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H I G H L I G H T S

• We analyze building energy time series data to identify patterns over time.

• We use a large-scale, time series cross-sectional dataset of energy disclosure data.

• Machine learning methods are used to define under- and over-performing clusters.

• Our results show a differential response to energy disclosure.
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A B S T R A C T

In recent years, many cities have adopted energy disclosure policies to better understand how energy is con-
sumed in the urban built environment and how energy use and carbon emissions can be reduced. The diffusion of
such policies has generated large-scale streams of building energy data, creating new opportunities to develop
the fundamental science of urban energy dynamics. Nevertheless, there is limited research that rigorously
analyzes building energy performance patterns over time. This paper provides a comprehensive framework to
analyze building energy time series data and identify buildings with similar temporal energy performance
patterns. We use data from approximately 15,000 properties in New York City, covering a six-year reporting
period from 2011 to 2016. After pre-processing and merging the data for each constituent year, we use an
unsupervised learning algorithm to optimally cluster the energy time series and statistical tests and supervised
learning methods to infer how building characteristics vary between clusters. Our results show that energy
reductions in New York City are mainly driven by its commercial building stock, with larger, newer, and higher-
value buildings demonstrating the largest improvements in energy intensity over the study period. Moreover,
voluntary energy conservation schemes are found to be more effective in boosting energy performance of
commercial properties, compared to residential buildings. Our results suggest two distinct temporal patterns of
energy performance for commercial and residential buildings, characterized by energy use reductions and in-
creases. This finding highlights the differential response to energy reporting and disclosure, and presents a more
complex picture of energy use dynamics over time when compared to previous studies. In order to realize
significant energy use improvements over time and reach energy and carbon reduction goals, cities need to
design and implement comprehensive energy policy frameworks, bringing together information transparency
and reporting with targeted mandates and incentives.

1. Introduction

1.1. Background and motivation

It is now largely acknowledged that climate change is a global threat
and immediate action needs to be taken to mitigate its most significant
effects [1]. Existing buildings are responsible for approximately 40% of

primary energy consumption worldwide, drawing the attention of en-
ergy policy and carbon emission reduction efforts [2,3]. Given the
density and scale of the urban built environment, cities are leading the
way in climate action [4], with many setting aggressive long-term
carbon reduction goals (e.g. New York City (NYC) aims to reduce its
carbon footprint by 80% by 2050 [5]). These climate action plans in-
evitably focus on the building sector as a source for improved energy
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efficiency and reduced emissions, a fact driven by the large proportion
of energy consumed by buildings in urbanized areas and the relatively
high return on investment for energy efficiency improvements [6].

To support energy use and carbon emission reductions, energy
disclosure ordinances constitute a significant policy tool to accelerate
building energy efficiency market transformation [7]. There is a
growing body of cities and local governments that have adopted such
energy disclosure mandates in the United States (U.S.), with Austin,
Texas and Washington, DC being among the first in 2008, and New
York City (NYC) following in 2009 [8,9]. Recently, smaller munici-
palities, such as Cambridge (2014), Boulder (2015) and Berkeley
(2015), among others, have enacted similar reporting policies [10].
These ordinances mandate that building owners report their property’s
energy consumption and, by extension, allow decision makers (DMs) to
benchmark building performance and more completely assess a city’s
energy use profile. The rationale behind energy benchmarking can be
encapsulated in Michael R. Bloomberg’s statement in 2010, then Mayor
of NYC: “You cannot manage what you do not measure, and benchmarking
the City’s buildings lets us determine where energy costs can be reduced”
[11]. According to Perez-Lombard [12], governments should consider
energy disclosure and benchmarking as the basis of any energy effi-
ciency policy pertaining to the building sector, prior to additional ac-
tions, as there are multiple benefits of having such energy data avail-
able. From the end users’ perspective, the simple act of reporting
consumption might increase tenants’ awareness of energy issues and
lead to end use reductions through behavior changes or impacts on
locational decisions [7,13]. For DMs, monitoring and reporting energy
data allows them to track progress towards energy reduction goals,
understand how energy is consumed at the urban scale [14,15], or
develop market-specific energy performance metrics [16–18], to name
a few examples.

Early adopters of energy disclosure policies, such as NYC, have al-
ready collected as much as seven years of data [19]. Aggregating these
data presents an unprecedented opportunity to fill the gaps in existing
research by analyzing the temporal energy performance patterns in
individual buildings. Given the novelty of these data, and their relative
sparsity to date, there are few, if any, studies that have attempted to
examine such relationships. The main purpose of this research is to
detect and analyze buildings with similar energy performance patterns
over time and identify common characteristics they might share. Spe-
cifically, we seek to: (a) develop an optimal method to cluster building
energy performance time series data using unsupervised learning, (b)
statistically test the difference in various building characteristics within
the identified clusters, and (c) assess the likelihood of a building be-
longing to a certain performance cluster given its characteristics. This
knowledge will enable stakeholders and policy makers to study sub-
groups of buildings with similar energy behavior, and to understand the
factors that promote, or hinder, energy efficiency adoption and im-
provements. Given the significant energy and carbon reduction goals
established by cities around the world, this is a critical element of un-
derstanding the potential for energy savings in buildings and to target
policy interventions to improve performance over time across different
sub-groups of buildings. In the remainder of this section, we provide an
overview of current research on building energy data and energy per-
formance, highlighting gaps in the literature that our research attempts
to address. In Section 2, we describe in detail our data and methods,
followed by a presentation of the results (Section 3). The paper con-
cludes with a discussion of the findings and their relevance for energy
decision-making and energy efficiency policy and regulations.

1.2. Limitations in previous research

Although energy disclosure is a relatively recent policy innovation,
the rapid diffusion of such policies across cities and states has resulted
in new, large-scale data streams, which have catalyzed a growing body
of research on city-wide building energy consumption and performance

[20,8,21,22,16,23,13,24]. While these studies contribute to an under-
standing of how buildings consume energy in urban areas, many have
been constrained by the nature and volume of data available at the time
of the research. This has resulted in both limitations to previous work
and, given the growing adoption of disclosure policies and availability
of data, new opportunities to address existing research gaps.

A majority of previous research is focused on analyzing static
snapshots of buildings’ energy performance, rather than dynamic per-
formance trends over time [21,16,23]. Since the earliest data available,
released by NYC, only dates to 2010, much of the previous literature is
limited to quantifying energy performance as a time-invariant peer
comparison, or to understand the drivers of energy use, such as building
age or size. In one of the earliest studies of energy disclosure data,
Kontokosta [16] used energy and correlative data from approximately
20,000 buildings in NYC, obtained through the City’s Local Law 84
(LL84) energy benchmarking ordinance. Specifically, the author ana-
lyzed the relationship between commercial buildings’ energy use in-
tensity and design, system, occupancy, and spatial land use character-
istics using a multivariate robust regression model. The study found
that characteristics such as age, size, construction type, and occupancy
significantly influence a building’s energy intensity. Focusing on NYC’s
residential building stock, Ma and Cheng [21] employed a random
forests algorithm to analyze the influence of 171 different features on
energy intensity. In addition to building-related attributes, the authors
include socioeconomic and demographics features in their analysis.
Their results showed that areas with lower educational attainment and
higher percentage of fuel oil-heated buildings tend to be more energy
intense, likely a function of the quality of housing for different income
groups. A paper by Reina and Kontokosta [20] focuses on the issue of
social equity in energy demand, specifically analyzing the relative en-
ergy efficiency of subsidized (low-income) housing. The authors find
non-trivial differences between subsidy type and program, such as
Public Housing, as well as the importance of sub-metering to building
energy efficiency. In another recent study [14], the authors used re-
ported energy data in an attempt to predict city-scale energy con-
sumption, using utility data as a validation set. They trained several
machine learning models on 23,000 buildings reported under LL84, and
predicted the energy use of 1.1 million buildings in NYC. Their results
demonstrated that city-wide electricity consumption can be predicted
accurately from a relatively small sample of buildings, whereas natural
gas consumption prediction is a more complex problem given utility
infrastructure constraints and the bimodal distribution of use between
heating and cooking. Energy benchmarking data have also been used in
web-based visualization tools [25,26], as a means to provide trans-
parency to the public and create a feedback loop of disclosed in-
formation back to building owners to support data-driven decision-
making.

As energy efficiency improvements and long-term carbon reductions
are the ultimate goal of climate action, understanding changes over
time is critical to effective policy design, evaluation, and implementa-
tion. Recent studies that do include more than one year of disclosed
energy data [8,24,27] try to capture the overall effect of the adoption of
disclosure policies on the existing building stock’s energy efficiency,
rather than focusing on sub-groups of buildings and their energy be-
havior across multiple years. There are only two existing studies uti-
lizing panel energy disclosure data [8,24]. In both cases, the authors
proposed a difference-in-difference regression model to capture the
overall effect of the adoption of a disclosure law on energy efficiency.
Based on their model, Meng et al. [8] suggest that NYC’s disclosure
policy reduced energy intensity by 6%, on average, in the three years
after its implementation, and by 14% after the fourth year. Although
the results of this study are limited by selection bias in the control group
and the absence of pre-intervention data, it provides a useful ex-
ploratory policy evaluation of disclosure ordinances. Palmer and Walls
[24] provide an insightful overview of the issues in evaluating dis-
closure policies as a driver of energy use reductions; however, they
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perform only a descriptive analysis of changes over time given sig-
nificant data limitations. From the perspective of driving energy and
carbon reductions in cities, these studies focus only on quantifying the
overall effect of the adoption of the policy on energy use, rather than
the differential response of buildings that lead them to reduce (or in-
crease) their consumption and the characteristics of buildings that can
explain such an effect. Our hypothesis is that energy awareness and the
adoption of energy conservation measures varies across building
typologies, and thus there are fundamental differences in the likelihood
of any particular building improving its energy performance over time.
Discovering similarities in buildings that reduce their energy use, in
absence of regulations or requirements to do so, will help cities evaluate
potential energy efficiency and carbon reduction strategies, ranging
from simple reporting polices to mandates and codes stipulating spe-
cific energy performance standards.

While predictive modeling using energy data has been studied ex-
tensively, research on identifying buildings with similar characteristics
for targeted energy policy is limited. Kontokosta [16] used K-means
clustering to establish building performance grades, following the cal-
culation of a novel energy performance index for NYC’s commercial
building stock. Hsu [23] compared various clustering algorithms on
building energy consumption data to assess the tradeoff between cluster
stability and predictive accuracy. The results showed that K-means
yields more stable clusters when the correct number of clusters is
chosen. Both studies highlight the strengths of clustering as a tool for
building sub-grouping and targeted energy policy.

Whether predictive or descriptive, the analyses discussed in this
section come with a major limitation: they study static snapshots of
energy performance, typically focusing on one year of data, and thus
omit a temporal analysis of building energy use over multiple years. An
immediate benefit of energy disclosure has been found to be that
measurement of a building’s energy use can lead, by itself, to energy use
reductions [28]. Consequently, there is a need to analyze energy per-
formance trends in buildings subject to energy disclosure laws to
identify patterns and shared characteristics between buildings that re-
duce their consumption, and those that do not.

2. Data and methods

In this section, we discuss the data sets used in this study and our
methods to: (a) cluster buildings with similar energy performance
patterns and (b) extract insights from these patterns. We begin by de-
scribing our data pre-processing and cleaning prior to the analysis.
Then, we detail our clustering approach and statistical tests for whether
buildings in the same performance clusters share similar characteristics.
Finally, we discuss the methods we use to quantify the impacts of in-
dividual building and management attributes on the likelihood of a

building belonging to a particular cluster.

2.1. Data sources

NYC’s LL84 energy benchmarking is the main data set used in this
study, covering seven years of reporting (2010–2016) and consisting of
more than 100 features for each of the approximately 15,000 properties
(accounting for 21,000 buildings) included. In effect since 2010, the
LL84 ordinance mandates all properties larger than 4645 square meter
(sq.m.) (equivalent to 50,000 square feet (sq.ft.)) to report their annual
energy and water consumption [29]. Along with this information, the
data set includes features such as fuel type contribution to energy end-
use, occupant density, and building physical characteristics. Energy use
is reported in three ways: (i) absolute values (annual kBtu), (ii) nor-
malized by building area (annual kBtu/sq.ft.) as energy use intensity
(EUI), and (iii) weather normalized EUI. In this paper, we consider
weather normalized site EUI as our primary variable of interest, here-
inafter referred to as EUI. The LL84 data set covers properties in all five
boroughs of NYC, accounting for approximately 45% of the City’s
building energy consumption and almost 280 million sq.m. of space
[16]. For the purpose of this study we focus on the two main building
typologies encountered in the data: (a) Office and (b) Multifamily
housing.

LL84 data are self-reported; therefore, we need to remove any
misreported or anomalous (outlier) entries prior to any analysis [30].
First, we remove observations with duplicate or missing Borough,
Block, and Lot (BBL) number. The BBL number is a unique spatial
identifier for tax lots in NYC. We then remove entries with zero or
missing values in their reported energy use or weather normalized site
EUI. Misreported values in either the energy use or gross floor areas
fields (e.g. accidental addition/omission of zeros, misreported units)
can dramatically distort EUI values [14]. For each property type, we
apply a logarithmic transformation to the EUI values in order to ap-
proximate the normal distribution given the log-normal distribution
observed in the raw data. Then, we identify observations falling outside
the threshold of two standard deviations from the logged sample mean
as outliers and filter them out of our analysis. Fig. 1 shows an illus-
tration of the outlier detection process.

We repeat the cleaning process for each year of available data
(2010–2016) and use the BBL identifier as a matching key to merge the
individual data sets into a panel. Starting from the first reporting year,
we append the following year’s data only if the property consistently
reports its energy consumption each year. Due to lower compliance
rates in the first year of LL84 implementation (2010), we omit 2010
data from the analysis and use 2011 as the base year for the time series
analysis (Fig. 2).

In order to test various hypotheses on building energy performance

Fig. 1. Raw data distribution for multifamily housing stock (left), logarithmic transformed data (center), and cleaned distribution (right). Dashed lines indicate the
two standard deviation outlier detection thresholds.
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time trends, we incorporate additional data sources into the analysis.
The NYC Primary Land Use Tax Lot (PLUTO) database is a detailed
property and land use data set, containing the geographic coordinates
of each building, as well as physical, zoning, and financial attributes
[31]. We use PLUTO data to extract the geolocation, height, age, and
asset value for each building in the LL84 data set. Local Law 87 (LL87)
is NYC’s energy audit and retro-commissioning law. Each year, a por-
tion (approximately 10%) of LL84 buildings is required to undergo an
energy audit and report the results [32]. We use LL87 data to flag
properties that conducted an energy audit in years 2013 or 2014, the
third and fourth year of our panel, respectively. LL87 data are con-
fidential, and provided to the authors by the NYC Mayor’s Office of
Sustainability. Another data source we use includes all NYC buildings
with fuel oil boilers. The oil boiler data are publicly available through
the City’s open data portal [33]. We identify properties with heavy oil
boilers (i.e. those that use fuel oils #5 or #6) and match them with
LL84 data using their BBL identifier. Finally, we identify all commercial
and residential buildings participating in the NYC Carbon Challenge
[34], a public–private partnership between real estate owners and the
City of New York aiming to reduce greenhouse gas emissions by at least
30% over the course of ten years. This voluntary program is used as a
proxy for buildings whose owners or managers have explicitly stated
their intention to improve energy efficiency over time.

2.2. Clustering the energy performance time series

For each building, we extract the weather normalized site EUI value
time series from 2011 to 2016, and scale the range of each time series in
[0, 1]. Time series scaling allows the clustering algorithm to exclusively
account for changes in the energy performance trend, rather than its
absolute value. Additionally, feature scaling is an essential pre-proces-
sing step for distance-based clustering algorithms that boosts their
convergence and accuracy [35,36]. We apply K-means clustering to
identify groups of buildings with similar energy performance over time.
The K-means algorithm is a partitioning unsupervised learning algo-
rithm that separates the data into K equal variance groups, by mini-
mizing the within-sample sum of squares (i.e. inertia) (Eq. (1)).
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K-means starts by randomly assigning cluster centers and calculates
the distance between the centers and each data point. In step two, it
assigns each data point to the cluster with the minimum distance from
its center. In step three, the algorithm recalculates cluster centers as the
mean of the data points assigned in the cluster (Eq. (2)).
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Steps two and three are repeated until the algorithm converges [37].
Although simple in nature, the K-means algorithm is a powerful,

widely used machine learning tool [38], that has been successfully
applied in various applications [39–42]. Examples of K-means clus-
tering applications in energy-related research can be found in the works
of Hsu [23], Yu et al. [43], Rasanen et al. [44], Gaitani et al. [45].

2.2.1. Selecting the number of clusters
However fast and robust, K-means comes with a major drawback:

the number of clusters k needs to be defined a priori. To overcome this
limitation, we run K-means with several k values in an attempt to
identify its optimal value. This equates to the value that minimizes the
variance within the clusters, while maximizing the variance among
different clusters. We employ two performance metrics, the Silhouette
score [46] and the Dunn index [47] to assess this trade-off. For a given
assignment of clusters, higher metric values indicate better clustering.

2.3. Statistical tests on clusters’ differences

Once we successfully form clusters of buildings with similar energy
performance patterns over time, we test various hypotheses on the
characteristics of buildings belonging to different clusters. We are
concerned with identifying statistically significant differences in
building attributes between the clusters to determine if certain features
are associated with increasing (or decreasing) energy performance over
time. Moreover, we use a spatial correlation index to test whether

Fig. 2. Compliance/noncompliance rates for the years LL84 has been active (2010–2016). Numbers in the bar plots indicate the number of properties reported each
year.
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spatial relationships exist in the data. It is conceivable that buildings in
the same cluster, and therefore those that behave similarly over time,
may be spatially proximate. This could result from local competition
between buildings for tenants, the geographic focus of certain larger
management or real estate companies, or spatially-correlated building
attributes (such as year of construction) [48].

2.3.1. Mann–Whitney U test
We use the Mann–Whitney U test [49] to determine if continuous

features between two independent groups are homogeneous and follow
the same distribution. For instance, we want to examine whether
buildings belonging to different clusters vary in age, size, or assessed
value. The Mann-Whitney U test is a non-parametric test, and unlike the
two sample t-test does not rely on distribution assumptions. It tests the
null hypothesis (Ho): two samples come from the same population,
against the alternative hypothesis (Ha): the distribution of the one
sample differs from the other’s.

2.3.2. Fisher’s exact test
Fisher’s exact test of independence is used to test differences in

proportions in nominal features [50]. In the case of energy performance
time series clustering, this is used to answer questions about the impact
of discrete activities or interventions, such as whether the proportion of
buildings that have conducted an energy audit is different between two
clusters. Ho suggests that the proportions of one group are the same as
another, whereas Ha suggests that there is difference in these propor-
tions.

2.3.3. Moran’s I index
Moran’s I index is a measure of global spatial autocorrelation.

Unlike one-dimensional autocorrelation, spatial autocorrelation is
multi-dimensional and characterizes the relationship between data
points that are located nearby in space. Moran’s I index tests the null
hypothesis of spatial randomness [51]. We use Moran’s I to determine if
there is spatial correlation between buildings assigned to different
clusters.

2.4. Association between building characteristics and cluster assignment

In the last part of our methodology, and building on the previous
steps, we identify the factors explaining a building’s energy perfor-
mance pattern (expressed as its cluster assignment). We specify a lo-
gistic regression model to predict cluster assignment, and based on the
model’s coefficients we quantify the degree of association between a
building’s characteristics and its assigned cluster.

Logistic regression is a well-established linear classification

approach for both binary and multinomial problems [52]. The logistic
regression model predicts the logit transformation of the probability of
an outcome given a set of independent variables (Eq. (3)).

=
−

= + + + ⋯+logit P log P X
P X

β β X β X β X( ) ( )
1 ( ) ν ν0 1 1 2 2

(3)

where P(X) is the probability of an outcome given X, X are the model’s
independent variables, and β are the regression coefficients.

To remove non-significant variables and obtain the optimal logistic
regression model, we run a backward feature elimination algorithm.
Backward elimination starts with fitting a model to all candidate vari-
ables. Then the least significant variable is omitted and the new model’s
performance is evaluated based on the goodness of fit (i.e. likelihood-
ratio statistic). The process is repeated until removal of additional
variables compromises the likelihood-ratio [53].

2.4.1. Odds ratio and model interpretation
By taking the exponential of Eq. (3) for both sides of the equation, it

can be rewritten as:

=
−

= + + + ⋯++odds P X
P X
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From Eq. (4), we observe that a unit change in Xν results in the odds
changing by a factor e β( )ν . Factor e β( )ν is a measure of association be-
tween dependent and independent variables and defined as the odds
ratio. The odds ratio explains the change in the likelihood of the out-
come when an independent variable changes, adjusted for the influence
of confounding variables.

Finally, for each coefficient β we compute the Wald statistic as:

= ⎡
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⎤
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β

s e β. . ( )

2

(5)

where s e β. . ( ) is the standard error of the coefficient. Wald statistic is
the square of the t-statistic and we use it as a measure of variable im-
portance in the logistic regression model.

3. Results

Basic descriptive statistics are shown in Fig. 3 for the aggregated
LL84 data. In the base year of 2011, it is clear that office buildings are
more energy intense compared to residential. However, offices have
reduced their median energy use intensity by 8%, on average, during
the six-year study period, a finding that does not hold for multifamily
housing, which exhibited a modest increase in intensity over time. By
the end year of our analysis, multifamily housing properties show

Fig. 3. Median site EUI values for multifamily housing and office typologies (2011–2016).

S. Papadopoulos et al. Applied Energy 221 (2018) 576–586

580



higher median site EUIs compared to offices. Finally, we observe a steep
drop in EUI in 2012 for both building typologies. This anomaly is lar-
gely attributed to hurricane Sandy, which hit NYC during October 2012
and caused widespread power outages [8].

In Fig. 4, we show NYC’s fuel mix for both Office and Multifamily
housing buildings. Interestingly, heavy fuel oils, including types #5 and
#6, accounted for almost 20% of the fuel mix in 2011, but have been
almost eliminated by 2016. This confirms NYC’s success in phasing out
the use of these fuel oils [54] and their replacement by cleaner energy
sources, particularly natural gas. On the other hand, the share of elec-
tricity in the energy mix remains the same in the 2011–2016 period,
approximately 40%.

3.1. Clustering results

Table 1 shows the Silhouette scores and Dunn indices for the
number of clusters ranging between two and ten. Interestingly, for the
two building typologies, both scores suggest the existence of two pri-
mary clusters in the energy performance time series data.

After fitting the K-Means model to the EUI time series, we obtain

clusters with different temporal trends (Figs. 5 and 6). In both Office
(Fig. 5) and Multifamily housing (Fig. 6), we observe two similar pat-
terns: (a) a cluster of buildings increasing their median EUI levels
(dashed purple colored time series), and (b) a second cluster showing a
decreasing EUI trend (green colored time series).

The two clusters are more balanced in the case of Multifamily
housing, whereas in the Office case, the cluster with lower EUIs over
time (n=210) is larger than those that increased EUI (n=151). To
study the homogeneity in the data we plot the 68% (one standard de-
viation) and 95% (two standard deviations) confidence intervals
around the time series. We observe that Office buildings show higher
variance in EUI when compared to the Multifamily housing buildings.
This finding can be attributed to the underlying factors driving energy
consumption in commercial buildings, such as equipment intensity,
space utilization, or occupancy patterns, that might fluctuate sig-
nificantly across different properties. A closer look at the clustered time
series plots shows variations in the gradient of changes in energy per-
formance, between both building typologies and different clusters. In
Fig. 5, we show that Office buildings in cluster 0 increase their median
EUI by 13% in 2013 and up to 18% in 2015 and 2016, where the trend
begins to plateau. On the other hand, buildings in cluster 1 reduce their
median EUI by approximately 11% in 2013 compared to the base year
of 2011, reaching 18% reduction in 2015. This result indicates a much
more nuanced picture of building energy performance over time than
what is presented by Meng et al. [8] or Palmer and Walls [24]. Here, we
find significant divergence between certain buildings in their energy
use trends, highlighting a non-uniform response to energy reporting
and disclosure.

Looking at the absolute values of energy consumption within each
cluster (Table 2), we see that Office buildings that reduced their energy
use (cluster 1) accounts for a disproportionately larger share of energy
consumption when compared to buildings in cluster 0. We can infer that
Cluster 1 consists of larger properties in general, a fact that we statis-
tically confirm in the following section. In the Multifamily housing
building stock, the consumption between the two clusters is more ba-
lanced, similar to the EUI trends shown in Fig. 6. Overall, the aggregate
energy use of buildings in the sample dropped by 0.51 billion kW hs
over the study period, equivalent to a 3.5% reduction.

3.2. Cluster characteristics

After identifying clusters of buildings with similar energy perfor-
mance behavior over time, we statistically test for differences in
building characteristics between the two clusters. Table 3 summarizes
the statistical tests’ results for Office and Multifamily housing buildings.
The statistical tests examine differences between ratios for categorical
variables (Fisher’s test) and distributions for continuous variables
(Mann-Whitney’s test).

The ratio of buildings with a heavy fuel oil boiler is found to be
lower in the second (performance improving) cluster for both
Multifamily housing and Office buildings (although very few office
buildings use fuel oil for heat), showing correlations between com-
pliance with laws requiring conversion from heavy fuel oils, as well as
poor overall energy performance associated with this energy source.
Also, the energy use metrics EUI and ENERGY STAR scores vary sig-
nificantly between the clusters, since EUI values were used to perform
the clustering. We find, though, that less-efficient buildings in 2011
were more likely to improve their performance over time. In the case of
Office buildings, larger, newer, higher-value, and more heavily occu-
pied buildings demonstrate improved performance over time. Buildings
that ended up improving their energy performance had an approxi-
mately 30% higher EUI in 2011 than buildings that consumed more
energy over the study period. Participation in NYC’s Carbon Challenge
program appears to boost energy performance in Office buildings as
well, with cluster 1 having an approximately three times higher ratio of
properties participating in the program. Conversely, larger and taller

Fig. 4. Fuel mix for office and multifamily housing buildings.

Table 1
Silhouette score and Dunn index for various cluster values.

Number of
clusters

Office Multifamily housing

Silhouette score Dunn
index

Silhouette score Dunn
index

2 0.29 1.31 0.23 1.31
3 0.24 1.23 0.19 1.26
4 0.21 1.15 0.17 1.17
5 0.21 1.03 0.18 1.07
6 0.22 1.03 0.18 1.05
7 0.21 0.94 0.2 1.02
8 0.21 0.94 0.1 0.99
9 0.21 0.92 0.22 0.96
10 0.22 0.84 0.22 0.95
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Multifamily housing buildings tend to perform worse over the six-year
period. Multifamily housing buildings with higher unit density, on the
other hand, show improved performance over time, indicating the ef-
fect of space utilization when managing a building’s energy loads and
the potential influence of shifts in tenant energy behavior. Additionally,

if a residential building’s data are reported by a large energy service
provider (defined as top-5 market share holders), it is more likely to be
assigned to cluster 0. Contrary to the expected finding, major energy
service companies are not associated with energy use reductions over
time in residential buildings. Finally, we do not observe the positive
effect of Carbon Challenge participation for residential buildings, al-
though multifamily properties are under-represented in the program.

Factors such as whether the building has been through an energy
audit, is managed by top-5 real estate organization, or of the building is
located outside Manhattan, do not vary significantly between clusters,
for both building typologies, suggesting that these factors are not sig-
nificant determinants of energy performance over time. These are im-
portant findings that will be discussed further in the next section.

3.3. Cluster assignment and influential variables

Table 4 shows the logistic regression results for Office and Multi-
family housing buildings, using the backward feature elimination

Fig. 5. Clustered time series (office buildings).

Fig. 6. Clustered time series (multifamily housing buildings).

Table 2
Inter-cluster difference in absolute energy consumption.

Office Multifamily housing

Cluster 0 Cluster 1 Cluster 0 Cluster 1

Total energy consumption 2011
(billion kW h)

1.12 3.27 4.81 5.62

Total energy consumption 2016
(billion kW h)

1.25 2.67 5.68 4.71

Difference 2011–2016
(billion kW h)

0.13 −0.60 0.87 −0.91
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algorithm described in the methods section.
As expected, variables that are found to be significant in the Fisher’s

and the Mann-Whitney’s tests are included in the models for both
building typologies. Based on the Wald statistic, the number of floors
for Offices and the unit density for Multifamily housing are the vari-
ables contributing the most to the explanatory power of the respective
regression models. Specifically, for each additional floor in an Office
building, it is 3% more likely to belong in cluster 1 (i.e. improve its
performance over time), whereas each unit increase in a Multifamily
housing building’s unit density (measured as units per 1000 sq.m.) in-
creases its likelihood of being assigned to the energy-reducing cluster

by 4.7%. Moreover, if an Office building participates in the NYC Carbon
Challenge, it is 138% more likely to reduce its energy consumption over
time. Similarly, an Office building located outside of the borough of
Manhattan is 155% more likely to reduce its consumption. We ap-
proach this latter finding with caution, since the majority of commer-
cial buildings are located in Manhattan and thus the class of buildings
outside of the borough is underrepresented in the logistic regression
model. For Multifamily housing properties, the existence of a heavy oil
boiler or the use of a leading energy service provider for data reporting
both reduce the probability of improving performance by approxi-
mately 16%. The association between carbon-intense energy systems,

Table 3
Statistical tests on cluster differences (office and multifamily housing buildings).

Binary features Office Multifamily housing

Cluster 0 ratio Cluster 1 ratio Fisher’s test statistic Cluster 0 ratio Cluster 1 ratio Fisher’s test statistic

Audited under LL87 0.23 0.26 0.84 0.16 0.18 0.87
Has heavy oil boiler 0.32 0.18 2.11b 0.42 0.38 1.17a

Owner participates in NYC Carbon
Challenge

0.08 0.21 0.32b 0.05 0.04 1.14

Not located in Manhattan 0.09 0.10 0.87 0.53 0.54 0.96
Managed by top-5 organizations 0.42 0.36 1.30 0.51 0.53 0.93
Reported by top-5 energy service providers 0.40 0.39 1.01 0.38 0.33 1.22b
Has data center space 0.03 0.06 0.45 – – –

Continuous/categorical features Cluster 0
median

Cluster 1
median

Mann-Whitney’s test
statistic

Cluster 0
median

Cluster 1
median

Mann-Whitney’s test
statistic

Site EUI 2011 (kW h/sq.m.) 223 304 8647b 238 280 818,046b
Site EUI 2016 (kW h/sq.m.) 264 242 12479.5b 279 245 933,632b
ENERGYSTAR score 2011 75 63 12194.5b – – –
ENERGYSTAR score 2016 72 79 12985.5b 54 70 1052606.5b
Total building area (sq.m.) 13,285 27,179 11460.5b 9002 8235 1237485.5b
Computer density 2011 (computers/100

sq.m.)
2.4 2.9 11,899a – – –

Computer density 2016 (computers/100
sq.m.)

2.2 2.9 14633.5 – – –

Weekly operating hours 2011 (hr) 61.0 62.0 14786.5 – – –
Weekly operating hours 2016 (hr) 62.5 60.0 15,828 – – –
Worker density 2011 (workers/100 sq.m.) 2.5 2.8 12474.5b – – –
Worker density 2016 (workers/100 sq.m.) 2.5 2.6 15,582 – – –
Laundry machine density 2011 (machines/

100 sq.m.)
– – – 0.087 0.088 1,283,321

Laundry machine density 2016 (machines/
100 sq.m.)

– – – 0.090 0.089 1233026.5b

Total number of residential units – – – 81 80 1,286,651
Unit density 2011 (units/1000 sq.m.) – – – 9.3 9.7 1192789.5b
Unit density 2016 (units/1000 sq.m.) – – – 9.6 10.0 1,200,030b
Number of floors 16 20 12991.5b 7 6 1,261,674a
Year built 1926 1937 13152.5b 1940 1942 1,266,532
Asset value ($/sq.m.) 1061 1307 13,329b 399 371 1,271,667

a Significant at 95% confidence level (p-value < 0.05).
b Significant at 99% confidence level (p-value < 0.01).

Table 4
Logistic regression model (features obtained from backward elimination algorithm).

Feature β Standard error (s.e.) Wald statistic eβ

Office Intercept −0.787b 0.294 7.14 0.455
Owner participates in NYC Carbon Challenge 0.870a 0.360 5.823 2.387
Not located in Manhattan 0.938a 0.407 5.300 2.555
Number of floors 0.029b 0.010 8.544 1.029
Asset value ($/sq.m.) 0.002 0.001 2.784 1.002

Multifamily housing Intercept −0.369b 0.113 10.732 0.691
Reported by top-5 energy service provider −0.172a 0.076 5.218 0.842
Has heavy oil boiler −0.188a 0.075 5.568 0.838
Unit density (units/1000 sq.m.) 0.046b 0.010 20.936 1.047

a Significant at 95% confidence level (p-value < 0.05).
b Significant at 99% confidence level (p-value < 0.01).
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such as heavy fuel oil boilers, and poor energy performance over time
highlights the importance of environmental awareness on energy and
carbon reduction efforts.

3.4. Spatial analysis

In this last part of the Results section, we explore the spatial di-
mension of energy performance over time. We spatially aggregate the
clustered buildings to the zip code level, and calculate the ratio of
buildings assigned to cluster 1 (i.e. “good performers”) over the total
number of clustered properties for each zip code. We decide to study
only zip codes including at least five buildings from our model, to avoid
potential bias (Fig. 7).

Visual inspection of the choropleths in Fig. 7 reveals a rather weak
relationship between nearby zip codes and their buildings’ energy
performance over time. Moran’s I index values are: 0 (p-value: 0.90) for
Multifamily housing, and −0.03 (p-value: 0.86) for Office buildings.
The high p-values for both building typologies suggest spatial ran-
domness in the distribution of buildings’ energy performance over time.

4. Discussion

Our results suggest two distinct temporal patterns of energy per-
formance for commercial and residential buildings, characterized by
energy use reductions and increases. This finding highlights the dif-
ferential response to energy reporting and disclosure, and presents a
more complex picture of energy use dynamics over time when com-
pared to previous studies. While a sub-group of buildings do improve
their performance, these tend to be poorly-performing buildings at the
outset, with EUIs well above the means of the sample. This sub-group,
then, may be motivated by (1) the avoidance of being viewed as an
energy inefficient building when compared with peers or (2) excessive
risk exposure to future possible energy standards or mandates based on
building performance. It is also quite possible that this sub-group of
buildings was simply unaware of their energy performance, or the im-
portance of tracking energy use, and responded to the disclosure of its
energy data by reducing consumption. However, for Office buildings
that demonstrated the most substantial energy performance improve-
ment, this assumption is weakened by the fact that both clusters had
similar proportions of buildings managed by a major energy services
firm. One would have assumed that larger and more capable

management firms would lead to more efficient building operations, or
the ability to identify and implement energy conservation measures.
The finding of two distinct clusters for each property type also suggest
that energy reporting is useful for spurring behavioral changes that
address the “low-hanging fruit” of energy efficiency investments. Since
the buildings that improved their energy performance over time had
higher initial EUIs, and thus were under-performing in the early years
of the reporting mandate, it is conceivable that tracking their energy
use initiated more modest changes that resulted in reverting their EUI
values toward the mean.

It is important to emphasize that energy disclosure policies do not
mandate change; rather, they are a mechanism to shift market behavior
and decision-making through the reduction of information asymmetries
[7,10]. As evidenced here, cities relying solely on market-driven change
will face non-trivial barriers to large-scale energy efficiency gains.
While voluntary schemes, such as NYC Carbon Challenge, may boost
energy performance in commercial buildings, their effect is not found to
be significant for residential buildings, which hold the largest share of
the City’s building stock. On the other hand, the heavy fuel oil phase-
out regulation had substantial impacts on energy use. The suggestion
here is that policies predicated on energy reporting, without a mandate
to improve performance, will incentivize certain buildings to modestly
reduce their energy consumption, while having no effect on others.

What is a particularly surprising finding is the sub-group of build-
ings that actually increased their energy consumption over time.
Despite a policy landscape increasingly focused on energy efficiency
and carbon reductions, these buildings – generally older, smaller, and
lower quality, but with better initial energy performance – used 18%
more energy, on average, when comparing 2016 to 2011 data. One
possible explanation is that these buildings were identified as “good”
performers in 2011, and thus experienced less pressure to improve over
time, or assumed that no more action was needed. Future work should
focus on analyzing which part of this change is attributed to actual
energy inefficiency and which to changes in underlying factors driving
energy use (e.g. occupancy density and operating hours).

The implications of our study are of direct relevance to urban en-
ergy policy. While market-driven strategies, such as disclosure, may be
effective in reducing consumption in some buildings, they do not have a
consistent impact across the entire building stock. In fact, we see that
disclosure may have a counter-intuitive impact for a sub-group of
buildings, particularly those that are initially deemed to be performing

Fig. 7. Ratio of multifamily housing (left) and office buildings assigned to cluster 1 over total number of properties; grouped by zip code. Grey areas represent zip
codes with less than ten properties.
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well. This suggests that a comprehensive urban energy policy must
couple market-driven, information-based tools with regulations re-
quiring improvements over time. Our methodology also provides a tool
for targeted policy interventions that can be applied more efficiently
and equitably than universal policies that may have unexpected con-
sequences, or create unnecessary hardships on building owners that
would have improved their performance regardless of the regulatory
intervention.

Before concluding our analysis, we present recommendations for the
disclosed energy data collection process that could support further re-
search. Due to the self-reported nature of the energy data, we often
encountered entry errors in both energy consumption and building
characteristics (e.g floor area), raising data quality and reliability
concerns. We argue that more clear documentation in the energy re-
porting tools or data quality checks in the users’ inputs would minimize
the misreported data entries. Also, more granular inputs, such as te-
nant-level energy or occupancy data as well as monthly energy con-
sumption reporting could help us better understand energy consump-
tion patterns in individual buildings. Our last suggestion would be to
track energy conservation measures implemented in buildings that are
reporting energy use data each year. This would allow us to go further
in exploring the causes of observed increases/decreases in building
energy performance.

5. Conclusion

Cities across the globe are turning to information disclosure as a
means to understand and reduce energy use and carbon emissions. In
first-mover cities, such as NYC, disclosure policies have created cross-
sectional time series energy data streams, presenting an unprecedented
opportunity to study the evolution of building energy performance over
time.

The analysis presented in this work identifies buildings with similar
temporal energy performance patterns, as well as shared characteristics
among them. Using a K-means clustering algorithm, we reveal two
distinct clusters of “improving” and “declining” energy performance
over time, for both commercial and residential buildings in NYC. We
employ Fisher’s and Mann-Whitney’s statistical tests to test for sig-
nificantly different characteristics between the clusters. We find that
energy reductions are mostly driven by Office buildings, with larger,
newer, and higher-value buildings showing significant improvement in
terms of energy use intensity between 2011 and 2016. From our logistic
regression model, office buildings that participate in the NYC Carbon
Challenge program are 138% more likely to have improved their per-
formance over the study period. Similarly, residential buildings with
heavy oil boilers are 16% more likely to have increasing EUIs over time.

Overall, we demonstrate that although disclosure might lead to
better energy performance in some buildings, its effect is not consistent
across the entire NYC building stock. In order to realize significant
energy use improvements over time and reach energy and carbon re-
duction goals, cities need to design and implement comprehensive
policy frameworks, bringing together information transparency and
reporting with targeted mandates and incentives.

Our work provides an important foundational analysis of the pat-
terns of building energy performance over time. Future research should
explore more deeply the factors that drive energy use changes and
determine the response to energy disclosure, whether they are social-
behavioral (e.g. management quality, occupant demographics), phy-
sical (e.g. individual building systems) or economic (e.g. firm size and
revenue for Office buildings or household income for residential te-
nants). Moreover, our methodology can be used as the basis of targeted
and more equitable energy policy, allowing cities to allocate limited
resources more efficiently in their attempt to reduce energy use and
carbon emissions. Finally, with energy disclosure policies being widely
adopted, our analytical framework can be applied on other cities’ data
sets, as well. Although our findings are representative of NYC

specifically, it would be interesting for future studies to analyze similar
energy performance patterns in cities with different characteristics.
These characteristics could vary from urban morphology and location
to existing energy policy frameworks and carbon reduction goals. This
would enable policy makers assess drivers of energy performance not
only in local, but in national or global level.
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