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Abstract
Marine bivalves are well known for their impressive lifespans. Like trees, bivalves grow by accretion and record age and 
size throughout ontogeny in their shell. Bivalves, however, can form growth increments at several different periodicities 
depending on their local environment. Thus, establishing lifespans and growth rates of marine bivalves requires a proper 
identification of annual growth increments. Here, we use isotope sclerochronology to decipher the accretionary growth 
record of modern Astarte borealis from the White Sea, Russia (N 67°05.70′; E 32°40.85′). Unlike winter growth increments 
observed in many other cold-temperate and boreal bivalve and limpet species, prominent growth increments in A. borealis 
corresponded to the most negative values in the oxygen isotope (δ18O) time series indicating that they formed during summer. 
Furthermore, summer growth increments do not coincide with the external concentric ridges on the shell making the latter 
feature an unreliable indicator of age. Similar to many other polar bivalves, A. borealis shows slow growth and long life. 
The von Bertalanffy growth equation for our sample is Ht = 29.39*(1 − e(− 0.11(t−(− 1.86))). Lifespans of individuals examined 
here (n = 18) range from 16 to 48 years. Given its impressive longevity and widespread polar distribution, A. borealis may 
be a potentially valuable skeletal archive for monitoring environmental conditions in the Arctic Ocean and boreal seas in 
the face of changing climate.

Keywords  Astarte borealis · Growth · Lifespan · Longevity · White Sea · von Bertalanffy

Introduction

Marine bivalves are some of the longest-lived non-colonial 
animals on the planet today. Several species attain lifespans in 
excess of a century (e.g., Turekian et al. 1975; Zolotarev 1980; 
Shaul and Goodwin 1982; Bureau et al. 2002; Sejr et al. 2002; 
Kilada et al. 2009; Ridgway et al. 2011a; Reynolds et al. 2013) 
and two, Arctica islandica and Neopygcnodonte zibrowii, over 
five centuries (Thompson et al. 1980; Marchitto et al. 2000; 
Schöne et al. 2005; Wanamaker et al. 2008; Wisshak et al. 

2009; Butler et al. 2013). Given their impressive longevities, 
bivalves have become targets of paleoclimate (e.g., Scourse 
et al. 2006; Butler et al. 2010; Winkelstern et al. 2013), water 
quality (e.g., Dunca et al. 2005; Gillikin et al. 2005; Black 
et al. 2017), macroevolutionary (Moss et al. 2016), and age-
ing studies (e.g., Abele et al. 2009; Philipp and Abele 2009; 
Buttemer et al. 2010). Akin to growth rings in trees, bivalves 
form growth increments in their shells throughout ontogeny. In 
bivalves, growth increments can form in response to changes 
in local environmental conditions. Thus, they can form at sev-
eral periodicities: tidal, lunar, fortnightly, monthly, and annual 
(Weymouth 1923; Barker 1964; House and Farrow 1968; Pan-
nella and MacClintock 1968; Evans 1972; Clark 1974; Pan-
nella 1976; Goodwin et al. 2001). In addition, bivalves may 
form growth increments in response to biologic events like 
spawning (e.g., Jones et al. 1983). A single individual may 
form increments at all of these periodicities, so determining 
the lifespan and growth rate requires proper identification 
of annual increments. Fortunately, the techniques of isotope 
sclerochronology (the application of variations in stable iso-
tope ratios corresponding to shell growth patterns) can help to 
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identify annual growth lines. Oxygen isotope ratios (18O/16O; 
δ18O values) are the most commonly employed geochemical 
proxy in carbonate hard parts, and because their values are in 
part a function of temperature, they show a sinusoidal pattern 
reflecting seasonal variation (Jones and Quitmyer 1996; Ivany 
2012; Schöne and Surge 2012). This technique was applied in 
the early 1980s to the Atlantic surf clam, Spisula solidissima 
(Williams et al. 1982; Jones et al. 1983), and confirmed the 
presence of annual growth lines in the ventral shell margin. 
During the spring and summer, wide growth increments form 
reflecting fast growth in shells, and in the late summer narrow, 
dark lines form when growth slows or stops. Since then, iso-
tope sclerochronology has been applied to many species from 
a range of habitats to document annual growth increments in 
both modern (e.g., Witbaard et al. 1994; Hallmann et al. 2008; 
Kubota et al. 2017) and pre-Holocene bivalves (e.g., Jones 
and Gould 1999; Buick and Ivany 2004; Mettam et al. 2014; 
Walliser et al. 2015).

Here, we use isotope sclerochronology to identify annual 
growth lines and document the season of their formation in a 
ubiquitous cold-temperate to polar bivalve, Astarte borealis, 
from a small population in the White Sea, Russia. Mueller-
Lupp et al. (2003) sampled the external surface of A. borea-
lis for oxygen isotope ratios to infer seasonal and interannual 
river discharge into the Laptev Sea, Russia. Their sampling 
was not guided by internal shell structure and thus provides 
no information on timing of growth line formation. Else-
where, studies have reported lifespans from 8 to 10 years 
for A. borealis from the Baltic Sea (Gusev and Rudinskaya 
2014), Sea of Okhotsk (Selin 2007, 2010), and the East-
ern Siberian Sea (Gagayev 1989), but they primarily relied 
upon ridges on the external surface of shells to determine 
age, which are often unreliable (Krantz et al. 1984). Torres 
et al. (2011) used isotope sclerochronology on A. borealis 
from extreme northern Greenland and found individuals up 
to 150 years. In the White Sea, Skazina et al. 2013 tracked 
size cohorts through time and estimated A. borealis lifespans 
to be upwards of 20 years. In their study, length (anterior 
to posterior distance) was unimodal and ranged from 21.1 
to 42.2 mm (n = 676). However, in high-latitude bivalves, 
growth tends to be slow (e.g., Sejr et al. 2009; Ambrose 
et al. 2012), and in particularly long-lived species, a few 
millimeters growth could potentially represent decades. Our 
results suggest that this may be the case for A. borealis as we 
document slow growing individuals with lifespans approach-
ing 50 years.

Ecology

Astarte borealis is a major component of many Arctic and 
Boreal seas of the northern oceans (Zettler 2002), repre-
senting 15% or more of the total benthic biomass in some 

regions (Schaefer et al. 1985). Populations are widespread 
and found in the Pacific Ocean from the Sea of Okhotsk to 
the Aleutian Islands, in the Arctic waters of Russia from 
the Barents Sea to the Chukchi Sea, and in the Atlantic 
Ocean from New Foundland to Greenland and Iceland, and 
in Europe in both the North and Baltic Seas (Zettler 2001). 
Astarte borealis is an infaunal suspension feeder found 
buried up to 2 mm below the sediment surface preferring 
muddy-sand containing gravel (Saleuddin 1965). In the 
White Sea, their main food source, phytoplankton, begin to 
bloom during the spring melt in April, but remain relatively 
low in abundance until the peak bloom in July and August 
(Vershinin et al. 2006). After ice formation in November, 
food is in low abundance until spring. Like other Astartids, 
A. borealis has large (150–200 μm) yolk-rich eggs with a 
sticky outer envelope causing populations to settle in clus-
ters (Kauffman and Buddenhangen 1969; Von Oertzen 1972; 
Matveeva 1977). The timing of spawning varies by region. 
In Greenland and the North Atlantic Ocean, spawning occurs 
from October to December (Thorson 1936). In the Baltic 
Sea, individuals possess ripe eggs and sperm for almost the 
entire year and may portion spawn (takes place during sev-
eral intervals) rather than at a certain period (von Oertzen 
1972). Most populations of A. borealis are restricted to cold, 
marine/brackish waters, tolerating a salinity range of 8–35 
psu (practical salinity units; Zettler 2002). In the White Sea, 
A. borealis is more or less evenly distributed throughout the 
depth range (2–100+ m; Naumov 2006). Astarte borealis 
have been the subject of several studies on anoxia within 
the Baltic Sea and has been found to be anoxia tolerant, 
although repeated extended exposures to anoxic conditions 
will eventually cause mortality (Theede et al. 1969; von 
Oertzen 1973; Oeschger 1990).

Materials and methods

Study area

The White Sea is a restricted body of water connected to the 
Arctic Ocean via the Barents Sea along the northwestern 
coast of Russia. It is comprised of four gulfs: Kandalak-
sha, Onega, Dvina, and Mezen. Kandalaksha Bay, located 
in the northwestern corner, is the deepest part of the White 
Sea reaching depths up to 343 m (Berger et al. 2001; Suk-
hotin and Berger 2013). Kandalaksha Bay is dominated 
by fjords and inlets along its coast and is ice covered for 
5–7 months out of the year. The samples used here were 
collected from Illistaya Inlet, Gorey Island in the Kandalak-
sha State Nature Reserve Area (67°05.70′; E 32°40.85′N) 
(Fig. 1). Bottom water temperature at the collection site is 
stable at approximately − 1 °C during the winter months 
and averages 12.1 °C during the summer months. Salinity 

Author's personal copy



Polar Biology	

1 3

at the collection site varies with the seasons, ranging from 
18.1 to 27.9 psu, with the lowest salinity occurring in April 
and May during the spring melt and the highest salinity from 
October to December (Skazina et al. 2013). Freshwater from 
river discharge accounts for 95% of the water budget in the 
White Sea (Berger et al. 2001) with most of this discharge 
due to late spring meltwater pulses. The Luvenga and Niva 
rivers (approximately 1 and 18 km away) provide most of the 
freshwater input for our sampling area. Most of this fresh-
water comes from major rivers in the southern region of 
the White Sea in Onega and Dvina Bays. Because of the 
significant seasonal freshwater input, δ18Owater values in 
the White Sea are not constant temporally or spatially. Dur-
ing the summer, values are on average − 3.0‰ VSMOW 
(Vienna-Standard Mean Ocean Water) near the mouth of the 
White Sea, but farther back into its bays values can drop to 
− 10‰ (Nikolayev and Nikolayev 1988).

Shell collection and preparation

We used 18 shells collected during a previous study (Skazina 
et al. 2013) and now housed in collections at the University 
of North Carolina, Chapel Hill (UNC) to examine lifespan 
and growth rate. From this sample, three shells with a well-
preserved ventral margin were selected for isotopic analysis 

(UNC 16030, 16031, and 16032). Live specimens were har-
vested from late December 1999 to early January 2000 by 
taking four samples using a Petersen grab through a hole in 
the sea ice. Soft tissue was removed from the shells and not 
preserved. Water depth for the samples ranged from 3 to 
7 m. Before processing, shell length (anterior to posterior) 
and maximum height (umbo to ventral margin) were meas-
ured using digital calipers to the nearest 0.01 mm to put our 
sample in context of the population.

To view internal growth increments, we first applied a 
layer of quick-dry metal epoxy resin (J-B KWIK WELD) 
along the axis of maximum growth from the umbo to ventral 
margin to prevent loss of shell material during cutting. Shells 
were then cut along this axis using a Gryphon diamond band 
saw. Thick sections were made of each shell using a Bue-
hler Isomet low-speed saw (Fig. 2). Two thick sections were 
made of the shells selected for isotopic analysis. To remove 
saw marks and create a smooth surface for imaging, shell 
thick sections were polished on a Buehler MetaServ 2000 
variable speed grinder polisher using silicon-carbide discs 
and finished with diamond suspension solutions with grit 
sizes of 6 and 1 μm. Polished thick sections were imaged 
using an Olympus SZX7 stereomicroscope system coupled 
with an Olympus DP71 12.5 megapixel digital camera and 
stitched together using Olympus Stream Essentials version 

Fig. 1   Location of the study 
area in Kandalaksha Bay, White 
Sea, Russia, near the Luvenga 
archipelago (N 67°05.41′, E 
32°40.44′). Star indicates loca-
tion of the shell collection site. 
Shells were collected at this 
location for a previous study 
(Skazina et al. 2013)
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2.2 to create a composite image of the entire shell from 
umbo to ventral margin.

The three shells selected to document periodicity of 
growth line formation were microsampled along the middle 
and outer crossed-lamellar microstructural layers for stable 
carbon and oxygen isotope analysis. Microsampling was 
performed using a Merchantek micromilling system fitted 
with a Brasseler tungsten carbide dental scriber point (part 
number H1621.11.008). Spacing between major growth 
lines is widest early in ontogeny, so we microsampled 
specimens UNC 16030 and UNC 16032 between sections 
of prominent lines in the first third of the shell to determine 
the season of annual growth line formation. Specimen UNC 
16031 was sampled at a much higher resolution to distin-
guish between true annual growth checks and non-periodic 
disturbance lines. Aragonite microsamples were analyzed 

at the Environmental Isotope Laboratory, University of Ari-
zona. The samples were reacted with dehydrated phosphoric 
acid under vacuum at 70 °C for 1 h and liberated CO2 gas 
was analyzed on a Finnigan MAT 252 mass spectrometer 
with an auto-carbonate reaction system (Kiel-III Device). 
Isotope ratios were calibrated based on repeated measure-
ments of NBS-18 (National Bureau of Standard) and NBS-
19. The precision is ± 0.1‰ for δ18O and ± 0.08‰ for 
δ13C (1σ) based on repeated measurement of internal car-
bonate standards. Unknown samples were corrected with 
measured NBS-19 values, and no correction was applied 
based on mineralogy. Oxygen and carbon isotope ratios are 
reported relative to the VPDB (Vienna Pee Dee Belemnite) 
carbonate standard.

Once annual growth lines were identified in the ventral 
margin, we used the freeware ImageJ to count and measure 

Fig. 2   Shell images of A. 
borealis illustrating sample 
preparation and measurements. 
Top panel: left valve with 
periostracum intact except near 
umbo. Dashed line indicates 
direction of sectioning along 
axis of maximum growth. Mid-
dle panel: thick section under 
reflected light with umbo on 
the right and ventral growth 
margin on the left. Bottom 
panel: enlarged reflected light 
image of polished shell cross 
section showing inner, middle, 
and outer microstructural layers; 
growth direction (black arrow); 
and prominent growth checks
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the cumulative distance between growth lines in all 18 speci-
mens. We then fit the von Bertalanffy growth equation (von 
Bertalanffy 1938) (VBG) to the combined size-at-age data 
using the non-linear least squares (nls) procedure in the open 
source R language (cran.r-project.org). VBG has been used 
in many other bivalve studies (e.g., Brousseau 1979; Haag 
and Rypel 2011; Ridgway et al. 2012; Puljas et al. 2015) 
and describes the size of an individual at a given time (Ht):

 where H∞ = asymptotic size, t0 = the time at which Ht = 0, 
and k = rate at which H∞ is attained.

Results

Oxygen and carbon isotope ratios

The δ18O records of specimens UNC 16030, UNC 16031, 
and UNC 16032 (Figs. 3, 4) all form quasi-sinusoidal pat-
terns. The most negative values correspond to prominent, 
dark growth lines originating from the middle shell layer and 
terminating in the outer shell layer, while the most positive 
values occur approximately half-way between two dark lines. 
We used these features to define the annual growth incre-
ments (couplets of dark lines and light increments) to age 
specimens. Not all dark growth lines correspond to valleys 
(i.e., most negative values) in the δ18O time series, however 

H
t
= H∞(1 − e

−k(t−t
0
))

(Fig. 4). Such lines occur only in the outer shell layer and do 
not extend into the middle shell layer. External concentric 
ridges on the surface of the White Sea shells do not corre-
late with dark lines or light increments, nor do they occur at 
regular intervals along the δ18O time series. They are, there-
fore, not reliable indicators of annual growth or lifespan. 

Carbon isotope ratios do not covary with the oxygen iso-
tope time series (Figs. 3, 4). Unlike the δ18O time series, 
there is no consistent relationship between the δ13C time 
series and growth features in the shell.

Size, lifespan, and growth

Lengths (anterior–posterior distance) of our specimens 
ranged from 28.2 to 35.5 mm, which covers a wide range of 
that observed by Skazina et al. (2013) over several decades 
of sampling on Gorely Island. Annual growth increments 
as documented by oxygen isotope ratios in the ventral shell 
margin allowed for determination of lifespan and characteri-
zation of growth using the VBG equation. Despite having a 
relatively small number of samples, we have captured a sig-
nificant range of lifespans for this species with the shortest 
living individual reaching 16 years and the longest 48 years. 
Growth in our sample was well approximated by the VBG 
equation as all individuals showed an initial rapid increase 
in size to approximately 15 years followed by several years 
of slow growth (Fig. 5). The VBG for the pooled age-at-size 
data was Ht = 29.39*(1 − e(− 0.11(t−(− 1.86))).

Fig. 3   Values of shell δ18O and 
δ13C. Top panel: UNC 16032. 
Bottom panel: UNC 16030. 
Filled circles = δ18O values. 
Open circles = δ13C values. 
Vertical grey lines identify 
annual growth lines

Author's personal copy



	 Polar Biology

1 3

Discussion

Timing of annual growth line formation

Before the use of isotope sclerochronology, conventional 
wisdom was that bivalves would experience growth cessa-
tions in winter in response to cold temperature stress and 
lowered metabolic rates (Jones and Quitmyer 1996). How-
ever, a much more complicated picture involving not only 
environmental conditions, but also physiological condi-
tions has emerged. Seasonal timing of growth increments 
in the hard clam, Mercenaria mercenaria, shows a latitu-
dinal variation, where individuals from the United States 
Atlantic Coast from Florida to New York form dark annual 
increments in the summer and those in Rhode Island form 
dark increments in the winter (Jones et al. 1989; Quitmyer 
et al. 1997; Elliot et al. 2003). However, Henry and Cer-
rato (Henry and Cerrato 2007) studied more recent samples 
from Narragansett Bay, Rhode Island and showed that over 
more than two decades, M. mercenaria has switched from 

a single dark increment in the winter to a more complicated 
pattern, where multiple dark increments can form in a single 
year, possibly in response to changing environmental condi-
tions. The latitudinal differences in timing of annual growth 
line formation may be related to maximum and minimum 
temperature tolerances for growth of M. mercenaria. Simi-
lar to M. mercenaria, the extremely long-lived A. islandica 
forms an annual increment approximately 1 month after the 
maximum temperature, but the timing of this event depends 
on whether or not the individual in question lives above or 
below the thermocline: between September and November 
or December and February, respectively (Schöne 2013). 
More recently, though, growth in A. islandica has been 
shown to be controlled by the availability of food which is 
limited between the fall and spring (Ballesta-Artero et al. 
2017). In addition to temperature, growth shutdowns for 
reproduction may also result in growth line formation. In S. 
solidissima from New Jersey, USA, dark increments form in 
late summer just before the annual spawning period (Jones 
et al. 1983). This is presumably a strategy for devoting 

Fig. 4   Values of shell δ18O 
and δ13C and companion 
images illustrating locations 
of growth features in speci-
men UNC 16031. Top panel: 
shell cross section cut along 
maximum axis of growth with 
umbo on the left and ventral 
growth margin on the right. 
Middle panel: magnified area 
where high-resolution isotope 
sampling was completed. Black 
arrow points to “non-periodic” 
disturbance line. Grey arrow 
points to annual growth line. 
Note that the annual growth line 
continues through the middle 
and outer shell layers, whereas 
the disturbance line occurs in 
the outer shell layer only. Bot-
tom panel: isotopic time series. 
Filled circles = δ18O values. 
Open circles = δ13C values. 
Vertical black and grey lines 
correspond to disturbance and 
annual growth lines, respec-
tively, depicted in the middle 
panel
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resources to producing and releasing gametes rather than 
adding shell material at the most beneficial times of the year.

Quasi-sinusoidal trends of the δ18O time series, like those 
seen here, can be produced by seasonal fluctuations in tem-
perature, where the highest values correspond to winter and 
the lowest values correspond to summer. Because the δ18O 
value of water in the Kandalaksha Bay is not constant due 
to spring melt water pulses and large influxes of freshwater 
from rivers, temperature cannot be accurately reconstructed 
using δ18O values of shell carbonate. Moreover, estimat-
ing seasonal variations in growth temperature with minimal 
time-averaging biases requires submonthly resolution (Surge 
and Barrett 2012). Our sampling resolution was limited to 
a subseasonal scale given the narrow distance between dark 
annual growth lines and light growth increments. Neverthe-
less, coarser subseasonal sampling resolution is sufficient to 
determine cycles that identify the timing of annual growth 
line formation. In A. borealis from the White Sea, dark lines 
regularly occur near the most negative values on the δ18O 
time series, indicating that the timing of slowed growth 
(dark increments) starts in late summer (Figs. 3, 4).

In addition to temperature and reproduction, changes 
in salinity are a stress to bivalve growth (Navarro 1988; 
Marsden 2004) and thus a potential mechanism of annual 
growth line formation. In the White Sea, salinity in the 
surface waters drops significantly during the spring melt 
period to 15 psu. At depths of 5–10 m, little mixing occurs 
between the cool, saline bottom waters, because the melting 

freshwater is less dense. As a result, salinity is relatively 
constant throughout the year in shallow water averaging 
around 25 psu. Astarte borealis has a known salinity toler-
ance of 8–35 psu, and the spring melt period (April) does 
not correspond to the most negative δ18O values (warmest 
temperatures); therefore, we do not favor salinity stress as an 
explanation for annual growth line formation in the White 
Sea population. Note though, that the disturbance line shown 
in Fig. 3 may have formed in the early spring and might be a 
temporary response to an influx of freshwater from ice melt.

The two most likely mechanisms for growth slowdown 
and growth line formation in summer for the White Sea are 
maximum temperature threshold or spawning. Stable popu-
lations of A. borealis exist in the more southern Baltic Sea 
(Zettler 2002), where summer water temperatures can reach 
20+ °C (Pfeifer et al. 2005). In our sampling location in 
the White Sea, summer temperatures rarely exceed 15 °C 
(Skazina et al. 2013), so maximum thermal tolerance does 
not seem a likely explanation.

There are no direct observations on the reproductive cycle 
of A. borealis in the White Sea; however, some indirect 
observations do allow us to assess it. During the long-term 
observations of the Ilistaya inlet population (Skazina et al. 
2013), all specimens found in January possessed matured, 
ripe gonads without any signs that spawning had taken place. 
The same was noted for mollusks from other populations in 
the White Sea during October, March, May, and July (Mat-
veeva 1977). Additional investigation of A. borealis from 
the White Sea sampled in June–September revealed spent 
gonads (Kaufman 1977). Thus, annual growth line formation 
in A. borealis in the White Sea may correspond to the late 
summer spawning period.

Lifespan and growth rate comparisons

Identifying annual growth patterns in A. borealis allowed 
us to determine the lifespans of each of the 18 individuals 
in our sample. Today, most bivalve species are short-lived, 
with a modal lifespan of 3 years, but more than 25 species 
are known to attain lifespans in excess of 50 years. Moreo-
ver, Moss et al. (2016) have documented that long-lived 
bivalves are more often found at mid and high latitudes, and 
across the group, there is a tendency for lifespan to increase 
with latitude. Astarte borealis from northwest Greenland 
(78–82°N) can attain lifespans of 150 years (Torres et al. 
2011). Though from a relatively small sample, we report 
lifespans of A. borealis up to 48 which fits the trend seen in 
other bivalves. We should note that all individuals studied 
here were collected alive, so they could have presumably 
lived for longer. As such, the lifespans reported should be 
regarded as maximum reported lifespans (MLSP) attained 
by A. borealis from the White Sea (i.e., with additional 

Fig. 5   von Bertalanffy growth curve fit to pooled age-at-size data for 
the White Sea shells. Black line represents best-fit VBG equation. 
Grey circles =  cumulative width of annual growth lines of 18 indi-
viduals
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sampling, the likelihood of finding an older individual than 
reported here increases).

To better conceptualize the impressive longevity of 
A. borealis, we compiled data for other species from the 
White Sea using a recently published global compilation of 
bivalve lifespans and growth rates (Moss et al. 2016) and 
from additional sources (Zotin and Ozernyuk 2004; Sukho-
tin et al. 2007; Gerasimova et al. 2016). Before our report, 
only two species of White Sea bivalve were known to live in 
excess of two decades, Macoma balthica (MLSP = 30 years; 
Gerasimova and Maximovich 2013), and A. islandica 
(MLSP = 44 years; Begum et al. 2010). However, it should 
be noted that the former used external ridges on the shell 
to determine lifespan, whereas the latter used isotope scle-
rochronology. In some short-lived species, external ridges 
are formed annually and can be used to determine lifespans, 
but their use is often fraught with difficulty (Krantz et al. 
1984; Edie and Surge 2013). This is in part because external 
ridges can form in response to non-periodic disturbances 
(e.g., storm events) rather than annual events (e.g., spawn-
ing, minimum/maximum temperature tolerance). In the 
specimens of A. borealis we examined, external ridges do 
not match up with internal annual growth lines. We suggest 
caution when interpreting lifespans from external ridges 
rather than internal lines.

von Bertalanffy k values in marine bivalves range from 
0.02 (A. islandica; Murawski et al. 1982) to 2.83 (Ylistrum 
japonicum; Williams and Dredge 1981) with lower values 
being indicative of slower growth and higher values indicat-
ing faster growth. Long-lived bivalves tend to display slow 
growth (e.g., Abele et al. 2008; Begum et al. 2010; Ridgway 
et al. 2011b; Moss et al. 2016), and A. borealis is no excep-
tion as it grows slow (k = 0.11) and lives for almost half 
a century (MLSP = 48). Data on von Bertalanffy growth 
parameters for other White Sea bivalves are sparse and are 
concentrated on three species A. islandica (Begum et al. 
2010), Mya arenaria (Gerasimova et al. 2015, 2016), and 
Mytilus edulis (Sukhotin and Maximovich 1994; Sukhotin 
et al. 2007). A. borealis k value from the White Sea falls in 
the middle of those previously reported: A. islandica, 0.20; 
Mya arenaria, 0.03–0.16; and Mytilus. edulis 0.02–0.26. 
Such similarity across several disparate bivalve families 
living in similar settings suggests a strong environmental 
influence on shell growth. Much has been written on the 
environmental factors that promote long lifespans, but 
recent work suggests that food availability—driven by the 
extremely seasonal light regime at high latitudes—may in 
part promote longer life through reduction of metabolic rates 
(Moss et al. 2016, 2017). Slow growth may be a necessary 
trait for White Sea bivalves, because sea ice and polar night 
during winter shut down primary productivity.

Oxygen isotope analysis reveals that A. borealis from the 
White Sea form annual growth lines in the late summer and 

approach lifespans of 50 years. A. borealis is a widespread 
Panarctic species, but outside of one additional study (Tor-
res et al. 2011), little is known about the timing of growth 
line formation. Further study is needed to confirm the pres-
ence of annual growth lines in other populations (e.g., Baltic 
Sea). In addition, while the taxonomy of Astarte is quite 
complicated (see Petersen 2001), it is a specious genus with 
several taxa warranting of sclerochronological study. In the 
White Sea, for example, A. elliptica and A. montagui, which 
co-occur with A. borealis, remain to be studied. Given its 
long Arctic history, Astarte may prove to be an effective 
tool for monitoring water quality, ecologic/environmental 
change, and consequences of global warming in boreal and 
Arctic seas.
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