‘decision-making algorithm’. Our algorithm
handles cases where a hard real-time processing need exists or
a varying scale of visual data processing workload needs to be
handled at the network-edge, while meeting user requirements
that are energy conscious or demand fast processing.

To address the needs of flexible policy-based edge routing,
we propose a ‘Sustainable Policy-based Intelligence-Driven
Edge Routing’ (SPIDER) algorithm that uses machine learning
techniques on satellite images to learn the geo-information
about existing physical obstacles. We leverage geographic
coordinates obtained via a Global Positioning System (GPS)
to improve the geographic routing in terms of throughput
performance sustainability in a manner that boosts baseline
performance (i.e., avoids the impact of local minima). In ad-
dition, we present our SPIDER routing engine implementation
whose source code is openly avaiable at [14]. Our implemen-
tation provides an edge network routing solution with flexible
policy specification to handle dynamic network situations,
while addressing tradeoffs in user decisions favoring either
processing-throughput or energy-efficiency.

We evaluate our energy-aware and low-latency MEC frame-
work featuring the facial recognition application and our
offloading decision-making algorithm with experiments in a
realistic edge and core cloud testbed. For the edge cloud, we
use a campus server, and we use the GENI Cloud resource [15]
for the core cloud. We leverage the Android-based PowerTu-
tor utility [16] to profile and estimate energy consumption
(Metric: Joules) of our facial recognition application that is
based on OpenCV [17] within the testbed. Our experiment
results show how MEC can provide flexibility to users who
desire energy conservation over low-latency (Metric: Process-
ing Time) or vice versa in visual IoT-based application data
processing. We compare cases where using thin client or thick
client configurations are more effective at low-to-high visual
data processing workloads, and how offloading policies could
affect the energy efficiency or low latency user requirements.

We evaluate our SPIDER algorithm by recreating disaster
scenes within NS-3 (Network Simulator) [18] simulations that
are specifically based on events during the tornado damage
in Joplin areas, Missouri, USA in 2011. Our simulations
feature disaster scenes and situations involving diverse user
preferences, node mobility and severe node failure conditions.
We leverage the ‘average residual power’ (Metric: Joules)
measurements, which are indicative of the network lifetime
in our UDP-based streaming application simulations. Our
simulation results demonstrate that our SPIDER routing en-
gine outperforms existing solutions [19], [20] and can pro-

vide flexibility to users who desire energy conservation over
throughput performance sustainability, or vice versa in MEC
environments.

Paper organization. The remainder of paper is organized as
follows: Section II reviews prior related work. In Section III,
we present our facial recognition application and a MEC
framework for studying computation offloading policies to bal-
ance tradeoffs in energy efficiency and low-latency processing
of low-to-high scale workloads from IoT devices. Section IV,
we present our SPIDER algorithm with machine learning to
improve geographic routing baseline performance. We present
performance evaluations with realistic GENI Cloud testbed
experiments, and simulations involving recreated disaster sce-
narios in Section VI. Section VII concludes the paper and
suggests future work.

II. RELATED WORKS

Computation Offloading Decision-Making. Existing litera-
ture on computation offloading can be classified under two
categories of work. First set of works such as [21], [22]
consider the concept of “program partition”, which involves
offloading parts of a given processing task onto edge servers,
and other parts of the task run on user devices. Specifically,
they propose offline heuristic algorithms to support a large-
scale mobile application and thereby reduce the completion
time for all application users. A second set of works, such
as [23], [24], [25], [26] consider a “migration” strategy that
offloads the entire application onto an edge server. Specifically,
the authors in [23] create a device classification for prioritizing
computation that is based on the channel and base station
resource allocation status. In [24], the authors use a Markov
decision process to dynamically offload computation within
services. The authors in [25], [26] use Software-Defined
Networking (SDN) to optimize edge (or fog) server selection
as well as steer traffic. Specifically, they proposed a PRIMAL
framework that uses SDN and integer quadratic programming
to maximize the profit and minimize latency for the purpose of
user application offloading. If offloading is not a viable option,
authors in works such as [27], [28] propose “load shredding”, a
prevalent data-stream management technique. Load shredding
involves automatically either dropping or adapting the quality
of packets on the edge device. Our work differs from existing
works due to the energy-awareness and low-latency user
requirements handling we address that flexibly allows visual
data processing to occur either at the edge cloud or in the core
cloud depending on the tradeoffs involved.

Visual Data Consumption. To display visual data from a
remote system, it is common to use either thin client or
thick client solutions. A thin client [29] can typically run
on local computer hardware (e.g., keyboard, mouse, display)
that is able to remotely connect to a remote desktop that is
either cloud-hosted or on a remote server. The computation
burden in this case will reside on the server side, and screen
scrapes are sent to the client. A thick client, on the other
hand, can be assumed to be a fully functional computer or
device that possess computing resources that are significant for
post-processing visual data based on user drill-down or zoom

in/out. According to [30], a stateless thick client might still
require periodic connection and computation assistance from
the cloud or a remote server. Regardless, user satisfaction in
terms of image rendering quality and interaction depends on
the session latency that depends on the network bandwidth
and computational resources at the client/server sides. The
authors in [31] found from real-world measurements that
even with good bandwidth of 100 Mbps, the latency in thin
clients still falls in range of 33-100 ms across different cities.
Moreover, they recommend the use of “cloudlet” or “Mobile
Edge Computing” architectures as a suitable solution to lower
end-to-end latency. Our work builds upon this recommendation
in our visual data processing workflow that is part of the MEC
architecture based facial recognition application.
Energy-aware Geographic Routing for MANETS. There are
works on geographic routing in MANETSs such as Destina-
tion Sequenced Distance Vector (DSDV) [32]. When using
DSDV, each node periodically updates its routing table with
next hop information and the number of hops towards a
destination, without considerations for energy efficiency. In
comparison, works such as [33] propose keeping track of
the network nodes’ battery levels for routing decisions. To
further improve energy-efficiency, more recent works such
as [34], [35] propose clustering based on users’ mobility and
nodes’ energy-consumption and selection of cluster heads to
route packets toward an edge gateway. However, such cluster
heads need to scan neighboring nodes’ signals and store their
information to form clusters, and are not inherently tolerant
to high mobility and severe node failures. Cognitive routing
approaches in works such as [36], [37] apply communication
channels adaptation techniques to optimize energy-efficiency
of the data transmission through use of metrics such as Quality
of Information (Qol) and traffic awareness. All aforemen-
tioned approaches need to maintain some knowledge about
the network i.e., they are stateful in the routing tables manage-
ment. In comparison, our novel SPIDER algorithm is stateless
and builds upon our previous work [38] that benefits from
the physical obstacle knowledge derived from the satellite
imagery by using deep learning-based detectors [39], [40]
available at the edge. Such a knowledge facilitates throughput
sustainability improvements over previous stateful geographic
routing algorithms [19], [20] and stateless geographic algo-
rithms such as [41] by using a notion of recovery for a
local minimum [42]. Moreover, our SPIDER possesses energy-
awareness and throughput performance sustainability attributes
that are crucial for a facial recognition application in disaster
response scenes involving austere MEC and networking envi-
ronments.

ITII. INCIDENT-SUPPORTING MOBILE EDGE COMPUTING

In this section, we first describe the facial recognition
technology and our application framework implementation
that is important in disaster incident response when used by
incident commanders and first responders. Following this, we
detail our computation offloading decision-making algorithm
that can handle scalable workloads and energy constraints of
IoT devices that use our facial recognition application.

A. Application Background and Implementation

Facial
Information

#I

Verification
Result

|—»| Pre-processing | 5| 00 petection —>

Input Image & Compression

Facial
Information

Sample Faces

Classification & 3
Database

Verification

Fig. 2: Overview of stages in facial recognition for target identification.

Facial recognition technology when used in an application
on a mobile device can help in identifying or verifying a
person’s identity whose digital image is collected from a local
camera/video source. The facial recognition process we use in
our work has several steps as shown in Figure 2 that involve
the digital image at the client side and a larger image sample
dataset at the server side.

To initially detect a human face for a given database of
images within a small amount of time (i.e., with low latency),
we perform a pre-processing step using a mobile application
we developed. During this pre-processing step, we compress
all the input images to 1/4 of the original size i.e., we down-
sample half on each dimension. Since we expect our mobile
application to use relatively small datasets (on the order of
tens of images), the compression has little to no effect on the
classification accuracy.

After image compression, the cropped and scaled 224x224
face image, with the average face subtracted, is fed into
a deep learning-based facial recognition neural network in
ResNet-34 [43]. The convolutional neural network outputs an
embedding vector that is used in a nearest-neighbor search to
label the face image. We used the facial recognition modules in
the DLib C++ toolkit for machine learning [44] as our imple-
mentation platform. DLib’s face recognition (verification task)
implementation uses a smaller compact version of a ResNet-
34 with a few layers removed, and only half the number of
filters per layer. DLib’s face recognition network was trained
on a pooled collection of 3 million face images of nearly 7500
individuals, from several sources including VGG [45]. The
initial N-way classification or face identification network is
only used as a bootstrapping stage to learn the embedding
vector. In the verification task, the objective is to determine
whether two face images have the same identity or represent
two different people.

The DLib facial recognition architecture has a verifica-
tion accuracy of 99.38% on the standard Labeled Faces in
the Wild (LFW) benchmark dataset [46]. This is better in
terms of performance than the Facebook DeepFace siamese
network architecture trained with 4 million images of 4,000
identities and verification accuracy of 97.35% on the LFW
benchmark [47], VGG-Face trained with 2.6 million images
of over 2,600 people and verification accuracy of 98.95% [45],
and comparable to the Google FaceNet accuracy of 99.63%
that uses alignment and was trained with 200 million face
images of over 8 million different identities [48].

Similar to many deep learning facial recognition archi-
tectures, the DLib implementation learns an embedding (a

128-dimensional face descriptor vector) so that congruous
faces cluster together, and faces of different people are well
separated after metric learning (i.e., Euclidean distance). This
128-D face descriptor is then used for facial recognition. That
is after the training phase, the softmax classifier layer that out-
puts a weight for all person identities in the training database
can be removed and the score vector from the previous layer
is used as the embedding for identity verification [45]. To
improve face verification performance, the embedding feature
vector is usually tuned or directly learned using a triplet loss
training scheme that minimizes the distance from the anchor
or pivot face to positive samples, and maximizes the distances
between the anchor and negative identities [48]. In DLib, a
structured metric loss is used that attempts to project all the
identities into non-overlapping balls of radius 0.6 using a pair-
wise hinge loss in the mini-batch training set and includes
hard-negative mining. The embedding network is learned once
on a large collection of several million training faces from
several thousand unique identities. Facial recognition with a
new collection of identities then proceeds by computing the
embedding for each training face image (in e.g., the disaster
response face image collection) and using a scalable data
structure for nearest neighbor search given a query face image.

TestDemo

Test Case Setting

100
oCompress on device

% Compress on server
©Download results

@Parallelism

oUpload to core cloud

Tips: The default test case is uploading 100
images serially to edge cloud without any
compression or downloading

START TEST

Time consumption: 103.465s

LOAD IMAGE

=) < =] o) =]

Fig. 3: Application GUI - Left Image: test options for user to select, Right
Image: received result from the server side.

Figure 3 shows the graphical user interface of our ap-
plication implementation that is developed for an Android
device using the Java programming language. The facial
recognition process described above has been implemented
using OpenCV [17] for image management and using Python
scripts that utilize Dlib [44]. To use this interface and obtain,
for instance, the name of the matched image, a user can choose
different computation and image transfer policies as shown
in the left half of Figure 3 such as: compression on device
or server, thin or thick client, serial or parallel processing.
The resulting image of the target identification along with
processing time consumption can be obtained from the server
side as shown in the left half of Figure 3 for single or multiple
image uploads from one or more IoT devices simultaneously.

B. Computation Offloading Decision-Making Approach

The thin client or thick client application simply sends the
data from the mobile device to a cloud server to achieve
better results in low-latency processing and the related en-
ergy consumption. However, the decision between offloading
computation to the edge or core cloud depends on the user
requirement and workload scale. Authors in [6] show that the
edge cloud improves response time from 200ms to 80ms and
energy consumption reduced by 30%-40%. However, the core
cloud is helpful because of unlimited resources and parallel
instances to speedup processing. Therefore, we propose an
algorithm to classify the scenario with the user’s choice to
help choose the best visual data processing decision.

ﬁ.‘y
Low High
Workload Workload
Server Policies

Compressed Uncompressed
Image Transfers Image Transfers ’\
Fast E2E Energy
’\ Processing Saving
User Policies
-
Thin Thick

client client

[]

A 4

Parallel
Processing

Serial
Processing

Hard Real-Time
Processing Need?2

»(” Device e
\ Storage /
Fig. 4: Tllustration showing the flexible policy-based computation offloading
decision-making for low-latency visual data processing.

The application logic of the image/photo processing is
displayed as Figure 4. After the photo is captured, there
are multiple decisions that will make a difference on the
energy consumption and processing latency. For instance, the
transformation of the photos can be performed in parallel or in
a sequential/serial manner, depending on real-time processing
needs of the users. In addition, the photos can be compressed
before being uploaded to the cloud platform. Obviously, the
photo size will be smaller and thus it takes less bandwidth
to upload but at the expense of additional energy and time
consumption. Without comparison and analysis, it is chal-
lenging to decide whether the overall effect is positive or
negative. The same problems arise when the results are sent
back to the device based on user requirement in the thick
client case. Our experiments seek to evaluate the tradeoffs in
these various conditions under low-to-high workload scales.
The real-time requirement of the application is another factor,
i.e., if the face recognition results are required instantly for

post-processing on the client side, the workflow has to be
optimized. However, if the face recognition results are not
required instantly, the results can be simply shown on the
server instead of transferring the results back to the client side.
In this way, redundant steps can be eliminated and a better
performance can be achieved based on the user requirements
as well as the client/server capabilities.

Workload allocation to the edge cloud or core cloud con-
sidering energy awareness introduces additional challenges for
various scenarios. For example, due to a case where energy
conservation and fast computation time are desired, processing
has to be completed using a cloud platform. However with
the remote processing, the additional energy consumption to
transfer images also affects the processing latency. Compu-
tation offloading onto the edge cloud in this case could save
energy and image transfer time, however the edge cloud might
have limited resources to handle large workload scales or
facilitate parallel processing. The energy and latency metrics
thus should be given different priority (or weight) for different
workloads so that a reasonable strategy can be selected in the
end-to-end steps of the visual data processing.

Algorithm 1 Offloading Decision-Making

Data: Load info: resolution, sizeO f Load, lowW orkload
Data: Server policies: edgeCloud, coreCloud, numO fServers
Data: User policies: downloadResults, realTimeProcess, saveEnergy
Result: The efficient way to save energy and achieve low-latency processing
function threads < createThreads()
/* Create multiple threads on the mobile device for offloading load-balanced data
to different servers */
if realTimeProcess = true then

| threads <+ parallelThreads(sizeO f Load, numberO f Servers)
else

| threads < serialThreads(sizeO f Load, numberO f Servers)
end

end
function of fload(threads)
/*Decide where to offload data for processing */
if saveEnergy = false then
| compress(threads)
end
if workload(resolution, sizeO f Load) < lowW orkload then
| sendTo + edgeCloud
else
I sendTo <« coreCloud
end
send(threads, sendT o)
end
function main()
/* Decide best client configuration */
if downloadResults then
| use thick client
else
| use thin client
end
threads < createThreads()
of fload(threads)

end

Algorithm 1 shows our energy and latency aware steps in
computation offloading. The main() function gets executed
first to check whether the user needs to receive the final
results from the server as in the thick client case; or whether
thin client assumptions are relevant on the user side. Once
a decision on either the thin or thick client is made, two
operations occur subsequently: Firstly, the createT hreads()
function ensures that the mobile device is creating multiple
threads either for parallel or sequential processing based on the
realTimeProcess and numberO f Servers policies. Created
threads are then used to start UDP/TCP sessions for all server

instances provisioned in the core or edge cloud. Secondly, the
of fload() function decides on whether or not threads should
be compressed based on the saveEnergy user’s policy to
trade-off between the energy consumption and latency (a.k.a.
processing time). Specifically, image compression can help by
reducing the data transfer time which adds to the latency at the
expense of user’s device energy consumption. The of fload()
function also decides on sending data either to the edge or core
cloud servers depending on the workload scale. Intuitively, if
the workload is large which means either the number of images
or their resolution is high, the mobile devices will send data
directly to the core cloud. Moreover, to avoid the overloading
the edge cloud, the mobile device could periodically monitor
edge/core cloud resources and check for availability before
transferring data.

We remark that the workload thresholds as well as
core/edge cloud location selections are specific to appli-
cation/infrastructure (including user device capability) fac-
tors, and are specified via lowWorkload, coreCloud and
edgeCloud policies, respectively. In the case of having multi-
ple core/edge clouds, our algorithm can be used in conjunction
with other existing schemes such as [25], [26]. Such schemes
can first optimize core/edge cloud servers selection to specify
coreCloud and edgeCloud server policies. Based on speci-
fied user/server policies, our algorithm can subsequently be
executed to make final offloading decisions. In Section VI-A,
we experimentally quantify image processing workload levels
tailored to a facial recognition application running within an
experimental core/edge cloud infrastructure.

Algorithm 1 asymptotic computational complexity. Algo-
rithm 1 performs in a decision tree manner, i.e., it checks
a number of predefined policies to decide on the offloading
strategy. Due to the fact that the number of policies P is con-
stant, Algorithm 1 has the following asymptotic computational
complexity:

O(P) = 0(1). (1)

From Equation 1 we can see that the Algorithm 1 com-
plexity depends neither on the size of the workload nor on the
infrastructure size. Note however that specifying some policies
such as edgeCloud or coreCloud (optimal) servers (used in
Algorithm 1) may require more complex algorithms.

IV. ENERGY-AWARE AND SUSTAINED PERFORMANCE
EDGE ROUTING

Having a policy-based offloading decision scheme allows
us to make flexible decisions on “where” to offload users’
visual data processing. However, a comprehensive framework
also has to address the question about “how” to offload
users’ data to deliver desired Quality of Application. In some
cases of disaster incident response situations, users may prefer
to have a low-latency data processing over a better energy
management on power constrained IoT devices. Thus, there
is a need for an edge routing algorithm that is intelligent
in disaster incident scenarios and is flexible in the decision
making to handle diverse user policies. In this section, we
present our Sustainable Policy-based Intelligence Driven Edge
Routing (SPIDER) that builds upon recent advances in the

geographic routing literature to work in challenging disaster-
incident conditions involving high node mobility and severe
node failures.

=
w Workload Dewce Server
(0’"[””“ / Levels T}pes Capabilities,
Storage Offl ing E
o scieS oading Engine
Factors pol (Where to offload?)
5 | | Qos
& | MEC Framework Requirements
User
\‘*[Routing Engine |
?
Network Deli (How to offload?)]
Networ I'ely [— _,
Factors ‘“N‘/":’d"e’t e T raff’ ic Insufficien e
o “ongestion Bandwidth -
ﬁ e e o o o - —— rm_wr_l = u
-
_______ /; z~
Fig. 5: Lifecycle of our MEC Framework: the relation between our

offloading decision making scheme and the edge routing within our MEC
framework.

A. Relation of MEC and Edge Routing

We start first by describing the relation between our of-
floading decision making scheme and the edge routing within
our MEC framework. Figure 5 shows the life-cycle of our
MEC framework, where at the first step users specify their
policies such as thin vs. thick clients, compressed vs. non-
compressed data, sequential vs. parallel processing and energy-
efficient vs. low-latency computing to our offloading engine.
Based on these policies, the offloading engine generates de-
cisions on ‘where’ to offload users’ data that can potentially
satisfy their demands. This engine takes into account various
compute/storage factors such as different workload levels of
physical resources, device types and server capabilities. Sub-
sequently, the offloading engine translates user policies w.r.t.
compute/storage factors to network QoS requirements for the
edge routing engine. Based on these requirements, the routing
engine then controls ‘how’ users’ data is steered taking into
account various network factors such node failures, congestion
and lack of bandwidth. Finally, based on the delivered QoA
levels, users can modify their preferences and experiment with
different sets of policies.

We remark that having a policy-based edge routing that
optimizes throughput and energy efficiency trade-offs can
synergistically improve IoT data offloading in a best-effort
manner. Particularly, such a routing optimization could allow
for a user/server policy reconsideration that further improves
offloading decision-making (see Section III-B). Changing of-
floading policy in turn can further help optimize networking
by better balancing between residual wireless network energy
capacity and its throughput. However, such a best-effort op-
timization scheme can be still suboptimal with respect to the
joint optimization of network/compute resources. Additionally,
such a joint optimization can also be practically intractable due
to unknown apriori user policies (e.g., energy efficiency of an
IoT device vs. the corresponding end-to-end processing time),
or due to difficulties in obtaining timely global knowledge
of an infrastructure, whose wireless nodes can be subject to

mobility and failures (e.g., commonly occurring in the event
of natural or man-made disaster incidents).

In order to satisfy network QoS requirements w.r.t user
policies and various network factors (i.e., severe node failures,
node mobility, traffic congestion, and insufficient bandwidth)
that are common in MANETS, our proposed SPIDER algo-
rithm details are presented in the following section.

B. SPIDER Solution Approach

As mentioned previously, we are interested not only in
improving our routing throughput performance sustainability
in regions affected by disaster aftermath, but also in making
our solution be policy-based in order to better serve MEC user
needs. To this aim, our SPIDER solution approach utilizes the
following information:

1) each packet header contains a target region (e.g., desti-
nation IP address and its GPS location) and its corre-
sponding forwarding policy (i.e., energy-efficient versus
low-latency)

2) each node knows locations and remaining energy levels
of all its neighbors, e.g., by periodically beaconing
them'

3) each node is also aware about local obstacles’ radius
and location detected by the edge cloud gateway

We remark that our SPIDER solution approach has no strong
assumptions on a given MANETS’ topology such as unit-disk
graphs or symmetric links. In addition, our SPIDER solution
improves the baseline performance of the geographic routing
and builds upon our previous work on Attractive, Repulsive
and Pressure Greedy Forwarding (ARPGF) [38]. Similarly to
ARPGEF, our SPIDER solution alternates Attraction, Repulsion
and Pressure forwarding modes. When a packet is forwarded
in Attraction mode, it attracts to the destination based on its
geographic proximity. On the contrary, when the packet is
forwarded in Repulsion mode, it can be repealed away from
physical obstacles based on its potential function described in
Section IV-B1. Finally, when nodes fail to forward packets in
both Attractive and Repulsive modes, packets are forwarded
in Pressure mode until either Attractive or Repulsive modes
are recovered.

1) SPIDER Objective: Let us consider the following model
where node n forwards packet p towards destination d. In this
model, node n needs to decide which neighbor should receive
p to firstly progress towards d and secondly balance between
neighbor’s residual energy and the total latency of p w.r.t.
specified policies. Note that the higher latency of p can be
due to a longer path as nodes along a shorter path commonly
have more drained batteries. We do such balancing by picking
node n’s neighbor e with the minimum value of the following
objective function:

fle,d.z,d.y, \)=M|¢(e.x, ey, d.z,dy)||+(1=N)| E(e)|, (2)

'In certain cases, beaconing GPS coordinates and neighbors can lead to a
poor network energy-efficiency that reduces the network lifetime and leads
to a degraded wireless coverage. To avoid this situation, one may consider
adjusting the nodes’ beaconing frequencies w.r.t. nodes’ mobility to enhance
network lifetime and cover larger geographical distances on the order of
e.g., ‘theater-scale’ (=2 city blocks) or ‘regional-scale’ (> 30 city blocks)
distances.

where ¢(e.xz,e.y,d.x,d.y) is the convex potential function of
node e with respect to the destination node d that allows us to
have theoretical guarantees on packets delivery with O(3.291)
approximation of the shortest path [38]; E(e) is a residual
energy at node e; and A € [0, 1] is a parameter to balance
between the shortest path approximation ¢ (to have lower p
latency) and its residual energy F level (to get higher overall
network energy-efficiency) based on specified MEC policies.

Note however, that minimization of the objective function
in Equation 2 does not guarantee convergence to the global
optimal solution either in terms of packets’ latencies or the
overall network energy-efficiency. This is due to the fact
that our routing solution is a greedy optimization algorithm,
i.e., it greedy forwards packets towards the destination. On
the contrary, the global optimization needs the full network
topology knowledge which is intractable to get in practice
due to MANETSs’ dynamics caused by severe node failures,
high node mobility and other disaster-incident scene related
challenges.

In order to compute ¢(e.x,e.y,d.z,d.y), SPIDER needs
additional geographic information about physical obstacles
such as man-made buildings or natural ponds/lakes and other
obstacles that can potentially cause packet drops due to lack
of wireless coverage near their geographical locations [38].
We discuss how nodes can get such additional obstacles’ geo-
information of their radius and center coordinates in the next
section. Once node e is aware about its local obstacle j radius
R; and center coordinates C';.z and C}.y, it computes ¢ as
following:

1
dist(e.x, ey, d.x, d.y) +
n i oj(d.z,d.y) 3)
= dist(e.x,e.y,C;.x,Cj.y)°

ple.x,ey,d.x,dy) =

where dist(x1,yl,x2,y2) is a geographical (e.g., Euclidean)
distance; ¢ is the attenuation order of obstacles’ potential fields
that has been shown empirically to give best performance
when ¢ € [1,2] [38]; and o;(d.z,d.y) corresponds to the
obstacle j potential intensity induced by the destination node
d as following:

0+1
Rj

oi(d.x,d.y) =
i v) - (dist(Cj.x,Cjy,d.x,d.y) + Rj)2

“4)

2) SPIDER Algorithm: Algorithm 2 outlines how each node
forwards packets using either Attractive, Repulsive, or Pres-
sure Greedy Forwarding modes. We remark that the Attraction
mode aims to deliver packets without obstacles awareness,
whereas the Repulsive mode aims to deliver packets with
such awareness. Thus, we alternate both modes to maximize
chances of proactively avoiding local minima while perform-
ing greedy forwarding of packets [38]. The Pressure mode was
initially proposed by [42] and can be used to guarantee packet
delivery by reactively recovering packets from local minima
during their greedy forwarding.

Thus, node e starts by checking if it has the destination Py
neighbor. If not, it then checks if it has any local obstacles
known, i.c., e.C and e.R are not empty (see main()). If so,
it proceeds in Repulsive_Forwarding() mode. If it is not true
or e faces a local minimum (i.e., it cannot find the next hop
node), SPIDER proceeds in the Attractive_Forwarding() mode.
To this end, it first temporally omits all known obstacles by
setting e.C < () and e.R <« () to avoid packets repulsion
(i.e., compute p(e.x,e.y,d.x,d.y) without second term) (see
Equation 3). Finally, if neither attractive nor repulsive for-
warding modes are able to find next hop node (i.e., both are
in local minima), e enters the Pressure_Forwarding() mode.
The key idea behind this mode is to forward packets to the
closest to the destination neighbor among the least visited
neighbors. As a result, at some point we should be able to
recover either Attractive or Repulsive modes by hitting a node
n with f(’l’L, Py, Pd‘y,P)\) < f(e, Py, Pd‘y, P)\), where e is
a node that enters the Pressure mode.

The key difference of the SPIDER algorithm in comparison
with our previous ARPGF algorithm is that SPIDER forwards
packets based on minimization of the policy-based objective
function f(e,d.x,d.y,\) (see Equation 2). However, such
flexibility has a downside as in the general case the convexity
of f is not guaranteed, and hence, packets may not reach
the destination d. This is due to the fact that e.g., a chosen
best neighbor in terms of its residual energy E can fully
disregard shortest path approximation guarantees of ¢ which
has a convexity property required by the Pressure mode [38].
This in turn results in violation of the gradient descent to
improve ¢. To prevent this, we introduce an extra step to
choose a feasible set of neighbors that guarantees improving
of ¢ (see Feasible_Neighbors() function) to deliver packets.
Algorithm 2 asymptotic computational complexity. In the
worst case scenario, Algorithm 2 proceeds in all 3 modes:
Attractive, Repulsive and Pressure modes. The asymptotic
computational complexity of each mode is O(k), where k is
an average node degree. This is because each node checks the
objective value f of all of its neighbors. Thus, Algorithm 2
has the following asymptotic computational complexity:

03 k) = O(k). 5)

Note however that wireless ad-hoc networks usually have
a scale-free nature, i.e., the average node degree k in such
networks follows a power low, e.g., P(k) ~ k7, and have
strong clustering properties. As a result, k£ doesn’t usually
depend on the network size.

V. MEC FRAMEWORK ARCHITECTURE

In this section, we describe our MEC framework archi-
tecture that combines both our offloading decision making
scheme and our SPIDER solution approach in disaster scenar-
ios featuring: (a) a facial recognition application to improve
the visual situational awareness, and (b) deep learning to
improve SPIDER performance. Our combined MEC Frame-
work architecture shown in Figure 6 is comprised from three
logical components: the MEC Framework itself; its offloading
engine that interacts with user IoT and the dashboard; and the

Algorithm 2 SPIDER

function Repulsive_Forwarding (e, P)

fe < f(e, Pa.z, Pa.y, Px)

/* Get next hop according to ¢ function */
nextNodes < Feasible_Neighbors(e, P)

nextAddr < argmin f(n Py o, Py.y, P))
nEnextNodes

if fe < f(n, Pa.x, Pa.y, Px) then
| return nextAddr
else
| return
end

NIL

end

function Attraction_Forwarding(e, P)

e temporally sets e.C « 0 and e.R « 0 to omit P repulsion
fe < f(e, Pa.xy Pa.y, Px)

//Get next hop according to ¢ function with only first term
nextNodes < Feasible_Neighbors(e, P)

nextAddr <— argmin f(n Py o, Pq.y, Py)
€EnextNodes

if fc < f(n Pd 2+ Pa. v P)\) then
| return nextAddr
else
| return
end

NIL

end
function Pressure_Forwarding(e, P)
//Always return a best effort next hop for forwarding

VISt Smin ne}\glrn (P))Ufsns(n)

Candidates <— {nextAddr € Nbrs(e) and Pyigits(n) == VisitSmin }
Pyisits(n) ¢ Pyisits(n) 1

nextAddr < argmin f(n, Pg.z, Pa.y, Px)
neENbrs(e) N

return nextAddr

end function Feasible_Neighbors(e, P)
/IGet set of next hop according toward destination
$e + p(e.w, ey, Pao, Pa.y)
foreach n € Nbrs(e) do
on < p(n.2,n.y, Pa.o, Pay)
if ¢, < @, then
nextNodes < nextNodes Un

end
end
return nextNodes

end
function main ()
//Upon receiving a packet P at node e, algorithm decides to which neighbor of e
send P next
if P; € Nbrs(e) then

| mnextAddr < Py
else
nextAddr < NIL
ife.C ¢ 0 and e.R ¢ () then

| nextAddr < Repulsive_Forwarding(e, P)
end
if nextAddr = NIL then

nextAddr < Attraction_Forwarding(e, P)

end
if nextAddr = NIL then
| nextAddr + Pressure_Forwarding(e, P)
end
send(P, next Addr)

end
end

MEC routing engine that uses deep learning services in the
Core Cloud to coordinate our SPIDER routing in MANET
environments.
MEC Framework at the Edge. The first core logical compo-
nent of our architecture is our MEC Framework, that we place
at the Edge Cloud for low-latency interactions with user IoT
devices through the gateway. Our MEC Framework has two
main service components - offloading and routing engines that
synergistically decide ‘where’ and ‘how’ to offload IoT data
processing within the hybrid Core/Edge Cloud, respectively.
Particularly, our offloading engine is needed to augment
IoT with demanded storage and compute resources while
taking into account specified user policies and various com-

— GED G G G G G G G o o
M patient triage
;; %)" and care services l
real-ttme
II‘St Responders awareness
-— [] _.
Core Cloud
Compute/ | Patient Database I Deep Learning
Storage
Resources

E>

Upload new
acial data

Hidden Hdd Output ~
Layer lL) Layer

input (incident-area image)

g%
S35
3%

=

Compute/
Storage
Resources

Edge Cloud
[Dashboard MEC Framework

] Download
] obstacle data

D)

=il - |
Offloading |1 oo

Facial Dat 8| 8

aaau .‘5? “ Engine |\ Engine

Map API

)
Real-Time
Gateway) Awareness
e o o emsms o o
i “Disaster Scene) Computes
- Storage
| Reserea _ [IoT Devices][MANET I R esou‘gce
¢ i ((I)) b
’ one
Smart @ (.)) (I))
k 0’);, SPIDER

Fig. 6: Illustration of our MEC Framework architecture that consists of three
main logical components: the MEC Framework itself; its offloading engine
that interacts with user IoT and dashboard; and the MEC routing engine that
coordinates our SPIDER routing in MANET powered by deep learning in the
Core Cloud.

pute/storage factors such as workload levels, device types, and
server capabilities. Our routing engine in turn is needed to steer
traffic for achieving desired network QoS based on specified
user policies and diverse network factors such as failure nodes,
traffic congestion, and insufficient bandwidth.

MEC Offloading Engine, User Dashboard and IoT. The [oT
devices such as security cameras, civilian smart phones, and
aerial perspectives collect patients’ visual data that need com-
pute and storage resources for their processing available at the
hybrid Edge/Core Cloud. To augment user IoT devices with
demanded compute/storage resources, we use our “Offloading
Engine”. Based on specified user policies, this engine decides
on suitable offloading strategy, e.g., should we offload IoT data
processing to the Edge or Core Cloud. In our architecture,
we use a dashboard to allow users specify their offloading
policies, i.e., compressed/non-compressed, thin/thick client,
parallel/sequential processing, and energy-efficient offloading
versus low-latency processing. Finally, upon obtaining new
processed data, users may also wish to use a dashboard for
searching the data sets on the map or share them via the
core cloud storage for public access, e.g., new facial data can
be uploaded to the public patient database for matching and
verification to ease e.g., finding lost people.

MEC Routing Engine, SPIDER and Deep Learning. Upon
receiving network QoS guidance as well as user policies from
the offloading engine (see Section IV-A), our routing engine
instructs corresponding user IoT devices on how to send their
data. To this end, the routing engine sends to these 10T devices
specific A parameters that need to be stored in their data packet
headers for later use within our SPIDER objective function f
(see Equation 2). Moreover, based on geographic locations
of user IoT devices, there is a need to learn geographic
environment obstacles such as man-made buildings or natural
lakes or ponds to improve the geographic routing performance
of our SPIDER algorithm in this area. We remark that such
obstacles can cause packet drops due to lack of wireless
connectivity in their proximity. After the rescue area has been
learned, our “Routing Engine” propagates information about
discovered geographic obstacles through the gateway to the
MANET nodes in the disaster-incident scene. Further, node n
in MANET stores only those obstacles’ information that locate
within two radius proximity from it [38]. We remark that n
needs this information to compute its ¢(n) (see Equation 3).

To learn information about geographic obstacles (either
proactively or reactively), our Routing Engine can use deep
learning detectors and a publicly available map API that
contains satellite imagery of the disaster-incident scene (not
necessarily the newest one). As and when a map API is
available at the user dashboard, our routing engine may detect
obstacles even without using the Core Cloud deep learning
service, i.e., offline. For instance, the You Only Look Once
(YOLO) [39] deep-learning detector labels objects in the
image using only a single neural network comprised of 26
layers which makes it easier to run on the resource-constrained
Edge Cloud. At the same time, it can have worse performance
compared to more sophisticated (i.e., more resource eager)
deep learning detectors [39], [40]. Thus, we recommend to
avoid deep learning at the Edge Cloud servers and use it
within the Core Cloud instead. To this aim, collected and
partly labeled training samples need to be uploaded to the Core
Cloud for supervised or semi-supervised deep learning [49] to
enhance performance of detectors in the future. We remark that
finding the best (i.e., the most accurate) approach for obstacle
detection on a given satellite map can further enhance our
routing engine performance, however such an investigation is
beyond the scope of this paper.

VI. PERFORMANCE EVALUATION

In this section, we first evaluate our energy-aware and low-
latency MEC framework using various policies such as low-
to-high workloads, thin or thick clients, and sequential or
parallel processing at both core and edge clouds. Following
this, we evaluate our SPIDER algorithm performance through
extensive simulations using diverse policies, realistic disaster
scenes of damaged areas under challenging high node mobility
and severe node failure conditions.

A. Visual Data Processing Evaluation

Experimental Settings. Figure 7 shows our experimental
testbed setup where we use a local U. of Missouri server

Cloud Computation Layer

Person Name

O N
Opanty S B
S) BN
N b
Mizzou Edge GENI Core o
Cloud Cloud

L

(10 instances)/ OpenCV

—
| Thick Client
W . Person Name
Thin Client S e A

Device User Layer

Fig. 7: Testbed edge cloud is a server on Mizzou campus and our core cloud
includes 10 GENI server instances at New York University (NYU) campus.

resource [15] for an edge cloud, and we use 10 GENI server
instances at New York University (NYU) campus for the core
cloud. Our edge cloud server has 70GB of RAM, 12 cores
with a bandwidth of approximately 90 Mbps. Each of the core
cloud servers have 1 core and 1 GB of RAM, and we connect
to them at a bandwidth of approximately 900 Mbps. We use
ASUS Zenpad tablet with 2 GB RAM, 1.33 GHz Atom Z3735
processor and 8 hours of battery life (when under common
use) as our mobile device that runs the facial recognition
application described in Section III.

Comparison methods and metrics. We compare cases where
thin client or thick client configurations are used. Particu-
larly, our thin client configuration at a user assumes all of
the processed images are stored and viewed at a remote
cloud resource, whereas a thick client configuration assumes
processed images are downloaded and further post-processed
at the mobile device level. We start our experiments by
offloading application threads on the mobile device to the
cloud computation layer for remote processing as shown in
Figure 7. We vary the processing workload from 100 to 1000
images of 2048 x 1536 pixels size that are transferred to
the remote server side using the UDP protocol. We also use
different MEC policies including parallel (Par) processing
versus serial or sequential (Seq) and data compression (C')
versus no compression (NC') policy. We use the Android-
based PowerTutor utility [16] to profile and estimate energy
consumption of our facial recognition application (Metric:
Joules) within the testbed setup. Our end-to-end processing
time includes the time needed for an image export/import
to edge or core cloud and its remote processing (Metric:
Processing Time in Seconds). On the IoT device, we are using
thin (see fop) and thick (see bottom) clients when offloading
to the Core or Edge clouds with parallel (Par) or sequential
(Seq) processing policies as well as with data compression
(C) or no data compression (NC') policies.

10

B. Discussion

Policy-based Optimization. We start our MEC framework
evaluation by discussing its optimal policy sets (defined by
a combination of decision parameters in Figure 4) that cover
diverse user’s demands and input data scale. Based on energy
consumption results in Figures 8a and 8e, we observe the
following policies needed for the maximum operational time of
the mobile device: for both thin and thick client configurations,
we need to use parallel processing over non-compressed data.
This observation is due to the fact that data compression sig-
nificantly utilizes CPU resources of the mobile device, and the
sequential data offloading further introduces additional energy
consumption for data export/import. Note however in this case,
offloading either to the edge cloud or core cloud has no impact
on the energy consumption within the mobile device. However,
processing time results shown in Figures 8b and 8f indicate
how our optimal MEC policies for the minimum end-to-end
processing time have changed. Particularly, for both thin and
thick client configurations, we now need to use parallel pro-
cessing over compressed data. Moreover, when the workload
scale is low (e.g., < 500 images), we can further speed up
our remote processing by offloading to the edge cloud versus
offloading to the core cloud. This difference is due to the
higher latency of transferring data to the cloud, which degrades
as the workload scale increases; in this case, the edge cloud
needs more time to process all the data than the core cloud.
Note also how in both cases, a sequential offloading policy is
worth simultaneously for both the energy consumption and the
processing time benefits. However, this policy is needed for
live image data (e.g., video streams), where new frames are
sequentially captured. Moreover, for both thin and thick client
configurations, improving interactivity require more energy
consumption in all cases.

Engineering Trade-offs and Pareto Optimality. In prac-
tice, users can also benefit from considering an acceptable
performance for the reasonable energy consumption instead
of only focusing on a single factor as discussed previously.
Below, we show how different policy selections can be a part
of the Pareto optimal MEC framework strategy for different
application energy consumption and processing time trade-
offs. Specifically, when observing Figures 8c and 8¢ of a
low workload scale (i.e., when processing ~300 images), we
can see how parallel processing of both compressed and non-
compressed data at the edge or core cloud are part of the
Pareto optimality for both thin and thick client configurations.
More concretely, using thin client as an example, parallel
processing of both compressed and non-compressed data at
the core cloud could be among the top two optimal solutions.
Overall, both of them could achieve relatively low energy con-
sumption and short end-to-end computation time, but each of
them has special advantages. Processing with compressed data
consumes 65% less computation time compared to processing
of non-compressed data, which requires 46% more energy
consumption. Meanwhile, processing with non-compressed
data may cost 31.5% less energy consumption, but it takes
191.4% more computation time for end-to-end process. In
certain situations, users could choose the optimal solution

-&-Core:ParlC —A-Core:ParINC ~0- Edge:ParlC -®@- Edge:ParINC -0-Edge:SeqIC -#-Edge:SeqINC
= o = ol = ol
%0.09 o, %0.09 o & 50.09 % o
5 0.08 5 0.08 A 5 0.08
£ 0.07 @, Z 0.07 £ 0.07
S ., g)
S 0.06f =25\ S 0.06 L o006 .
230.05 230.05 Ae £30.05 Ao
= ' St
Q = Q Q
LE 0'04100 300 500 800 1000 & 0100 300 500 800 1000 Lﬁ 0'040 02 04 06 08 LS 0'040 0.2 0.4 0.6 0.8

Number of Images Number of Images Computation Time [s] Computation Time [s]

(a) Thin Client - Energy (c) Thin Client - Low Workload (d) Thin Client - High Workload

(b) Thin Client - Latency
n

=o0.12 , z 2 Rt L 5002 =0.12

a.0.11 25 w g 0111 g g 2 0.111R

g = E 0.1 . "’00(;; o
50 = 0. [|
£ ; S :
z [1 Q008 g

. 3 £,0.07

f e b} b

5} g g

L50‘06100 300 500 800 1000 & °100 300 500 _ 800 100050'060 05 1 15 2 50'060 05 1 15 2

Number of Images Number of Images Computation Time [s] Computation Time [s]

(e) Thick Client - Energy (f) Thick Client - Latency (g) Thick Client - Low Workload (h) Thick Client - High Workload

Fig. 8: Average energy consumption (a,e) and processing time (b,f) per image with their trade-offs under a low workload of 300 images (c,g) and under a

high workload of 1000 images (d,h)

based on their specific processing demands. To sum up, all
of these policy combinations do not result in application per-
formance cases that simultaneously degrade in both the energy
consumption and the end-to-end processing time aspects.
The same however does not hold for a high data workload
(i.e., when processing ~1000 images). Particularly, observing
Figures 8d and 8h, we noticed how parallel processing of
both compressed and non-compressed data at the edge cloud
is not part of the Pareto optimal solution set when a thick
client configuration is used. In this scenario, using parallel
processing of non-compressed data at core cloud is the optimal
solution since it has the lowest energy consumption and third
shortest end-to-end computation time (only consumes 83%
more computation time compared with the shortest solution
but saves 49% energy consumption). The reason for this
result is because of the fact that the edge processing time
dominates higher data export/import latencies to the cloud.
Thus, computation offloading to the edge cloud under a high
data workload for thick clients is always suboptimal to the core
cloud offloading for our facial recognition application context.

C. Edge Routing Evaluation

To evaluate our SPIDER performance, we use realistic
disaster-incident scenarios with severe node failures and high
node mobility in NS-3. We then compare its performance
with the flexible stateless greedy routing GEAR protocol [41].
We also compare our SPIDER with common stateful ad-hoc
routing solutions: the known reactive Ad-Hoc On Demand
Distance Vector (AODV) protocol [19]; and the Hybrid Wire-
less Mesh Network (HWMP) protocol 802.11s standard [20]
that combines reactive (by using AODV) as well as proactive
routing (by using spanning trees).

Simulation Settings. For our evaluation, we have imple-
mented our SPIDER algorithm in NS-3 simulator [18]. We

also use realistic disaster-affected scenes (see Figures 9 (a) and
(b)) of damaged areas due to the tornado that hit the Joplin
High School and Joplin Hospital buildings in Joplin, Missouri
in 2011. We obtained the disaster affected scenes information
from the available satellite imagery maps showing tornado
effects [50]. Using the scene information, we evaluate the
performance of stateless greedy forwarding algorithms under
mobility and severe node failure conditions. We assume that
the information regarding damaged buildings (i.e., their center
coordinates and radius) are provided from the edge cloud
through a Gateway using satellite imagery of the rescue areas
and deep learning obstacle detectors (see Section V) in the
core cloud.

In our disaster-incident experiment scenario, a paramedic
acts as a source sending data to the gateway over a MANETS.
Video streams gathered on-site are sent over a UDP session to
the edge cloud for further data processing in conjunction with
the core cloud. We simulate the 5 Mbps high-definition images
transmission over a UDP connection from a heads-up display
device worn by a paramedic e.g., Google Glass acting as a
visual data source. We remark that such IoT devices do not
have sufficient compute and storage resources to perform facial
recognition functions locally and have to send their captured
streams to the hybrid edge/core cloud. The paramedic stays
for 3 minutes at each patient location and moves at a jogging
speed (= 6 mph) between these locations. The simulation is
designed to cause a geographical routing to face an abandoned
wireless coverage zone when the paramedic source is near the
second or third patient locations.

Aside from the source mobility, in the node failure sim-
ulation scenario (see Figure 9a), nodes around an obstacle
can fail for the next 30 seconds due to the possibility of an
intermittently available power supply, or due to a physical
damage near the disaster scene. Their failure probability is
sampled from the interval [5%, 50%], i.e., from low to severe

Compute/|
Storage

Resources
L 4

600 m
8

!

R
-~ Buildin

12

s
16c ion medlc location ¢

s Compute/|
|| Storage

Resaurces .
=

Fig. 9: First scenario (a), we evaluate our approach under severe failures, and in the second scenario (b), we evaluate our approach under high mobility.

node failures. Under these failure conditions, the goodput
degrades due to losses (e.g., caused by packet collisions)
that increase with the path length or path reconstruction
of the stateful routing approaches. Note that for such node
failure scenarious any “store and forward” solutions can be
inadequate [51], [52].

We then evaluate impact of the node mobility in the second
simulation scenario (see Figure 9b), where paramedics can
communicate with the edge gateway only through movement
on the road vehicles with the speed varying from ~ 10 mph
(low) to =~ 40 mph (high). Note that under such mobility
conditions, any stateful routing solution (i.e., which relies on
the network topology knowledge such as spanning trees) will
exhibit poor performance [53].

Finally, nodes are placed on a grid ranging from 50 - 150
m step, each node has a radio range of 250 m, and an obstacle
(a building) is located approximately in the center of this
grid. Each node has roughly 3 — 10 neighbors for resilience
purposes. Table I summarizes all of our simulation details.

TABLE I: Simulation Environment Settings

Topology: Physical/Link layers:

Number of nodes: 30 - 40 Frequency: 2.4 GHz
Grid placement: 50 - 150 m | Tx power: 20 dBm
15t obstacle size: 600 x 300 m | Tx gain: 6 dB
274 obstacle size 400 x 400 m | Rx gain: 0 dB
Radio range: 250 m Detection threshold: -68.8 dBm
Avg node degree: ~3—10 Delay prop. model: ~CONSTANT SPEED

Overall settings: Loss prop. model: TWO-RAY
Node failure period: ~ 0.033 Hz | Technology: 802.11g/s
Node failure probability: 0.05 - 0.5 Modulation: OFDM
Mobile nodes speed: 10 - 40 mph | Data rate: 54 Mbps
Time at each location: 180 sec Transport/App layers:
Src speed: 6 mph Transport protocol: ~ UDP
Simulation time: 720 - 780 s | Payload: 1448 bytes
Beaconing frequency: 1-4Hz Application bit rate: 5 Mbps

Comparison methods and metrics. In our realistic simu-
lation, we assess routing performance of both SPIDER and
GEAR by experimentation with different policies. For exam-
ple, we try setting A = 1 to obtain the best latency and
throughput results, A = 0 to achieve the best energy-efficiency,
and A € {0.25,0.50,0.75} to get the balanced solution in
terms of both the energy-efficiency and the resulting through-
put and latency.

We use a simple energy model in which every node
starts with the same initial energy budget (i.e., 1000 Joules),

and consumes one unit of energy for either transmitting or
receiving a packet. We then compute the network residual
energy in Joules by averaging the residual energy of all nodes’
batteries in the network. We also measure the application level
throughput in Mbps of the paramedic video streaming to the
edge cloud.

D. Discussion

SPIDER & HWMP are Pareto-Optimal Routing Strate-
gies. Figure 10 shows how for every tested A\ parameter
in Equation 2 our SPIDER outperforms related GEAR and
AODV protocols by demonstrating the highest application
throughput level, and at the same time it is comparable or
better in terms of energy-efficiency. However, HWMP shows
better energy efficiency than SPIDER due to its ability to use
spanning trees for minimizing the number of control messages.
However, these spanning trees degrade HWMP performance
under severe node failures or high node mobility resulting
in the lowest application throughput w.r.t. other protocols.
Thus, we conclude that both SPIDER and HWMP are Pareto-
Optimal routing strategies in MANETSs, i.e., these routing
strategies have no alternative strategies that make any one
preference criterion (e.g., energy or low-latency) better off
without making at least one preference criterion worse off.
Too much emphasis on a single hop energy-efficiency can
lead to the bad network energy-efficiency. While observing
Figure 10, we notice how A = 0 does not lead to the best
network energy-efficiency of both GEAR and SPIDER all
the time. For example, Figures 10a, 10b and 10d show how
both GEAR and SPIDER achieve the best network energy-
efficiency with A = 0.75, A = 0.5 and A\ = 0.25, respectively.
This result is due to the fact that too much emphasis on an
energy-efficiency for a single hop forwarding of packets can
force them to traverse longer paths. As a result, routing of
these packets consumes more energy from the entire network.
Thus, we recommend using A = 0.25 for the routing energy-
efficiency and A = 1 to achieve the highest application level
throughput as well as a low-latency processing. Alternatively,
one can consider changing A policy in real-time to dynamically
adapt for various disaster-incident scenarios.

SPIDER improves routing sustainability in MANETSs.
Due to additional geographic knowledge of the rescue area
(along with geographic coordinates), our SPIDER achieves

GEAR SPIDER AODV HWMP

(a) Low Failures (5 %)

=

w

)

Throughput [Mbps]

GEAR SPIDER AODV HWMP

(e) Low Failures (5 %)

GEAR SPIDER AODV HWMP

(b) High Failures (50 %)

hl

w A

)

Throughput [Mbps]

GEAR SPIDER AODV HWMP

(f) High Failures (50 %)

)
oy
=)

N
3
=)

Residual Energy [J]
2

404

S

GEAR SPIDER AODV HWMP

(c) Low Mobility (10 mph)

5

600

)
oy
=)

N
3
S

Residual Energy [J]
,é 4

400 L
GEAR SPIDER AODV HWMP

(d) High Mobility (40 mph)

w A

)

Throughput [Mbps]

GEAR SPIDER AODV HWMP

(g) Low Mobility (10 mph)

5

&

w

)

Throughput [Mbps]

GEAR SPIDER AODV HWMP

(h) High Mobility (40 mph)

Fig. 10: The residual network energy (first row) and application level throughput (second row) with 95% confident interval results under low (a, €) and
high (c, f) node failures and in presence of the low (c, g) and high (d,h) node mobility using different routing policies .

—100

80

60

Standard Deviation [%
S

GEAR SPIDER AODV HWMP

(a) Low Failures (5 %)

1

3
S

-y
S

)
S

Standard Deviation [%
IS
3

GEAR SPIDER AODV HWMP

(b) High Failures (50 %)

2

Standard Deviation [%]
IS
3

GEAR SPIDER AODV HWMP

(c) Low Mobility (10 mph)

00

80

60

40

20

Standard Deviation [%]

GEAR SPIDER AODV HWMP

(d) High Mobility (40 mph)

Fig. 11: Application level throughput sustainability (i.e., standard deviation) results under low (a) and high (b) node failures and in presence of the low (c)

and high (d) node mobility using different routing policies .

the highest throughput performance sustainability as shown in
Figure 10. This is because — when entering zones with aban-
doned wireless network coverage, common geographic routing
approaches (e.g., GEAR) cannot forward packets using only
geographic coordinates; this problem is known in optimization
literature as a local minimum problem. As a result, GEAR
enters the recovery mode and uses planarization which, in
turn, can significantly stretch paths. However, stretching paths
reduces application level throughput and increases packets’
latency which, in turn, leads to a poor quality of transferred
video streams in a facial recognition or any other disaster
response application.

Even though both AODV and HWMP have advantages
over pure proactive stateful routing solutions, in a challenged
disaster scenario they do not show acceptable throughput level.
This could cause service outages or frequent disconnections.
Recent solutions in stateful geographic routing literature can
help cope with some of these disaster incident challenges [54],
[55]. For example, recent geographic routing solutions have
shown promising results under severe node failures [55].
However, we found no geographic routing algorithms that can
cope with both severe node failures and high node mobility
conditions.

Based on the above results, we conclude that our SPI-
DER algorithm improves routing sustainability, exhibits en-
ergy awareness, and enhances quality of user’s applications —
due to its knowledge of geographic obstacles located within
the rescue area, which in most cases allows local minima
avoidance by using its repulsion forwarding mode.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied how the mobile edge computing
(MEC) paradigm can provide flexibility to users who desire
energy conservation over low-latency or vice versa in visual
IoT-based application data processing. Our work was based on
the rationale that computing should happen in the proximity
of data sources, and cloud services especially moved closer to
the network edge can present opportunities to meet user re-
quirements in terms of energy consumption and fast processing
times. Using a facial recognition application that we developed
for use on mobile devices, we were able to demonstrate
cases where thin client or thick client configurations are more
effective at low-to-high visual data processing workloads, and
how offloading policies could affect the energy efficiency or
low latency user requirements. Particularly, we found from the
results that the edge cloud offloading policy for thick clients is
always sub-optimal in comparison to the core cloud offloading
under high workloads. However, it was not the case for thin
clients under similar conditions.

Also, we addressed the lack of sustainable and flexible
routing approaches for offloading facial recognition appli-
cation processing in MANETSs to trade-off between energy-
awareness and low-latency data transferring to an edge cloud
gateway within a damaged infrastructure area. Specifically,
we presented our Sustainable Policy-based Intelligence Driven
Edge Routing (SPIDER) algorithm that builds upon recent
advances in the geographic routing area. To improve its
baseline geographic routing performance, SPIDER uses addi-

tional geographic knowledge that we obtain from the publicly
available satellite imagery of the rescue area and from its use
of deep learning detectors in a core cloud. To balance between
energy-awareness and low-latency data transferring in a best-
effort manner, our SPIDER algorithm used a tunable objective
function. Considering a variety cases of actual disaster incident
related scenarios, we have shown how our SPIDER algorithm
is more flexible and is more sustainable than other stateless
geographic routing solutions (i.e., GEAR and GPGF) as well
as stateful reactive mesh routing (i.e., AODV and HWMP).

As part of future work, practical routing protocols with load
balancing can be implemented to allow parallel processing in
cases where there are multiple servers available in a MEC en-
vironment. In addition, interference can be handled in wireless
network when caused by high user activity in MANETS using
channels adaptation techniques that: (a) minimize the chance
of packet drops, and (b) enhance energy-efficiency within IoT
devices.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-
tional Science Foundation (NSF) under Award Number: CNS-
1647182. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the
author(s) and do not necessarily reflect the views of the NSF.

REFERENCES

[1] Hyunduk Kim, Myoung-Kyu Sohn, Dong-Ju Kim, and Nuri Ryu. User’s
gaze tracking system and its application using head pose estimation.
In Artificial Intelligence, Modelling and Simulation (AIMS), 2014 2nd
International Conference on, pp. 166-171. IEEE, 2014.

[2] John Gillis, Prasad Calyam, Olivia Apperson, and Salman Ahmad.
Panacea’s cloud: Augmented reality for mass casualty disaster incident
triage and co-ordination. In Consumer Communications & Networking
Conference (CCNC), 2016 13th IEEE Annual, pp. 264-265. IEEE, 2016.

[3] Joshua C Klontz and Anil K Jain. A case study on unconstrained facial
recognition using the boston marathon bombings suspects. Michigan
State University, Tech. Rep, 119(120):1, 2013.

[4] Arif Ahmed and Ejaz Ahmed. A survey on mobile edge computing.
In Intelligent Systems and Control (ISCO), 2016 10th International
Conference on, pp. 1-8. IEEE, 2016.

[5] Yaser Jararweh, Ahmad Doulat, Omar AlQudah, Ejaz Ahmed, Mah-
moud Al-Ayyoub, and Elhadj Benkhelifa. The future of mobile cloud
computing: Integrating cloudlets and mobile edge computing. In
Telecommunications (ICT), 2016 23rd International Conference on, pp.
1-5. IEEE, 2016.

[6] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan
Pillai, and Mahadev Satyanarayanan. Towards wearable cognitive
assistance. In Proceedings of the 12th annual international conference
on Mobile systems, applications, and services, pp. 68-81. ACM, 2014.

[71 Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
computing: Vision and challenges. IEEE Internet of Things Journal,
3(5):637-646, 2016.

[8] Claudio Ragona, Fabrizio Granelli, Claudio Fiandrino, Dzmitry Klia-
zovich, and Pascal Bouvry. Energy-efficient computation offloading for
wearable devices and smartphones in mobile cloud computing. In Global
Communications Conference (GLOBECOM), 2015 IEEE, pp. 1-6. IEEE,
2015.

[9] Amol Dhumane, Rajesh Prasad, and Jayashree Prasad. Routing issues

in internet of things: A survey. In Proceedings of the International

MultiConference of Engineers and Computer Scientists, volume 1, pp.

16-18, 2016.

Yicong Tian and Rui Hou. An improved aomdv routing protocol

for internet of things. In Computational Intelligence and Software

Engineering (CiSE), 2010 International Conference on, pp. 1-4. IEEE,

2010.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

C Li, C Zhao, L Zhu, H Lin, and J Li. Geographic routing protocol for
vehicular ad hoc networks in city scenarios: a proposal and analysis.
International Journal of Communication Systems, 27(12):4126-4143,
2014.

Varun G Menon, PM Jogi Priya, and PM Joe Prathap. Analyzing the
behavior and performance of greedy perimeter stateless routing protocol
in highly dynamic mobile ad hoc networks. Life Science Journal,
10(2):1601-1605, 2013.

Ritesh Gupta and Parimal Patel. An improved performance of greedy
perimeter stateless routing protocol of vehicular adhoc network in urban
realistic scenarios. Int. J. Scientific Research in Computer Science,
Engineering and Information Technology, Vol. 1, No. 1, pp. 24-29, 2016.
Openly accessible Source Code Repository. Spider (sustainable policy-
based intelligence driven edge routing) routing engine. https://github.
com/huytrinh93/SPIDER, Last Accessed in August 2018.

Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao,
Max Ott, Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. Geni:
A federated testbed for innovative network experiments. Computer
Networks, 61:5-23, 2014.

Lide Zhang, Birjodh Tiwana, Robert P Dick, Zhiyun Qian, Z Morley
Mao, Zhaoguang Wang, and Lei Yang. Accurate online power estimation
and automatic battery behavior based power model generation for
smartphones. In Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), 2010 IEEE/ACM/IFIP International Conference on,
pp. 105-114. IEEE, 2010.

Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision
with the OpenCV library. O’Reilly Media, Inc., 2008.

Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell,
and Joseph Kopena. Network simulations with the ns-3 simulator.
SIGCOMM demonstration, 14(14):527, 2008.

Charles Perkins, Elizabeth Belding-Royer, and Samir Das. Ad hoc on-
demand distance vector (aodv) routing. In Proc. IEEE Workshop on
Mobile Computing Systems and Applications, 1999.

Guido R Hiertz, Dee Denteneer, Sebastian Max, Rakesh Taori, Javier
Cardona, Lars Berlemann, and Bernhard Walke. Ieee 802.11 s: the wlan
mesh standard. IEEE Wireless Communications, 17(1), 2010.

Gabriel Orsini, Dirk Bade, and Winfried Lamersdorf. Computing at
the mobile edge: designing elastic android applications for computation
offloading. In [FIP Wireless and Mobile Networking Conference
(WMNC), 2015 8th, pp. 112-119. IEEE, 2015.

Lei Yang, Jiannong Cao, Hui Cheng, and Yusheng Ji. Multi-user
computation partitioning for latency sensitive mobile cloud applications.
IEEE Transactions on Computers, 64(8):2253-2266, 2015.

Ke Zhang, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li,
Xin Peng, Li Pan, Sabita Maharjan, and Yan Zhang. Energy-efficient
offloading for mobile edge computing in 5g heterogeneous networks.
IEEE Access, 4:5896-5907, 2016.

Shigiang Wang, Rahul Urgaonkar, Murtaza Zafer, Ting He, Kevin Chan,
and Kin K Leung. Dynamic service migration in mobile edge-clouds. In
IFIP Networking Conference (IFIP Networking), 2015, pp. 1-9. IEEE,
2015.

Xiang Sun and Nirwan Ansari. EdgeloT: Mobile Edge Computing for
Internet of Things IEEE Communications Magazine, volume 54, pp.
22-29, 2016.

Xiang Sun and Nirwan Ansari. PRIMAL: PRoflt Maximization Avatar
pLacement for Mobile Edge Computing. In /IEEE International Confer-
ence on Communications (ICC), pp. 1-6, 2016.

Dan Andersson, Peter Elmersson, A Juntti, Z Gajic, D Karlsson, and
L Fabiano. Intelligent load shedding to counteract power system
instability. In Transmission and Distribution Conference and Exposition:
Latin America, 2004 IEEE/PES, pp. 570-574. 1IEEE, 2004.

N Perumal and Aliza Che Amran. Automatic load shedding in power
system. In Proc. of IEEE Power Engineering Conference (PECon), pp.
211-216, 2003.

Ali Asghar Alesheikh, Hussein Helali, and HA Behroz. Web gis:
technologies and its applications. In Symposium on geospatial theory,
processing and applications, volume 15, 2002.

Niraj Tolia, David G Andersen, and Mahadev Satyanarayanan. Quanti-
fying interactive user experience on thin clients. Computer, 39(3):46-52,
2006.

Mahadev Satyanarayanan, Paramvir Bahl, Ramén Caceres, and Nigel
Davies. The case for vm-based cloudlets in mobile computing. [EEE
pervasive Computing, 8(4), 2009.

Pankaj Rohal, Ruchika Dahiya, and Prashant Dahiya. Study and analysis
of throughput, delay and packet delivery ratio in manet for topology
based routing protocols (aodv, dsr and dsdv). International journal for
advance research in engineering and technology, 1(2):54-58, 2013.

(33]

[34]

(351

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]
[45]

[46]

(471

(48]

[49]

(501

[51]

[52]

[53]

[54]

[55]

Michael Frey, Friedrich Grose, and Mesut Gunes. Energy-aware ant
routing in wireless multi-hop networks. In Proc. of IEEE International
Conference on Communications (ICC), pp. 190-196, 2014.

Haoru Su, Zhiliang Wang, and Sunshin An. Maeb: routing protocol for
iot healthcare. Scientific Research Publishing, 2013.

Mian Ahmad Jan, Priyadarsi Nanda, Xiangjian He, and Ren Ping Liu. A
sybil attack detection scheme for a forest wildfire monitoring application.
Future Generation Computer Systems, 80(Supplement C), pp. 613 — 626,
2018.

Gayathri Tilak Singh and Fadi M Al-Turjman. Cognitive routing
for information-centric sensor networks in smart cities.
IEEE International Wireless Communications and Mobile Computing
Conference (IWCMC), pp. 1124-1129, 2014.

Athina Bourdena, Constandinos X Mavromoustakis, George Kor-
mentzas, Evangelos Pallis, George Mastorakis, and Muneer Bani Yas-
sein. A resource intensive traffic-aware scheme using energy-aware
routing in cognitive radio networks. Future Generation Computer
Systems, 39:16-28, 2014.

Dmitrii Chemodanov, Flavio Esposito, Andrei Sukhov, Prasad Calyam,
Huy Trinh, and Zakariya Oraibi. Agra: Ai-augmented geographic
routing approach for iot-based incident-supporting applications. Future
Generation Computer Systems, 2017.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 779-788,
2016.

Spyros Gidaris and Nikos Komodakis. Object detection via a multi-
region and semantic segmentation-aware cnn model. In Proc. of the
IEEE International Conference on Computer Vision, pp. 1134-1142,
2015.

Yan Yu, Ramesh Govindan, and Deborah Estrin. Geographical and
energy aware routing: A recursive data dissemination protocol for
wireless sensor networks. Technical report ucla/csd-tr-01-0023, UCLA
Computer Science Department, 2001.

Andrej Cvetkovski and Mark Crovella. Hyperbolic embedding and
routing for dynamic graphs. In Proc. of IEEE INFOCOM 2009, pp.
1647-1655, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun Deep
Residual Learning for Image Recognition In [EEE Computer Vision
and Pattern Recognition, pp. 770-778, 2016.

Davis E King. Dlib-ml: A machine learning toolkit. Journal of Machine
Learning Research, 10(Jul):1755-1758, 2009.

Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep Face
Recognition British Machine Vision Conference, 2015.

Gary B. Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller.
Labeled faces in the wild: A database for studying face recognition in
unconstrained environments. Workshop on faces in ‘Real-Life’ Images:
detection, alignment, and recognition, 2008.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf.
Deepface: Closing the gap to human-level performance in face verifica-
tion. In IEEE Computer Vision and Pattern Recognition, pp. 1701-1708,
2014.

Florian Schroff, Dmitry Kalenichenko, and James Philbin.
A unified embedding for face recognition and clustering.
Computer Vision and Pattern Recognition, pp. 815-823, 2015.
Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert.
Deep learning via semi-supervised embedding. In Neural Networks:
Tricks of the Trade, pp. 639-655. Springer, 2012.
National Oceanic and Atmospheric Organization.
August 2018.

Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic routing in
intermittently connected networks. ACM SIGMOBILE mobile computing
and communications review, 7(3):19-20, 2003.

Erik Kuiper and Simin Nadjm-Tehrani. Geographical routing in intermit-
tently connected ad hoc networks. In Advanced Information Networking
and Applications-Workshops, 2008. AINAW 2008. 22nd International
Conference on, pp. 1690-1695. IEEE, 2008.

Sahel Sahhaf, Wouter Tavernier, Didier Colle, Mario Pickavet, and
Piet Demeester. Experimental validation of resilient tree-based greedy
geometric routing. Computer Networks, 82:156-171, 2015.

Simon S Lam and Chen Qian. Geographic routing in d-dimensional
spaces with guaranteed delivery and low stretch. In Proceedings of the
ACM SIGMETRICS joint international conference on Measurement and
modeling of computer systems, pp. 257-268, 2011.

Michal Krdl, Eryk Schiller, Franck Rousseau, and Andrzej Duda. Weave:
Efficient geographical routing in large-scale networks. In EWSN, pp.
89-100, 2016.

Facenet:
In IEEE

- Last accessed in

In Proc. of

stereo reconstruction.

Huy Trinh received the BS degree in Computer Sci-
ence at University of Missouri, Columbia, USA, in
2015. He is currently a Graduate Research Assistant
working toward the M.S degree in the Department of
Electrical Engineering and Computer Science, Uni-
versity of Missouri, Columbia, USA. His research
interests include image processing, cloud computing
and networks.

Prasad Calyam received his MS and PhD degrees
from the Department of Electrical and Computer
Engineering at The Ohio State University in 2002
and 2007, respectively. He is currently an Associate
Professor in the Department of Electrical Engineer-
ing and Computer Science at University of Missouri-
Columbia. His current research interests include dis-
tributed and cloud computing, computer networking,
and cyber security. He is a Senior Member of IEEE.

Dmitrii Chemodanov received his MS degree from
the Department of Computer Science at Samara
State Aerospace University, Russia in 2014. He is
currently a PhD student in the Department of Electri-
cal Engineering and Computer Science at University
of Missouri-Columbia. His current research interests
include distributed and cloud computing, network
and service management, and peer-to-peer networks.

Shizeng Yao received his B.S. degree from the
Department of Electrical Engineering at Northeast-
ern University, China in 2012, and received his
M.S. degree from the Department of Electrical and
Computer Engineering at University of Missouri-
Columbia, USA, in 2015. He is currently a Grad-
uate Research Assistant working toward his Ph.D.
degree in the Department of Electrical Engineering
and Computer Science at University of Missouri-
Columbia. His research interests include digital im-
age processing, computer vision, and multi-view

Qing Lei received her Bachelor Degree of Engineer-
ing in Computer Science and Technology at Shang-
hai University in 2015. She is currently pursuing her
MS degree in Electrical Engineering and Computer
Science and working for Computer Graphics and Im-
age Understanding Lab at the University of Missouri
Columbia. Her current research interests include
image processing, computer vision and computer
graphics.

Fan Gao received the B.S. degree in Software
Engineering from Northeastern University, China, in
2017. He is currently pursuing his M.S. degree in
Electrical Engineering and Computer Science at the
University of Missouri-Columbia. He is a Graduate
Research Assistant in Department of Computer Sci-
ence, his research interests include computer vision,
image processing and machine learning.

Kannappan Palaniappan received his PhD from
the University of Illinois at Urbana-Champaign, and
MS and BS degrees in Systems Design Engineering
from the University of Waterloo, Canada. He is a
faculty member in Electrical Engineering and Com-
puter Science Department at the University of Mis-
souri, where he directs the Computational Imaging
and VisAnalysis Lab and helped establish the NASA

Center of Excellence in Remote Sensing. At NASA
ﬁ Goddard Space Flight Center he co- invented the
Interactive Image SpreadSheet for visualizing large
multispectral imagery and deformable cloud motion analysis. His research is
at the synergistic intersection of image and video big data, computer vision,
high performance computing and artificial intelligence to understand, quantify
and model physical processes with applications to biomedical, space and
defense imaging. Recent multi- disciplinary contributions range across orders
of scale from sub-cellular microscopy at the molecular level to aerial and
satellite remote sensing imaging at the macro level. In 2014 his team won first
place at the IEEE Computer Vision and Pattern Recognition Change Detection
Workshop video analytics challenge. He has received several notable awards
including the William T. Kemper Fellowship for Teaching Excellence at the
University of Missouri, ASEE Air Force and Boeing Welliver Summer Faculty
Fellowships, the NASA Public Service Medal for pioneering contributions
in data science for understanding petabyte-sized archives, and the first US
National Academies Jefferson Science Fellowship from the state of Missouri.
He is a member of the Editorial Board of the IEEE Transactions on Image
Processing. He is a Senior Member of IEEE.

16

