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Abstract

Manufacturers conduct frequent product innovations to maintain their competence in the market. Accordingly, their
workers need to upgrade skills and regain work efficiency in ever-changing manufacturing systems. Training and
assisting workers on their job serve this purpose. Yet, their effectiveness relies on an understanding of workers’
needs, their operational behavior, performance, and sometimes the prediction of these. This paper aims to discover the
unique capability of workforce management in smart manufacturing (SM) where advanced sensor technologies and
machine learning techniques are commonly implemented. The paper summarizes technologies for sensing workers
in their workplace. Then, it shows that the sensed temporal-spatial data of workforce, after being processed, can be
used to infer and model substantial worker information such as location, configuration, motion, and action. Provided
these models, SM is able to assist and train manufacturing workforce in a precise and proactive manner. The paper
demonstrates the implementation of the proposed models with a practical manufacturing operation. It also summarizes
management implications of the models.
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1. Introduction
The modern human society is undergoing a fast changing life. They are passionate about cutting-edge technologies
and neoteric products. Consequently, traditional manufacturing systems need to harmonize with the changing pattern
of consumer affinities [1]. To address the issue, smart manufacturing (SM) is emerging as integrated and collaborative
manufacturing systems, to deliver competitive products in response to ever-changing customer needs.

Apart from incorporating state of the art technologies like cyber-physical production systems, internet of things, au-
tomation, big data analytics, and cloud computing into manufacturing systems, SM also emphasizes on agile and
skilled workforce [2]. Moreover, assembly systems are transforming from a mass production scheme to mass cus-
tomization scheme in the modern realm of market fluctuations. Therefore, for effective implementation of advanced
manufacturing techniques, resourceful workforce is indispensable [3]. Undeniably, in the process of making the work-
force resourceful, it’s imperative to capture sufficient data pertaining to worker activities from the workplace to derive
an optimal solution of training and assistance in a near real-time manner. Embedded with multitude sensors and
actuators, SM provides the opportunity to make that happen. Different types of sensors can be utilized based on the
requirement of data. Processed sensor data can be used to develop quantitative models to comprehend workforce infor-
mation like location, configuration, motion, action, and so on. This paper is motivated to explore this new opportunity
of workforce management.

The remainder of the paper is organized in the following. Section 2 summarizes sensing technologies that can be used
in SM to obtain workforce data. Temporal-spatial models of worker activities are proposed in Section 3, which can be
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parameterized using the sensed data. To demonstrate the implementation of the models, Section 4 presents an example
pertaining to real life manufacturing operations. The paper concludes in Section 5 with a discussion of engineering
management implications of the proposed models.

2. Sensor Technologies for Monitoring Workers
Being equipped with various sensors, SM provides the opportunity to collect diverse data of worker activities in the
workplace. These sensors could be roughly organized in three categories, as following.

2.1 Radio-Frequency Identification (RFID) Sensors
The Radio-Frequency Identification (RFID) is a wireless communication technology that can be used for identifying,
locating, and tracking entities including workers in their working environments. An RFID system consists of three
devices: a tag attached to the entity to be tracked, a reader, and a middleware software. The tag stores encoded
data and responds to queries from a reader. The reader reads the data and sends to the software. The software
deciphers information pertaining to the entity in an explicit form and passes it to an information system for further use.
Wireless, contactless, economical, non line-of-sight readability, and unobtrusiveness have expedited its wide range of
applications including recognition of human motion, posture, gesture, and action [4]. Yet RFID usually requires a
large number of space and infrastructures for installing more readers for higher precision and accuracy.

2.2 Vision Based Sensors
Vision based sensors include various types of cameras (depth, color, and infrared) that can capture videos of worker
activities in the working environment. The recognition of such activities from the captured videos has been a focus of
extensive research in the computer vision [5]. By processing the videos, relevant features are extracted. A model is then
trained using extracted features and known corresponding activities to develop an algorithm of activity recognition.
Given a sequence of images or a video, the algorithm can estimate the activity performed by the worker. Vision based
sensors are capable of collecting huge data with less set up. Nevertheless, occlusion and proper positioning of cameras
are among the challenges in implementing these sensors.

2.3 Wearable Sensors
Wearable sensors are attached with the worker to be sensed and monitored. Commonly used wearable sensors include
accelerometer (measuring acceleration and directions), gyroscope (measuring angular velocities), and electromyog-
raphy (measuring muscle tension changes) sensors. The accelerations, angular velocities, and muscle tension get
changed as workers perform assorted activities, which are captured by these sensors. The sensor data are processed
and analyzed for recognizing worker activities [6]. Wearable sensing can address the occlusion, positioning, and view-
point limitation challenges of other sensor types. However, wearing sensors during operation could be inconvenient
and troublesome.

Each type of sensors has a unique capability in collecting certain data about workers. Sensor fusion that involves using
multiple types of sensors will enhance the ability to collect comprehensive, multi-scale data of manufacturing workers.

3. Temporal-Spatial Models of Workers
Processed and analyzed sensor data of workers in the workplace provide the following four categories of temporal-
spatial information about them.

3.1 Location
The location of a point on a worker (such as a body joint) at a time is captured by its position in a location measurement
space at that time. Sensors identify the point and provide its coordinates in the measurement space. Let t be a sampling
time of sensors, the location of the body point in the three-dimensional measurement space at time t is

lt = [ xt yt zt ]. (1)

3.2 Configuration
The human body or a body part (such as the limb, hands, head, face, and so on) can make multiple (static) configura-
tions. Body postures, hand gestures, and face expressions are representative examples of configurations. We can infer
worker activities and emotions from their configurations.
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Recognition of a configuration requires multiple body points on the worker, such as body joints [7, 8] . Let NC denote
the total number of points of a configuration, indexed by j. J = {1,2, . . . ,NC} is the index set of these points. Then,
the spatial model of the configuration at time t is the sensed location data of these points:

Lt = {l j,t : j ∈ J}. (2)
The data in (2) can be used for training configuration recognition algorithms. Given a trained algorithm, the data
can also be input into the algorithm to identify the corresponding configuration. The spatial model in (2) builds a
foundation for studying motion and action to be discussed.

If workers commonly use some typical configurations in performing a task, these configurations can be defined for
various uses. Let NK be the total number of these configurations, indexed by k. K = {1,2, . . . ,NK} is the index set of
the configurations. Then, Ω = {Ck : k ∈ K} is the (finite) set of configurations. Given the sensed data of a worker as
(2), a trained algorithm recognizes the configuration at time t with a probabilistic description (e.g.,[9]). Therefore, the
recognized configuration at time t is a random variable, denoted by ct and described by its probability distribution on
Ω.

f (Ck) := Pr{ct =Ck} ∀k ∈ K, and ∑
k∈K

f (Ck) = 1. (3)

3.3 Motion
A motion of a worker is defined as a location change of the worker, a displacement or rotation of a configuration, or a
change of configuration, over time. Therefore, sensed temporal-spatial data of a worker are used to analyze motions
of the worker. Let {ti : i = 1,2, . . .} be the series of sensor sampling times, indexed by i. li represents the location of a
body point at time ti. Then, the time series of the location is

l = {li : i = 0,1, . . .}, (4)
which traces a trajectory in the location measurement space. The time series of configurations can be represented by
the time series of the spatial data in (2):

L = {Li : i = 0,1, . . .}, (5)

and by the time series of the probabilistic recognition defined in (3) if applicable:
Pr(c) = {Pr(ci) : i = 0,1, . . .}. (6)

Pr(c) traces a trajectory in the probability measurement space for the configurations, which is in NK dimensions.
Specifically, the trajectory is on the space defined by ∑k∈K f (Ck) = 1.

A motion, mi, is detected at time ti if the prior state (either a location or a configuration), ui′ , is switched to the current
state, ui, at ti:

mi := w(ui′ → ui); (7)

wherein ui 6= ui′ ≈ ui′′ , for any sampling time ti′′ between ti′ and ti (i.e., i′ < i′′ < i). The switch function in (7) can be
defined using a metric for measuring configuration changes.

3.4 Action
An action is one or a sequence of meaningful configurations (or motions) that are driven by a goal (e.g., to complete a
step of an assembly task) and produces an outcome (measured by some performance metrics). Consider an assembly
task that involves NS steps, indexed by s. The index set of steps is S = {1,2, . . . ,NS}. An action driven by the goal
of completing any step s of the task can be captured by the spatial-temporal data of the worker configurations in
performing step s,

as = {Li : i ∈ Is,s ∈ S}, (8)

where Is is the time period for performing step s. The action can also be captured by the sequential motions involved:
as = {mi : i ∈ Is,s ∈ S}. (9)

4. An Illustrative Example
4.1 The Experiment Setup
To implement our proposed models, a practical working scenario is simulated, as Figure 1 illustrates. A simplified
operation i.e., inserting a nail into a workpiece using a hammer is chosen for the demonstration. The operation consists
of a sequence of steps listed in Table 1. A Microsoft Kinect is used to capture the worker’s actions in the operation.
Figure 1(a) shows that the worker is in a sitting posture when performing the task and his legs are occluded by the
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workbench in front of him. Therefore, only the upper part of his body is considered in this study. Figure 1(b) shows
the 17 joints for specifying configurations of the upper part of worker’s body. The temporal-spatial data of these joints
and the RGB images are recorded simultaneously for monitoring the worker’s actions.

(a) (b)

Figure 1: An illustrative example: (a) experiment setup; (b) the skeleton joints tracked

Table 1: Instructions of the task

Step Instruction
1 Take the workpiece from the raw material area with the left hand
2 Put the workpiece on the workbench
3 Grab a nail from toolbox 1 using the left hand
4 Grab the hammer from toolbox 2 using the right hand
5(a&b) Continue back and forth motion of the hammer
6 Return the hammer to toolbox 2 with the right hand
7 Take the part and put it on the finished product area using the right hand

4.2 An Experiment
Figure 2 illustrates the worker’s typical configurations in the seven steps of the hammering operation, the correspond-
ing RGB images, and the timestamps taken from a practical experiment. For example, the worker’s action of reaching
and grabbing the workpiece (i.e., step 1) took 0.300 seconds in this experiment. The action of performing this step,
a1, is a sequence of left hand motions, identified from a sequence of configurations of the left arm. Configurations of
the arm are identified with five joints (6, 7, 8, 9, and 10). For instance, if we consider the 5th joint as the origin of
the location measurement space, the spatial data (in meter) of the left arm configuration at t = 0.300 seconds are the
following:

L0.300 =


l6,0.300
l7,0.300
l8,0.300
l9,0.300
l10,0.300

=


−0.53786, 2.94239, 0.10453
−0.68080, 2.97789, 0.04105
−0.81667, 2.97218, −0.00607
−0.86657, 2.98566, 0.00015
−0.94280, 2.99148, −0.01636

 . (10)

The analysis of the time series of the left arm configurations reveals that the worker took the workpiece at t = 0.300
seconds, positioned the workpiece on the workbench at t = 1.315 seconds, and grabbed the nail from the toolbox 1 at
t = 2.808 seconds. Steps four to seven involve motions of the right arm. The right arm configurations are identified
with another five joints (11, 12, 13, 14, and 15). The analysis of the time series of the right arm configurations describes
that the worker grabbed the hammer from the toolbox 2 at t = 4.463 seconds, moved the hammer back and forth to
punch the nail down until t = 11.096 seconds, returned the hammer back to the toolbox at t = 12.369 seconds, and
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Figure 2: Steps of hammering operation performed by a worker

sent the finished part to the goods shelf on the right hand side at t = 15.489 seconds. Table 2 further summarizes the
time that the worker spent for each of the seven steps of the operation in this experiment.

Table 2: Times of actions
Step 1 2 3 4 5 6 7

Time Spent[second] 0.300 1.015 1.493 1.655 6.633 1.273 3.120

4.3 Repeated Experiments
We can let the worker repeat the experiment in Section 4.2 for multiple times. We can also let a group of workers
perform this operation. The obtained temporal-spatial data of workers allow for studying the learning behavior and
operational performance of workers.

• Learning curves of a single worker’s actions: We let an unskilled worker to repeat the experiment so that we
can study the learning curve of the worker’s each action. For example, we statistically test if a decreasing trend
of action time is observed on each of the seven actions over the repeated experiments.

• Learning curves of a group workers’ actions: We let multiple unskilled workers to perform the experiment so
that we can study the heterogeneity in workers’ learning capability.

• Statistical performance of a group: Performance variation is anticipated even among skilled workers. We let a
group skilled workers to perform the experiment to study the variation of their performances on each indivdiual
step of the hammering operation, as well as the correlation among different steps.

5. Conclusions
The paper summarized the sensing technologies that are being used extensively in the smart manufacturing envi-
ronment for collecting data on worker activities and worker-machine interaction. Mathematical models have been
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formulated with the capability of describing characteristics of worker activities like location, configuration, motion,
and action. A case study pertaining to real life manufacturing operations has been delineated. The case demonstrated
the use of processed sensor data and the developed math models for measuring worker performance at detailed lev-
els (e.g., action). The paper also showed how accumulated performance data obtained from repeated experiments
performed by either a single or multiple workers can be exerted to study various aspects of manufacturing workers.
These include the learning behavior, within-group performance variation, and performance correlation between dif-
ferent steps of operations, all at the level of worker actions. The study of this paper demonstrates an opportunity for
smart precise training and assistance of manufacturing workers. That is, we are able to identify any unskilled worker
and the specific portion of each operation that the worker needs training or assistance. This allows us to train or assit
workers only when needed.

Following the study of this paper, we will build decision models and solution algorithms to provide recommendations
on optimal training and assistance of manufacturing workers. Then, we will integrate the training and assistance sub-
system with the data analytics and modeling subsystem presented in this paper. We also have planned on implementing
the proposed approach and models in a wide range of representative, complex manufacturing operations. These will
allow us to assess the data analytics and modeling capabilities of the cyber-physical system we are developing for
workforce management.
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