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Structural biology meets data science: does anything

change? n
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Data science has emerged from the proliferation of digital data,
coupled with advances in algorithms, software and hardware (e.g.,
GPU computing). Innovations in structural biology have been driven
by similar factors, spurring us to ask: can these two fields impact one
another in deep and hitherto unforeseen ways? We posit that the
answer is yes. New biological knowledge lies in the relationships
between sequence, structure, function and disease, all of which play
out on the stage of evolution, and data science enables us to
elucidate these relationships at scale. Here, we consider the above
question from the five key pillars of data science: acquisition,
engineering, analytics, visualization and policy, with an emphasis on
machine learning as the premier analytics approach.
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Introduction

The term Structural Biology (SB) can be defined rather
precisely as a scientific field, but Daza Science (DS) is more
enigmatic, at least currently. The intrinsic difference is
two-fold. First, DS is a young ficld, so its precise meaning-
based on what we practice and how we educate its practi-
tioners — has had less time than SB [1,2] to coalesce into a
consensus definition. Second, and more fundamental, DSis
interdisciplinary to an extreme; indeed, DS is not so much a
field in itself as it is a way of dving science, given large
amounts of diverse and complex data, suitable algorithms
and sufficient computing resources. Such is the breadth and
depth of DS that it has been described as a fourth paradigm
of science, alongside the theoretical, experimental and
computational [3,4]. Because it is so vast and sprawling,
a helpful organizational scheme is to consider four V’s and
five P’s that characterize data and DS (Figure 1).

T'he four V’s describe the properties of data: volume, velocity,
variety and veracity. The P’s are the five disciplinary pillars
(P-i through P-v) of DS (Figure 1): (i) data acquisition, (ii)
data reduction, integration and engineering, (1) data analysis
(often via machine learning), (iv) data visualization, prove-
nance and dissemination, and (v) ethical, legal, social and policy-
related matters. 'The P’s are interrelated, as are the V’s. For
example, the fifth pillar leans into each of the other four: a
host of privacy matters surround data acquisition, aggrega-
tion can have unforeseen security concerns, analytics algo-
rithms can introduce unintended bias, and dissemination
policies raise licensing and intellectual property issues.
Similarly, many modes of data analysis (P-iii) rely on
advanced visualization approaches (P-iv). The P’s also
closely link to the four V’s. For example, P-i, the dara
acquisition  pillar, clearly relates to wvolume and
velocity. More subtle linkages also exist, e.g., between dara
analysis and variety: in structural biology, hybrid approaches
[5-7,8°] involve joint integration/analysis of heterogeneous
varieties of data (e.g., cryo-EM, mass spectrometry, cross-
linking), for instance via a Bayesian statistical formulation of
the structure determination process [9,10]. The philosophy
and epistemology of DS is an entire field unto itself, and
helpful starting points can be found in recent texts [11°°].

The rest of this review focuses on the junction of data
science and structural biology. We consider DS
approaches that have been applied in SB recently, includ-
ing examples from crystallography and protein interac-
tions. We focus mostly on pillar P-iii (Figure 1), and
specifically machine learning. In so doing, we largely
ignore traditional disciplinary labels. For example, the
junction of DS and SB could be viewed as simply expand-
ing the field of structural bioinformatics [12]; but, such
disciplinary labels and boundaries matter less than the
actual scientific impact. Analogously, definitions of ‘ze
internet’ vary greatly, yet the impact of the internet on
science is unmistakable. For convenience, we use the
term ‘SB’ as including structural bioinformatics, simply to
distinguish what has gone before versus what may lie on
the horizon. We suspect much lies on the horizon: akin to
the rapid growth [13] of databases such as the Protein
Data Bank (PDB; [14]), our assessment of bibliometric
data (Figure 2) suggests that data science will profoundly
impact the biosciences, including structural biology. (The
best-fit curve in Figure 2 is supra-exponential, with no
inflection point in sight.) Conversely, can SB impact the
broader field of DS? This has yet to occur in a definitive
way, but, given the maturity of SB as a discipline, much
can be learnt from it and its history; thus, we start with a
short review of how SB might influence DS.
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SB mapped onto the five pillars of DS, and in relationship to the four V’s of big data. DS rests upon five central pillars, schematized in (a) as (i) data
acquisition; (i) data integration & engineering; (i) data analytics (e.g., machine learning); (iv) visualization, provenance and dissemination; and the (v) ethical,
societal, legal and policy aspects. General concepts and keywords from the data sciences are near the bottom of each column (e.g., MapReduce, a
distributed computing paradigm), while more domain-specific examples rest atop each column (e.g., structure-based drug design [SBDD], middle column).
A band of opportunity arises as SB meets the data sciences. Realizing these potential opportunities requires big data, which enables a question or system
to be addressed via DS approaches like deep learning. The four V’s of big data — volume, velocity, variety and veracity — are shown in (b), illustrated by
vignettes from SB. As indicated, the volume and velocity characteristics are intertwined; for instance, modern X-ray diffraction technologies enable shutter-
less data collection, with upwards of many millions of diffraction patterns acquired per day (a concomitant increase in the rate of structure determination
means growth in the volume of the PDB). Fits of the data in the PDB histogram (b) to different functional forms — (i) a simple power law, (i) a pure
exponential, (iii) a stretched exponential and (iv) the product of an exponential and a power law — reveal form (iv) to be the best fit (orange trace). The
Variety panel illustrates the challenge addressed by ‘hybrid methods’: data arise from cryo-EM, X-ray diffraction, NMR spectroscopy, molecular
simulations, chemical cross-linking/mass spectrometry, phylogenetic analyses and a host of other potential approaches. DS provides a framework for
integrating such data in an optimal manner (in an information theoretic sense) so as to create 3D structural models.

What structural biology has to offer data
science

Open science

SB has pioneered open science through the provision of the
PDB and many derivative data sources. The complete
corpus of structural information in the PDB is free of
copyright and is available for unfettered use, non-commer-
cial or otherwise (P-v). Moreover, community practices—
such as virtually no journal publishing an article without its
data deposited in the PDB [15]—is a precedent that, if
broadly adopted in other disciplines, would deepen the
amount and diversity of data available for DS-like
approaches in those other scientific and technical domains.
The creation and free distribution of software (SW) tools
has echoed this trend, as epitomized by the Collaborative
Computational Project 4 (CCP4); developed and meticu-
lously maintained since 1979 [16], the CCP4 suite has been

a mainstay of the crystallographic structure-determination
process. CCP4and kindred projects, alongside myriad other
SW tools and attendant data, have fostered an open disci-
pline. DS draws upon data and ideas from a wide range of
disciplinary areas, but some of these areas have been less
open than SB, at least historically. To succeed, we believe
that any DS must abide by the ‘FAIR’ principles, enabling
researchers to Find, Access, Interoperate and Reuse data and
analytics [17°]. SB has exercised this for decades, and is thus
positioned to lead the way.

Reproducibility

In principle, reproducibility is the bedrock of the scientific
enterprise. And, as a byproduct of open science, reproduc-
ibility has been central in SB, though often less so in other
realms of DS. Cultural differences across various disci-
plines, often driven by (perceived) competitive pressures,
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The recent surge in publishing activity for machine learning in the
biosciences, shown here via bibliometric data obtained for the PubMed/
MEDLINE (orange) and ISI Web of Science (blue) literature databases.
The overlaid histograms show the number of publications in which the
string ‘machine learning’ co-occurs in the title or abstract fields; the
precise PubMed query was ‘machine learning[Title/Abstract]’, and the
string ‘machine learning AND bio* was used for an IS| Topic search.
Both datasets were fit with the same four functions listed in Figure 1. For
both PubMed and ISI, a subtle crossover occurs wherein a supra-
exponential (form iv) gives a better fit than a pure power law; such highly
nonlinear ‘J-curves’ or ‘hockey stick curves’ arise in systems subject to
singularly disruptive forces (e.g., human population growth after the
Industrial Revolution, climate temperatures in the past century).
Intriguingly, the approximate year of crossover — 2010 for the ISI data,
2012 for PubMed — is generally regarded as the ‘breakthrough year’ for
Deep Learning (e.g., Google Brain learned a ‘cat’ de novo, from
YouTube data), enabled by advances such as GPU computing,
algorithmic approaches such as ReLU and ‘dropout’, and vast stores of
labelled training data (ImageNet). Judging by these charts, ML has
begun driving a substantial transformation in the biosciences.

have dampened what could be the norm. In SB, the
systematic, pipelined nature of many structure-determina-
tion approaches has facilitated reproducibility. A notable
example is the effort, spurred by structural genomics, to
annotate large-scale macromolecular crystallization experi-
ments and to conduct careful target tracking [18]; in prin-
ciple, such efforts afford a rich source of data, exploitable by
DS via data mining and machine learning methods [19].

Workflows, high-performance computing

Reproducibility, in turn, is facilitated by workflows. Some
workflow management systems (WMS) are domain-spe-
cific (e.g., Galaxy for genomics [20,21]), while others are
more generic or monolithic (e.g., KNIME [22]); lightweight
toolkits also exist, providing libraries to write custom par-
allel-processing pipelines (e.g., [23,24]). Again, structural
genomics and other data-rich areas (e.g., large-scale biomo-
lecular simulations) have prompted the development of
WMS solutions. Closely related to workflows, recent tech-
nologies that have become best practices in DS—such as
Jupyter notebooks (as a user interface) and Docker
‘containers’ (forvirtualized runtime environments)—likely
will be adopted more broadly in SB, as research questions
become more quantitative and as data-intensive

computational steps are pursued via distributed computing
and other modes of HPC. Cloud computing and related
approaches, such as the MapReduce paradigm (implemen-
ted in Hadoop), rapidly entered genomics and bioinformat-
ics early on [25] and are becoming more widely adopted in
other biosciences too, including SB [26°]; other examples
include large-scale biomolecular modeling for virtual
screening and drug design [27,28] and, more recently,
pipelines for cryo-EM structure determination [29].

Structural biology has relied upon HPC since the dawn of
supercomputing in the 1960s. A recent example using HPC
involves the phasing of diffraction data. Recognizing the
wealth of structural information in the PDB, and that
molecular replacement (MR) can be treated as embarrass-
ingly parallel across all these structures, the BALBES [30]
pipeline leverages all known 3D structures to create and
then use MR search models in an automated manner. This
approach was recently extended to fitting 3D models into
cryo-EM maps [31]. Somewhat similar in spirit, PDB_REDO
endeavors to automatically improve all PDB structures by
re-refining 3D models against the original X-ray data, uti-
lizing established refinement approaches (e.g., TLS) and
grid computing [32,33]. As a final example, a recent and
highly creative approach to crystallographic phasing has a
strong DS feel: Encoding phase values as 9-bit strings
(genes), and applying a genetic algorithm for sampling/
optimization, Yeates et a/. [34] developed a crowdsourced
gaming platform for @b initio phasing, at least to low resolu-
tion. Such ‘citizen-science’ [35,36] approaches will likely
play broader roles in SB (and DS) in the coming decade.

Visualization

Visualization has played a key — indeed, defining — role in
SB since the 1950s, when the first macromolecular struc-
tures were determined. Concepts, principles and best prac-
tices for biomolecular visualization can be found in many
reviews [37,38,39°°]; the supplement in [37] traces the
historical development of this field. Recent advances have
occurred in web browser-embedded, hardware-accelerated
tools for interactive molecular visualization, such as the
NGL Viewer [40]; in the future, a greater share of visuali-
zation work likely will occur within browsers. To transcend
how molecular renderings are usually communicated (as
static images), we suspect that much could be gained by
comparing visualization techniques in DS and SB. Though
iconic and highly informative, beware the ‘curse of the
ribbon’: macromolecules are dynamic, multifaceted enti-
ties, and static renditions are but a starting point. For similar
reasons, there isa need for molecular visualization platforms
that transcend simple graphical viewers — that enable
facile, flexible and extensible integration of other forms/
modalities of data and novel visualization techniques [41],
such as the data-intensive sort that often arise with big data.
We believe that DS tools can address this need; note that
texts are becomingavailable on this topic, such as the recent
Big Data Visualization [42]. Ideas and methods from beyond
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SB—such as ‘chord diagram’ layouts in genomics [43],
termed ‘hierarchical edge bundles’ [44] in computer gra-
phics — can be applied in SB, for instance to visualize data
associated with hierarchical clustering of protein structural
differences (e.g., see the figures in [45]).

Finally, note that further areas of SB x DS overlap can be
identified, but are not treated here because of space limita-
tions. Three such examples are: (i) database (DB)-related
issues, including structured versus unstructured data, rela-
tional versus non-relational DBs and query languages [46°];
(ii) systems and network biology [47°]; and (iii) ontologies
and formal knowledge representation systems [48,49].

What data science analytics has to offer
structural biology

DS analytics spans a vast territory, including applied
mathematics, statistics and computer science. Here, we
focus on two machine learning (ML) approaches — one
which has received much recent attention (deep learning
[DL]), and one for which we envision possible applica-
tions in SB (natural language processing [NLP]). A glos-
sary is included (Box 1), and the Supplementary material
offers: (i) a brief primer on ML, (ii) a concise historical
note on early applications of neural networks in SB, and
(111) a short sketch of the general applicability of data
sciences in structural biology and other biosciences.

Machine learning applied to biomolecular interactions

In a recent wave of activity, DL. methods have been
applied to model and predict protein—ligand and protein—
protein interactions (PLI, PPI). Deep learning is a type of
ML that employs deep (multi-layered) neural network
(NN) architectures; training and deploying such architec-
tures is now feasible because of the exceptional compu-
tational performance of modern GPU-equipped clusters.

Accurately predicting and modeling PLIs (structural poses,
energetics) would advance many areas, both basic (e.g.,
evolutionary analyses of ligand-binding properties) and
applied (e.g., drug design and discovery). Historically, this
field has largely relied on two distinct methodological
approaches: quantitative structure-activity relationships
(QSAR) and 7 stlico docking. Virtual screening, wherein
one docks against large libraries of small compounds, is an
established example of DS in SB; as a newer example, note
that workflow-based approaches to high-throughput crystal-
lographic fragment screening have a significant DS compo-
nent [50]. Extensions of the basic QSAR and ligand-docking
approaches also call upon DS. For example, recognizing that
a protein exists as an ensemble of thermally-accessible
conformational states in solution, simulations have been
combined with docking in the ‘relaxed complex’ scheme
to capture receptor flexibility [51]. Similar in spirit, data-
intensive ‘ensemble-based” methods [52] can enable
dynamic pharmacophore models (e.g., [53]) to be devised.
In a recent approach, a workflow to discover ‘cryptic’ (and

Glossary
The following terms, organized thematically, appear in this review or are pervasive in the literature. As
part of the DS jargon, the terminology may be unfamiliar and is therefore included here for convenience.

Statistical and machine learning

Classifier: An algorithm or function that maps input data into one of at least two categories (or classes). For
instance, ifonly two classes are possible (e.g., True or False, Even or Odd), and ourinput data are integers, then the
‘modulo operation (mod 2) could serve as a binary classifier.

Model: A formal relationship between input data and some set of outputs; another way to view this is as a
mapping, association rule or mathematical function. As a concrete example, say we have an ideal, one-
dimensional spring on a frictionless surface. Say we collect dense (finely-sampled) data on the precise position (x)
of the spring’s terminus at many time-points (i.e., we have a time-series, {x(t)}). To elucidate the system’s
behavior in terms of our data, we may propose an equation, say the sinusoid x(t) = A - cos(wot + ¢), where
A is amplitude, ¢ is phase and wp is angular frequency. This functional form is what we mean by a
model: the precise parameters will vary from system to system (different springs, stiffnesses, etc.), and what
matters instead is the functional form of the mapping (in this case, the equation of motion models simple
harmonic oscillation). For more complex systems —e.g., recognizing patterns in images, delineating protein
structures — such simple, closed-form expressions generally do not exist (nevermind us being able to
propose thema prioril); statistical approaches cometo the rescue by offeringaway to learnamodel for the set
of input < output associations.

Regression: A statistical approach to estimate relationships amongst variables; e.g., linear regression
will estimate a linear relationship (or slope) between two or more variables, which can be used for
purposes of prediction and classification.

Random forest: An ensemble of decision trees.

Decision trees: A classifier that follows if~then—else decision rules to traverse a directed graph, thus
predicting an output. The rules, or nodes of the tree, are the features of the model sorted by information
gain when split on certain values of the features.

Supervised, unsupervised learning: See the Supplementary material for a description of these terms.
Support vector machine (SVM): A classifier that finds a linear discriminatory boundary between classes,
generally via regression in a higher-dimensional space or application of kernel methods (most simply, a
‘kernel’ can be viewed as a measure of similarity between two feature sets, e.g., the dot product).

Neural networks and deep learning

Neural network (NN): Also known as an ‘artificial NN’ or ‘multilayer perceptron’ in the older literature,
these are mathematical networks of nodes, which are the processing units (loosely, neurons; also termed
‘hidden units’), and edges, which link the nodes. All NNs consist of at least two layers that interface with
the environment: an input layer of nodes (receives input data) and an output layer (emits processed data
[i.e., predictions, results]).

Feedforward NN: A NN architecture wherein information flows through the network unidirectionally, from
the input layer to the output layer. This is possible because the edges (links) are directed from one node to
another; this network topology is a type of directed acyclic graph (DAG), and other DAG-based NN
architectures are conceivable.

Convolutional NN (CNN):  ANN that applies convolutional operations, which take local, connected, sub regions
of aninput matrix as neurons. Inputs are typically 2D images, which is a 2D matrix of pixels, where the sub regions
are smaller pieces of the image, or 3D volumes where smaller cubes traverse the volume.

Deep NN (DNN): Most simply, a NN architecture that includes multiple hidden layers.
Backpropagation: A method to update learnable weights of the NN interconnects between nodes by
transmitting errors backwards (in the direction from the output layer towards the input layer); this backwards
propagation of errors, in tum, corresponds to the network improving as a predictor, i.e., the network can be said to
"learn’. More concretely, backpropagation proceeds by applying the chain rule to compute the gradient of the
error (the loss function) at each filter (node) for a given layer, and iteratively using the gradient values to update the
weights; therefore, this is fundamentally a gradient descent algorithm, as found in many classes of optimization
problems.

Loss function: A function to compute the error between the true and predicted values. For example, this
could be as simple as the Euclidean distance between estimated and true (target) values.

Dropout:  Atechnique to address overfitting by removing a randomly selected subset of nodes, in a single layer,
during training (a forward and backward pass). This allows the NN to learn more robust features by testing different
possible subsets of nodes; typically, on the order of 50% of nodes are silenced.

Regularization: A technique to optimally balance the perils of underfitting/overfitting to training
datasets.

Epoch: One forward and one backward pass of all training data. Many epochs (typically ranging from
30 to 1000) are usually required before a NN model converges.

Natural language processing

Corpus: Most simply, a collection of information. This term, prevalent in the NLP field, is frequently used to
generically refer to written data (books, journals, etc.), where it often means a comprehensive collection on a
particular topic (all writings by particular authors, or about a particular protein, etc.).

Topic: Most simply, a statistical distribution of words, each word being drawn from a well-defined set of
words (a fixed vocabulary); a topic can also be viewed as a theme. In many ways, a given document is
defined by its collection of most prevalent topics.

Topic modeling (TM): A set of unsupervised algorithms to discover the topics in a corpus of (unstructured)
information, generally by applying statistical algorithms to analyze and model word distributions.

Latent structure: A highly general concept, referring to there being some general correlation (or
nonuniformity, or ‘structure’) among the hidden (latent) random variables that define the probabilistic
distributions underlying models such as LDA. In TM, we seek to learn these relationships between hidden
variables (i.e., the structure), which manifests in the form of (non-random) topics.

Latent Dirichlet allocation (LDA): A type of TM wherein a document (a ‘bag of words’) is viewed as a
probabilistic distribution over a set of topics; a topic, recall, is a distribution over words. A rather involved
generative statistical model underlies LDA; a ‘generative’ model means that the observed data (the document, its
words, their distributions) are taken as having been generated via sampling a hidden distribution (a random
process, or, ifthere is latent structure, anon-random process). Briefly, each document’s set of topics are taken to
be Dirichlet-distributed, and the words in a document are allocated to its various topics based on this distribution.
(In the Bayesian sense of joint distributions, priors, etc., the Dirichlet distribution is the conjugate prior to the
multinomial distribution that is taken as explaining the distribution of topics.)

druggable?) binding sites was developed by integrating
comparative structural analyses, pocket-detection algo-
rithms, fragment docking, molecular simulations, and an
ML classifier [54°]. In another data-driven, structure-based
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approach, Zhao e al. [55] recently analyzed the human
kinome by integrating ligand-binding data with protein-
ligand ‘interaction fingerprints’ and a sequence order-inde-
pendent profile—profile alignment method ([56]; useful for
determining specificity among similar ligand-binding sites).

Recent work on predicting PLIs has directly employed ML,
including for the interrelated goals of virtual screening, affinity
prediction and pose prediction. "The application of statistical
and ML approaches, in particular deep neural nets, to the
PLI problem was reviewed recently [57°°]. Here, we men-
tion only that a surge of new work has applied convolutional
neural nets (CNNs) to the PLI problem — references
[58°°,59-63] comprise a partial list from just the past year.
Notably, these purely ML-based approaches rely on human
expertise only in the early stage of choosing structural
descriptors (hydrophobicity, ionizability, etc.), which are
input features for NN training. The protein structure (either
as a complex, or just receptor) can be treated as a 3D image,
wherein atoms that compose the structure are assigned to
discrete volumetric elements (voxels). CNNs excel at learn-
ing from 2D image data [64°°], suggesting that their 3D
counterpart, 3D deep CNNs, can be used for volumetric
analysis. Leveraging these ideas, the 3D DCNN of DegpSite
achieved state of the art performance, having been trained on
known protein-ligand structures [58°°].

As with PLIs, protein—protein interactions (PPI) are
critical to much of cell biology, and are another focal
point of recent ML efforts. Were all binary PPIs known,
they could be used to build whole species interactomes
[65] and inter-species (e.g., host-pathogen) interactomes
[66,67], which, in turn, would aid elucidation of signaling
pathways [68], metabolic networks (Recon3D [69]), and
evolutionary pathways [70]. ML can be used to predict
which two proteins interact and what specific residues
(‘hot-spots’) mediate the interaction (i.e., binding sites).
If both binding sites (or interfaces) are known, they can be
used to model structures of their complexes.

"Thus far, the optimal information for predicting interacting
residues has been at the sequence level, using residue co-
evolution. Intuitively, residues that co-evolve between two
proteins are likely to contact one another. Such sites can be
predicted using ML, and DL methods like maximum
entropy models or 2D-CNNs [71-75]; a drawback to such
approaches is the need for sufficiently large protein families.
For purposes of structure prediction, the same approach can
be used to predict residue—residue contacts from one protein
family alignment. One can also predict PPIs from structure if
a query protein is homologous (based either on sequence or
structure) to one protein in a known PPL If the identity of
only one interaction partner is known, and the binding sites
in the other partner unknown, binding sites and partners can
be predicted by structurally aligning a query to crystal
structures of complexes, using either local (e.g., PRISM
[76]) or global (e.g., IBIS [77]) 3D superimpositions.

Residues from the query protein that align to one side of
an interface are predicted to be a part of the binding site.

ML methods can also predict binding-site residues given
the 3D structure of only one partner. Here, atomic and
residue-level features (e.g., hydrophobicity, phylogenetic
conservation) are calculated for all structures in the PDB.
True binding site residues are taken from crystallized
complexes, split into monomers, and used to train a classi-
fier (SVMs, Decision Trees, etc.). Unfortunately, such
predictors have suffered from low precision and recall
[78], perhaps because the 3D spatial details of the data
are not retained but rather enter the model only as ’flat-
tened’ features (or, assumptions of independence are
applied incorrectly). Given current limitations and difficul-
ties, it is unsurprising that DL is now starting to be applied
to PPI modeling and prediction. While only biomolecular
interactions are discussed here, we envision that contem-
porary DL approaches, such as variational autoencoders,
will play major roles in areas such as structure prediction
[79], protein design and evolutionary analyses [80].

Natural language processing applied to biomolecular
assemblies

NLP is a form of machine learning concerned with proces-
sing and analyzing language, written or spoken. Here, *pro-
cessing’ can mean many things: analyzing frequencies and
co-occurrences of words and higher-order units (7-grams),
parsing texts in syntactic/grammatical analyses, information
retrieval, machine translation, language comprehension (and
synthesis), and beyond. The scope of this topic is vast, and
helpful biosciences primers are available [81-83]. NLP
methods play key roles in routine tasks such as search/query
(databases, knowledge-bases), information extraction and fext
summarization; indeed, you may have reached this article via
a web-query using the PubMed search engine. PubMed is
but one example of NLP in biomedical informatics, and it
remains an active area of research; recent examples include a
‘neural word embedding’ approach for document matching
in PubMed [84] and development of a flexible zerm < concepr
matching system for biomedical pipelines [85]. Apart from
search and mining in biomedical literature, might NLP
impact structural biology in other ways?

NLP-like approaches have been applied to detect the sub-
cellular localization of proteins [86,87] and, recently, to
predict structures of protein complexes [88]. Notably, using
MIL~enhanced NLP, versus a purely text-mining-based
NLP approach, was found to significantly improve the
structural predictions of complexes [89]. Note that both sorts
of problems — subcellular localization and structural model-
ing — are distinctly spatial, or image-based, as opposed to
textual. For this reason, we expect that a relatively new and
highly-generalized approach to NLP, termed topic modeling
('TM), holds great promise in the biosciences. In TM, ‘topics’
are extracted over a corpus of unstructured data (e.g., a set of
books) using a probabilistic machine learning framework;

www.sciencedirect.com

Current Opinion in Structural Biology 2018, 52:95-102



100 Biophysical and computational methods

fundamentally, this is achieved by examining the distribu-
tions of words (a ‘bag of words’ ansatz) under a generative
statistical model, such as the latent Dirichlet allocation
(LLDA). An introductory review of TM and a recent overview
of TM-like approaches in bioinformatics can be found in refs
[90°]and [91°], respectively. T'o extend TM to other arecas —
including even the learning of topics (themes) from non-
textual data like protein structures — the basic issue is one of
defining a suitable mapping of one’s problem to TM’s core
framework of document «~ topic «~ word. As a potential
horizon, we suggest that T™M may be applicable to the
analysis of protein folds and other biomolecular structures.
Such an application of NLP to what is a fundamentally
geometric problem would find precedent in the pioneering
development of a generative Bayesian hierarchical model for
scene classification from raw image data [92].

Conclusion

In addressing the topic posed here — SB meets DS — we
have considered the influences of these fields on one
another, given their respective stages of maturity. SB’s rich
history could positively influence the five pillars of DS
(Figure 1). For example, data collection and processing
often entails well-established workflows, standards and
practices (e.g., structure validation), such that the results
(3D structures) can be taken as ‘gold standard’ data in
downstream analyses. Moreover, SB uses some approaches,
like ontologies (for standardization, automated relationship
discovery), that are not as prevalent in DS, but which could
enjoy broader application. Notably, the data-access and
software-sharing policies that have evolved in SB commu-
nities for decades can serve as positive models for DS.

Conversely, DS is being driven by economic, political and
social factors that reach far beyond science itself (technol-
ogy, commerce, etc.), and which inspire scientists to further
innovate across the five pillars of DS. The links to SB are
many and varied, and here we have touched on but two of
them (ML more broadly, and NLP in particular). Details of
ML and NLP approaches are beyond the scope of this
work, which has only sought to briefly sketch potential
synergies between these DS-based approaches and SB.

We answer our question, then, with a resounding yes: DS is
already impacting SB, and we argue that the converse could
be true, too. The rate of change is less certain, but is clearly
steep: Figure 2, based on the recent biosciences literature,
suggests that we are at the cusp of a major impact. Realizing
the full benefits of this gold-rush moment will require more
multidisciplinary training of students, support from scien-
tific bodies, deep funding and, most importantly, a general
willingness by the respective scientific communities.
These are interesting times indeed.
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This Supplementary Material provides (i) a brief primer on machine learning, (ii) a concise historical
note on early applications of neural networks in structural biology, and (iii) a short sketch of the gen-
eral applicability of machine learning/DS-based approaches in structural (and other) biosciences.

A brief primer on machine learning

Machine learning (ML) emerged from efforts in the artificial intelligence (Al) communities of the 1960s.
With its possibilities and promises oversold, Al went on to largely languish in the ensuing decades. A re-
surgence occurred in the foundations of statistical learning theories and algorithms in the 1980-90s; cou-
pled with advances in computing power in the past decade, this resurgence yielded a silent revolution in
ML from the 1990s to the early 2000s. ML has advanced so significantly in the past decade that, today, it
is often taken as synonymous with Al. Data-rich scientific disciplines, such as the biosciences (and par-
ticularly structural bioinformatics), have increasingly adopted ML approaches, driven by (i) improvements
in algorithms, (i) software libraries and implementations that have become more accessible to non-
specialists, (iii) training data that have become richer in complexity and more abundant, and (iv) remarka-
ble strides in commodity computing power, chiefly via graphics processing units (GPUs) and approaches
such as general-purpose computing on GPUs (GPGPU). ML enjoys great visibility because of its successes
in pattern recognition, computer vision, image classification, difficult games (e.g., Go [1], which has a high
branching factor), and various types of natural language processing (information retrieval, machine trans-
lation, etc.). The ability of an algorithm to 'learn' directly relates to the quality, complexity and availability
of the data from which it learns. As a cautionary note, life sciences data are complex, with many potential
confounders; recognizing these limitations will enhance any application of ML to structural biology (SB).

How do ML approaches 'work' to model a system? (What it means, most generally, to 'model' a sys-
tem is described in the Glossary that accompanies the main text.) First-principles, physically-grounded
theories are intractable for systems as complex as those encountered in biology, and the core premise of
ML is to take a wholly different approach. Rather than force models on data (e.g., a harmonic oscillator
to model bond vibrations), the approach is to allow models of a system to emerge (be learned) from the
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data. That is, the defining feature of ML is its focus on algorithms that can learn from (and make predic-
tions based on) data. That is why ML is so central in data analytics.

Data, in turn, are central in ML because they can be used in advanced statistical frameworks and
probabilistic algorithms to model (or learn) literally any system [2]. More concretely, to 'model' means to
learn some function, f, that maps f: X » Y. With enough data and sufficient sampling, statistical meth-
ods can learn associations between inputs (X) and outputs (). Indeed, a sufficiently well-sampled sys-
tem can be viewed as nearly synonymous with the data describing it. In addition to the basic statistical
approaches to be applied, also required are: (i) large volumes of data, (ii) an objective/target function to
train the ML system, sometimes referred to as a loss, cost, or fitness function, and (iii) an algorithm to
sample the solution space, typically to find extrema of the objective function; the algorithm drives the key
training/learning stage. The word 'algorithm' is used in a quite general sense in ML: it can be conceptually
straightforward, as with the idea of a genetic algorithm, or it may correspond to something fuzzier, such
as the directional flow of information (data, weights, etc.) in a feed-forward neural network (NN). In NNs,
the network, with its weight update scheme and other parameters, is the algorithm. In NNs, the learning
algorithm often comes from a class of iterative optimization methods; stochastic gradient descent, with
backwards propagation of errors (‘backprop') to update weights, is one such training method. Some of
the terminology in this field is provided in an accompanying Glossary.

A fundamental distinction between ML algorithms is whether they are supervised or unsupervised,
and a related issue is labelled versus unlabelled data. Systems typically analyzed by ML are characterized
by data that populate high-dimensional, multi-parameter spaces (hence the need for big data). A super-
vised learning method is trained against reliable, labelled data (e.g., if an image is a 'cat’, 'lion', 'dog’, etc.),
and then the trained model can be used to classify unseen input data. The two basic types of learning—
supervised and unsupervised—fall naturally along the labeled/unlabeled divide: a learning method is said
to be supervised if it is trained against labelled target data prior to production usage (NNs are a prime ex-
ample), whereas an unsupervised algorithm or classifier 'learns' (detects) any inherent/latent structure in
unlabelled input data (in addition to NNs, clustering is an example of an unsupervised approach often en-
countered in SB, e.g. [3]).

Early applications of neural networks in structural biology: A concise historical note

ML's historical roots in Al reflected particular types of goals: major areas of early (and ongoing) activity
included pattern recognition (e.g., in speech), computer vision, image classification, and information re-
trieval (text mining and related fields, such as machine translation). Notably, the widely-recognized appli-
cations of neural networks and other ML approaches in those areas (see, e.g., [4] for an old review) were
concurrent with many of the first forays of NNs in structural biology—early examples include the predic-
tions of protein secondary structures [5], transmembrane helices [6], signal peptides and other sorting
signals [7], and subcellular localization of proteins [8].

General applicability of ML/DS-based approaches in structural (and other) biosciences: A short sketch

The broad applicability and general efficacy of machine learning/data science—related approaches in
structural biology is closely tied to one of the V’s of big data—namely, Variety. Variety is easily under-
stood, though not often easily addressed, in structural biology. In short, variety refers to the various
forms of data being considered (generated, transmitted, aggregated and otherwise processed). A hall-
mark of modern, data-intensive analyses in structural biology, as well as other biosciences (and, indeed,
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in any scientific or technical realm), is that the data are typically of multiple disparate types, and we seek
a way to leverage the intrinsic information content of each of those types in order to achieve a goal—be
it a decision (in business analytics or marketing) or an improved representation or model for a system (in
structural biology). The issue of types or modalities of data is crucial—how might one handle heteroge-
neous (and potentially large) sets of data? Here, 'handle' does not mean simply the act of data-wrangling
(a major effort in DS, in and of itself [9]), but rather how to most effectively 'combine' or utilize the vari-
ous types of data to allow one to formulate more complete, accurate and predictive models than would
be otherwise possible (with only a single type of data/information)? This, in essence, is arguably the key
goal in all the various domains to which DS is applied: we want predictive models (actionable, and testa-
ble/verifiable/falsifiable). Ideally, the models are interpretable, too, in terms of some underlying physical
theory or molecular principles (that, indeed, is a gripe sometimes lodged against the 'black box' aspect of
ML approaches such as neural networks). This general topic is precisely where the variety ‘V’ of data sci-
ence can flourish in structural biology and more broadly in the biosciences: a central characteristic of DS
approaches (like most ML approaches) is that they generally provide a data-analysis/problem-solving
framework that is highly generalized (agnostic of the particular problem domain), that is built upon a well-
principled statistical foundation (e.g., usage of maximum likelihood estimation in crystallographic phasing
and refinement [10]), and that is abstracted away from the details of the particular problem at hand. Itis
for this reason that, for instance, decision trees and random forests can be applied to problems as diverse
as enzyme function prediction [11], structure-based prediction of protein-protein interfaces [12], and
RNA splice-site recognition [13]. And, it is precisely this principle that makes data science so powerful for
integrative/hybrid methods for structure determination.
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