
Nonlinear Impedance Spectroscopy of Organic MIS Capacitors and Planar Heterojunction

Diodes

Andrew Larsena, Ekraj Dahalb, Justin Palubab, Karen Cianciullic, Benjamin Isenharta, Michael Arnolda, Bin Dua, Yu Jianga,

Matthew S. Whitea,b,∗

aDepartment of Physics, University of Vermont, 82 University Pl., Burlington, VT 05405
bMaterials Science Program, University of Vermont, 82 University Pl., Burlington, VT 05405

cAsheville School, 360 Asheville School Rd., Asheville, NC 28806

Abstract

We present a nonlinear impedance spectroscopy technique and demonstrate its ability to directly measure nonlinear processes

including electron-hole recombination and space charge effects in organic-semiconductor-based diodes and MIS capacitors. The

method is based on Fourier analysis of the measured higher harmonic current response to an AC voltage signal. Characterization

of the higher harmonic response allows nonlinear impedance spectroscopy to measure material and device properties over a wide

range of frequencies, which would otherwise be impossible using conventional impedance spectroscopy. As the higher harmonic

signals are purely a product of nonlinear processes, they are independent of the linear device capacitance and resistance. This

allows space charge and recombination effects to be investigated at several orders of magnitude higher frequency without fitting to

an equivalent circuit model.

1. Introduction

Impedance spectroscopy is a widely used characterization

technique for electrochemical and solid-state devices including

batteries, fuel-cells, LEDs, and solar cells.[1, 2, 3, 4, 5] The

method sources a harmonic wave AC voltage and measures the

amplitude and phase of the resulting harmonic current wave.

Using Euler’s formula to define the voltage and current waves

in complex exponential form, the impedance (Z) is defined as

the ratio of the voltage to the current.

V(ω, t) = V0 cos(ωt) + VDC (1)

I(ω, t) = I0 cos(ωt − φ) + IDC (2)

Z =
V(ω, t)

I(ω, t)
=

V0

I0

(

cos(φ) + i sin(φ)
)

(3)

Where V0 and I0 are the respective amplitudes, ω is the fre-

quency, φ is the relative phase difference, and VDC and IDC are

the DC offset voltage and current.

Measuring the impedance spectrum by varying the frequency

(ω) of the sourced voltage wave over several orders of magni-

tude allows the behavior of an unknown device to be compared

to an equivalent circuit model.[4] Typically, these equivalent

circuit models will consist of common circuit elements includ-

ing resistors, capacitors, and inductors. Models may also in-

clude more exotic circuit elements such as constant phase el-

ements and Warburg impedances, which are often associated

with diffusion limited, double-layer, or corrosion processes.[6]
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Some circuit elements may change as a function of VDC. For

example, the low frequency resistance of a diode is expected to

be proportional to the negative exponential of VDC, according to

the Shockley diode equation. This creates an inherent problem

for impedance spectroscopy of devices: a sourced harmonic

voltage wave V(ω, t) will not result in a pure harmonic cur-

rent wave I(ω, t), and the definition of impedance becomes only

a first-order approximation in nonlinear systems. The com-

mon method to solve this problem is to use a small-signal V0,

which minimizes the impact of the higher-order signal result-

ing from the nonlinearities. However, many of the interest-

ing processes in semiconductor devices are nonlinear in nature,

including trapping, space-charge-limited current (SCLC), and

recombination.[7, 8, 9] Therefore, a direct measurement of the

nonlinear processes may be preferable for such devices.

Such analysis will require measurement and characteriza-

tion of the full Fourier spectrum of the resulting current wave-

form. We refer the reader to a thorough introduction to the topic

by W. Lai[10], but will present a summary of the important

points here. A nonlinear response to an applied pure harmonic

voltage wave will produce a periodic current signal of the form:

I(ω, t) =
a0

2
+

∞
∑

n=1

an cos(nωt) + bn sin(nωt)

an =
ω

π

2π/ω
∫

0

I(ω, t) cos(nωt) dt

bn =
ω

π

2π/ω
∫

0

I(ω, t) sin(nωt) dt

(4)
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A. Montaigne Ramil, A. Andreev, H. Sitter, R. Schwodiauer, and

S. Bauer. High-mobility n-channel organic field-effect transistors based

on epitaxially grown C60 films. Organic Electronics, 6(3):105–110, June

2005.

[34] R. F. Salzman, J. Xue, B. P. Rand, A. Alexander, M. E. Thompson, and

S. R. Forrest. The Effects of Copper Phthalocyanine Purity on Organic

Solar Cell Performance. Organic Electronics, 6(5-6):242–246, December

2005.

[35] C.-H. Kim, Y. Bonnassieux, and G. Horowitz. Compact DC Modeling

of Organic Field-Effect Transistors: Review and Perspectives. Electron

Devices, IEEE Transactions on, 61(2):278–287, January 2014.

[36] N. Shi and R. Ramprasad. Intrinsic dielectric properties of phthalocyanine

crystals: An ab initio investigation. Physical Review B, 75(15):2488–7,

April 2007.

8


