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Abstract—Given the progressively deeper integration of dis-
tributed energy resources (DERs), evaluating the potential un-
intentional islanding hazards in distribution networks becomes
increasingly important for distribution system planning and oper-
ations. In this paper, a rigorous theoretical analysis is used to devise
a DER-driven nondetection zone (D2 NDZ) method, which is then
implemented through a data-driven learning-based approach. Test
results indicate that D2 NDZ can quickly and effectively estimate
the nondetection zones for any given distribution feeders, while
avoiding numerous and time-consuming electromagnetic transient
simulations. D2 NDZ software has been deployed in Eversource
Energy, a major power utility company in the northeastern U.S. In
practice, D2 NDZ reduces utilities engineers’ case study time from
months to just a few minutes.

Index Terms—DER-driven non-detection zone, distribute
energy resource, non-detection zone, unintentional islanding, IEEE
Standard 1547.

NOMENCLATURE

PDER Active power injection from DER units

QDER Reactive power injection from DER units

PG , QG Active and reactive power at substation

PL , QL Active and reactive load

∆V Voltage deviation after islanding

∆R Resistance change after islanding

µ = ∆V/V Voltage deviation
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ρ = ∆f/f Frequency deviation

NP V Number of PV units

NInd Number of induction generators

NSyn Number of synchronous generators

NBat Number of batteries

NS Number of experimental scenarios

I. INTRODUCTION

P
OWER distribution grids in the U.S. are being impacted

by the increasingly deep integration of distributed energy

sources (DERs) [1], [2]. For instance, as of 2016, there were 1.7

gigawatts of grid-tied DERs within Eversource Energy’s service

territory (Connecticut, Massachusetts, and New Hampshire), in-

cluding over 12,000 residential solar photovoltaic (PV) projects

installed in Connecticut and over 4,600 additional projects in

progress, as shown in Fig. 1. This number is projected to be

quadrupled within the next four years. Nationwide, a new PV

was interconnected to the distribution grids every two minutes

in 2015, a speed that is likely to increase in the future due to the

significant drop in PV costs. Consequently, a major challenge

that utility companies face is the possibility of unintentional is-

landing of a feeder, which can create safety hazards for utility

customers and field crews [3]. Unintentional islanding is of par-

ticular concern when larger DERs are connected to a feeder, as

such configurations may mimic normal grid conditions, causing

the PV inverters’ anti-islanding algorithms to be deceived into

staying online and creating an unintentional island. This chal-

lenge rapidly escalates with the trend of more frequent storm-

induced blackouts where DER units may continue to energize a

power line from customers’ homes or businesses.

To mitigate the detrimental impact without knowing the

possibility of unintentional islanding, utility companies face

prohibitively costly upgrades to install a new protection and

communication infrastructure such as transfer trip facilities [4].

Furthermore, those expensive ‘fit and forget’ solutions can

hardly accommodate the fast changes in DERs’ plug-in, loads,

and distribution grids. Another utility concern is that the UL

1741 unintentional islanding test is conducted on a single in-

verter at a time and does not address inverter or generation diver-

sity on the distribution system. Therefore, it is unclear whether

a deeper integration of DERs would increase the possibility that
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See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



LI et al.: NONDETECTION ZONE ANALYTICS FOR UNINTENTIONAL ISLANDING IN A DISTRIBUTION GRID INTEGRATED WITH DERS 215

Fig. 1. DERs installed across Eversource service territory in Connecticut as of 2016.

unintentional island might not be detected or decrease? Thus,

a pressing question to be addressed for distribution planning

and operations is how to reliably assess unintentional islanding

hazards of an arbitrary feeder in cases of high penetration

scenarios.

Non-detection zone (NDZ) refers to the regions in an

appropriately defined space where islanding detection schemes

fail to detect the abnormal islanding mode [5]–[9]. Therefore,

NDZ can serve as a practical metric for assessing the hazard

of unintentional islanding. NDZ is often a by-product of

anti-islanding methods which can be found in a plethora of

literature falling into two main categories: active detection

and passive detection. Active approaches, e.g., slip-mode

frequency shift [10], active frequency drift [11], Sandia

frequency shift [12], voltage shift [13], high frequency signal

injection [14], positive-feed-back-based method [15], d-axis

disturbance signal injection [16], and reactive power distur-

bance [17], have fast responses while causing perturbations in

the distribution systems. Passive approaches, e.g., Bayesian pas-

sive method [18], rate of change of frequency [19], over/under

frequency [19], over/under voltage [19], fuzzy method [20],

pattern recognition [21], and phase jump detection [22], do not

disturb the system while generating a more conservative NDZ

than active methods. Examining NDZ under the deep integration

of DERs in large distribution grids, however, remains an open

challenge.

Motivated by the challenges detailed above, a learning-based,

DER-driven non-detection zone (D2NDZ) evaluation method is

devised to effectively quantify the NDZs in distribution net-

works with the deep integration of DERs. Our main contribu-

tions are three-fold:
� D2NDZ incorporates both the steady-state and dynamic

impacts of different types of DER units. Particularly, a se-

ries of formulas are derived to compute the contribution of

the dynamic characteristics of various DERs to NDZ, mak-

ing the D2NDZ results extremely close to those obtained

from detailed simulation-based methods.
� D2NDZ establishes an optimization-based learning

scheme that estimates NDZs for any grids quickly and

effectively without precise electromagnetic transients sim-

ulations, which offers an ultra-fast means of evaluating a

system’s islanding possibilities.
� A D2NDZ software tool has been developed and success-

fully implemented for operational planning in Eversource

Energy, the largest power utility company in the Northeast.

The remainder of this paper is organized as follows: Sec-

tion II establishes the methodological foundations for this

study, and Section III discusses how D2NDZ’s learning param-

eters were formulated as an optimization problem. Section IV

presents the implementation of D2NDZ. In Section V, tests

on Eversource Energy’s distribution feeders verify the effec-

tiveness and scalability of D2NDZ. Conclusions are drawn in

Section VI.
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Fig. 2. A schematic distribution feeder showing aggregated load and DER.

II. ANALYTICAL METHOD OF D2NDZ

Mathematically, the boundary of NDZ is a hull made up of

critical operating points. Based on the research results in [7],

the generation to load ratio (G/L) and the power factor are good

candidates that can be selected to form a two-dimensional NDZ.

For a distribution feeder with a deep integration of DERs (see

Fig. 2 [7]), its NDZ is determined by the total effect of both

steady state and dynamic behaviors of loads and DERs after

the feeder is disconnected from the main grid [23]. Therefore,

one can construct a baseline NDZ, that is determined by the

steady state of the feeder and then augment it by incorporat-

ing the dynamic impacts of DERs. This forms the basic idea

of our D2NDZ approach. The constructed NDZ can thus be

expressed as

[

PDER

PL
,

PDER

PL

]

= (1)

[

(

PDER

PL

)

S

+

(

PDER

PL

)

D

,

(

PDER

PL

)

S

+

(

PDER

PL

)

D

]

,

[

QG

PL
,

QG

PL

]

=

[

(

QG

PL

)

S

+

(

QG

PL

)

D

,

(

QG

PL

)

S

+

(

QG

PL

)

D

]

, (2)

where
(

PD E R

PL

)

S
,

(

PD E R

PL

)

S
represent the lower and upper

bounds of G/L when only the steady state is considered;
(

QG

PL

)

S
,

(

QG

PL

)

S
represent the lower and upper bounds of the power factor

when only the steady state is considered;
(

PD E R

PL

)

D
,
(

PD E R

PL

)

D

represent the impacts of DER dynamics on lower and upper

bounds of G/L;
(

QG

PL

)

D
,
(

QG

PL

)

D
represent the impacts of DER

dynamics on the lower and upper bounds of the power factor.

Our task, therefore, is to identify such a zone well approximating

the actual NDZ.

A. Derivation of Baseline Nondetection Zone

1) G/L Bounds: Islanding detection normally takes only a

few cycles, whereas DER units such as PV array and wind tur-

bine generators usually operate at maximum power points that

do not change instantaneously. This means that DER power

outputs can be treated as constants when the steady-state is

analyzed [17]. Therefore, the active power consumption along

the feeder before and after islanding (circuit breaker S tripped

off and switched on) can be expressed by (3) and (4), respec-

tively [7].

PL = PDER + PG =
V 2

R
, (3)

PDER =
(V + ∆V )2

R + ∆R
, (4)

where the expanded form of ∆R can be found in Appendix I.

As a result, the G/L ratio due to steady-state conditions can be

expressed as

(
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S
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V 2
·
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1

1 + ∆R
R

.
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Based on Appendix I,

∆R

R
=

∆RP + ∆RC

RI + RP + RC
=

(2µ + µ2)PI PC + µPI PP

PI PC + PI PP + PP PC
, (6)

where PI , PP , PC are the percentages of constant impedance,

constant power and constant current loads, respectively. Substi-

tuting (6) into (5), G/L can be rewritten as

(

PDER

PL

)

S

=
(1 + µ)2(PI PC + PI PP + PP PC )

(1 + µ)2PI PC + (1 + µ)PI PP + PP PC

= f(µ, PI , PP , PC ). (7)

Consequently, by considering the voltage deviation bounds

within which an island may not be detected, the G/L bounds
(
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)

S

= max f(µ, PI , PP , PC ), (9)

where µ means voltage deviations under different islanding du-

rations with typical values given in Section V.

2) Power Factor Bounds: The reactive power consumed in

the feeder load before and after islanding can be formulated in

(10) and (11), respectively.

QL = QDER + QG = V 2

(

1

2πfL
− 2πfC

)

, (10)

QDER = (V + ∆V )2

(

1

2π(f + ∆f)(L + ∆L)

−2π(f + ∆f)(C + ∆C)) . (11)

Thus, the power factor can be calculated by [7]
(
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By defining the quality factor Qf = R
2πf L = 2πfRC, (12)

can be re-formulated as [7]
(

QG

PL

)

S

= (1 + µ)2(1 + ρ)Qf

(
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L
+

∆C

C

)

. (13)

Note that, (14) and (15) have been substituted in (12) to

derive (13). (14) and (15) are justified because the variations

in load inductance and capacitance are small before and after

islanding [7].

∆L · ∆C ≈ 0, (14)

1 +
∆L

L
≈ 1. (15)

According to the relationship of the load resonant frequency

before and after islanding (see Appendix III), ∆L
L + ∆C

C can be

expressed as,

∆L

L
+
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C
=

1

(1 + ρ)2
− 1. (16)

Substituting (16) into (13), the power factor can be rewritten

as follows:
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Consequently, by considering the voltage and frequency de-

viation bounds within which an island may not be detected, the

power factor bounds
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where ρ means frequency deviations under different islanding

durations with typical values given in Section V.

B. Nondetection Zone Bounds Driven by DER Dynamics

Besides the steady-state behaviors, the transient processes of

the DER units also significantly impact NDZ, especially on its

boundary. In order to incorporate this effect, detailed DER mod-

els are built at the beginning [24], [25]; and scenarios in various

distribution feeders are then tested via electromagnetic transient

(EMT) simulations to provide experimental data; finally, these

experimental data are analyzed and learned to develop a generic

formulation which is used to augment the baseline NDZ. Con-

sidering the deep integration of PVs, small hydro units (induc-

tion generator or synchronous generator), and battery storages

in Eversource Energy, these types of DER units are analyzed in

detail. Other types of DERs can be models in the D2NDZ study

following the same procedure.

1) Impact of DER Dynamics on G/L Bounds: Our experi-

mental results obtained from EMT simulations show that the

impact of DER dynamics on NDZ bounds is strongly related

to the number of the connected DERs, i.e., the more power

electronics interfaced non-dispatchable DERs (e.g., PV) a sys-

tem has, the more compact its NDZ will be. This seemingly

counter-intuitive phenomenon can be explained as follows: The

control systems of DERs must be properly coordinated to en-

able a seamless transition from the grid-connected mode to the

islanded mode [24]. In practice, it is very difficult to achieve

this goal when multiple DERs are integrated at different loca-

tions without communication, exponentially reducing the size

of NDZ. Therefore, exponential models are established to reflect

the impact of DER dynamics on NDZ bounds. The following

exponential model is given as an example to characterize the

impact of PV dynamics on G/L bounds.

φP V ,L = βP V ,L (1 − αP V ,Le−NP V ), (20)

φP V ,H = βP V ,H (1 − αP V ,H e−NP V ), (21)

where e(·) means the exponential function; coefficients

βP V ,L , αP V ,L , βP V ,H , αP V ,H can be determined by learning

the experimental data. Note that, after data learning, βP V ,L and

βP V ,H should be updated by multiplying a coefficient to ensure

a conservative NDZ estimation. Likewise, the impacts of induc-

tion generators, synchronous generators, battery storage, or any

other type of DER can be respectively modeled as follows:

φInd,L = βInd,L (1 − αInd,Le−N I n d ), (22)

φInd,H = βInd,H (1 − αInd,H e−N I n d ), (23)

φSyn,L = βSyn,L (1 − αSyn,Le−NS y n ), (24)

φSyn,H = βSyn,H (1 − αSyn,H e−NS y n ), (25)

φBat,L = βBat,L (1 − αBat,Le−NB a t ), (26)

φBat,H = βBat,H (1 − αBat,H e−NB a t ), (27)

where, φInd,L and φInd,H characterize the impact of induc-

tion generators’ dynamics on G/L bounds, φSyn,L and φSyn,H

characterize the impact of synchronous generators’ dynamics

on G/L bounds, φBat,L and φBat,H characterize the impact of

battery storage’s dynamics on G/L bounds.

Subsequently, the overall impact of DER dynamics on the

lower and upper bounds of G/L (G/L being the first dimension

of NDZ) can be expressed as a weighted sum of individual

contributions from different types of DERs. For instance, if PV,

induction generator, synchronous generator and battery storage

are considered, the overall effect of DER dynamics on G/L

bounds can be expressed as:
(

PDER

PL

)

D

= δP V φP V ,L − δIndφInd,L

− δSynφSyn,L − δBatφBat,L , (28)

(

PDER

PL

)

D

= − δP V φP V ,H + δIndφInd,H

+ δSynφSyn,H + δBatφBat,H , (29)

where δP V , δInd , δSyn , δBat are Kronecker signs.

2) Impact of DER Dynamics on Power Factor Bounds: Sim-

ilar to the analysis above, the overall impact of DER dynamics
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on the lower and upper bounds of the power factor, which rep-

resents the second dimension of NDZ, can be presented by a

weighted sum of the contributions from each type of DERs, as

shown below.
(
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(
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)

, (38)
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(
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)

, (39)

where, ϕP V ,L and ϕP V ,H characterize the impact of PV’s dy-

namics on power factor bounds, ϕInd,L and ϕInd,H characterize

the impact of induction generators’ dynamics on power factor

bounds, ϕSyn,L and ϕSyn,H characterize the impact of syn-

chronous generators’ dynamics on power factor bounds, ϕBat,L

and ϕBat,H characterize the impact of battery storage’s dynam-

ics on power factor bounds.

III. PARAMETER OPTIMIZATION IN D2NDZ

As an estimation method, the performance of D2NDZ mainly

depends on the parameters in each formula, e.g., αP V ,L , αP V ,H ,

etc. In this paper, an optimization-based learning approach is

developed to determine these parameters from the experiments’

data. This will guarantee that the formulas learned will produce

NDZs as close as possible to those provided by electromag-

net transients simulations that are often prohibitively expensive

in practice. A salient feature of this parameter determination

method is its capability to adapt to new information, which

means it can use online or offline learning to update parameters,

making D2NDZ more accurate over a longer period of time.

The parameter determination of D2NDZ are formulated into

four independent optimization problems in that the parameters

for identifying any of the four bounds of NDZ are indepen-

dent of those for the other bounds. For instance, (40) shows

the optimization formulation for learning the parameters that

determine the lower bound of G/L. Here
(

PD E R

PL

)E

i
is the ex-

act lower bound of G/L in the ith experiment,
(

PD E R

PL

)

i
is the

estimated lower bound of G/L from D2NDZ, and X denotes

Fig. 3. Flowchart of D2 NDZ computations.

the set of the parameters to be determined, i.e., βP V ,L , αP V ,L ,

βInd,L , αInd,L , βSyn,L , αSyn,L , βBat,L , and αBat,L . Note that

the experimental data can be classified into different groups if

necessary [26]. One D2NDZ can be established in each group

to estimate their NDZs with a relatively high precision.
⎧

⎪

⎨

⎪

⎩

min f =
∑NS

i=1 mi

(

(

PD E R

PL

)

i
(X) −

(

PD E R

PL

)E

i

)2

s.t. X ∈ R
n .

(40)

In (40), NS (� 1) experimental scenarios are generated on the

test systems to improve the robustness of D2NDZ. The weight

coefficient mi of a scenario should be increased if the probability

of the ith operation scenario increases [24].

IV. IMPLEMENTATION OF D2NDZ

The procedures of D2NDZ, including NDZ estimation

and unintentional islanding evaluation, are summarized in a

flowchart shown in Fig. 3.

In Fig. 3, D2NDZ Formulas are initially established based

on Experiment Data Study and Analysis. Parameters involved

in these formulas are then determined through optimization

methods. Then D2NDZ Calculation will be carried out based

on the Evaluation Standard and the actual Operation Informa-

tion of a system, e.g., numbers of DER units, power load, etc.

Meanwhile, the unintentional islanding hazards can be assessed

and reported by using the system’s actual Operation Informa-

tion, which will be discussed in Section V. Note that experiment

data which needs special arrangement and time for preparation

is essential to the parameter learning process of D2NDZ (see

Section III). Further studies can be performed to improve the

parameter learning process if necessary [26], [27].

A software tool with an easy-to-use Excel interface has been

developed and deployed in Eversource Energy for the planning

and operation of DER interconnections. In the future, experi-

ment database and system operation information can be updated

online which will enable D2NDZ to serve as a real-time tool for

running unintentional islanding analytics.

V. TEST AND VALIDATION OF D2NDZ

A distribution feeder in Eversource Energy which consists

of 3717 sections, three PV arrays, and one induction generator

based hydro power station is used to validate D2NDZ. Since
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Fig. 4. A typical distribution feeder in Eversource Energy.

Fig. 5. Objective function value during the parameter optimization process.

the topology of an actual distribution grid is very complex,

reasonable system reduction is necessary to accelerate system

modeling, simulation and evaluation. Fig. 4 shows schematic

one-line diagram of the equivalent feeder, with more details

given in Appendix IV. The high-fidelity of the reduced model

in re-producing system dynamics and steady state behaviors has

been thoroughly validated [28], which is omitted due to limited

space. Note that the D2NDZ approach is also potentially applied

to a distribution feeder with the mesh topology.

A. Learning Parameters

As the flowchart in Fig. 3 demonstrates, it is fundamentally

important to generate experiment data for D2NDZ to learn co-

efficients. Based on IEEE Standard 1547 [29], three critical

islanding durations, i.e., 1s, 2 s, 3 s, have been studied. Where

1 s means the islanding situation can last for at least 1s with

voltage and frequency in acceptable ranges; 2 s means the is-

landing situation can last for at least 2 s; and 3 s means the

islanding situation will last for more than 3 s, which is the most

dangerous case for utilities, because both voltage and frequency

are within normal operation ranges in these scenarios; and thus,

unintentional islanding cannot be detected.

Note that the NDZ corresponding to each islanding duration

is formulated as four optimization problems, as shown in (40).

Fig. 5 depicts the change in the objective function in optimizing

(40) to determine X , which validates the effectiveness of the pa-

TABLE I
TYPICAL RANGES ADOPTED BY EVERSOURCE ENERGY

TABLE II
OPTIMIZATION RESULTS FOR D2 NDZ COEFFICIENTS

TABLE III
ERRORS OF FOUR NDZ BOUNDARIES IN EACH CASE

rameters learning in D2NDZ. For a better illustration, logarithm

values are adopted for the y axis, with the objective value at

iteration 2 being selected as the base of the logarithm function.

Table I summarizes the typical modified ranges correlated to

IEEE Standard 1547, which are adopted by Eversource Energy

in practice, and Table II shows the D2NDZ coefficients obtained

from parameters optimization.

B. Verification of NDZ Analytics

1) Comparisons Between D2NDZ and Simulation-Based

Method: Comparisons of NDZs constructed by D2NDZ and

EMT simulations are shown in Fig. 6, where two cases are

given as examples. In Case 1, only PV1 is integrated in the

test feeder, whereas all three PV arrays are interconnected in

Case 2. In both cases, the load percentages are set as: PI = 0,

PP = 50%, PC = 50%. In each case, the errors in the four NDZ

bounds for three different islanding durations are calculated via

the following assessment indices, as summarized in Table II.

The errors are consistently small, which verifies the accuracy of

D2NDZ.

ex min =

∣

∣

∣

∣

(

PDER

PL

) /(

PDER

PL

)EM T

− 1

∣

∣

∣

∣
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(41)

ex max =

∣

∣

∣

∣
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PL

)/ (
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)EM T
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∣

∣

∣

∣

× 100%,

(42)



220 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 10, NO. 1, JANUARY 2019

Fig. 6. Comparisons between D2 NDZ and simulation-based method. (a) 1 s
NDZ Comparison in case 1. (b) 2 s NDZ Comparison in case 1. (c) 3 s NDZ
Comparison in case 1. (d) 1 s NDZ Comparison in case 2. (e) 2 s NDZ Com-
parison in case 2. (f) 3 s NDZ Comparison in case 2.
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∣
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ey max =

∣
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∣

. (44)

Fig. 6 offers the following insights:
� NDZs obtained from D2NDZ closely approach those from

the EMT simulations within acceptable errors, meaning

D2NDZ is effective;
� Through the learned formulas, D2NDZ can quickly esti-

mate NDZs for any given feeder [28] without numerous

and time consuming EMT simulations, meaning D2NDZ

is efficient;
� An NDZ constructed by D2NDZ always over-

approximates the irregular NDZ obtained from point by

point EMT simulations, meaning D2NDZ is dependable.

This feature, in fact, is extremely important and helpful in

practice, since it gives an early warning to utility engineers

in advance when a feeder’s operating point is approaching

NDZ.

The EMT simulation results in two cases are also compared

in Fig. 7 to verify that the more power electronics interfaced

non-dispatchable DERs a system has, the more compact the

NDZ will be.

2) Impacts of DER Units on NDZ: The progressively deeper

integration of DERs, especially power electronics interfaced

units (e.g., PV and battery), is significantly changing distribution

grids’ transient performance. Therefore, it is critically impor-

tant to explore the impact of different DER units on NDZ. Fig. 8

Fig. 7. Comparisons of NDZ in two cases.

Fig. 8. Impacts of DER units on NDZ. (a) Impacts of PV on NDZ. (b) Impacts
of induction generator on NDZ. (c) Impacts of synchronous generator on NDZ.
(d) Impacts of battery on NDZ. (e) Impacts of combination of PV and induction
generator on NDZ. (f) Impacts of combination of PV and battery on NDZ.

shows the D2NDZ results for six different cases where the only

difference is the combination of DERs while the feeder config-

uration and loading conditions remain the same. The load per-

centages in each case are set as PI = 0, PP = 50%, PC = 50%.

The following can be observed:
� Impact of Conventional Generators on D2NDZ Boundary:

The interconnection of induction (or synchronous) gener-

ators are able to enlarge the boundary of NDZ, as shown

in Fig. 8(b) and (c).

The reason is that both induction and synchronous gener-

ators are rotating machines providing considerable inertia.

In addition, some generators are equipped with exciter and

governor controllers which enable them to ride-through

transient processes. With these machines, it is likely a dis-

tribution feeder can survive as an island with acceptable
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voltages and frequency for a few seconds or longer, creat-

ing much larger NDZs for 1 s, 2 s, and 3 s.
� Impact of Power Electronics on Baseline NDZ: Power

electronics interfaces decrease the baseline boundaries of

NDZ, which is obtained when only the steady-state is

considered (using (7) and (17)). For instance, the base-

line NDZ for the case 3 s NDZ of one PV in Fig. 8(a)

is [77.44%, 121%] for G/L and [−0.0502, 0.0506] for the

power factor, which is significantly larger than the overall

NDZ obtained by D2NDZ.

The reason is that low-inertia power electronic interfaces

make the distribution feeder so sensitive to disturbances

that their dramatic transient process can easily violate the

volt/frequency requirements specified in IEEE Standard

1547 and thus can hardly sustain an island.
� Impact of Power Electronics on D2NDZ Boundary: Under

deep DER integration, e.g., when G/L is around 100%, the

more power-electronics-interfaced DER units a distribu-

tion feeder has, the smaller its NDZ would be, as shown in

Fig. 8(a) and (b).

The reason is that the D2NDZ boundary is largely related to

the DER transient process which is mainly determined by

DER controllers. It is basically infeasible to coordinately

design their control parameters so as to seamlessly switch

a feeder to operate in islanded mode.
� Impact of Battery on D2NDZ Boundary: The NDZ of

a feeder integrated with an inverter interfaced battery is

larger than that of a feeder integrated with PV, but smaller

than that of induction or synchronous generators, as shown

in Fig. 8(d).

Although power-electronics-interface leads to a relatively

smaller NDZ, as an energy storage device is usually con-

trolled by a droop strategy [24], a grid-connected battery

system can adjust its real and reactive power outputs and

thus respond to the grid disturbances. Consequently, bat-

tery storage helps stabilize an isolated distribution feeder

and results in a relatively larger NDZ than PV does.
� Impact of PV on D2NDZ Boundary: Fig. 8(e) and (f) show

that the emergence of MPPT controlled PV [24] in a system

brings about a smaller NDZ than the case when the system

only has an induction generator or battery. Adding low-

inertial DERs in the generation mix, therefore, decreases

the NDZ boundaries.

3) Impacts of Loads on NDZ: NDZ results are also impacted

by the percentages of a load mix, especially the baseline NDZ

as shown in (7). Taking G/L as an example, it can be seen in

Fig. 9 how the upper and lower bounds of the baseline G/L vary

with the load percentages.

Fig. 9 offers the following insights:
� Different load compositions significantly change the lower

and upper bounds of NDZ, indicating loads play an impor-

tant role in forming an unintentional island.
� When PI = 0, the lower bound of the baseline G/L

reaches its minimum (25%); meanwhile, the correspond-

ing upper bound is 144%, which is its maximum. There-

fore, if a system has no constant impedance load, its

baseline NDZ becomes very large. When PI = 63.01%,

PP = 0.99% and PC = 36.00%, the lower bound of base-

Fig. 9. Impacts of loads on baseline NDZ.

Fig. 10. Unintentional islanding frequencies assessment.

line G/L reaches its maximum (93.32%); meanwhile,

the corresponding upper bound is 100.91%. When PI =
57.01%, PP = 0.99%, PC = 42.00%, the upper bound

of the baseline G/L reaches its minimum (100.89%);

meanwhile, the lower bound of G/L is 93.22%. Therefore,

when a system has around a 60% constant impedance load

and almost zero constant power load, its NDZ becomes

very small.

C. Unintentional Islanding Frequencies

Once NDZs are obtained from D2NDZ, the unintentional is-

landing hazards of the test feeder can be approximately assessed

by estimating the frequencies at which the operating points fall

into the NDZs when the feeder is tripped off. The frequencies

assessment for Case 1 in the above Subsection B (see Fig. 6)

is illustrated in Fig. 10, where the sampling rate of the actual

operating points is 15 minutes.

First we count the number of operating points (green dots in

Fig. 10) that enter the NDZs and divide it by the total number

of operating points over a specific time interval (normally one

year). This probability multiplied by the probability of feeder

tripping incidents gives the unintentional islanding probability.
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Fig. 10 shows the conditional probability that operating points

falling into 1 s, 2s , 3 s NDZs are 5.67%, 5.35%, and 2.44%,

respectively. If the probability of feeder tripping is 0.01, the

unintentional islanding probabilities would be 0.0567%(≥ 1 s),
0.0535%(≥ 2 s), and 0.0244%(≥ 3 s). Note that D2NDZ can

also estimate NDZs considering the ride-through requirements

based on the latest IEEE 1547 Standards. Such results are not

included due to the limited space. Once the unintentional is-

landing frequencies are identified, further studies can be car-

ried out either to reduce or even eliminate these frequencies,

or to enable a stable system operation within NDZ, e.g., in-

teractive control [30], proactive management [31], or adaptive

optimization-based load shedding [32].

In summary, D2NDZ can produce results as close as those

from EMT simulations, which enables fast offline or online

assessment of the unintentional islanding of an arbitrary feeder.

Before D2NDZ was adopted by Eversourse Energy, it took an

engineer up to a few months to build an NDZ for a specific feeder

because this requires creating thousands of testing scenarios.

With our D2NDZ tool, it only takes a few minutes to input data

and generate results.

VI. CONCLUSION

A D2NDZ method is devised to evaluate the NDZs of distribu-

tion networks. Baseline NDZ is first derived in terms of the G/L

and the power factor, and then the impact of DER dynamics are

incorporated by augmenting the baseline NDZ to establish the

overall NDZ. Further, a robust learning-based approach is intro-

duced to determine D2NDZ’s parameters through optimization.

Numerical tests are performed on a large distribution feeder in

Eversource Energy’s service territory. Analyses and tests have

confirmed the feasibility and effectiveness of D2NDZ. This pa-

per also includes detailed investigations of the impacts of DER

units and loads on NDZs.

A D2NDZ software package has recently been successfully

deployed by Eversource Energy, where it is used as a practical,

powerful, and efficient tool for planning, operating and protect-

ing in distribution networks. As a data-driven, learning-based

approach, D2NDZ can reduce utilities engineers case study time

from months to just a few minutes, making it a promising tool

for U.S. power utilities.

APPENDIX I

LOAD ANALYSIS AFTER ISLANDING

Assume the load resistances before and after islanding can be

expressed as follows.

R = RI + RP + RC , (45)

R + ∆R = (RI + ∆RI ) + (RP + ∆RP ) + (RC + ∆RC ),
(46)

where RI , RP , RC represent the real part of constant

impedance, constant power and constant current loads before

islanding, respectively; ∆RI , ∆RP , ∆RC represent the in-

cremental resistive portions in constant impedance, power and

current loads after islanding.

TABLE IV
LINE IMPEDANCES BETWEEN NODES IN FIG. 4

TABLE V
POWER LOADS AT EACH NODE IN FIG. 4
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Given the percentages of constant impedance load, constant

power load and constant current load, PI , PP , PC the fractions

between the corresponding resistances can be expressed as

RI : RP : RC = PP PC : PI PC : PI PP . (47)

Note that ∆RI = 0, and constant power and current loads

should satisfy the following conditions:

V 2

RP
=

(V + ∆V )2

RP + ∆RP
, (48)

V

RC
=

V + ∆V

RC + ∆RC
. (49)

Then ∆RP and ∆RC can be expressed as follows:

∆RP =
(

2µ + µ2
)

RP =
(

2µ + µ2
) PI

PP
RI , (50)

∆RC = µRC = µ
PI

PC
RI . (51)

APPENDIX II

DERIVATION OF (13)

In order to obtain (13)–(15) are substituted in (12). Detailed

derivation is given as follows:

(

QG

PL

)S

= R

(

1

2πfL
− 2πfC

)

− (1 + µ)2R·

(

1

2π(f + ∆f)(L + ∆L)
− 2π(f + ∆f)(C + ∆C)

)

= −(1 + µ)2R ·

(

1

2πfL(1 + ∆L
L + ρ + ρ∆L

L )

−2πfC

(

1 +
∆C

C
+ ρ + ρ

∆C

C

))

= −(1 + µ)2 ·

(

Qf
(

1 + ∆L
L

)

(1 + ρ)
− Qf

(

1 +
∆C

C

)

·(1 + ρ))

= − (1 + µ)2 · Qf (1 + ρ) ·

(

1
(

1+∆L
L

)

(1+ρ)2
−

(

1+
∆C

C

)

)

≈ −(1 + µ)2 · Qf (1 + ρ) ·

(

1 −
(

1 + ∆L
L

) (

1 + ∆C
C

)

(

1 + ∆L
L

)

)

= (1 + µ)2 · Qf (1 + ρ) ·

(

∆L
L

∆C
C + ∆L

L + ∆C
C

(

1 + ∆L
L

)

)

. (52)

When ∆L · ∆C ≈ 0 and 1 + ∆L
L ≈ 1, (13) can be obtained

from (53).

APPENDIX III

FREQUENCY ANALYSIS AFTER ISLANDING

The load resonant frequency before and after islanding can

be expressed as follows.

f =
1

2πLC
, (53)

f ′ =
1

2π(L + ∆L)(C + ∆C)
. (54)

Thus the frequency deviation ρ can be given as follows.

ρ =
f ′ − f

f
=

√
LC

√

(L + ∆L)(C + ∆C)
− 1. (55)

APPENDIX IV

DETAILS OF THE DISTRIBUTION FEEDER IN FIG. 4

The line impedances between nodes in Fig. 4 are given in

Table IV. And the power load at each node are summarized

in Table V, Where Pn and Qn are the total active power and

reactive power at each node.
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