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ABSTRACT

As the effects of anthropogenic climate change become more pronounced, local and federal governments are
turning towards more aggressive policies to reduce energy use in existing buildings, a major global contributor of
carbon emissions. Recently, several cities have enacted laws mandating owners of large buildings to publicly
display an energy efficiency rating for their properties. While such transparency is necessary for market-driven
energy reduction policies, the reliance on public-facing energy efficiency grades raises non-trivial questions
about the robustness and reliability of methods used to measure and benchmark the energy performance of
existing buildings. In this paper, we develop a building energy performance grading methodology using machine
learning and city-specific energy use and building data. Leveraging the growing availability of data from city
energy disclosure ordinances, we develop the GREEN grading system: a framework to facilitate more accurate,
fair, and contextualized building energy benchmarks that account for variations in the expected and actual
performance of individual buildings. When applied to approximately 7500 residential properties in New York
City, our approach accounts for the differential impact of design, occupancy, use, and systems on energy per-
formance, out-performing existing state-of-the-art methods. Our model and findings reinforce the need for more
robust, localized approaches to building energy performance grading that can serve as the basis for data-driven
urban energy efficiency and carbon reeduction policies.

1. Introduction

1.1. Background and motivation

with climate change mitigation, fiscal and economic benefits associated
with improved energy efficiency have prompted municipalities to focus
policy initiatives on long-term sustainability [3]. In the United States,
Europe, and Australia, market-driven policy tools to reduce energy use

The importance of “greening” existing buildings in cities cannot be
overstated. The Intergovernmental Panel on Climate Change highlights
that existing buildings are responsible for more than one-third of global
primary energy consumption and greenhouse gas emissions [1]. At the
same time, the building sector has the highest potential for cost-effec-
tive and long-term carbon reductions among all economic sectors [2].
While carbon reduction policies and targets have historically been
adopted at the federal level, city leaders are increasingly taking action
to reduce energy use and carbon emissions across urban areas. Along
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in buildings have centered on information disclosure and transparency.
Building energy benchmarking, which refers to the process of assessing
the energy performance of buildings compared to their peers, con-
stitutes the basis for these initiatives, which are predicated on elim-
inating information asymmetries between the owners and users of
buildings [4,5]. In the United States, more than 20 cities and local
governments have passed energy benchmarking and disclosure laws as
the foundation for city sustainability plans [6]. These benchmarking
laws require building owners to annually report their energy
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consumption, adding transparency to real estate markets and clarity to
energy-saving opportunities [3,7].

While energy data disclosure has been shown to drive energy use
reductions in certain building types [8,9], cities are adopting more
aggressive policy measures to further transform the energy efficiency
market through economic incentives and competition [10]. From a top-
down perspective, city decision-makers can identify poorly-performing
buildings and promote more equitable and efficient regulations or in-
centive mechanisms to reduce emissions. From a bottom-up view, such
schemes can help building owners understand their buildings’ perfor-
mance and expose them to competitive market pressures that (should)
encourage greater energy efficiency. However, this type of performance
grading relies on the ability to effectively and accurately establish ex-
pected and actual energy performance targets. Unlike grading in other
industries, such as restaurant cleanliness grades or vehicle fuel effi-
ciency ratings, building energy performance is influenced by a bundle
of physical, mechanical, meteorological, and behavioral systems that
interact to determine current and potential energy consumption pat-
terns. Without understanding and capturing the dynamics and inter-
actions of these systems, it becomes difficult to determine the optimal,
real-world energy performance of a particular building, resulting in
high levels of uncertainty when comparing energy efficiency. New York
City recently enacted a law that requires large property owners to
publicly display their energy efficiency grades (see Appendix A for
further details). However, these grades, as in the case of Chicago, are
based on the U.S. Environmental Protection Agency’s EnergyStar score,
an approach that has been heavily criticized in recent literature, mainly
due to its high uncertainty, poor data quality, and model specification
errors [10-13].

In this work, we critically assess the state-of-the-art in energy
benchmarking and introduce the GREEN grading system; a new method
for building energy performance measurement that accounts for the full
range of factors that impact building energy use. Our method con-
textualizes these factors to the local metropolitan area, providing a
needed city-specific performance baseline and grading system. We
apply the proposed framework to New York City’s large, multi-family
residential building stock (approximately 7500 properties) and contrast
it with its current EnergyStar-based grading. We find that our method
explains more than 30% of the variance in energy use intensity,
whereas the EnergyStar algorithm is not able to generalize at all when
using city-specific data. This is one of the first large-scale studies to
leverage city energy disclosure data to develop and test a con-
textualized building energy performance grading scheme. As more ci-
ties adopt the requirement to publicly display building energy perfor-
mance grades, our method is directly relevant to local governments,
energy policy makers, and building owners. Based on our findings, we
catalyze the debate for revisiting building energy performance assess-
ment by utilizing more robust approaches that provide greater certainty
and flexibility in meeting individual city’s policy needs and goals.

1.2. The need for a paradigm shift in energy benchmarking

The increasing availability of building energy data, enabled by the
adoption of city energy disclosure ordinances and open data mandates,
has led to a new interest in peer comparison and data analytics as tools
to assess relative performance. Statistical benchmarking models have
become quite popular, as these methods typically utilize machine
learning algorithms that can map complex relationships between en-
ergy consumption and building characteristics using large samples of
buildings [10,14-16]. Measured data, as opposed to modeled or simu-
lated data that constitute the basis for physics-based building energy
models, provide opportunities for researchers to bridge the “perfor-
mance gap” encountered in engineering benchmarking methods
[17,18]. Measured data provide a snapshot of a buildings “real-world”
operational energy performance, rather than the “idealized” or hy-
pothetical performance characteristics described by physical models
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and simulation software. However, there has yet to be consensus on the
appropriate standard for statistical approaches to building energy
benchmarking. Building energy consumption is a complex problem,
with non-linear and sometimes unexpected interactions between ar-
chitectural design, mechanical systems, occupant behavior, manage-
ment quality, and the surrounding environment [19]. Additionally, a
recent study that used energy disclosure data from various US cities
found that the relationship between building characteristics, such as
age and gross floor area, and energy use intensity (EUI) varies from city
to city, beyond what could be accounted for by weather or climate
variations alone [20].

Building energy grades could provide an important signal to the
market to convey a critical, yet unobservable, component of green
buildings: their energy performance. Therefore, grading buildings on
their energy performance to drive efficiency gains needs to account for
the range of factors that may influence consumption patterns in day-to-
day operations. A building grading system that can be implemented by
cities and other government agencies, and accepted and adopted by
building owners and investors, must meet several criteria:

1. It must be understood by all potential stakeholders and end users.
While it is not necessary that all can directly interpret the specific
algorithm used, it must be made clear how different building fea-
tures are considered and accounted for in the model and the re-
sultant grade. It should also be possible to understand what changes
would be necessary to move from one grade band to another.

. It must account for the multitude of characteristics - and their in-
teractions - that influence building energy use, focusing on those
attributes that can be readily changed. For instance, we would not
want to grade buildings based on the age of installed heating sys-
tems; this would have the effect of penalizing buildings with more
efficient systems by controlling for this feature in the model.

. It must be scalable and generalizable so that it can be deployed
across a range of climate and market-specific conditions. Current
rating tools are national in scope; these have been criticized because
of the non-trivial variations in building types, operational para-
meters, occupant behavior, and local environmental conditions
across cities and regions, as well as their data quality and coverage.
The model must be able to ingest data from any specific geography
and produce reliable grading results. Moreover, it must be devel-
oped using representative, sufficient, and up-to-date data sources
that are publicly-available to ensure reproducibility.

. Differences in grade bands must be statistically significant with a
high degree of confidence. The marketplace must be able to have
trust in the model such that a building rated ‘A’ is known to be
superior to a ‘B’-rated building with certainty.

In machine learning problems, we encounter the so called “bias-
variance tradeoff”, which refers to the opposing relationship between a
models complexity and its ability to generalize. In the context of sta-
tistical energy benchmarking, we are interested in mapping the re-
lationships between energy consumption and its drivers, while mini-
mizing the effect of noise in the data. Various machine learning
algorithms have been applied to building energy benchmarking data,
from simple linear regression models to complex artificial neural net-
work architectures. Linear models have been tested extensively, and
they appear to be insufficient in capturing the non-linear relationship
between building energy consumption and explanatory variables
[10,21,22]. Nevertheless, EnergyStar, the predominant energy bench-
marking approach in the US, is built on a multivariate linear regression
model [23]. (See Appendix B for a detailed description on the method.)

Table 1 summarizes the limitations of the EnergyStar scoring
method, as well as our proposed improvements. More complex machine
learning models, such as artificial neural networks or ensemble learning
methods, exhibit promising results in modeling building energy per-
formance [24-28]. However, a limitation of neural networks is their
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Table 1
Limitations in EnergyStar benchmarking approach and potential improvements.

Current limitations Potential improvements

Linear model
Nationwide data
Limited sample (surveys, reference

Non-linear machine learning algorithms
City-specific data
Extended samples (energy disclosure

buildings) policies)
Limited features Extended features (physical, operational,
qualitative)

Continuous scale (0-100) Letter grade (A-D)

black-box nature, that makes the interpretation of the model difficult.
On the other hand, ensemble learning methods have not been widely
adopted, yet initial applications to building energy benchmarking show
potential [21,24,26,29]. Tree-based ensemble learning is suitable for
modeling complex, non-linear data, while allowing for result inter-
pretability to some extent [25,26] through the contribution of features
in the tree-building process (i.e. feature importance). Furthermore,
novel feature attribution approaches have been recently developed to
further improve ensemble models’ interpretability [30,31]. Statistical
benchmarking requires large and representative building energy data
samples to yield robust models [10]. EnergyStar utilizes data obtained
through a nationwide survey. The survey includes relatively small data
samples (i.e. 322 residential properties), across nine US census regions.
The small sample size along with its nationwide coverage limit En-
ergyStar’s ability to account for heterogeneity in local building stocks
and provide contextualized estimations at a more granular spatial level,
such as the city or metropolitan area [12,32]. Additionally, the En-
ergyStar model specification includes only five features, neglecting
important aspects related to energy consumption. Finally, an important
aspect of energy benchmarking is the communication of the outputs to a
wide range of stakeholders (e.g. building owners, tenants, policy ma-
kers, etc.) [10]. The 1-100 scale used for EnergyStar scores presents a
specific numerical rating that belies the inherent uncertainty in the
model estimates [12]. Although we do not explicitly argue against
continuous scale grading, evidence from energy performance certifi-
cations in the European Union suggest that letter grades can be re-
flected in increased stakeholder awareness and real estate premiums
[33,34].

2. Data and methods
2.1. The GREEN grading methodology overview

To address the limitations of current building energy benchmarking
models, we propose GREEN grading; an approach that integrates lo-
calized energy disclosure data and machine learning methods (Fig. 1).
Overall, our methodology can be split into three parts: (a) data pre-
processing, (b) model selection, and (c) building energy grading.

Our primary variable of interest is weather normalized source en-
ergy use intensity (hereafter EUI). We elect to use source, rather than
site, EUI in our models to reflect a comprehensive assessment of a
building’s energy efficiency and carbon emissions, including fuel source
and production, delivery and transmission losses. Due to its self-re-
ported nature, energy disclosure data often contain missing, mis-
reported, or anomalous entries that need to be removed prior to ana-
lysis. The cleaning steps applied in both EUI and occupancy-related
features are detailed in the following subsection.

The relationship between a building’s EUI and its physical or oc-
cupancy characteristics has been often found to be non-linear (e.g.
building age [35,36], weekly operating hours [10], number of occu-
pants [37]). Given this condition, there is little rationale to support the
use of linear models in energy benchmarking applications, beyond the
benefits of interpretability of such methods. On the other hand, deep
neural networks, a popular non-linear approach, have demonstrated
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high predictive accuracy. From the pool of non-linear algorithms, deep
neural networks and ensemble learning methods demonstrate superior
performance when copmared to other popular machine learning algo-
rithms [21,26,29,38,39], although the former is computationally ex-
pensive, often requires large datasets for training, and has limited in-
terpretability [21]. Hence, for data modeling, we use XGBoost, an
ensemble learning algorithm based on gradient tree boosting, with
proven capabilities for handling nonlinear datasets in a computation-
ally efficient manner [40]. To maximize the model’s predictive power
and generalizability, we fine-tune its parameters via cross-validation.
Having identified the model’s optimal parameters, we fit the data using
jackknife sampling and estimate the model residuals for each individual
building. The reasoning behind the use of jackknife sampling is to avoid
training bias and treat each building as “test set” in the residual cal-
culation.

From the residuals, we calculate the energy performance ratio, de-
fined as the reported EUI divided by the model-predicted EUI, to
quantify a building’s relative performance. In the last step, we use
unsupervised learning to cluster the energy performance ratios and
assign a letter-grade to each building, according to their respective
group membership.

2.2. Data description

The main data source used to train our model is NYC’s Local Law 84
(LL84) energy benchmarking data. LL84 covers all buildings with gross
floor area that exceeds 50000 square feet, and mandates their owners to
annually report energy and water usage, along with other building
characteristics [10,24]. To include additional features in our model and
better capture the drivers of energy consumption, we merge the latest
LL84 database (i.e. 2016) with land use data from the Primary Land Use
Tax Lot Output (PLUTO) data provided by the NYC Department of City
Planning. We merge the two datasets on the Building Block Lot (BBL)
number, a unique identifier for NYC properties, to avoid inconsistencies
during the merging process. The merged sample consists of 13137
properties, 9611 of which are residential buildings. Prior to modeling,
we perform substantial data cleaning to remove errors and outliers
resulting from the self-reported nature of the data, similar to other re-
search done on energy disclosure data [10,41-43]. First, we drop all
properties with one or more of the following characteristics: missing/
zero weather normalized EUI, missing/zero gross floor area, or missing
or duplicated building identification numbers. Given the log-normal
distribution of EUI, we then apply a logarithmic transformation to the
EUI values, and filter out observations falling outside the threshold of
two standard deviations from the sample’s mean as outliers [9,41]. We
do this independently for the sample of residential buildings to account
for the variations in the EUI distributions across property types. Finally,
we remove values above the 99th percentile and below the 1st per-
centile for occupancy-related features, such as unit density and number
of bedrooms. The resultant cleaned data set includes 7487 residential
buildings. The dropped observations can mainly be attributed to the
manual data collection process used for the LL84 data, highlighting the
issue of data entry errors by non-expert users and those unaccustomed
to tracking building energy use.

2.3. Statistical learning algorithm

To capture the non-linear relationships in the data, we choose
XGBooost [40], a scalable version of gradient tree boosting [44]. Unlike
linear regression models previously used in building energy bench-
marking [10,14-16,23], boosted trees are capable of fitting highly non-
linear data by learning higher interactions between features, while re-
quiring minimum data preprocessing [45,46]. In building energy-re-
lated datasets, specifically, gradient boosting has shown great potential
in modeling both granular (i.e. hourly) building energy consumption
[21], as well as annual energy demand for urban scale applications
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Fig. 1. GREEN grading methodology.

when compared with linear models [26,29].

2.3.1. Decision trees

Gradient boosting is an ensemble learning algorithm, consisting of
multiple decision trees (i.e. base models) [44]. Each decision tree
provides a different solution to the problem and their outputs are
combined to yield the final output [45]. Decision trees partition the
feature space in a set of regions using a series of hierarchical rules to
approximate a simple function in each region (i.e. constant). In Fig. D.6,
we illustrate the decision tree algorithm in a 2-dimensional feature
space.

2.3.2. Gradient tree boosting - XGBoost

The gradient boosting algorithm trains sequential weak base
models, where each consecutive tree learns from the errors of the
preceding ones (Eq. (1)). The algorithm strategically re-samples ob-
servations that were hard to predict by the previous models in order to
provide useful information in the next model.

M
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@

where f,(x) is the first learner, f, (x) the base model at boosting
iteration m, and y,, the weight of the m-th iteration.
XGBoost determines the gradient by solving Eq. (2).
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where L is the loss function to optimize and y is the ground truth for the
target variable. Essentially, XGBoost is a more stochastic and regular-
ized variant of gradient boosting. With the introduction of L1 and L2
regularization on top of the existing tree complexity regularization
terms, XGBoost controls for overfitting, a commonly encountered
drawback of gradient boosting [46]. Additionally, XGBoost allows for
feature subsampling in both tree and split level to introduce additional
randomness in the learning process.

1 A base learner is defined as “weak” when it performs slightly better than
random guessing.

2.4. Model selection

In the machine learning context, model selection (or hyper-para-
meter tuning) is the process of identifying the model parameters that
maximize a learning algorithm’s performance on a given dataset.
Overtuning an algorithm’s parameters results in a complex model and
overfitting, meaning that the model learns the noise in the training data.
On the other hand, a simple model might not be able to learn the
patterns in the data, resulting in poor performance and (See Fig. D.7,
[47] for an illustration of overfitting and underfitting on dummy data.)
In the context of energy benchmarking, models should be complex
enough to explain variations in energy consumption between different
buildings, but not so complex as to capture the noise that by default
exists in the energy data [10].

We elect to tune eight hyper-parameters, associated with both the
general nature of the algorithm and each individual tree.

— The number of boosting iterations.

— The learning rate, referring to feature weight shrinkage in each
boosting iteration.

— The maximum depth of each tree, controlling the complexity of the
algorithm.

— Fraction of examples used to train each tree.

— Degree of purity in leaf node.

— Regularization weights.

— Fraction of features used to perform each node split.

— Fraction of features used to train each tree.

Prior to tuning the hyper-parameters, we split the data into training
(80%) and testing (20%) sets. We specify a parameter grid to evaluate
outputs through a 5-fold cross-validation (CV). For each parameter
combination, we train the model using 4 folds of training and one fold
for validation. We repeat the process 5 times, until each individual fold
is used as a validation set and then average the scores. We use the root
mean squared error as the CV performance metric. After cross-vali-
dating our model the optimal XGBoost hyper-parameter are as follows:
number of estimators: 667, subsample ratio: 0.75, learning rate: 0.01,
maximum tree depth: 8, minimum sum of instance weight needed in a leaf
node: 5, regularization: 100, fraction of features used to split: 0.75, and
fraction of features used in each tree: 0.75.
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City-specific GREEN model
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Fig. 2. Explained variance. The city-specific GREEN model (left) and national EnergyStar model (right).

2.5. Model interpretation

To interpret the importance of individual model features and un-
derstand drivers of EUI prediction, we compute the SHAP (SHapley
Additive exPlanation) values, proposed by Lundberg, Erion and Lee
[31]. Although XGBoost supports traditional feature importance re-
porting, these values can be inconsistent and not individualized for
each prediction. SHAP builds on ideas from game theory [48] and local
explanations [49], and unlike other popular feature attribution
methods, such as gain or split count, SHAP values are individualized to
each prediction and consistent. As an additive feature attribution
method, SHAP develops an explanation model g that is a function of
binary features:

M
g@) =+ ), #2/

i=1

3

where z; = 1 if the feature is observed and z; = 0 otherwise, ¢, are the
feature attribution values, and M is the number of features in the model.
To calculate the feature attribution values, SHAP uses the traditional
Shapley values [48] along with conditional expectations as follows:

2
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where S is the set of non-zero z’ indexes and f, (S) = E[f (x)|x;] is the
expected value of the model f conditioned on S.

For more detailed description of the SHAP methodology, we refer
interested readers in the work of [30,31].

2.6. Score calculation

Once we obtain the optimal model parameters, we train the
XGBoost model and get the predicted EUI for each building. For each
building in the dataset n, we train a model with n — 1 samples, leaving
one building out as a test set and then use the trained model to predict
the particular building’s EUI (EUL,.q), repeating the process for each
building in the dataset. By applying this “jackknife prediction” scheme,
we avoid biased scores, since the building to be graded is not used to
train the model. Unlike other sampling techniques (e.g. random or latin
hypercube sampling), jackknife sampling systematically leaves one
observation out and guarantees that each building grade will result
from a different model.

We quantify relative building energy performance as the ratio of the
building’s reported EUI (EUlycnual) t0 EUlypeg:
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Energy Performance Ratio = EUlgetyq1/ EUlpreq 5)

Values lower than 1 indicate that a building is consuming less en-
ergy than the model predicts, thus suggesting better performance. On
the other hand, values greater than 1 indicate that a building is con-
suming more energy than expected compared to its peers. Although
interpretable, an energy performance ratio is not as intuitive for end-
user engagement as more familiar grading schemes, such as letter-grade
scoring [50].

With this in mind, we use a K-means clustering algorithm to assign
grades to buildings based on their energy performance ratios. K-means
is a partitioning unsupervised learning algorithm that aims to split the
data into K groups, by minimizing the variance within the clusters and
maximizing the variance among different clusters [51]. We elect to use
clustering over equal frequency rating procedures since it is most sui-
table for this particular problem. Equal frequency rating would assign
grades based on each building’s frequency distribution and by con-
sidering an equal number of buildings in each class. We argue that
building energy performance follows a normal-like distribution, with
the majority of buildings demonstrating average performance and
fewer buildings showing extremely high or low energy consumption.
For a more detailed comparison between unsupervised learning and
equal frequency rating procedures for energy classification, please see
[52].

2.7. Implementation

The implementation of the methodology is in Python 2.7, using the
following packages: pandas, numpy (data pre-processing), XGBoost
(XGBoost algorithm), scikit-learn (model selection, K-means clustering),
shap (model interpretation). We use Python’s matplotlib, seaborn, and
plotly libraries for visualizations.

3. Results

In this section we summarize the key findings from applying the
developed GREEN grading system to the residential building stock of
NYC.

3.1. Modeling energy performance

In Fig. 2, we show the goodness of fit for the city-specific GREEN
model, based on XGBoost algorithm, and contrast it with the EnergyStar
score methodology. It is apparent that the EnergyStar model, based on a
linear algorithm and trained on a relatively small, national sample, is
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Fig. 3. Feature attributions.

not sufficient to explain any of the variability in the city-specific energy
data, hence the negative R?> value. On the other hand, the XGBoost al-
gorithm is able to explain 31% of the variance in the data. As a ro-
bustness check, in Fig. D.8 we show a scatter plot of the residuals
against the observations and the residual distribution.

Interpretability should be an important aspect of benchmarking
models, in addition to model accuracy. Understanding which factors
drive energy consumption is essential to remove ambiguity in the re-
sultant benchmarks (Appendix C). Also, it can help cities refine future
data collection processes and, eventually, improve the quality of cur-
rent benchmarking methods. Fig. 3 illustrates the contribution of each
feature in the model obtained from the SHAP, as described above. The
attributions are sorted based on their global impact 2,1:]:1 |¢*| on the
model output (y-axis) and color-coded according to the feature value.
The SHAP values (x-axis) are related to the feature’s impact on the
model’s output. The vertical stacking corresponds to the feature value
frequency in the dataset. Unit density is the strongest EUI predictor,
with higher densities yielding higher EUI values, as expected. Similarly,
properties with higher assessed value and higher number of floors tend
to consume more energy per square foot. Electricity being the building’s
primary fuel source, although not commonly encountered (see density
of red dots), is associated with lower EUI predictions. Although it is not
the most important feature, in certain buildings its effect on EUI can be
stronger than unit density, given the longer tail in the summary plot.
The pattern of positive skewness is observed in several features (e.g.
unit density, building estimated value, number of floors, floor-area
ratio), reflecting the observation that extremes feature values tend to be
associated with high EUI values.

3.2. Energy performance grade assignment

We calculate the energy performance ratio for each building, as
described in Section 2.6, and cluster the ratios to form four energy
performance categories, similar to the forthcoming law passed by NYC.
The cluster assignment shows a distinct definition of groups with dif-
ferent energy performance levels (Fig. 4). Cluster A consists of buildings
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with energy performance ratios significantly lower than 1. Cluster B
buildings perform close to the model’s prediction, whereas Cluster C
buildings perform 25% worse, on average, than the expected perfor-
mance based on the model output. Cluster D performs on average ap-
proximately 85% worse, and is comprised of the poorest performing
properties with EUI values up to 3.5 times higher than their peers. The
majority of buildings are assigned to Cluster B, followed by buildings in
Cluster C and A. Less than 500 properties obtain the D grade, re-
presenting the worse performing properties in the building stock. Given
such transparent classification, stakeholders are aware of both the
current status of a building’s energy performance and the magnitude of
improvements needed to move from a grade band to another. The
letter-grade classification also provides a clear differentiation between
the median EUI levels of each performance grade, unlike the [0-100]
EnergyStar score scale (Fig. D.9).

Fig. 5 is a Sankey diagram mapping the interaction between the
GREEN grading and the EnergyStar-based scoring for NYC'’s large re-
sidential properties. There are significant differences between the two,
with 42% of the properties receiving different grades between the two
grading schemes, reinforcing the limitations of existing methods. In
particular, buildings with mid-tier performance (i.e. “20-49” and
“50-89”) are split between “A”, “B”, and “C” grades. We also note a few
extreme cases where buildings with low EnergyStar scores receive an
“A” grade, and where high EnergyStar scoring buildings received low
GREEN grades (See Appendix C for a detailed comparison between
individual buildings.)

4. Discussion and policy implications

Although energy disclosure is being widely adopted by cities across
the US and the world, the use of these data for market transformation
and data-driven policy is in its nascent stage. As Allcott and
Mullainathan [53] argue, the behavioral component is as crucial as the
technological in energy efficiency adoption and, ultimately, to
achieving city-wide carbon reduction goals. Research has shown that
peer-pressure [54] and public energy performance information
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Fig. 4. Energy performance ratios, color-coded based on cluster assignment, and cluster centroids (left). Distribution of buildings assigned in each cluster (right).

disclosure [55] can motivate energy efficiency actions and investments.
However, information transparency alone is not sufficient to have large-
scale impacts on energy use behavior, nor on the integration of energy
performance into property valuation and locational decisions [9].

In NYC, performance measurement has extended across several
agencies and industries, and a similar grading concept has been applied
to the sanitary conditions of the City’s restaurants. Recent research
found that the public disclosure of a restaurant’s grade resulted in im-
proved sanitary conditions [56]. In the building sector, the expectation
is that publicly-available building energy grades will have a similar
effect, encouraging competition among building owners and allowing
tenants to factor energy efficiency into their leasing decisions. The
implications of these market shifts would be real estate pricing and
asset valuations that account for energy performance and other energy-
related risks, such as obsolescence or regulatory exposure [57,7]. In
addition to changes in market behavior, building grading provides the
basis for city energy policies that are performance-based and data-
driven, utilizing prescriptive targets for energy performance that allow
the market to find the optimal solutions to achieving required goals.

Our results reinforce the need to reconsider how energy

benchmarking data and information transparency can be used to mo-
tivate city-wide energy and carbon emissions reductions. First, the de-
mand profiles and energy behavior of regional building stocks differ
significantly from national samples. New York City and San Francisco,
for instance, are high-density urban environments characterized by
older buildings with unique architectural, zoning, and structural attri-
butes that make them distinct from small- and medium-sized cities
developed later in the 21st century [20]. Since drivers of energy per-
formance depend on the city’s particular characteristics and environ-
ment, our model factors in a comprehensive, and localized, set of
physical, operational, and qualitative features to explain differences in
EUL In terms of model complexity, we argue that linear techniques are
not suitable for statistical energy benchmarking. We demonstrate that a
non-linear algorithm, such as XGBoost, with the appropriate features, is
able explain more than 30% of the variability in the benchmarking
data, whereas none of the variability can be explained by current state-
of-the-art linear techniques. Since energy benchmarking is based on
deviations between expected energy intensity (predictive model out-
puts) and actual energy intensity (as reported), non-linear methods can
be used to increase the reliability of resultant building energy

Interaction between EnergyStar scores and GREEN grades
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Fig. 5. Sankey diagram with flows from the EnergyStar-based grades (left node) to the proposed NYC-specific GREEN grading (right node).
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performance grades by capturing complex interactions in the in-
dependent variables. Finally, there is a need for easily interpretable
model outputs that can be adopted by non-expert end users. Our energy
performance grade assignment using K-Means clustering yields a 4-
grade energy performance classification. Unlike the (0,100) range that
is the current EnergyStar scoring standard, we propose a binned clas-
sification to highlight the differences between energy performance
grades, account for uncertainties in the underlying model, and inform
behavior change in the marketplace. Such transparency can help
building owners understand their energy performance against their
peers and motivate the adoption of energy conservation measures.
Although we use NYC residential building stock as a case study for
this particular research, the GREEN grading system’s dynamic nature
allows for application to different building typologies (e.g. commercial,
retail, etc.) and any city with enacted energy disclosure laws (e.g.
Austin, Boston, Chicago, San Francisco, and Seattle to name a few).

5. Conclusion

Cities across the US and globally are turning to energy disclosure as
a means to better understand their building stocks’ energy performance,
and use that information to develop more effective, data-driven po-
licies. In this work, we propose a novel methodology to develop a city-
specific energy performance grading system for New York City’s multi-
family residential building stock 7500. Specifically, we use XGBoost, a
variant of gradient tree boosting, to model building EUI using an op-
timally-selected set of physical, operational, and qualitative features.
For each building in the data set, we calculate its energy performance
ratio by comparing actual EUI to model-predicted EUI Using a clus-
tering algorithm, we then partition these ratios into a 4-grade energy
performance classification scheme. We contrast the proposed method

Applied Energy 233-234 (2019) 244-253

with the EnergyStar scoring model, which has gained widespread
market adoption in the building industry. We show that EnergyStar has
limited predictive power when using NYC building energy data, and is
not a suitable methodology for reliably comparing building energy
performance.

Our GREEN building energy grading method is driven by the
identified principles that it be understandable and reproducible, robust
amd reliable, and scalable and generalizable. We accomplish this in
several ways. First, our approach is city-specific, able to identify peer
buildings and establish objective comparisons between them. Second,
we employ a non-linear data modeling algorithm to capture the com-
plex relationships between the variables that influence energy perfor-
mance, and select the features that best explain variations in EUL
Finally, our methodology is dynamic, so that it can be updated with the
most recent data streams or applied to cities with heterogeneous
characteristics. Our methodology provides the foundation for continued
research on contextual city-specific energy performance metrics, and
the appropriate standards for building energy grading. In future work,
we intend to expand our methodology using data from other US cities,
identify the drivers of energy performance, and quantify their re-
lationship with characteristics such as urban morphology, existing
regulations, and demographics, among others.

Acknowledgments

The authors would like to thank the NYC Mayor's Office of
Sustainability for access to relevant datasets, and for comments on early
versions of the methodology. We would also like to thank two anon-
ymous reviewers and the editors of Applied Energy for their con-
structive feedback. This material is based on work supported, in part, by
the National Science Foundation under grant No. 1653772.

Appendix A. The NYC law on disclosure of energy efficiency scores and grades

In late 2017, NYC enacted a law requiring large building owners to post their energy performance grades near building entrances [58]. Building
on the existing Local Law 84, the new legislation aims to further raise the awareness of building energy performance among tenants, investors, and
the public and increase competition among owners to make their buildings more efficient [59]. Under the new law, buildings will be graded based on

their EnergyStar scores as follows:

® A: 90 or above

e B: 50-89

e C: 20-49

e D: 0-19

e F: Buildings that do not submit benchmarking information.
e N: Buildings exempted from benchmarking.

Nevertheless, the new law has already received heavy criticism, mainly due to the exclusion of several important drivers of energy consumption
in the Energy Star scoring calculation, and to significiant financial implications of receiving a low grade based on unreliablem, and potentially

flawed, models [60-62].

Appendix B. EnergyStar grading method

The EnergyStar grading method for multifamily buildings consists of a linear regression model, trained on 322 sample buildings across the U.S.

The model specification is as follows:

EUT = 140.8 + 52.57«cUnitDensity + 24.45xcBedroomPerUnit—18.76:LowRise + 0.009617xcHDD + 0.01616:xcCDD (B.1)

where EUI is the predicted energy use intensity, UnitDensity is the number of units per 1,000 ft?, BedroomPerUnit is the number of bedrooms per unit,
LowRise is a dummy variable being 1 if the building is lower that five floors tall and 0 otherwise, HDD and CDD are the annual heating and cooling
degree days respectively. Prefix c denotes that the values are centered on the sample’s mean value.

actualEUT

Based on the model’s output the energy efficiency ratio redicted U1

is defined and the 0-100 EnergyStar score is calculated based on energy

efficiency ratios’ distribution. For further details on the grading method we refer interested readers in EnergyStar’s Technical Ref. [23].

Appendix C. Examples of individual building comparisons

Here we present two examples of buildings that received widely divergent scores between our proposed grading scheme and those resulting from
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the EnergyStar model. To maintain the anonymity of the individual buildings, we refer to them using their respective index identifier in the dataset.
C.1. High GREEN grade, low EnergyStar score

Building #4826 receives an ‘A’ GREEN grade, but an EnergyStar score of 15. The building’s reported EUI is 152 kBtu/ft%, whereas the median EUI
for the entire dataset is 124.2 kBtu/ft? (Table D.2). Although this may suggest the low EnergyStar score is justified, a more comprehensive analysis of
the building’s characteristics demonstrate that its unit density, assessed value, and height are significantly higher than the sample’s median (i.e. unit
density 1.19, assessed value of $128.60 per square foot, number of floors 32). Sub-setting the sample with buildings higher than 25 floors, with unit
density greater than 1.1, and assessed value above $100 per square foot, we observe a median EUI in this sample of 176.4 kBtu/ft? that reinforces the
assigned ‘A’ grade, while highlighting the inadequacy of EnergyStar score in establishing fair peer-to-peer comparisons based on a the full range of
attributes that impact energy use.

C.2. High EnergyStar score, low GREEN grade

Building #3701 is assigned a ‘D’ GREEN grade and receives an EnergyStar score of 74. The building’s EUI is 126 kBtu/ft?, which is close to the
sample’s median. The property’s unit density, assessed value, and number of floors are close to the sample’s median values as well, however in this
particular case electricity is the building’s primary fuel source. Similar properties report a median EUI of 62.2 kBtu/ft?, hence the building’s grade of
‘D’. The example highlights our framework’s ability to factor in features beyond physical and occupancy characteristics to establish more con-
textualized benchmarks.

Appendix D. Supplementary material
Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.apenergy.2018.10.053.
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