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Abstract

Increasing tree mortality from global change drivers such as drought and biotic

infestations is a widespread phenomenon, including in the boreal zone where cli-

mate changes and feedbacks to the Earth system are relatively large. Despite the

importance for science and management communities, our ability to forecast tree

mortality at landscape to continental scales is limited. However, two independent

information streams have the potential to inform and improve mortality forecasts:

repeat forest inventories and satellite remote sensing. Time series of tree-level

growth patterns indicate that productivity declines and related temporal dynamics

often precede mortality years to decades before death. Plot-level productivity, in

turn, has been related to satellite-based indices such as the Normalized difference

vegetation index (NDVI). Here we link these two data sources to show that early

warning signals of mortality are evident in several NDVI-based metrics up to

24 years before death. We focus on two repeat forest inventories and three NDVI

products across western boreal North America where productivity and mortality

dynamics are influenced by periodic drought. These data sources capture a range of

forest conditions and spatial resolution to highlight the sensitivity and limitations of

our approach. Overall, results indicate potential to use satellite NDVI for early

warning signals of mortality. Relationships are broadly consistent across inventories,

species, and spatial resolutions, although the utility of coarse-scale imagery in the

heterogeneous aspen parkland was limited. Longer-term NDVI data and annually

remeasured sites with high mortality levels generate the strongest signals, although

we still found robust relationships at sites remeasured at a typical 5 year frequency.

The approach and relationships developed here can be used as a basis for improving

forest mortality models and monitoring systems.
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1 | INTRODUCTION

Tree mortality from drought, heat, and pests and pathogens is

increasing in many locations globally in response to global change

drivers, primarily climate change (Allen et al., 2010; Brienen et al.,

2015; Carnicer et al., 2011; Kautz, Meddens, Hall, & Arneth, 2017;

Kharuk, Im, Oskorbin, Petrov, & Ranson, 2013; van Mantgem et al.,

2009; McDowell et al., 2016). Tree mortality precipitates a cascade

of ecosystem impacts relevant for carbon cycling, energy budgets,

nutrient cycling, hydrology, habitat and food webs, and ecosystem
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services (Adams et al., 2012; Anderegg, Kane, & Anderegg, 2013;

Anderegg et al., 2016; Berner, Law, Meddens, & Hicke, 2017; Bres-

hears, Lopez-Hoffman, & Graumlich, 2011; Edburg et al., 2012;

Huang & Anderegg, 2014). If mortality occurs over large enough

areas, it can accelerate shifts in biome distributions (Allen & Bres-

hears, 1998; Clifford & Booth, 2015). Drought, including associated

high temperature stress, is the primary climate characteristic associ-

ated with tree mortality (Allen et al., 2010; Williams et al., 2013).

Although mortality from a single drought event can be severe

(Anderegg, Plavcova et al., 2013; Michaelian, Hogg, Hall, & Arse-

nault, 2011), mortality is often associated with prolonged or

repeated droughts (Bigler, Braker, Bugmann, Dobbertin, & Rigling,

2006; Gustafson & Sturtevant, 2013; Jump et al., 2017; Mitchell

et al., 2013). Drought also combines with pests and pathogens that

are able to exploit dry conditions to weaken and kill trees (Anderegg

& Callaway, 2012; Anderegg et al., 2015; Hicke et al., 2012;

McDowell et al., 2011; Poyatos, Aguade, Galiano, Mencuccini, &

Martinez-Vilalta, 2013; Raffa et al., 2008). Despite its importance,

our ability to model and forecast tree mortality at large scales is lim-

ited. Mortality representations in prognostic ecosystem models are

evolving in complexity and realism (Chang et al., 2014; Davi & Cail-

leret, 2017; Manusch, Bugmann, Heiri, & Wolf, 2012; McDowell

et al., 2013), but are still generally inadequate for many applications

(Adams, Williams et al., 2013; McDowell et al., 2011).

Although they cannot be easily scaled across a landscape or

region, plot-specific statistical models of mortality can have high pre-

dictive power (Bigler & Bugmann, 2003, 2004a,b; Cailleret et al.,

2016; Carus, 2010; Gillner, Rueger, Roloff, & Berger, 2013; Ogle,

Whitham, & Cobb, 2000; Wunder, Reineking, Matter, Bigler, & Bug-

mann, 2007; Yang, Titus, & Huang, 2003; Yao, Titus, & MacDonald,

2001). Their success comes from capturing early warning signals of

mortality in productivity metrics. These signals most commonly con-

sist of declining growth rates, but lower mean growth rates and sub-

tle variations such as increased autocorrelation and variance in tree

ring widths have been documented. Links between low growth rates

and mortality have long been noted by ecologists and foresters

(Wyckoff & Clark, 2000), and quantitative analysis using tree rings,

repeat inventories, and wood anatomy details these signals years to

decades before death (Berdanier & Clark, 2016; Bigler, Gricar, Bug-

mann, & Cufar, 2004; Bigler et al., 2006; Bond-Lamberty et al.,

2014; Coyea & Margolis, 1994; Drobyshev, Linderson, & Sonesson,

2007; Heres, Martinez-Vilalta, & Claramunt Lopez, 2012; Kharuk,

Ranson, Oskorbin, Im, & Dvinskaya, 2013; Kharuk, Im et al., 2013;

Mamet, Chun, Metsaranta, Barr, & Johnstone, 2015; Pellizzari, Julio

Camarero, Gazol, Sanguesa-Barreda, & Carrer, 2016). Typically, tree

vigor is gradually reduced by an accumulation of drought and/or bio-

tic-related stresses and a variety of predisposing genetic and envi-

ronmental factors until an inciting event finally triggers mortality

(Camarero, Gazol, Sangueesa-Barreda, Oliva, & Vicente-Serrano,

2015; Oliva et al., 2016; Pedersen, 1998a, 1998b; Suarez, Gher-

mandi, & Kitzberger, 2004; Voltas et al., 2013).

Remote sensing is capable of observing changes in ecosystem

dynamics, such as forest productivity, from the level of individual

plots to the large spatial scales often simulated by prognostic

ecosystem models. Hence, remote sensing may offer a technique to

provide direct observations and bridge the spatial gap between plot-

based statistical models and coarse-scale ecosystem models of mor-

tality for near-term forecasting (i.e., 5–20 years). The Normalized dif-

ference vegetation index (NDVI) is a widely used remote indicator of

productivity. NDVI is sensitive to the fraction of absorbed photosyn-

thetically active radiation (FAPAR) and can therefore serve as a

proxy for gross primary productivity on relatively long timescales,

such as a growing season (Gamon et al., 1995; Goetz & Prince,

1999; Myneni, Hall, Sellers, & Marshak, 1995; Tucker, 1979). NDVI

can be derived from a variety of sensors covering decades of global

imagery. Advanced Very High Resolution Radiometer (AVHRR),

Moderate Resolution Imaging Spectroradiometer (MODIS), and Land-

sat NDVI time series are widely used and now span 16–37 years.

Each of these products has its own advantages and limitations

related to spatial resolution, temporal coverage, radiometric and spa-

tial fidelity, and processing requirements. To the extent that NDVI

captures productivity, and productivity dynamics portend tree death,

NDVI patterns should be capable of detecting such early warning

signals. These relationships have been suggested (Huang & Ander-

egg, 2014; Vicente-Serrano et al., 2016), but never robustly explored

using observational data.

Boreal forests are an important biome for mortality dynamics.

They contain roughly one-third of global forested area and a similar

proportion of terrestrial carbon stocks (Bradshaw & Warkentin, 2015;

Kasischke, Christensen, & Stocks, 1995; Soja et al., 2007). Climate

has been rapidly warming in these high latitude environments (Hart-

mann et al., 2013) and is projected to continue (Chylek et al., 2016;

Collins et al., 2013). Climate feedbacks are amplified due to the large

biophysical and biogeochemical impacts of disturbance (Betts, 2000;

Randerson et al., 2006), making boreal forests a potential “tipping

element” in the climate system (IPCC, 2014; Lenton et al., 2008).

Despite many boreal forests benefitting from recent warming

(Barichivich et al., 2014; Zhu et al., 2016), there is an emerging

understanding that productivity in the interior continental boreal

regions, particularly Alaska and central-western Canada, is increas-

ingly limited by moisture. Warmer and earlier springs cause higher

immediate productivity (Buermann, Bikash, Jung, Burn, & Reichstein,

2013; Goetz, Mack, Gurney, Randerson, & Houghton, 2007; Rander-

son, Field, Fung, & Tans, 1999), but tend to result in drought stress

and lower productivity later in summer (Barichivich et al., 2014;

Beck, Juday et al., 2011; Buermann et al., 2013; Goetz, Bunn, Fiske,

& Houghton, 2005; Parida & Buermann, 2014). Field-based studies

using forest inventory, dendrochronology, and CO2 fluxes from eddy

covariance corroborate the temperature and drought sensitivity of

boreal forests, with negative responses to temperature increasingly

observed (Barber, Juday, & Finney, 2000; Lloyd & Bunn, 2007; Silva,

Anand, & Leithead, 2010). Sensitivity to drought and high tempera-

tures is species-dependent (Drobyshev, Gewehr, Berninger, & Berg-

eron, 2013; Girardin, Bouriaud et al., 2016; Huang et al., 2010;

Welp, Randerson, & Liu, 2007) and generally highest in dry and inte-

rior sites (Grant et al., 2009; Hember, Kurz, & Coops, 2017a; Ma
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et al., 2012; Ohse, Jansen, & Wilmking, 2012; Tei et al., 2017), but

for some species all site types may be susceptible (Girardin, Hogg

et al., 2016; Mamet et al., 2015; Walker & Johnstone, 2014; Walker,

Mack, & Johnstone, 2015). As a result, NDVI records from AVHRR

and MODIS show areas of the North American boreal forest to be

browning (i.e., declining productivity during the growing season)

since the early to mid-1990s, especially later in the growing season

and in denser stands (Angert et al., 2005; Beck & Goetz, 2011; Bunn

& Goetz, 2006; Goetz et al., 2005; Guay et al., 2014). Warming and

drying have also resulted in extreme mortality events (Hogg, Brandt,

& Michaellian, 2008; Worrall et al., 2013), increasing mean mortality

rates (Peng et al., 2011; Zhang, Huang, & He, 2015), and associated

loss of biomass in mature stands (Chen & Luo, 2015; Chen, Luo,

Reich, Searle, & Biswas, 2016; Ma et al., 2012; Michaelian et al.,

2011).

Here we assess the potential for NDVI to provide early warning

signals of tree mortality in central-western boreal North America.

Our overarching hypothesis is that early warning signals of mortality

can be detected using long-term satellite imagery. We focused on

this region because of its changing climate, drought sensitivity,

potential feedbacks to climate, and proven relationships between

forest productivity and NDVI. Several studies have related NDVI to

site-scale productivity in boreal forests, including from coarse-scale

AVHRR, with considerable success (Beck, Juday et al., 2011, 2013;

Berner, Beck, Bunn, Lloyd, & Goetz, 2011; Bunn et al., 2013; Lloyd,

Bunn, & Berner, 2011). Yet the relationships with other important

ecosystem characteristics, and particularly the extent to which

browning is related to mortality, are unknown. Deriving such rela-

tionships would advance a number of interrelated research disci-

plines and provide a foundation for monitoring, forecasting, and

management. We focus strategically on two repeat forest inventories

and three NDVI data sets to highlight a combination of sensors, met-

rics, and inventory characteristics that are most promising.

2 | MATERIALS AND METHODS

2.1 | Forest inventory data

We used two data sources with complimentary sets of repeatedly

measured forest ground plots: the Cooperative Alaska Forest Inven-

tory (CAFI) (Malone, Liang, & Packee, 2009) and the Climate Impacts

on Productivity and Health of Aspen (CIPHA) study (Hogg, Brandt, &

Kochtubajda, 2005). CAFI contains 612 permanent sample plots

(PSPs), each covering 405 m2 (66 9 66 ft) and arranged in sets of

three per site spaced 30–63 m apart. Plots were established begin-

ning in 1994 in interior and south-central Alaska including the Kenai

Peninsula (Figure 1), and the majority (95%) were resampled every

5 years (the remaining were resampled between 4 and 10 years). We

included inventory data through 2014, at which time 98% of the

plots had been sampled at least twice, 78% were sampled at least

three times, 35% four times, and 2% five times. Plots were dominated

(in terms of biomass) by white spruce (Picea glauca, 34%), Alaska birch

(Betula neoalaskana, 29%), quaking aspen (Populus tremuloides, 16%),

and black spruce (Picea mariana, 13%), with minor contributions from

Kenai birch (Betula kenaica, 4%), balsam poplar (Populus balsamifera)

or black cottonwood (Populus trichocarpa) (4%, not distinguished in

the inventory), tamarack (Larix laricina, <1%), mountain hemlock

(Tsuga mertensiana, <1%), and Lutz spruce (Picea Lutzii, <1%).

We excluded plots that were measured only once (2%), as they

do not allow for temporally precise mortality measurements, as well

as plots that burned within 50 years of being measured (12%) to

avoid the effects of early stand succession. Fire history was deter-

mined by a combination of plot-scale information and fire polygons

from the Alaska Large Fire Database (Kasischke, Barry, & Williams,

2002). We also excluded plots that were reported to have inventory

errors or direct human disturbance (1%). We quantified plot-level

stem density and aboveground biomass by species considering trees

with a minimum diameter at breast height (DBH, 1.3 m height) of

3.8 cm (or 1.5”, the original minimum used in CAFI). We used allo-

metric relationships from Alexander, Mack, Goetz, Beck, and Belshe

(2012) (white spruce if DBH ≥3.7 cm, Alaska birch, quaking aspen,

black spruce, and balsam poplar if DBH ≥4.1 cm), Ung, Bernier, and

Guo (2008) (white spruce, quaking aspen, and mountain hemlock),

and Lambert, Ung, and Raulier (2005) (balsam poplar and tamarack).

In each case the mean value from the collection of relevant allomet-

ric equations was used. Due to lack of data for certain species, we

applied equations from Alaska birch to Kenai birch, western hemlock

to mountain hemlock, and white spruce to Lutz spruce. Mortality

was derived from status flags of individual remeasured trees and

quantified as the number of trees and amount of aboveground bio-

mass that died per year during every remeasurement interval.

CIPHA includes 150 plots within pure aspen stands with an aver-

age age between 40 and 80 years at plot establishment (Hogg et al.,

2005). Plots cover 150–350 m2 and are arranged in sets of two per

site spaced 50–100 m apart and at least 50 m from the stand edge.

Sites are further grouped into sets of three, spaced at a distance of

30 km or less, and aggregated into 25 study areas (Figure 1).

Roughly half of the study areas (48%) reside in the aspen parkland

with low to moderate canopy cover, and the other half in the more

densely canopied boreal forest (Figure 1). Plots were established in

2000 across the western Canadian interior and resampled annually

until 2012 (with the exception of 43 plots that were not remeasured

between 2009 and 2011 but experienced relatively low mortality).

We excluded one study area (Hartney) that was damaged by a tor-

nado in 2007. Aboveground biomass was calculated using allometric

equations from Lambert et al. (2005) for trees with DBH ≥7 cm, and

mortality was calculated similar to CAFI but on an annual basis. Plots

were dominated by aspen (98%), with minor contributions from bal-

sam poplar and paper birch (Betula papyrifera). Further information

can be found in Hogg et al. (2005, 2008). Because individual plots in

both CAFI and CIPHA were designed to be spatially aggregated to

sites, we calculated site-level mortality for our analysis. To do so, we

simply averaged percent mortality across the relevant plots.

These repeat inventories are complimentary in several ways.

CAFI includes a variety of boreal species and is relatively typical of

other PSP networks in which plots are resampled every 5 or
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10 years (e.g., Canadian Provincial networks and the US Forest

Inventory and Analysis Program). Mortality can therefore only be

defined within 5 year windows, which is a limitation for establishing

relationships with remote sensing. CIPHA, on the other hand,

includes an ideal annual remeasurement frequency and only one

dominant species (aspen). In contrast to the relatively steady mortal-

ity rates at CAFI (Figure 1c), a severe drought event in 2001–2003

in central Canada led to widespread aspen mortality, especially in

F IGURE 1 Spatial configuration (a), mortality dynamics (b,c), and Normalized difference vegetation index (NDVI) trends (d) at the
Cooperative Alaska Forest Inventory (CAFI) and Climate Impacts on Productivity and Health of Aspen (CIPHA) sites. Sites in (a) are categorized
by dominant species and region, and tree cover was derived from Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD44B year
2014, version 6 (DiMiceli et al., 2015)). A cumulative distribution of mortality rates by species (b) shows clear differences between species
groups, and particularly high mean mortality rates in CIPHA aspen plots from 2006 to 2011 (c). Shading in (c) represents one standard
deviation. NDVI trends in (d) were derived from Global Inventory Modeling and Mapping Studies version 3 product (GIMMS3g) from 1982 to
2014
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the CIPHA parkland sites (Hogg et al., 2008; Michaelian et al., 2011).

However, CIPHA includes a shorter time series than CAFI, and the

heterogeneity of the parkland prairie-forest landscape may present

challenges for remote sensing, particularly using coarser resolution

imagery.

2.2 | NDVI data

We derived annual NDVI time series from three commonly used

satellite systems to explore the relationships with mortality: AVHRR,

MODIS, and Landsat. In each case, we calculated mean NDVI during

the months of July and August at the native resolution. We focused

on mean July–August NDVI as it corresponds to peak summer pro-

ductivity in northern ecosystems and is sensitive to drought (Buer-

mann et al., 2013; Ju & Masek, 2016; Sulla-Menashe, Fried, &

Woodcock, 2016). NDVI was averaged across the relevant plots for

each site.

For AVHRR, we used the bimonthly maximum composite Global

Inventory Modeling and Mapping Studies version 3 product

(GIMMS3g) from 1982 to 2014 (Pinzon & Tucker, 2014), which is

produced at 1/12° or “8 km” resolution (approximately 4–5 9 9 km

in the northern latitudes we considered). Although other AVHRR-

based NDVI products are available, GIMMS3g is the most widely

used and consistently one of the best performing when compared to

Landsat, in situ data, and temporal consistency between sensors

(Beck, McVicar et al., 2011; Marshall, Okuto, Kang, Opiyo, & Ahmed,

2016; Tian et al., 2015). GIMMS3g contains a number of improve-

ments over its predecessor, GIMMSg, including better snow detec-

tion and intersensor calibration in a Bayesian framework (Guay et al.,

2014; Pinzon & Tucker, 2014). For MODIS, we used the 16 day Col-

lection 6 vegetation indices product from Aqua (MYD13Q1) at

250 m resolution from 2002 to 2014 (Didan, 2015a). Although its

time series is shorter than Terra’s by 2 years, we focus on Aqua

because of the documented sensor degradation in Terra that affects

NDVI (Wang et al., 2012). Despite corrections in Collection 6, we

observed more browning in Terra compared to Aqua for our region

(Figure S1). We also performed the analyses with Terra (MOD13Q1;

2000–2014) (Didan, 2015b) for the sake of comparison. Finally, we

used 30 m Landsat NDVI from Ju and Masek (2016) from 1984 to

2012. This included imagery from Landsat 5 (Thematic Mapper) and

7 (Enhanced Thematic Mapper Plus), processed with the Landsat

Ecosystem Disturbance Adaptive Processing System (LEDAPS) with

additional quality controls for clouds, cloud shadows, water, and

snow, as well as a simple scaling factor to reduce bias between the

two sensors. As a further quality control, and to avoid errors in plot

geolocation, we averaged Landsat NDVI from a 3 9 3 pixel window

surrounding each plot. Landsat data were almost universally available

at the Canadian CIPHA sites beginning in 1984, but there were large

gaps prior to 1999 at the CAFI sites in Alaska. We therefore

excluded any Landsat observations before 1999 in Alaska.

These NDVI data sets are complimentary with respect to span-

ning a wide range of spatial resolution (30 m to 8 km) and radiomet-

ric fidelity. The coarse-scale AVHRR record, initiated in mid-1981,

includes a combination of different satellites and sensors with vary-

ing sensor calibrations and viewing geometries (Pinzon & Tucker,

2014). Additional issues stem from AVHRR’s spectral configuration,

sensor degradation, drifts in satellite overpass times, and its global

area coverage (GAC) sampling and aggregation scheme (Fensholt &

Proud, 2012; Hall, Masek, & Collatz, 2006; Ju & Masek, 2016). Land-

sat bypasses many of these issues and is theoretically superior by

covering roughly the same time period (since 1984) at much higher

spatial resolution (30 m). Nonetheless, Landsat has its own limita-

tions, including a longer revisit frequency, sparse coverage in some

locations, intersensor calibration, and large volumes of data that

require careful processing (Ju & Masek, 2016; Sulla-Menashe et al.,

2016; Zhang & Roy, 2016). Finally, MODIS NDVI products have high

temporal frequency, robust atmospheric corrections, and a moderate

resolution (250 m). However, sensor degradation has added uncer-

tainty, and data are available only since 2000 (Terra) or 2002 (Aqua).

Although comparisons of long-term trends between AVHRR and

Landsat reveal differences across boreal North America (Fraser,

Olthof, Carriere, Deschamps, & Pouliot, 2011; Ju & Masek, 2016;

Olthof, Pouliot, Latifovic, & Chen, 2008), MODIS trends generally

corroborate those from AVHRR (Barichivich et al., 2014; Beck &

Goetz, 2011; Fensholt & Proud, 2012; Guay et al., 2014; Parent &

Verbyla, 2010).

2.3 | Analysis

Our analysis was in the context of early warning signals (EWS) of

threshold changes, in which loss of resilience proceeds state shifts in

complex systems (Scheffer, Carpenter, Foley, Folke, & Walker, 2001)

(note that throughout we use the term “EWS” in a broad sense to

include any potential early warning signal of tree mortality). To that

end, we quantified EWS metrics in NDVI time series prior to mortal-

ity “events” (e.g., Anderegg, Kane et al., 2013). We did not consider

trends in field measurements of mortality, such as in van Mantgem

et al. (2009) and Peng et al. (2011), as trends are generally not a

threshold change, mortality tended to be episodic in the PSPs we

considered, and temporal coverage did not allow for robust trend

detection.

Because of their simplicity and intuitive relationships with known

productivity dynamics prior to mortality, we focused primarily on

trends and “jumps” in the NDVI time series prior to forest ground

plot measurements (Figure 2). Negative trends can be indicative of

declining productivity, which is frequently observed to precede mor-

tality. We used simple linear regression to quantify NDVI trends. We

also tested a nonparametric approach that is more robust against

outliers, temporal autocorrelation, and normality. To do so, we

applied the Theil–Sen trend method (Sen, 1968) after a prewhitening

routine to remove lag-1 autocorrelation (Zhang, Vincent, Hogg, &

Niitsoo, 2000) using the “zyp” package (Bronaugh & Werner, 2013)

in R (R Core Team, 2012). Previous studies have used simple linear

regression (e.g., Angert et al., 2005; Baird, Verbyla, & Hollingsworth,

2012; Beck & Goetz, 2011; Ju & Masek, 2016; Verbyla, 2008), aug-

mented Dickey–Fuller and Vogelsang tests of stationarity (Beck &
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Goetz, 2011; Bunn & Goetz, 2006; Goetz et al., 2005), and the

Theil–Sen method (Berner, Beck, Bunn, & Goetz, 2013; Fensholt &

Proud, 2012; Guay et al., 2014; Kim et al., 2014; Marshall et al.,

2016) to estimate NDVI trends in boreal forests. To enable a more

direct comparison between sites, we normalized trends to percent

NDVI change per year using the mean for each site and NDVI prod-

uct. For every mortality observation at every site, we varied the start

date for trends depending on our analysis window (see below). To

avoid including the year of mortality in our EWS metrics, we set the

end date for trends to be 1 year prior to ground plot measurement

for CIPHA. However, this was unavoidable in the case of CAFI’s 5

year remeasurement strategy in which the specific year of mortality

was unknown. We therefore set the end date for trends to be the

midpoint of a given 5 year remeasurement interval after excluding

the year of observation (i.e., year 2).

Negative jumps in the NDVI time series, or years with anoma-

lously low NDVI, may represent inciting events such as drought or

infestation. To quantify negative jumps, we first removed trends and

other low-frequency variability by applying a 11 year Loess smooth-

ing filter in R to the NDVI time series. Jumps were then estimated

using z-scores of peak summer NDVI on the detrended time series

(i.e., a larger negative z-score indicated a larger jump). End dates for

jumps were set to 1 year prior to ground plot measurement for both

CAFI and CIPHA. To help interpret results, we tested positive jumps

using the same framework (note that positive trends are inherently

included in our analysis). Because including the year of mortality in

our EWS metrics was mostly unavoidable for CAFI, we tested its

impact in CIPHA by setting the end date for both trends and jumps

to the year of ground plot measurement.

Although we calculated mortality as both the percentage of live

stems and biomass that died, we focused on biomass mortality

because of its direct relationships with carbon cycling and ecosystem

impacts. For a given remote sensing product and time window prior

to inventory measurement, we excluded sites with at least two

consecutive missing years or 25% missing years overall. In order to

avoid the impacts of succession on satellite NDVI, we excluded sites

for which the corresponding pixel experienced fire in the previous

50 years. Because of the smaller number of sites and therefore lim-

ited overlap between mortality observations and preceding NDVI

time series, we excluded analysis of MODIS for CIPHA sites.

To assess how these EWS metrics are associated with mortality,

we compared the percentage of sites that had negative trends or

jumps (below a given z-score) and their magnitude between those

classified as control and mortality events for each relevant inventory

and NDVI product. We present this analysis in two primary ways.

The first is a simple comparison of EWS metrics between mortality

and control sites. Because this comparison relies on a suite of

parameters, we employed a conservative Monte Carlo framework. In

each case, we conducted 500 simulations by randomly selecting the

following parameters using a relatively wide-ranging Latin hypercube:

threshold for mortality events (2%–4% per year for CAFI and 2–20%

for CIPHA); trend time window (8–15 years); jump time window (5–

15 years); one-sided z-score threshold for jumps (�1.5 to �2); and,

for CAFI, the end date for trends (30%–70% through the remeasure-

ment interval after excluding the year of ground plot measurement).

Significance was quantified using a bootstrap approach in which the

population of differences (mortality minus control) from a set of

Monte Carlo simulations was compared to zero, and p-values were

defined by the fraction above or below zero (below for percentage

and above for absolute). Secondly, to better represent the sensitivity

of trends and jumps to the two dominant parameters, we present

heat maps of the differences between mortality and control sites as

a function of mortality threshold and time window.

Because transitions in boreal forest tree cover may proceed non-

linearly via threshold responses (Scheffer, Hirota, Holmgren, Van

Nes, & Chapin, 2012), we also applied more complex EWS metrics

from the literature designed to detect system state shifts (in our

case mortality and subsequent loss of tree cover). This included the

first-order autoregressive coefficient (AR(1)), density ratio, kurtosis,

standard deviation, and skewness using the “earlywarnings” package

in R (Dakos, Carpenter, Cline, & Lahti, 2014), as well as diffusion,

jumps, total variance, and conditional variance from the Drift Diffu-

sion Jump (DDJ) model (Brock & Carpenter, 2012; Carpenter &

Brock, 2011; Dakos et al., 2012). Although some of these EWS met-

rics remain largely theoretical and without real-world examples (Sch-

effer et al., 2009), evidence from tree rings (Mamet et al., 2015;

Ogle et al., 2000; Suarez et al., 2004) and broad-scale remote sens-

ing (Verbesselt et al., 2016) suggests forests may display these

dynamics prior to mortality. However, ground-based studies have

shown mixed results (Camarero et al., 2015; Gillner et al., 2013), and

remote sensing products may present problems due to relatively

short time series (several decades as opposed to a century or more).

Finally, although some EWS metrics were calculated exclusively

over a given time window (e.g., trends 10 years prior to inventory

measurement), in other cases the entire NDVI time series was con-

sidered for parameter distributions and the metric of interest was

then calculated over shorter time windows prior to inventory
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F IGURE 2 Example time series of NDVI (GIMMS3g) and tree
mortality in CAFI permanent sample plots (PSP 10036). A high level
of mortality was observed in 2005, with a browning trend and jump
(shown in red) prior to measurement. Note that each mortality
measurement was incorporated into our analyses
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measurement (e.g., jumps within a 10-year window after detrending

the entire NDVI time series).

2.4 | Hypotheses

Within the context of our overarching hypothesis that early warning

signals of mortality can be detected using long-term satellite ima-

gery, we also tested the following secondary hypotheses:

1. Relationships between mortality and NDVI-based EWS metrics

are strongest with finer spatial-scale and longer temporal-scale

imagery.

2. Relationships with NDVI trends are detectable over longer time

windows compared to jumps, as the former captures gradually

declining vigor and the latter inciting events.

3. Relationships between mortality and EWS metrics are strongest

in annually measured sites because longer remeasurement inter-

vals add uncertainty as to the timing of mortality.

4. Relationships are strongest in aspen-dominated sites, and particu-

larly those that are pure aspen (such as CIPHA). This is because

(i) aspen’s deciduous leaf habit results in more interannual vari-

ability in productivity (Welp et al., 2007) and leaf condition, as

observed by NDVI, that responds more quickly to environmental

stress compared to conifers (Gamon et al., 1995; Norman, Koch,

& Hargrove, 2016); (ii) aspen are pioneer species and have com-

paratively high mean mortality rates, especially in later succession

(Figure 1b) (Stephenson et al., 2011; Vanderwel, Zeng, Casper-

sen, Kunstler, & Lichstein, 2016); (iii) aspen die-off begins in the

upper canopy (Anderegg & Callaway, 2012; Frey, Lieffers, Hogg,

& Landhausser, 2004), which can be detected with multispectral

imagery (Huang & Anderegg, 2014); (iv) aspen are clonal, meaning

patches of genetically identical trees die together, and relatively

quickly as a strategy for effective resprouting (Frey et al., 2004);

(v) and finally, aspen have documented sensitivity to defoliation

and drought, including mortality (Bell, Bradford, & Lauenroth,

2014; Chen et al., 2017; Hogg, Brandt, & Kochtubajda, 2002;

Worrall et al., 2013).

3 | RESULTS

The percentage of negative trends and jumps in NDVI time series

prior to inventory measurements was almost universally larger for

sites with high mortality levels for both inventories and with all three

NDVI products (Figure 3). The magnitudes of negative trends and

jumps followed the same overall pattern, except that differences

were substantially greater for trends compared to jumps (Figure 4).

In only one case did the dynamics of these EWS metrics contradict

our primary hypothesis (GIMMS3g trends for CIPHA). This specific

case was due to the lack of a relationship using coarse-scale imagery

in aspen parkland sites (Figure S2), which contain heterogeneous

patches of aspen stands, grassland, agriculture, and other land uses.

The boreal CIPHA sites displayed the expected relationship for

GIMMS3g trends, as did Landsat for both parkland and boreal sites

(Figure S2). We note jumps with GIMMS3g in the parkland also

behaved as hypothesized, suggesting coherent responses of punctu-

ated drops in NDVI across these heterogeneous landscapes.

Differences in NDVI trends between mortality and control sites

tended to become large and consistent when considering sites with

higher mortality and at least 8 years of data prior to inventory mea-

surement (Figure 5). With sufficient data, these patterns were mostly

sustained until 15 years, and over 20 years in the case of CIPHA

(Figure S3). Differences in the magnitude of trends were generally

largest using shorter time windows compared to the percentage of

negative trends, a result of trends becoming more steeply negative

closer to mortality events (Figures 2,5, and S3). Similar overall pat-

terns were observed for the percentage of sites exhibiting negative

jumps (Figures 6 and S3), except that differences were generally

observed using time windows as short as 2 years and, in the case of

Landsat, largely disappeared with lower mortality thresholds and

time windows longer than 11–12 years.

Gradients in trends and jumps as a function of mortality thresh-

old were clearer and more consistent in CIPHA compared to CAFI.

We attribute this to CIPHA’s annual remeasurement strategy, which

allowed for greater temporal accuracy and a wider range in annual

mortality levels compared to CAFI, particularly when considering the

severe regional drought in 2001–2003 and resulting mortality. The

clarity of relationships observed for CIPHA may also be due its

almost pure aspen stand composition, which we hypothesized to

have the strongest species-specific relationships with EWS metrics

from remote sensing. However, aspen, spruce, and birch/poplar-

dominated stands in CAFI all displayed generally consistent relation-

ships across sensors (Figure S4), suggesting EWS metrics of mortality

can be applied across forest types. In terms of canopy cover,

although the relationships using coarse-scale GIMMS3g trends broke

down in the patchy aspen parkland, relationships in CAFI, although

less significant, were relatively insensitive to low canopy cover. For

example, the mean difference in % negative trends between mortal-

ity and control sites with GIMMS3g at CAFI sites was 11.4% using all

sites and 7.6% using sites whose corresponding GIMMS3g pixels had

at least 40% tree cover (55% of sites), derived from the MODIS tree

cover product (DiMiceli et al., 2015).

In contrast to our hypothesis, and with the exception of

GIMMS3g trends in the heterogeneous and human-affected aspen

parkland, using finer-scale imagery did not necessarily lead to stron-

ger results. Although Landsat trends showed greater differences

between mortality and control sites compared to GIMMS3g, the

opposite was true for jumps (Figure 3). Thus, compared to Landsat,

this suggests coarse-scale GIMMS3g NDVI is more sensitive to

pulse disturbances that affect vegetation across a landscape, but is

less sensitive to trends at any given site. Results were nearly iden-

tical when including the year of ground plot measurement for both

CIPHA and CAFI (Figures S5 and S6). This provides evidence that

the mortality events themselves did not affect our EWS metrics,

and further highlights their long-term nature. When using stem

mortality as opposed to percent biomass mortality, however, the
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overall EWS patterns were evident but not as strong (Figure S7).

Relationships using MODIS Aqua were also stronger than Terra

(Figure S1), which could be due to issues with sensor degradation

in MODIS Terra. Results using the Theil–Sen method with

prewhitening for trend detection were qualitatively identical to

using simple linear regression, but with reduced significance in the

case of Landsat and MODIS (p > .1 for CAFI Landsat and MODIS,

and p < .1 for CIPHA Landsat when assessing the differences in

percent negative trends between mortality and control sites, as in

Figure 3). We attribute the improved performance of linear regres-

sion to its sensitivity to negative jumps and increasingly steep

slopes when approaching mortality events in the NDVI time series.

This is evidenced by slightly more than expected nonnormal resid-

ual distributions (10% of residual distributions failed the Shapiro–

Wilk test for normality at p < .05) and autocorrelation (12% of

residual time series contained significant autocorrelation using the

Durbin–Watson statistic at p < .05), especially close to severe mor-

tality events (Figure 7). Because of its sensitivity, this suggests sim-

ple linear regression is well-suited to detect early warning signals

of tree mortality.

Results using positive instead of negative jumps were similar in

direction but smaller in magnitude and less significant. Across invento-

ries and NDVI products, there were substantially more negative jumps

than positive jumps using identical analysis parameters (39.5% vs.

21.8% in control sites), and differences between mortality and control

sites were greater using negative jumps (16.8% vs. 4.4%). This sup-

ports the hypothesis that many negative jumps were related to acute

stressors and that these stressors were often indicative of subsequent

mortality. Combined with the trends analysis, this also suggests that

positive trends or jumps in productivity, potentially indicative of struc-

tural overshoot that renders trees vulnerable to mortality (Jump et al.,

2017), were a minor component of NDVI signals.

Several, although not all, of the more complex EWS metrics dis-

played consistent relationships with mortality (Figure 7). AR(1), den-

sity ratio, kurtosis, and conditional variance increased at sites that

had higher mortality levels when using NDVI records with long time

series (GIMMS3g for both inventories and Landsat for CIPHA). The

remaining EWS metrics either did not display significant relationships

with mortality, or the relationships were inconsistent across sensors

and inventories.

F IGURE 3 Percentage of mortality and control sites that displayed negative trends or negative jumps prior to inventory measurement. A
Monte Carlo approach was used to vary several analysis parameters, including the mortality threshold used to define mortality events. Error
bars represent one standard deviation from 500 Monte Carlo simulations. One, two, and three stars indicate one-sided significance at the
p < .1, .05, and .01 levels, respectively. Note that we do not include analysis of MODIS at CIPHA sites due to lack of data [Color figure can be
viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

Boreal forests cover roughly one-third of all forests globally and are

defined by cold climates where warming might be expected to be

beneficial. Indeed, productivity in many boreal forests has been posi-

tively influenced by warming, and even negatively influenced by

higher summer rainfall through its effect on surface insolation

(Angert et al., 2005; Barichivich et al., 2013; Buermann et al., 2013,

2014; Jiang, Zhu, Zheng, Chen, & Fan, 2013; Myneni, Keeling,

Tucker, Asrar, & Nemani, 1997; Wang et al., 2011). However, many

interior and continental boreal forests for which moisture is more

limiting are not responding favorably. This is especially the case in

central-western boreal North America, where growing seasons have

been lengthening (Barichivich et al., 2013; Buitenwerf, Rose, & Hig-

gins, 2015; Zhang, Kimball, Kim, & McDonald, 2011; Zhao et al.,

2015), spring snowpack has been decreasing (Brown & Robinson,

2011; Gan, Barry, Gizaw, Gobena, & Balaji, 2013), and water balance

variables indicate a persistent drying since the mid-20th century

(Dai, 2011; Girardin, Bouriaud et al., 2016; Hember, Kurz, & Coops,

2017b; Hogg, Michaelian, Hook, & Undershultz, 2017; Michaelian

et al., 2011). Temperature optimums are often surpassed quicker

than trees and many forests can adapt (Beck, Juday et al., 2011; D’

Arrigo et al., 2004; Juday, Alix, & Grant, 2015), such that the rela-

tionships between climate and productivity have frequently changed

after the mid-20th century (Bi, Xu, Samanta, Zhu, & Myneni, 2013;

D’ Arrigo et al., 2004; D’Arrigo, Wilson, Liepert, & Cherubini, 2008;

Porter & Pisaric, 2011).

As a result, tree mortality has generally been increasing in these

boreal forests (Hember et al., 2017b; Peng et al., 2011), generating

concern about their future condition and stability. The ability to

forecast mortality is essential for multiple communities ranging from

resource managers to Earth system modelers. However, our collec-

tive ability to do so is limited, in large part due to the complex path-

ways of death and highly variable physiological thresholds

(Anderegg, Anderegg, & Berry, 2013).

Here we provide evidence that long-term NDVI time series have

the potential to detect early warning signals of tree mortality using a

variety of sensors, time scales, forest systems, and tree species in

western boreal North America. The utility of NDVI for mortality

forecasting has been suggested (Huang & Anderegg, 2014; Vicente-

Serrano et al., 2016) and is consistent with known relationships

between satellite-based NDVI (or similar indices) and drought, infes-

tations, productivity, leaf senescence and partial dieback, and mortal-

ity (Beck, Juday et al., 2011; Berner et al., 2011; Breshears et al.,

F IGURE 4 Magnitude of all trends and negative jumps (defined by the minimum z-score within a given time window) between mortality
events and control sites. Error bars represent one standard deviation from 500 Monte Carlo simulations. One, two, and three stars indicate
significance at the p < .1, .05, and .01 levels, respectively. The magnitude of negative trends and jumps was greater in mortality events, except
for the case of trends in CIPHA GIMMS3g [Color figure can be viewed at wileyonlinelibrary.com]
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2005; Bunn et al., 2013; Foster, Walter, Shugart, Sibold, & Negron,

2017; Kharuk, Im et al., 2013; Lloyd et al., 2011; McDowell et al.,

2015; Meddens & Hicke, 2014; Spruce et al., 2011; Vogelmann,

Tolk, & Zhu, 2009). However, to our knowledge these relationships

have not yet been documented beyond short-term (<5 years) associ-

ations during severe drought (Byer & Jin, 2017; Potter, 2016).

We found that moderate and coarse-scale imagery (250 m–8 km)

was generally as useful as fine-scale imagery (30 m) for detecting

EWS of tree mortality. There were subtle differences, however,

including the better performance of fine-scale Landsat imagery for

trends but coarse-scale GIMMS3g for jumps. This suggests Landsat is

better able to detect the often subtle trends in vegetation productiv-

ity at any given plot, which may vary considerably within an 8 km

GIMMS3g pixel (Ju & Masek, 2016). Yet our results also suggest that

GIMMS3g is well-suited to detect anomalously low NDVI years that

affect vegetation consistently within an 8 km pixel, such as drought

events. We did not, however, comprehensively assess the impacts of

lower revisit frequency for 30 m Landsat imagery, which resulted in

fewer peak-summer observations and some data gaps. We also did

not assess higher-resolution imagery that can detect individual tree

crowns (e.g., Ikonos, QuickBird, or WorldView) because of its limited

availability earlier than the past decade and its low frequency of

repeat coverage. Nevertheless, our findings suggest that landscape-

scale productivity (up to 8 km and potentially larger) is coupled to

site-level dynamics, which is in contrast to prior indications that

AVHRR may misrepresent ecosystem dynamics (e.g., Kern, Mar-

janovic, & Barcza, 2016). Alternatively, our results corroborate stud-

ies showing strong correlations between AVHRR-based NDVI and

annual productivity metrics in boreal forests (Beck, Juday et al.,

2011, 2013; Berner et al., 2011; Bunn et al., 2013; Lloyd et al.,

2011). MODIS is also promising for mortality EWS given its moder-

ate resolution, high quality, and daily revisit frequency. However, we

found that longer-term NDVI time series were generally more useful

for detecting EWS, suggesting that the shorter time series of MODIS

is limiting for multidecadal studies. Our results also show that stron-

ger EWS relationships emerged when using forest inventory data

with more frequent remeasurement intervals (e.g., CIPHA). Nonethe-

less, annual measurements are often not possible, and we found

relationships were still relatively robust when using inventories with

a more typical 5 year remeasurement frequency (e.g., CAFI). Finally,

although EWS relationships were strong in aspen plots, we found

that all tree species exhibited relatively consistent relationships in

the CAFI database.

Our results suggest that early warning signals of mortality in

NDVI data are evident shortly before death (2 years) in some EWS

metrics, but may require at least 8 years of data for others (trends).

Moreover, many EWS metrics can be detected up to roughly two

decades before mortality (roughly 15 years in CAFI and 20–24 years

F IGURE 5 Heat maps showing the difference in NDVI trends between mortality and control sites as a function of mortality threshold and
time window for analysis. The top row shows percent negative trends, and the bottom row shows the magnitude of trends. In each case, red
represents conditions in which sites classified as mortality events had more or stronger negative NDVI trends relative to control sites, and blue
represents the opposite. Note that there are no “control” sites with a mortality threshold of zero, which we therefore exclude, and that we do
not show GIMMS3g trends at CIPHA due to the lack of consistent relationships
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in CIPHA; Figures 5,6,7, and S3). In theory, the relationships

between productivity and mortality should be apparent for many

decades. Drought-related tree mortality, including the interactions

with forest pests, is typically a complex process occurring over multi-

ple years and often decades that involves interrelated physiological

mechanisms that evolved to optimize carbon, water, and defense

compounds (Adams, Germino et al., 2013; Anderegg, Berry, & Field,

2012; Anderegg, Berry et al., 2012; Herms & Mattson, 1992;

McDowell, 2011; McDowell et al., 2008, 2011; Sala, Piper, & Hoch,

2010; Sala, Woodruff, & Meinzer, 2012; Sevanto, McDowell, Dick-

man, Pangle, & Pockman, 2014; Waring, 1987). This has been

referred to as the “decline disease theory”, “spiral of tree death”, or

“slow-decline” hypothesis (Franklin, Shugart, & Harmon, 1987; Hous-

ton, 1984; Manion, 1991), and is evidenced by plot-level deviations

in productivity that can be detected in some cases 60–100 years

before death (Bigler et al., 2004; Gillner et al., 2013). However,

NDVI measurements are not available at these timescales, and our

results suggest that confounding spectral signatures, likely related to

forest demographics, become magnified after roughly two decades.

Overall, our analysis provides strong motivation for incorporating

early warning signals from multisensor NDVI time series into predic-

tive models of mortality. For example, a multiple linear regression

model using the magnitudes of jumps and trends from GIMMS3g and

Landsat with optimal time windows as predictors was able to model

maximum annual mortality levels at the CIPHA sites with an r2 of

0.38. Presumably, the integration of EWS metrics with additional

environmental and forest demographic data would increase predic-

tive power.

There are several uncertainties in our approach, and reasons why

EWS of mortality from satellite imagery may be difficult to detect.

Remote sensing registers signals from the entire plot or landscape, in

which some trees may be stressed and dying while others are

healthy and even benefitting from adjacent trees dying, as resources

such as light, nutrients, and water are made available (Berg, Henry,

Fastie, De Volder, & Matsuoka, 2006; Clark et al., 2016; Lloret,

Escudero, Maria Iriondo, Martinez-Vilalta, & Valladares, 2012). NDVI

signals are also disproportionately influenced by canopy dominants

compared to understory trees. Mortality by age/size is often U-

F IGURE 6 Heat maps showing the difference in percentage of sites that exhibited negative jumps between mortality and control sites for a
given mortality threshold and analysis time window. A jump was defined by a maximum z-score of �1.5 after detrending the NDVI time series.
In each case, red represents conditions in which sites classified as mortality events had more jumps relative to control sites, and blue
represents the opposite. Note that we do not show heat maps for the magnitude of jumps as these were generally not significantly different
between control and mortality plots
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shaped as young/small trees are sensitive to competition for

resources (Chen, Fu, Monserud, & Gillies, 2008; Dietze & Moorcroft,

2011; Hember et al., 2017b; Lines, Coomes, & Purves, 2010; Yang

et al., 2003; Yao et al., 2001), but after escaping this phase are typi-

cally more resilient to drought than mature/large trees (Allen, Bres-

hears, & McDowell, 2015; Bennett, McDowell, Allen, & Anderson-

Teixeira, 2015; Chen et al., 2016; Clark et al., 2016; Girardin, Guo,

Bernier, Raulier, & Gauthier, 2012). Nonetheless, EWS relationships

with mortality by stems, as opposed to biomass, were still relatively

strong (Figure S7).

In forests with incomplete canopy closure, which tends to be the

case at high latitudes (Scheffer et al., 2012), a significant portion of

F IGURE 7 Heat maps showing the differences in several early warning signals (EWS) metrics between mortality and control sites. In each
case, red represents conditions in which sites classified as mortality events exhibited greater EWS metrics relative to control sites, and blue
represents the opposite. For illustration purposes, we only show the combination of NDVI products and inventory data that resulted in long
time series, and only the EWS metrics that displayed consistent relationships. Each heat map has a separate scale centered around zero
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the remotely sensed imagery is from understory vegetation, which

may show different responses to climate and relationships with pro-

ductivity (McDowell et al., 2015; Yuan et al., 2014). Indeed, tree-

level growth is not always correlated with ecosystem productivity

(Gea-Izquierdo et al., 2014). Although we found no negative effects

of low canopy cover on the strength of our mortality–EWS relation-

ships in the Alaskan CAFI sites, the heterogeneous and patchy aspen

parkland presented problems for coarse-scale trends using GIMMS3g.

Noise is also introduced in that not all declining trees actually die,

although their growth trends may be indistinguishable (Bigler et al.,

2004). Finally, although we were able to exclude the year of mortal-

ity in our analysis with the CIPHA network, this was unavoidable in

the case of CAFI, as it would be with most other repeatedly mea-

sured forest inventories. Nonetheless, our sensitivity analysis that

included the year of observation in CIPHA, combined with the fact

that the strongest early warning signals were observed using rela-

tively long time windows (Figures 5,6,7, and S3), strongly suggests

the year of mortality did not influence our results.

Collectively, our results suggest that some component of the

browning trends in boreal forests that are not a direct result of land

use, fire, or other landscape disturbances (Beck & Goetz, 2011; Car-

roll & Loboda, 2017; Goetz et al., 2005; Ju & Masek, 2016; Nitze

et al., 2017; Raynolds & Walker, 2016) may be related to drought-

and insect-induced tree mortality. We highlight the particular vulner-

ability of the interior southern boreal, where widespread browning

trends (Guay et al., 2014; Ju & Masek, 2016; Sulla-Menashe, Wood-

cock, & Friedl, 2018) are coupled to recent mortality events, and

projections suggest continued drought and potential transitions to

open forest or grassland (Abis & Brovkin, 2017; Hogg & Hurdle,

1995; Lenihan & Neilson, 1995; Worrall et al., 2013).

Our approach may provide a foundation for using long-term

remote sensing data to map and forecast mortality risk, which is a

critical science and management need (Cailleret et al., 2016; Hogg &

Bernier, 2005; Jump et al., 2017; Trumbore, Brando, & Hartmann,

2015). Although forest health assessments using remote sensing

have made rapid developments, and many are operational (Brown,

Wardlow, Tadesse, Hayes, & Reed, 2008; Hall, Castilla, White,

Cooke, & Skakun, 2016; Lausch, Erasmi, King, Magdon, & Heurich,

2017; Mills, Hoffman, Kumar, & Hargrove, 2011; Norman et al.,

2016; Pause et al., 2016; Spruce et al., 2011), they generally lack

information on the cause and consequences of stress and cannot be

used to forecast vulnerability. Statistical models of mortality are

either plot-scale, based on tree growth and other demographic char-

acteristics (Bigler & Bugmann, 2004a,b; Bigler et al., 2004; Cailleret

et al., 2016; Carus, 2010; Gillner et al., 2013; Ogle et al., 2000;

Wunder et al., 2007; Yang et al., 2003; Yao et al., 2001), or larger-

scale based on climate (Gustafson & Sturtevant, 2013; Hember et al.,

2017b). Remotely sensed early warning signals may therefore be

able to bridge these scales and approaches, adding independent

information that can be integrated into monitoring systems for

resource management and broad-scale changes in vegetation condi-

tions. Such novel approaches may also help validate and inform the

development of gap models, dynamic vegetation models, and the

land components of Earth system models whose representations of

mortality are generally too simplistic (Adams, Williams et al., 2013;

Davi & Cailleret, 2017; Eamus, Boulain, Cleverly, & Breshears, 2013;

McDowell et al., 2011; Thurner et al., 2017). Earth system models in

particular do not generally capture the magnitude or spatial patterns

of recent productivity declines and mortality in boreal forests (Anav

et al., 2013; Mao et al., 2016; Murray-Tortarolo et al., 2013; Rafi-

que, Zhao, de Jong, Zeng, & Asrar, 2016; Tei et al., 2017), implying

inadequate representations of environmental sensitivity (Forkel et al.,

2014) that cast doubt on projections of future greening (Charney

et al., 2016) and carbon sinks (e.g., Friend et al., 2014; Qian, Joseph,

& Zeng, 2010).

Developing improved methods to forecast mortality will become

increasingly important as droughts (McDowell et al., 2016; Sheffield

& Wood, 2008; Trenberth et al., 2014), pests and pathogens (Ander-

egg et al., 2015; Bentz et al., 2010; Berg et al., 2006; Cullingham

et al., 2011; Pureswaran et al., 2015), and associated mortality and

forest decline intensify with warming (Allen et al., 2015; McDowell

& Allen, 2015; McDowell et al., 2011), particularly at high latitudes.

These stressors may ultimately result in large-scale changes in vege-

tation and biome distributions, which may be starting to occur in

many parts of the circumpolar boreal forest, including our study

domain (Beck, Juday et al., 2011; Buma & Barrett, 2015; Chen et al.,

2016; Sulla-Menashe et al., 2018). Robust early warning signals of

these transitions can allow managers and policy makers to develop

more effective strategies for mitigation and adaptation.

5 | SUMMARY

Long-term forest inventory and NDVI records have greatly advanced

our understanding of carbon cycling, vegetation dynamics, and the

impacts of global change on the terrestrial biosphere. We demon-

strate another potentially important use of these data: detecting

early warning signals of tree mortality. We show that sites varying in

species composition, environmental conditions, and satellite sensors

consistently displayed early warning signals prior to mortality events.

We suggest this provides a foundation for more effective models

and monitoring of tree mortality. Future work that could advance

our findings includes (i) testing these relationships over a wider

range of species and vegetation subject to varying environmental

stressors; (ii) exploring the utility of additional remotely sensed

indices and indicators of vegetation productivity and stress; and (iii)

integrating these relationships into evolving diagnostic and predictive

models of tree mortality.
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