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Recent reconstructions of the Rodinia supercontinent and its breakup incorporate South China as a
“missing link” between Australia and Laurentia, and place the Tarim craton adjacent to northwestern
Australia on the supercontinent’s periphery. However, subsequent kinematic evolution toward Gondwana
amalgamation requires complex geometric shuffling between South China and Tarim, which cannot be
easily resolved with the stratigraphic records of those blocks. Here we present new paleomagnetic
data from early Ediacaran strata of northwest Tarim, and document large-scale rotation at near-
constant paleolatitudes during Cryogenian time. The rotation is coeval with Rodinia breakup, and Tarim’s
paleolatitudes are compatible with its placement between Australia and Laurentia, either by itself as
an alternative “missing link” or joined with South China in that role. At the same time, indications
of subduction-related magmatism in Tarim’s Neoproterozoic record suggest that Rodinia breakup was
dynamically linked to subduction retreat along its northern margin. Such a model is akin to early stages
of Jurassic fragmentation within southern Gondwana, and implies more complicated subduction-related
dynamics of supercontinent breakup than superplume impingement alone.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The evolution of the Neoproterozoic supercontinent Rodinia
was an integral part of the broader Earth system that also included
extremes in paleoclimate (Kirschvink, 1992), ocean geochemistry
(Halverson et al., 2010), and the emergence of complex life (Mc-
Menamin and McMenamin, 1990). However, much debate remains
regarding the configuration of this supercontinent (e.g., Li et al.,
2008; Evans, 2013). One main controversy is whether Australia-
East Antarctica was directly connected to Laurentia, near the center
of Rodinia (Hoffman, 1991; Li et al., 2008), and if so, in what
specific configuration. Early Rodinia models postulated a tight fit
of those cratons, establishing the standard “SWEAT” (Southwest
U.S.-East Antarctic) connection (e.g., Dalziel, 1997). Simultaneously
or shortly afterwards, alternative models were proposed, includ-
ing the “AUSWUS” (Australia-Western United States) connection
(Karlstrom et al., 1999), the “AUSMEX” (Australia-Mexico) juxta-
position (Wingate et al., 2002), and also the “Missing-link” model
of South China inserted in between (Li et al., 1995). According
to a comprehensive analysis of geological and paleomagnetic data
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(summarized by Li et al., 2008), only the “Missing-link” model was
demonstrated to be viable by both geological correlations and ca.
1200-750 Ma paleomagnetic poles from Australia and Laurentia.
For example, the ca. 750 Ma paleomagnetic data demanded either
untenably early supercontinental breakup relative to the strati-
graphic age of proposed rift-drift transitions on the Australian and
Laurentian conjugate margins, or a sizable gap between the blocks
(Wingate and Giddings, 2000). South China may have filled that
gap, as its centrally located, Grenville-age Sibao (or Jiangnan) oro-
gen could mark the suture between the Australia-proximal Yangtze
block and the Laurentia-related Cathaysia block during Rodinia
amalgamation (Li et al., 1995, 2008).

However, the basis for this “missing-link” position for South
China faces some challenges. First, the timing of the assembly
of Yangtze and Cathaysia, i.e., the age of the Sibao or Jiangnan
orogen is probably younger than the type Grenville orogeny sug-
gested by new chronologic data (e.g., Zhao et al., 2011; Wang
et al, 2014), and the tectonic setting of the younger magma-
tism (ca. 830-750 Ma) in this block has different interpretations
(e.g., Sun et al., 2008). Second, in order for South China to mi-
grate from the “missing link” position to a likely early Paleo-
zoic location adjacent to NW Australia, South China must have
taken a circuitous path around northern Australia (Li et al., 2013)—
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Fig. 1. (a) Tectonic framework of Tarim Block (NW China), showing the Grenville-age “Tarimian” sutures (after Lu et al., 2008; Z.Q. Xu et al., 2013) and study area in this work.
The ovals mark the different age ranges of continental nucleus and igneous/metamorphic events in basements of Northern and Southern Tarim. (b) Geological map of the
northwestern margin of Tarim Block (after Gao et al., 1985; XBGMR, 1993; Turner, 2010; Wen et al., 2015), showing the sampling sections. (c) The composite Precambrian
stratigraphic column of the Aksu-Wushi area (after Gao et al., 1985; XBGMR, 1993; Turner, 2010; Zhu et al., 2011; B. Xu et al., 2013; Wen et al., 2015), schematically showing
the sampling sections I to V that consist of the upper and lower part of the Sugetbrak Formation. Cross-section of each section is shown in Fig. S1. *, a U-Pb zircon age of

basalt from B. Xu et al. (2013). Note variable thickness scales.

not only is this kinematically unusual, but it also predicts large-
scale sinistral transform motion that is not readily compatible
with the Ediacaran-Cambrian passive-margin tectonostratigraphic
records of both blocks (e.g., Jiang et al., 2003). As an alterna-
tive to the “missing-link” position, South China has been proposed
to remain near NW Australia at marginal regions of Rodinia dur-
ing the evolution from Rodinia to Gondwana (Jiang et al., 2003;
Zhang et al., 2013).

While South China has been placed on either side of Australia
in Rodinia reconstructions, the Tarim craton has conventionally
been positioned along Australia’s northwestern margin at Rodin-
ia’s periphery. Such a location was initially proposed by Li et al.
(1996) to account for (i) the allegedly minor role of Grenville-age
tectonism in Tarim, (ii) plume-related magmatism at 830-750 Ma
correlated with that in northwestern Australia, and (iii) similar
Ediacaran-Cambrian stratigraphic records including late Neopro-
terozoic glacial deposits and Lower Cambrian volcanic rocks. Most
subsequent work has adopted this model in the absence of addi-
tional constraints (e.g., Li et al., 2008); a notable exception is that
of Lu et al. (2008), who instead joined Tarim with South China
in the “missing link” location based on the tectonostratigraphic
correlation including the ~820 Ma giant radiating dyke swarms
in the center. Further work has demonstrated that the proposed
location of Tarim adjacent to northwestern Australia may be ill-
founded. A comprehensive study of deep-drill cores in Tarim has
revealed that the Grenville-age (1.1-1.0 Ga) orogeny is in fact per-
vasive across the craton (Fig. 1a; Z.Q. Xu et al., 2013 and references
therein). Furthermore, the 830-750 Ma magmatism in Tarim could
be linked to either NW Australia, or many other locations around

Australia or even other continents (Li et al.,, 2003, 2008). Mean-
while, the <750 Ma rifting-related magmatism that occurred in
Tarim (Xu et al., 2005, 2009) is not present in northwestern Aus-
tralia. And finally, the Cambrian mafic magmatism within sections
of NE Tarim is found to be earliest Cambrian in age (Yao et al.,
2005), and hence cannot be considered a match for the Early-
Middle Cambrian Kalkarindji large igneous province in northern
Australia (Glass and Phillips, 2006). Thus, the only point of dis-
tinctive geologic comparison between Tarim and northern Aus-
tralia is the presence of mid-late Ediacaran glacial strata, which
nonetheless lack precise age constraints and are among a handful
of other enigmatic glaciogenic deposits of that age interval world-
wide (Evans and Raub, 2011). Besides the geological mismatches,
the other weakness for the Tarim-NW Australia juxtaposition is
from the paleomagnetic constraints of Tarim. Chen et al. (2004),
Zhan et al. (2007) and Zhao et al. (2014) together proposed a long
connection between Tarim and NW Australia during most of the
Neoproterozoic times. Not to mention its incompatibility with the
geological records above, its paleolatitude is not easy to be recon-
ciled with the paleomagnetic data obtained from the ca. 740 Ma
Baiyisi volcanic rocks (Huang et al., 2005) and the Sturtian-age
Qiaoenbrak Formation (Fm) sediments (Wen et al., 2013).

Apart from the oft-suggested connection to NW Australia, the
other proposed paleoposition for Tarim is the eastern side of Aus-
tralia (e.g., Lu et al,, 2008). If so, whether the Tarim Block can
act as an alternative missing link within Rodinia reconstructions?
Also, the discrepancy among the available paleopoles for Tarim’s
paleogeography within this supercontinent emphasizes the need
of more reliable paleomagnetic data. In this paper, we report high-
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quality paleomagnetic data from the Ediacaran strata of northwest-
ern Tarim (Fig. 1). Together with previously published paleomag-
netic results and newly reported geological data, we present an
alternative “missing-link” configuration of Rodinia by fitting the
Tarim Block between Australia-East Antarctica and Laurentia, and
further explore the dispersal process of this supercontinent.

2. Geological setting and sampling

The Aksu-Wushi area, bounded to the north by the Tianshan
Mountains, lies along the northwestern margin of the Tarim Block
(Fig. 1). The Precambrian successions preserved in this area have
been well documented and are critical in understanding the tec-
tonic evolution of this craton in the Neoproterozoic (Nakajima
et al, 1990; Chen et al., 2004; Zhan et al., 2007; Wen et al.,
2013; B. Xu et al, 2013; He et al.,, 2014). The successions com-
prise, from the bottom to the top, the Proterozoic schistose base-
ment of Aksu Group and its unconformably overlying, unmetamor-
phosed sedimentary cover. The intensely deformed Aksu Group
comprises metasedimentary rocks and mafic schists, including
blue- and greenschists, which were intruded by a series of un-
metamorphosed NW-trending mafic dikes (Aksu dikes; Fig. 1b).
The blueschist-facies recrystallization has been interpreted to doc-
ument a Proterozoic subduction-accretion complex (Nakajima et
al,, 1990; Zhu et al., 2011). The sedimentary cover consists of the
Cryogenian Qiaoenbrak Fm and Yuermeinak Fm, and the Ediacaran
Sugetbrak and Chigebrak Fms (Fig. 1b and c; Gao et al., 1985;
XBGMR, 1993; Turner, 2010; Zhu et al., 2011; B. Xu et al., 2013;
Wen et al., 2015). Both the Qiaoenbrak and Yuermeinak Fms are
dominated by sandstone, siltstone and conglomerate, and each
contains a glacial interval (Gao et al., 1985; Gao and Qian, 1985;
XBGMR, 1993; Zhu and Wang, 2011; Wen et al., 2015). Recently
discovered Marinoan-age cap dolostone atop the glacial deposits
of Yuermeinak Fm (Fig. 1c; Wen et al., 2015), forms the base of
the Ediacaran Sugetbrak Fm (400-450 m) at ca. 635 Ma by corre-
lation (Knoll et al., 2006; Calver et al., 2013). Conformably overly-
ing the cap carbonate is a ca. 10-m-thick red shale or siltstone
unit, grading upwards into the lower red fluvial sandstone in-
terbedded with several layers of basalt flows and an upper yellow-
greenish lacustrine/shallow-marine siltstone (Fig. 1c; Turner, 2010;
B. Xu et al, 2013). A recent U-Pb zircon age of ca. 615 Ma
(615.2 +4.8 Ma and 614.4 +9.1 Ma; B. Xu et al,, 2013) was ob-
tained from the basalt layers within the middle Sugetbrak Fm
(Fig. 1c). This age is broadly consistent with the maximum depo-
sitional age (ca. 620-602 Ma) identified by detrital zircon dating
from the upper part of the formation (Zhu et al., 2011; He et
al,, 2014). The Chigebrak Fm conformably overlies the Sugetbrak
Fm, and is mainly composed of thickly bedded stromatolitic dolo-
stone/limestone that was interpreted by Turner (2010) to represent
an extensive lake or a marine transgressive environment. The top
of the Chigebrak Fm is truncated disconformably by a 5-m-thick,
earliest Cambrian black chert-phosphorite layer (Gao et al., 1985;
Yao et al., 2005).

We collected samples of the Ediacaran Sugetbrak Fm, including
the basal cap carbonate and the overlying sandstone and basalt,
from five sections (I-V) in the study area (Fig. 1b and c). Only sec-
tion V contains the basal cap carbonate; the bases of the other
four sections are unconformities omitting any cap carbonate that
may have originally existed (cf. Fig. S1 for detailed cross-sections
and sampling in the supplemental file). Cores were sampled using
a portable gasoline-powered drill for most sites, and block samples
were collected from sites with particularly steep access. All cores
were oriented using both magnetic and solar compasses, while
the orientations of block samples were measured with a magnetic
compass. For block-sampled sites, declinations of magnetic vari-
ation were assigned values comparable to those calculated from

nearby drilled sites. In section V (Fig. S1), a 2 m-wide mafic dike,
and Sugetbrak host samples from varying distances away, were
collected for a baked-contact test (AK6-16). The dike is slightly
undulose in orientation, but has a general NW strike and moderate
NE dip; when the moderately S-dipping (Fig. S1) host rock bedding
is restored to horizontal, the dike strikes WNW and is subvertical.
In total, more than 900 samples (cores and block samples) were
collected from the five sections.

3. Laboratory methods
3.1. Paleomagnetism

Samples were processed in the paleomagnetism laboratories at
both Nanjing University (NJU) and Yale University (Yale). The ori-
ented samples were cut into cylindrical specimens of 2.5 cm in
diameter and 2.2 cm in height, or ~1 cm thick discs. The thin
disc-shaped specimens were prepared to be picked up by an au-
tomatic sample-changing system (Kirschvink et al., 2008) at Yale.
Specimens were thermally demagnetized in 16-30 steps with in-
crements of 30-50 °C for low temperatures (<300 °C) and 5-15°C
for high temperatures (>300°C). Each specimen was thus heated
until thoroughly demagnetized/unstable, as high as >680 °C. Most
specimens were cooled in liquid nitrogen before thermal demagne-
tization, which can effectively remove the viscous remanence from
multidomain (MD) magnetite (Halgedahl and Jarrard, 1995). Re-
manent magnetizations were measured using 2G-Enterprises DC-
SQUID magnetometers housed in magnetically shielded rooms at
both NJU and Yale, with reproducible results between the two lab-
oratories. Magnetic remanence directions were fit using principal
component analysis (Kirschvink, 1980), and site-mean directions
were calculated with Fisher spherical statistics (Fisher, 1953). Soft-
ware packages PMGSC (version 4.2) of R. Enkin, PaleoMac of Cogné
(2003), and PaleoMag of Jones (2002) were used to implement the
paleomagnetic data analysis and related figure productions.

3.2. Rock magnetism

In order to characterize magnetic mineralogy and better un-
derstand the properties of the remanent magnetizations, we car-
ried out a suite of rock magnetic experiments on representative
specimens (cap dolostone and sandstone). The experiments were
conducted at both NJU and the Institute for Rock Magnetism, Uni-
versity of Minnesota. These rock magnetic experiments include:
(1) anisotropy of magnetic susceptibility (AMS) determined by
a KLY-3S kappabridge; (2) thermal-magnetic experiments made
with an MFK1-FA kappabridge susceptibility meter coupled with
a CS-4 furnace; (3) triaxially stepwise-thermal demagnetization
of isothermal remanent magnetization (IRM, Lowrie, 1990) us-
ing an RF-SQUID rock magnetometer (2G-760) and an ASC TD-48
oven; (4) hysteresis loop parameters measured on a Vibrating Sam-
ple Magnetometer; and (5) low-temperature properties of room-
temperature saturation isothermal remanent magnetizations (RT-
SIRMs) during cooling (300 to 20 K) and warming (20 to 300 K),
and SIRMs during warming (20 to 300 K) after field-cooling (FC)
and zero-field-cooling (ZFC) with a Quantum Design Magnetic
Properties Measurement System. Except for the AMS measure-
ments performed at two laboratories, all the rest were carried out
at the Institute for Rock Magnetism, University of Minnesota.

4. Results
4.1. Paleomagnetic results
4.1.1. Sections I and Il

Sections I and II are close to each other, and located in the
most northeastern part of our study area (Fig. 1b). The Sugetbrak
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Fm at these two sections is less than 400 m thick, and only one
basalt layer is exposed (Fig. S1). We collected samples at seven
sites from section I and ten sites from section II. About half of the
specimens (sites) yield erratic directions (unstable or totally de-
magnetized at less than 200 °C), or directions of the recent Earth’s
field (Table 1) upon demagnetization. The remaining samples, af-
ter removing the viscous directions of present Earth’s field (PEF)
at low temperature (less than 200-300/350 °C), show characteris-
tic remanent magnetizations (ChRMs) similar to those described
by Zhan et al. (2007) from the same region: NE-down and SW-
up directions (Table 1; Fig. 2). The site-mean direction for the
NE-down group is Dg =043.6°, I¢ =42.9°, kg = 96.8, arg5 = 6.8°
in situ; Dy = 074.4°, I, = 39.1°, ks = 109.9, ag5 = 6.4° after tilt
correction (n = 6 sites). For the SW-up group, the site-mean di-
rection is Dg = 165.9°, Iy = —53.0°, k; = 115.0, ags = 8.6° in
situ; Ds = 242.6°, Iy = —75.6°, ks = 129.1, g5 = 8.1° after tilt
correction (n = 4 sites). Fold tests are inconclusive at the 95%
confidence level for both the two groups (NE-down and SW-up;
McElhinny, 1964). Also, the SW-up direction, in tilt-corrected coor-
dinates (Fig. 2d), is broadly consistent with the results of Permian
dikes in the region (Li et al., 1988).

4.1.2. Sections III, IV and V

Compared to the northeastern sections I and II of the study
area (Fig. 1b), the Sugetbrak Fm strata are much better exposed
and continuous at sections III, IV, and V (Figs. 1c and S1). Strati-
graphic thickness at each is more than 400 m, and at least
three basaltic layers within the sandstones have been recognized
(Fig. S1; Turner, 2010; Zhu et al, 2011; B. Xu et al, 2013;
Wen et al,, 2015). The top layer basalts yielded the U-Pb zircon
age of ca. 615 Ma (Fig. 1c; B. Xu et al,, 2013). Moreover, the base

of the Ediacaran Sugetbrak Fm, including the Marinoan-age glacial
diamictites and post-glacial carbonate rocks (cap dolostones) from
sections IIl and V, have been reported recently (Fig. 1c; Wen et
al.,, 2015). Paleomagnetic results from the basal ‘cap dolostones’,
the lower red sandstones and basalts, and the upper yellow-green
siltstones are presented below.

(1) Basal ‘cap dolostones’ (section V). Multiple magnetic compo-
nents of ‘cap dolostones’ (Fig. 3a and b) were revealed in the
stepwise-thermal demagnetization from more than half of the
sampling sites. Most of them show three components, termed
‘LTC, ‘MTC and ‘HTC, after low (below 300-350°C), middle
(350-550°C), and high (up to 675 °C) temperature components, re-
spectively. Some samples only exhibit two components of LTC and
HTC, in which cases the HTC may persist to as high as 600 °C. The
LTC is close to the PEF (Fig. 3a and b), and represents recent over-
printing due to weathering and/or viscous behavior. The directions
of MTC vary between different samples/sites, and are not similar
to the PEF or the expected geocentric axial dipole (GAD) field, but
are commonly intermediate between LTC and HTC, suggesting that
it is a mixture of those two components. After removal of the LTC
and MTC components, the magnetizations of HTC in the samples
show linear trajectories to the origin, yielding the ChRMs with an
unblocking temperature above 675 °C (Fig. 3a and b). These ChRMs
are consistent among sites (Table 1) with a site-mean direction
at: Dy =162.3°, Iz =56.6°, kg = 8.7, g5 = 44.6°; Dy = 189.3°,
Is = 41.5°, ks = 86.8, g5 = 13.3° (n = 3 sites). The directions
are more clustered after tilt correction than in in situ coordinates
(Fig. 4a and b), indicating a positive fold test at the 95% confidence
level (ks/kg =9.95; McElhinny, 1964).

(2) Lower red sandstones and basalts. The majority of specimens
show two or more stable magnetic components in the stepwise
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Fig. 3. Typical orthogonal and equal-area projections of demagnetization behavior for the samples from sections III, IV and V, showing the multiple components. Representa-
tive samples include cap carbonates (a-b), redbeds (c-e) and basalts (f). NRM, natural remanent magnetization; LN, samples cooled in liquid nitrogen; T100, demagnetization
at 100°C, etc. All plots are in geographic coordinates. The HTCs linearly decaying to the origins represent the ChRMs, and the erratic points after ChRMs are not shown in

the orthogonal vector projections.

demagnetization (Fig. 3c-f). Their LTCs are commonly close to the
PEF, while MTCs show a variable remagnetization of non-GAD field
(commonly directed SSW and Up, similar to that found in sections
I and II). The HTCs, linearly decaying toward the origins at 580 °C
or above 650 °C (Fig. 3c-f), define the ChRMs and are isolated from
33 sites (Table 1). Among these sites, 27 sites are from sandstones
and yield a mean direction of Dy =177.4°, I¢ = 63.8°, k; = 4.2,
ags = 15.5°, and D = 173.6°, I; = 46.7°, ks = 15.9, g5 = 7.2°;
while the remaining 6 sites are obtained from basalt layers and
yield a mean direction of Dg =129.9°, I; =55.3°, kg =2.9, 0tg5 =
48.1°, and Dg = 149.7°, Iy =42.3°, ks = 7.2, aig5 = 26.8°. Since the
two means of the tilt-corrected directions are close to each other,
all the 33 sites are combined together in the following analysis.
The ChRMs include normal and reversed polarities (Fig. 4c and
d), and pass a reversal test at the 95% confidence level (class C;
McFadden and McElhinny, 1990). An average site-mean direction

of the combined polarities is at: Dy =168.0°, I; =63.7°, kg = 3.9,
ogs = 14.7°, and Ds = 169.2°, [ = 46.3°, ks = 12.6, ag5s = 7.3°
with n = 33 sites. Both the fold tests of McElhinny (1964) and
Enkin (2003) give positive results for these ChRMs at the 95% con-
fidence level.

(3) Upper sand- or siltstones (section IV). Unlike the lower red
sandstones, the upper sandstones/siltstones of Sugetbrak Fm show
a less stable demagnetization behavior. Several sites of yellow-
green sandstone possess no stable magnetization (Table 1) after
removing the viscous directions of PEF at less than 200 °C (more
than 90% magnetic contribution of goethite), and the rest yield
highly variable ChRMs, including the NE-down/SW-up directions
broadly coincident with those from sections I and II (Table 1).
These ChRMs become more dispersed after tilt correction (Fig. 4e
and f), but the fold test is inconclusive at the 95% confidence level
(McElhinny, 1964).
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4.2. Rock magnetic results

The AMS data of the representative samples of sandstones from
the five sections show low anisotropy (Pj < 1.03). Fig. 5 shows
that the maximum axes mainly lie within the bedding plane and
minimum axes are perpendicular to the plane, suggesting a sedi-

mentary or depositional fabric. However, the rest of the rock mag-
netic experiments were only conducted on the ‘cap dolostone’ and
red sandstone samples of the lower Sugetbrak Fm which possess
stable magnetic components. Based on their different characteris-
tics, the results are described separately.

4.2.1. ‘Cap dolostones’

The representative cap dolostone samples show slightly wasp-
waisted shape of “fat” or “pot-bellied” hysteresis loops (Fig. 6a).
They reach magnetic saturation at about 1.4 T and have relatively
high coercive force (Hc, 255-527 mT) and coercivity of remanence
(Hcr, 602-698 mT) values, suggesting the dominance of magnet-
ically ‘hard’ minerals. On the FC-ZFC and RTSIRM curves of low-
temperature measurements (Fig. 6d), large remanence decrease be-
low ~260 K characterizes the Morin transition of hematite (Morin,
1950). The presence of hematite can be further confirmed by both
thermal-magnetic experiments and 3-axis thermal demagnetiza-
tion of IRMs. The susceptibility shows very similar variation trends
during heating and cooling (Fig. 6e): rapid decrease in susceptibil-
ity occurs at above 650°C (hematite). As for the triaxially thermal
demagnetization, samples were sequentially magnetized along Z-,
Y-, and X-axis (three orthogonal axes) at fields of 1.0 T, 0.4 T and
0.12 T, respectively. Fig. 6f shows that the magnetization is mainly
contributed by minerals with coercivity of 0.4-1.0 T, and a very
small amount is from low-coercivity (below 0.4 T) phases. Mean-
while, the unblocking temperature for the high-coercivity compo-
nents (Z-axis; Fig. 6f) is at ca. 680°C.

4.2.2. Sandstones

Unlike the ‘cap dolostones’, the red sandstones exhibit more
“wasp-waisted” hysteresis loops (Fig. 6b and c), indicating a mix-
ture of coercive/grain-size minerals. The high-coercivity minerals
in samples are demonstrated by the high field (>1.2 T) of mag-
netic saturations. On the curves of low-temperature measurements,
a rapid drop at 120 K and a slight decrease at 260 K can be
observed (Fig. 6g), suggesting the presences of magnetite and
hematite (Verwey, 1939; Morin, 1950). These magnetic minerals
also can be recognized by both thermal magnetic measurements
and triaxial thermal demagnetization of IRMs. As shown in Fig. 6h
and i, the magnetization decreases corresponding to magnetite
(about 580°C) and hematite (about 680°C) can be observed on
the curves.

Tilt-corrected

Fig. 5. Anisotropy of magnetic susceptibility (AMS) data of the representative samples in geographic (left) and stratigraphic (right) coordinates. K1/K3, maximum/minimum

axes.
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Fig. 6. Representative examples of rock magnetism. (a-c) Hysteresis loops; (d and g) remanence curves of low-temperature measurements; (e and h) thermal-magnetic
properties; (f and i) triaxially thermal demagnetization of isothermal remanent magnetizations. Note the different units on left/right sides for the hysteresis loops.

5. Discussion

5.1. Timing of the remanence acquisition

5.1.1. Sections I, Il and Upper Sugetbrak Fm at Ill, IV and V

As mentioned above, samples from the sections I and II, as
well as from the upper sand- and siltstone across the whole study
area (Il and 1V), show a less stable demagnetization behavior, and
yield two non-antipolar ChRMs: NE-down and SW-up directions.
Also, the NE-down group commonly shows inconclusive regional
tilt tests, and the SW-up directions are broadly coincident with
those from the Permian dikes in Tarim (Li et al., 1988). All these
characteristics suggest that these samples appear to have been
extensively remagnetized, and the SW-up directions are probably
Permian in age. As for the NE-down group, including the data of
Zhan et al. (2007), a paleomagnetic pole corresponding to the di-
rections is calculated: A =22.8°N, ¢ = 161.0°E, Ags =6.2°. In a
comparison of this pole with the compilation of Phanerozoic pale-
omagnetic poles from the Tarim Block (Table S1), it is very close to
the Silurian and Devonian poles (Fig. 7a); this suggests the occur-
rence of remagnetization during this time, perhaps associated with
coeval magmatism in northern Tarim (e.g., Ge et al., 2014). There-
fore, these paleomagnetic data and the similar ChRMs of Zhan et
al. (2007) obtained from the same region (I and II) are excluded
from further discussion, and their hypothesized remagnetization
ages are assigned in Table 1.

5.1.2. Lower Sugetbrak Fm at sections III, IV and V

According to the magnetic directional analysis above, the lower
Sugetbrak Fm (‘cap dolostone’, red sandstone and basalts) in the
most southerly part (sections IIl, IV and V) of the Aksu-Wushi
area (Fig. 1b) shows more stable and coherent directions. A se-
ries of stability tests were carried out to constrain the age of the
ChRMs. Two soft-sediment folds within the basal ‘cap dolostone’
(AK6-5, section V) and red sandstone (AD32, section III) were sam-
pled from both limbs of each fold (Fig. S2). Four out of 7 samples
from the soft-sediment fold of AK6-5 yield stable ChRMs (Tables 1
and S2). The ChRMs become slightly clustered after tilt correc-
tion with the ks/kg =8.6/7.0, and the maximum grouping occurs
at 54.22% + 86.31% untilting, suggesting an inconclusive fold test
(Enkin, 2003). Nine of 11 ChRMs (Tables 1 and S2) from the other
fold at AD32 are less clustered in stratigraphic coordinates than in
geographic coordinates, with the ks/kg ratio of 1.7/6.0. Meanwhile,
the optimal untilting for the concentration is achieved at —6.85% =+
45.88%, and a negative fold test is implied (Enkin, 2003). Negative
soft-sediment fold tests, however, do not preclude a remanence
age that is “primary” for the purpose of tectonic reconstructions;
for example, an early diagenetic crystallization-remanent magne-
tization (CRM) held by hematite is common in red sedimentary
rocks. Consequently, according to these tests it is not clear whether
the magnetic remanence represents Tarim paleogeography in early
Ediacaran time.

The variable bedding attitudes across the study area (ca. 30-40°
dip toward to SE and NW; Figs. 1c and S1) allow us to conduct a
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Fig. 8. Paleomagnetic directions and field stability tests for the Ediacaran strata in NW Tarim. (a-b) Equal-area stereographic projections of each site in both geographic
and stratigraphic coordinates; (c) progressive regional unfolding, showing a significant clustering of directions after 100% untilting; (d) inverse baked-contact test (shown in
tilt-corrected coordinates), showing individual sample directions and difference in mean directions for different sampling zones relative to a likely Permian mafic dike. Mean
directions from each polarity are shown with asterisks and «gs confidence ovals; P, expected direction calculated (reference point at 41°N, 79°E) from the mean-Permian
pole of Tarim (Table S1). Solid/open symbols mark the lower/upper hemispheric data.

regional tilt test. The combined ChRM dataset from the cap car-
bonate and redbeds of the lower Sugetbrak Fm is much better
concentrated after tilt correction (Fig. 8a-c) with the ks/ke ratio
of 13.5/4.1, and a positive fold test is achieved at the 95% confi-
dence level (Enkin, 2003). Deformation in the Aksu-Wushi region
is mainly Cenozoic in age (Turner et al., 2010). However, a positive

(inverse) baked-contact test is observed at site AK6-16 (Fig. S1).
Samples drilled from this site can be categorized into four out-
crop groups - A, B, C and D (Fig. 8d; Table 1). Samples in Group A
were drilled from the mafic dike and yield well-grouped ChRMs
of SW-upward directions. These directions are similar to those of
the Permian dikes near our study area (Li et al., 1988) and overlap
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the expected direction (Fig. 8d) calculated from the mean-Permian
pole of Tarim (Table S1). Samples in Group B are baked sandstone
within 10 cm from the contact, and show the same remanence di-
rection as that of the dike. A little further (ca. 30-50 cm) from
the contact are the samples of Group C. These samples display less
clustered directions of southeast declinations and upwards inclina-
tions; the directions are not easily explained but could result from
varying degrees of mixing of high- and low-stability components
of magnetization. Samples in group D are further away (>50 cm)
from the contact, in unbaked host sandstone, and show a coherent
SSE-down direction that is similar to results from the surrounding
sites. Consequently, these data indicate a passage of the (inverse)
baked contact test for the lower Sugetbrak Fm remanence.

Consistency of ChRM polarity across lithostratigraphically de-
fined intervals constitutes an informal stability test on the age of
magnetization. In the Sugetbrak Fm at southerly sections, the re-
manence polarity zones are “chunky” and are broadly consistent
from section to section; namely, although lithostratigraphy varies
across the region, the mid-Sugetbrak transition from red to yellow
(reduced, lacustrine?) sedimentation lies within a reversed polar-
ity zone. The highly clustered directions of NNW-up and nearly
antipodal SSE-down in stratigraphic coordinates (Fig. 8b) generate
a positive reversal test of class C (McFadden and McElhinny, 1990).

In summary, these stability tests suggest that the magnetic re-
manence of the lower Sugetbrak Fm was acquired prior to Permian
time, and likely syn- or post-soft-folding, i.e., close to the time of
deposition. Additional evidence in favor of the essentially primary
origin for the magnetic remanence includes the reliable magnetic
minerals (magnetite and hematite) and the weak anisotropy de-
gree (Pj < 1.03) of AMS. An overall mean direction for the lower
Sugetbrak Fm throughout the three sections was calculated at:
Dg =167.3°, Ig =63.0°, kg = 4.1, ags = 13.5°, and Ds =171.2°,
Is =46.0°, ks =13.2, ags = 6.8° with n = 36 sites (Table 1), cor-
responding to a new paleopole ‘LSF’ (lower Sugetbrak Fm) at A =
21.1°S, ¢ =87.4°E, Ags = 7.0° with a paleolatitude of 27.4 4+ 5.6°.
This new paleopole is dissimilar to all Phanerozoic results from
Tarim craton (Fig. 7a), further corroborating its reliability. Because
the lower Sugetbrak Fm is sandwiched between the underlying
Marinoan-age (ca. 640 Ma) glacial diamictite and a ca. 615 Ma
basalt layer near the top as described above, the age of this pa-
leopole is estimated to be ~625 Ma.

5.2. Paleogeographic implications

If there is a ‘missing-link’ continental block to fill the gap be-
tween Australia-East Antarctica and Laurentia within Rodinia, a
candidate craton must adhere to two key requirements: (1) ge-
ological link for both sides, plus a Rodinia-forming orogen; and
(2) paleomagnetic constraints. As for the first aspect, recently, a
Mesoproterozoic-early Neoproterozoic (1.1-1.0 Ga) orogenic belt,
i.e., Grenville-age suture, across the central Tarim has been re-
vealed recently by a comprehensive study of deep drilling in cen-
tral Tarim (Fig. 1a; Z.Q. Xu et al., 2013). Granodiorite and diorite
samples from the drilling core in central Tarim show geochem-
ical signatures of calc-alkaline I-type granites, and yield horn-
blende “9Ar/39Ar isochron ages of 933.8+6.8/892.2+32.7 Ma and
1199.4 + 6.4 Ma, respectively (Z.Q. Xu et al.,, 2013 and references
therein). Along that E-W trending belt in the central part of Tarim,
there is also a significant gravity-magnetic anomaly (e.g., Jia et al.,
2004; Guo et al., 2005), and ca. 0.94-0.90 Ga S-type granitoids out-
cropped in Altyn Tagh (e.g., Wang et al., 2013). The basement rocks
of both sides contain vestiges of an Archean-Paleoproterozoic tec-
tonic history (Fig. 1a; Z.Q. Xu et al., 2013 and references therein).
Northern Tarim has an Archean-Paleoproterozoic (ca. 2.8-2.5 Ga)
continental nucleus, while Southern Tarim is characterized by
slightly younger ages (ca. 2.4-2.2 Ga). These age provinces could

satisfy a “missing-link” position between Laurentia and Australia in
Rodinia. The older Archean rocks of northern Tarim could correlate
with the Archean cratons in western Laurentia: the Medicine Hat,
Clearwater and Grouse Creek blocks of northwestern United States,
and Hearne Craton to the north in adjacent Canada (e.g., Foster
et al., 2006; Vervoort et al., 2016). Binding these Archean nuclei
together, the Paleoproterozoic (2.0-1.8 Ga) igneous/metamorphic
events in N-Tarim (Fig. 1a) are coincident with the widespread ca.
1.9-1.8 Ga magmatism in western Laurentia (Vervoort et al., 2016).
Meanwhile, early Paleoproterozoic ages of 2.4-2.2 Ga in southern
Tarim could correspond to various terranes of the same age inter-
val in the Mawson continent (reviewed by Payne et al., 2009). If
these correlations are correct, the Grenville-age orogen in the cen-
ter of Tarim craton could have acted as the Rodinia-forming suture
between Laurentia and Australia. In addition, the suture seems to
extend into circum-Tarim terranes as well (Fig. 1a): Kunlun and
Quanji (Lu et al., 2008), Altyn-Qaidam-Qilian area (e.g., Song et
al.,, 2012), and central Tianshan, as suggested by detrital zircon
ages (e.g., Ma et al,, 2012). The aggregate dataset suggests a larger
original area of ‘Greater Tarim’, now distinguished as central Asian
terranes that collectively could have lain in an alternative “missing-
link” position at central Rodinia. For simplicity in our illustration
of Figs. 9 and 10, the Tarim block only extends to its east, Quanji-
Alxa block (Fig. 1a; Lu et al., 2008), which is restored ca. 400 km
along the AltynTagh fault after Yue et al. (2001).

Following culmination of the Grenville-age orogeny, Neopro-
terozoic rift-related records were also well developed in Tarim
Block (e.g., Lu et al., 2008; Zhang et al., 2012), which can be cor-
related with both sides of the modified “missing-link” assemblage
proposed herein (Fig. 9a). In previous studies, the breakup of Ro-
dinia has been attributed to multiple episodes of mantle plume
impingement, i.e., ca. 820-800 Ma and ca. 780-730 Ma (e.g., Li
et al., 2003, 2008). As shown in Fig. 9b, the numerous igneous
episodes in Tarim (Xu et al., 2005, 2009; Lu et al., 2008; Zhang et
al., 2012) can reconcile the mismatching of ages on thermal events
in central and southeastern Australia (Sun and Sheraton, 1996;
Wingate et al., 1998) versus western Laurentia (Harlan et al., 2003;
Denyszyn et al., 2009).

In this model, the position of South China can still be con-
sidered uncertain, and we discuss two alternatives. If it occupied
a position adjacent to eastern Australia as previously proposed
(e.g., Li et al., 1995, 2008), then the Tarim Block together with
South China would have constituted a combined “missing-link”
role (Figs. 9 and 10a). The similarity in Neoproterozoic geological
history of these two cratons has been extensively discussed by Lu
et al. (2008) and shown in Fig. 9a, while diachroneity between the
older Tarimian orogeny and the younger Sibao orogen (see above)
would need to be attributed to either incomplete understanding
of the former, or a lengthy zipper-like suturing evolution toward
the latter. Detrital zircon age spectra are similar between north-
ern Tarim and Cathaysia during most of Proterozoic time (Shu et
al., 2011), thus providing some support for the combined ‘missing-
link’ model. The initial breakup of Rodinia occurred after Sturtian
glaciation (<730 Ma) based on the tectonostratigraphic and pale-
omagnetic synthesis of both Australia and Laurentia (Li and Evans,
2011). Consequently, the Sturtian-age Qiaoenbrak Fm pole of Tarim
(QF; Wen et al., 2013) could provide good paleomagnetic control
for the reconstruction, and a revised configuration following Li and
Evans (2011) is produced by placing Tarim in between (Fig. 10a).
In such a configuration, the ca. 740 Ma Baiyisi Fm pole (BF; Huang
et al., 2005) and the <730 Ma QF pole of Tarim are coincident
with the ca. 720-750 Ma poles of both Australia and Laurentia
(Fig. 10a; Table 2); the 755 Ma MDS (Mundine Well Dike Swarm)
pole from Western Australia has been restored to northern Aus-
tralia around an Euler pole (20°S, 135°E, angle 40°), and one
optional position for South China is shown using the <750 Ma
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Fig. 9. (a) Tectonostratigraphic correlations between southeastern Australia, Tarim, South China and western Laurentia during the assembly and the rifting of Rodinia (modified
after XBGMR, 1993; Li et al., 1995, 2008; Lu et al, 2008; Zhang et al, 2012; Z.Q. Xu et al, 2013; Wen et al, 2015). S/M, Sturtian/Marinoan glaciations. (b) Possible
alternative/extended “missing-link” position for the Tarim Block in Rodinia, showing one optional position for South China, and schematic representations of Tonian mafic
dike swarms (modified after Li et al., 1995, 2008; Lu et al., 2008; Zhang et al, 2012; Ernst et al, 2016). AGD, Amata-Gairdner Dyke Swarm (Sun and Sheraton, 1996;
Wingate et al., 1998); T, mafic dikes or bimodal volcanic rocks in Tarim (Xu et al., 2005, 2009; Lu et al., 2008; Zhang et al., 2012); GFD, Gunbarrel-Franklin dike swarm
(Harlan et al., 2003; Denyszyn et al., 2009). “QA”, Quanji-Alxa block.

Fig. 10. Configuration and breakup of extended ‘missing-link’ model of Rodinia supercontinent. (a) ‘Missing-link’ position for the Tarim Block with the Baiyisi (BF; Huang
et al.,, 2005) and Qiaoenbrak (QF; Wen et al., 2013) poles coincident with the coeval poles of other continents in the Rodinia model of Li and Evans (2011), showing the
opposite rotation potential of Tarim and South China in the succeeding breakup process. Tarim Block is rotated relative to Laurentia using Euler rotation (86.3°N, 30.9°E,
135.7°). “A”, Aksu-Wushi; “Q”, Quruqtagh. Laurentia is reconstructed to the paleomagnetic reference frame using Euler rotation (47.7°N, 148.7°E, —198.6°). (b) One scene of
reconstruction for the breakup of Rodinia following configuration shown in (a), showing the coincidence of ca. 625 Ma LSF pole from Tarim with those from other continents.
Rotation of Laurentia (32.7°N, —157.6°E, —144.8°) to paleogeographic grid, Tarim (71.4°N, —20.0°E, 96.9°) relative to Laurentia, Australia-East Antarctica (31.0°N, —119.0°E,
—68.0°), and South China (31.0°N, —119.0°E, —68.0°) relative to Australia-East Antarctica.

LF (Liantuo Fm) pole (Table 2). The ca. 720-630 Ma interval of
breakup, determined herein paleomagnetically, is consistent with
the age of rift-drift transition recognized in southeast Australia,
South China and western Laurentia (Li and Evans, 2011, and ref-
erences therein), as well as in Tarim where ca. 730-650 Ma bi-
modal magmatism related to rifting is recognized (e.g., Xu et al.,
2005, 2009; Zhang et al.,, 2012). In this reconstruction, we dis-
counted the poles from the Aksu dikes (Chen et al., 2004) and
the Marinoan-Tereeken (ca. 635 Ma) cap carbonates from eastern
Tianshan of NE Tarim (Zhao et al., 2014) for the following rea-
sons. First, it should be noted that the oft-proposed connection
between Tarim and northern Australia actually cannot be attained
(Fig. 7b) by fitting the two cratons’ apparent polar wander (APW)
paths as claimed by Zhao et al. (2014); the figure in that paper
is incorrectly rendered. Second, the Aksu dikes are constrained by
a large range of ~800 to <720 Ma isotopic ages (Chen et al., 2004;
Zhan et al., 2007; Zhu et al., 2011), and their exposures lie within

the northern remagnetized area (sections I and II; Fig. 1a;) ana-
lyzed above; we suggest that the northern reaches of Aksu-Wushi
area were affected by regional hydrothermal activity; both of the
rejected poles are similar to the mid-Paleozoic Tarim apparent po-
lar wander path (Fig. 7a), and the Tianshan belt indeed records Pa-
leozoic (as well as Cenozoic) tectonism (e.g., Windley et al., 1990;
Ge et al, 2012). We note further that a recent Sr isotope study
(Wen et al., 2015) documented that the Marinoan-Tereeken cap
carbonates in the Quruqtagh area (Fig. 1a) have experienced se-
rious secondary alterations. The Baiyisi pole in Quruqtagh region
seems curiously immune from the otherwise pervasive effects of
remagnetization across that area.

In our model, by ca. 630 Ma, the extended missing-link Ro-
dinia had broken apart (Fig. 10b), and the poles of Tarim and South
China document significant antithetic rotations during this process
(Fig. 10). The decrease in the ages of dike swarms from southeast-
ern Australia, through Tarim, to western Laurentia (Fig. 9) indicates
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Table 2
Paleomagnetic poles for the reconstructions shown in Fig. 10.
Block Pole name Rock unit (area) Age Paleomagnetic pole Ags Reference
(Ma) Lat Lon
Tarim LSF Lower Sugetbrak Formation 620-630 Ma —211 874 7.0 This study
QF Qiaoenbrak Formation <730 Ma —6.3 175 9.1 Wen et al. (2013)
BF Baiyisi Formation 750-730 Ma —-177 14.2 42 Huang et al. (2005)
Australia WTC Walsh Tillite cap dolomite 700-750 Ma 21.5 102.4 13.7 Li and Evans (2011)?
MDS Mundine Well Dykes ~750 Ma 453 1354 41 Li and Evans (2011)?
YF Yaltipena Formation ~640 Ma 442 172.7 5.9 Li and Evans (2011)?
EM MEAN Elatina Formation ~635 Ma 49.9 164.4 13.5 Li and Evans (2011)?
NL Nuccaleena Fm ~630 Ma 323 170.8 22 Li and Evans (2011)?
Laurentia Uinta Mountain Group ~750 Ma 0.8 1613 33 Li and Evans (2011)?
Franklin event grand mean ~720 Ma 6.7 162.1 3.0 Li and Evans (2011)?
LRD Long Range Dykes ~620 Ma —-19.0 1753 14.8 Li and Evans (2011)?
South China LF Liantuo Formation <750 Ma 4.4 161.1 129 Li and Evans (2011)?
NF Nantuo Formation ~640 Ma 0.2 151.2 54 Li and Evans (2011)?

Notes: Lat/Lon, latitude/longitude of a paleomagnetic pole. Ags, radius of the 95% confidence cone about the mean pole.
4 The original references of the paleomagnetic poles can be found in the supplementary data file of Li and Evans (2011), which is available at http://www.geosociety.org/

pubs/ft2011.htm, item 2011030.

propagation of rifting during Rodinia breakup. As the rifting pro-
ceeds, the larger blocks in Rodinia supercontinent (Australia and
Laurentia) separate orthogonally and bear the record of plume-
related magmatism; while smaller intervening blocks (Tarim in-
cluding Quanji-Alxa, South China) experience large-scale vertical-
axis rotations during separation (Fig. 10). Coincident with breakup
and rotation, the present northern margin of Tarim experienced
subduction-related magmatism (Ge et al.,, 2014). The coincidence
in timing of supercontinental fragmentation with plume-related
and subduction-related magmatism is reminiscent of the Meso-
zoic record of southern Gondwana breakup, which included both
the ca. 183-Ma Karoo-Ferrar large igneous province (LIP) magma-
tism (Burgess et al.,, 2015) and subduction retreat along the Tas-
manide orogen (Pankhurst et al., 2000). In that analogy, antithetic
rotations of both the Falkland and Ellsworth-Whitmore Mountain
blocks (Martin, 2007) are comparable to the complementary rota-
tions of Tarim (clockwise) and perhaps South China (anticlockwise)
during Rodinia breakup driven by back-arc rifting and slab rollback
(Martin, 2006). If this conceptual model is correct, it can recon-
cile the apparent contradiction of mid-Neoproterozoic rifting and
subduction in both South China and Tarim at about 800-700 Ma.

Alternatively, if South China is placed on the northwestern
side of Australia (Jiang et al., 2003), then the Tarim “missing-
link” model may require an additional, unknown, cratonic fragment
to serve as the antithetic rotational entity. The various circum-
Tarim terranes mentioned above may help to fill that role collec-
tively, but with unknown initial geometry. Regardless of the ex-
act configuration of central Asian terranes in a collective “missing
link” location at the center of Rodinia, the model proposed herein
hypothesizes upper-plate extension above a subduction zone as
an important factor in supercontinental breakup. In the better-
known example of Pangaea, initial stages of extension have re-
cently been linked to subduction dynamics along the girdle of
the supercontinent (Keppie, 2015). We suggest that subduction dy-
namics may play an important role in supercontinental breakup,
for Pangea as well as Rodinia. Either the extended or the alter-
native ‘missing-link’ configuration supports a valid connection be-
tween Australia, Tarim, and Laurentia near the center of Rodinia
at least until ~720 Ma. Rodinia supercontinent breakup, comple-
mentary to subduction rollback, retreat, and large-magnitude rota-
tions of arc-bearing terranes in at least Tarim (if not other central
Asian cratons), appears broadly similar to the Mesozoic breakup of
southern Gondwana. Cratonic fragmentation assisted by marginal
subduction-arc retreat may be an important phenomenon of global
geodynamics through the supercontinent cycle.
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