


incompressible, inviscid, parallel shear flows has been investigated by Miles.11 Pearlstein12 analyzed the
two-dimensionality of disturbances for plane RBP flow and found that the most unstable disturbances are
either two-dimensional (2-D) transverse or three-dimensional (3-D) longitudinal modes. Ng and Reid13

performed an investigation of the combined effect of viscosity and stratification on plane channel flow. Fu-
jimura and Kelly14 employed a weakly nonlinear expansion approach to analyze the nonlinear interaction
between longitudinal and transverse flow structures near the Reynolds and Rayleigh number for which both
of them become unstable. The linear temporal stability of plane RBP flows was first investigated by Gage
and Reid.10 The neutral curves for the onset of both buoyancy (critical Rayleigh number, Rac=1,708) and
viscosity-driven (Tollmien-Schlichting) instability (critical Reynolds number, Rec=5,400) were established.
When the Reynolds number is below Rec=5,400 and the Rayleigh number is above Rac=1,708, buoyancy-
driven instability occurs and 3-D waves with a wave angle of 90deg are most amplified. For Re > Rec and
Ra < Rac viscosity-driven instability arises and two-dimensional (2-D) Tollmien-Schlichting (T-S) waves
with a wave angle of 0deg are most amplified. The results of the linear stability theory (LST) analyses of
plane RBP flow by Gage and Reid10 were confirmed by numerous computational and experimental investi-
gations. The instability of an unstably stratified plane RBP flow was analyzed by Fujimura and Kelly.15 For
a certain low Reynolds number range (0.01 ≤ Re ≤ 100), they observed that the critical Rayleigh number
for 2-D unstable waves increased with Reynolds number. This finding is essentially consistent with the 0deg
neutral curve by Gage and Reid.10 Akiyama et al.16 carried out experiments of fully developed laminar
plane RBP flow for investigating the development of longitudinal vortices due to buoyancy-driven instability
for different wall-normal temperature gradients. An experimental and theoretical investigation of the effect
of longitudinal vortex rolls on the transport processes in laminar channel flow (both horizontal and inclined)
has been carried out by Fukui and Nakajima.17 Hasan and Gross18 performed spatial stability simulations
to investigate the buoyancy-driven instability of inward radial RBP flows. The spatial growth rates of 3-D
modes were found to vary significantly in the radial direction.

For the stability analyses the spanwise direction is typically considered to be homogeneous such that
a wave ansatz with spanwise wavenumber, β, can be employed. This assumption is valid for radial flows
(which are periodic in the circumferential direction) but not for square channel flows which do necessarily
have a finite aspect ratio. For that reason, some researchers considered square channels with finite lateral
extent. Luijkx et al.19 investigated the stability of a RBP flow in a finite aspect ratio channel and reported
that for low Reynolds numbers (Re < Rec), transverse rolls that are aligned perpendicular to the flow
direction become dominant over longitudinal rolls. A linear stability analysis by Nicolas et al.20 revealed
that decreasing the lateral extent of the channel has a stabilizing effect on the flow. As long as the Rayleigh
number is above critical, transverse rolls are prevalent for Reynolds numbers below the critical Reynolds
number and longitudinal flow structures appear for Re > Rec. They also investigated RBP flows with infinite
aspect ratio and found that the critical Rayleigh number for 2-D transverse waves increases with Reynolds
number which is in agreement with Gage and Reid.10 An experimental investigation of the stability of RBP
flows by Grandjean and Monkewitz21 demonstrated that even for large spanwise aspect ratios, transverse
rolls developed when the instability changed from convective to absolute. Mori and Uchida22 carried out an
experimental analysis of fully developed high aspect ratio channel flows and showed that vortex rolls that
are aligned parallel with the flow direction appear when the temperature difference between the bottom and
top wall is increased above a threshold value.

When the Reynolds number exceeds the critical value of 5, 400, 2-D Tollmien-Schlichting (T-S) waves
are amplified. In accordance with Gage and Reid,10 for Re > Rec = 5, 400 and Ra < Rac = 1, 708, 2-D
transverse waves (T-S waves) which are aligned perpendicular to the flow direction are unstable. Numerous
scientific papers have been published on the stability of laminar zero-pressure gradient boundary layers for
which T-S waves are the primary instability mode.23–26 But research on the viscosity-driven instability of
channel flows is very sparse. Orszag27 obtained solutions of the Orr-Sommerfeld equation for the stability
analysis of plane Poiseuille flow and found that the critical Reynolds number for which the flow becomes
unstable is 5, 772.22. The stability of plane Poiseuille flow was examined experimentally by Nishioka et
al.28 The downstream development of sinusoidal waves at Reynolds numbers ranging from 3, 000 to 7, 500
was scrutinized. The measurements were in accordance with linear stability theory as long as the distur-
bances were small. A nonlinear sub-critical (Reynolds number below critical Reynolds number for linear
stability) instability was discovered when the disturbance level exceeded a certain threshold value. Lee et
al.29 investigated the effect of wall-normal blowing and suction on the stability of a laminar channel flow
based on Floquet analysis and direct numerical simulations. Their analysis revealed that the traveling waves
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resulting from wall-normal blowing and suction were amplified when the phase speed was approximately 0.4
times the maximum (centerline) velocity and Tollmien-Schlichting waves were observed for Re = 2, 000 and
Re = 7, 500. A similar investigation of the spatial stability of plane Poiseuille flow for two different Reynolds
numbers (5, 000 & 10, 000) was carried out by Chung et al.30 Overall, apart from the Gage and Reid10 paper,
the published literature on the instability of plane Poiseuille flow with vertical temperature gradient is very
limited.

This paper reports on temporal stability simulations that were carried out to investigate both the buoy-
ancy and viscosity-driven instability of plane Rayleigh-Bénard-Poiseuille flow. Two highly accurate computa-
tional fluid dynamics codes based on the compressible Navier-Stokes equations were developed especially for
this purpose. The details of these codes are discussed first. Different 2-D and 3-D cases were simulated and
the wavelengths, growth rates, phase speeds, frequencies, amplitudes and phase distributions of the distur-
bance modes were analyzed using Fourier transforms. The growth rates obtained from the temporal stability
simulations are compared with the Gage and Reid10 neutral curves. This paper makes a contribution to the
existing literature by providing mode amplitude and phase distributions as well as dispersion relationships
for RBP flow. In addition, the paper provides new physical insight into non-linear mode interactions.

II. Methodology

A. Full Navier-Stokes Equations

The compressible Navier-Stokes equations in conservative form can be written as a vector equation,

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= H , (3)

with state vector,

Q =















ρ

ρu

ρv

ρw

ρe















, (4)

and flux vectors,

E =















ρu

ρu2 + p− τxx

ρuv − τxy

ρuw − τxz
u(ρe+ p) − uτxx − vτxy − wτxz + qx















, (5)

F =















ρv

ρvu− τxy

ρv2 + p− τyy

ρvw − τyz

v(ρe+ p) − uτxy − vτyy − wτyz + qy















, (6)

and

G =















ρw

ρwu− τxz

ρwv − τyz

ρw2 + p− τzz

w(ρe+ p) − uτxz − vτyz − wτzz + qz















. (7)

Here, u, v, and w are the velocities in the streamwise, wall-normal, and spanwise direction, ρ is the density,
p is the static pressure, and T is the temperature. The total energy is e = ε + 1/2(u2 + v2 + w2), where
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ε = cvT is the internal energy. The source term vector,

H =















0
∂p
∂x

g(ρref − ρ)

0

u ∂p
∂x

+ vg(ρref − ρ)















, (8)

contains a ∂p/∂x term that compensates for the streamwise pressure drop resulting from the viscous losses,
and a buoyancy term, g(ρref−ρ) (Boussinesq approximation), with gravitational acceleration, g = 9.81m/s2.
The shear stress tensor components are,

τxx = µ
2

3

(

2
∂u

∂x
− ∂v

∂y
− ∂w

∂z

)

(9)

τyy = µ
2

3

(

2
∂v

∂y
− ∂u

∂x
− ∂w

∂z

)

(10)

τzz = µ
2

3

(

2
∂w

∂z
− ∂u

∂x
− ∂v

∂y

)

(11)

τxy = µ

(

∂u

∂y
+
∂v

∂x

)

(12)

τxz = µ

(

∂u

∂z
+
∂w

∂x

)

(13)

τyz = µ

(

∂v

∂z
+
∂w

∂y

)

, (14)

with dynamic viscosity, µ. The heat flux vector components are,

qx = −k∂T
∂x

(15)

qy = −k∂T
∂y

(16)

qz = −k∂T
∂z

, (17)

with thermal conductivity,

k =
cp
Pr

µ. (18)

Here, Pr and cp are the Prandtl number and specific heat. The Prandtl number is defined as

Pr =
ν

α
. (19)

where ν = µ/ρ is the kinematic viscosity and α is the thermal diffusivity. The set of equations is closed by
the ideal gas equation,

p = ρRT, (20)

with gas constant, R, and Sutherland’s equation for the dynamic viscosity, µ.
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B. Linearized Navier-Stokes Equations

A disturbance ansatz is made for the linearization. All flow quantities are split up into a base flow (mean)
and disturbance component,

ρ = ρ̄+ ρ′ (21)

u = ū+ u′ (22)

v = v̄ + v′ (23)

w = w̄ + w′ (24)

T = T̄ + T ′ (25)

p = p̄+ p′ (26)

µ = µ̄+ µ′ . (27)

The linearized compressible Navier-Stokes equations in conservative form can be written in vector form,

∂Q′

∂t
+
∂E′

∂x
+
∂F′

∂y
+
∂G′

∂z
= H′ , (28)

with disturbance state vector,

Q′ =















ρ′

ρ̄u′ + ρ′ū

ρ̄v′ + ρ′v̄

ρ̄w′ + ρ′w̄

ρ̄e′ + ρ′ē















, (29)

and flux vectors,

E′ =















ρ̄u′ + ρ′ū

2(ρ̄ū)u′ + ρ′ū2 + p′ − τ ′xx
(ρ̄ū)v′ + v̄(ρ̄u′ + ρ′ū) − τ ′xy
(ρ̄ū)w′ + w̄(ρ̄u′ + ρ′ū) − τ ′xz

(ρ̄ē)u′ + ū(ρ̄e′ + ρ′ē) + (p̄u′ + p′ū) − (ūτ ′xx + u′τ̄xx) − (v̄τ ′xy + v′τ̄xy) − (w̄τ ′xz + w′τ̄xz) + q′x















,

(30)

F′ =















ρ̄v′ + ρ′v̄

(ρ̄v̄)u′ + ū(ρ̄v′ + ρ′v̄) − τ ′xy
2(ρ̄v̄)v′ + ρ′v̄2 + p′ − τ ′yy

(ρ̄v̄)w′ + w̄(ρ̄v′ + ρ′v̄) − τ ′yz
(ρ̄ē)v′ + v̄(ρ̄e′ + ρ′ē) + (p̄v′ + p′v̄) − (ūτ ′xy + u′τ̄xy) − (v̄τ ′yy + v′τ̄yy) − (w̄τ ′yz + w′τ̄yz) + q′y















,

(31)
and

G′ =















ρ̄w′ + ρ′w̄

(ρ̄w̄)u′ + ū(ρ̄w′ + ρ′w̄) − τ ′xz
(ρ̄w̄)v′ + v̄(ρ̄w′ + ρ′w̄) − τ ′yz
2(ρ̄w̄)w′ + ρ′w̄2 + p′ − τ ′zz

(ρ̄ē)w′ + w̄(ρ̄e′ + ρ′ē) + (p̄w′ + p′w̄) − (ūτ ′xz + u′τ̄xz) − (v̄τ ′yz + v′τ̄yz) − (w̄τ ′zz + w′τ̄zz) + q′z















.

(32)
The disturbance total energy is e′ = ε′ + ūu′ + v̄v′ + w̄w′, where ε′ = cvT

′ is the internal energy. The source
term vector is

H′ =















0

0

−gρ′
0

u′ ∂p̄
∂x

+ v′g(1 − ρ̄) − v̄gρ′















. (33)
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The shear stress tensor components are,

τ ′xx = µ̄
2

3

(

2
∂u′

∂x
− ∂v′

∂y
− ∂w′

∂z

)

+ µ′ 2

3

(

2
∂ū

∂x
− ∂v̄

∂y
− ∂w̄

∂z

)

(34)

τ ′yy = µ̄
2

3

(

2
∂v′

∂y
− ∂u′

∂x
− ∂w′

∂z

)

+ µ′ 2

3

(

2
∂v̄

∂y
− ∂ū

∂x
− ∂w̄

∂z

)

(35)

τ ′zz = µ̄
2

3

(

2
∂w′

∂z
− ∂u′

∂x
− ∂v′

∂y

)

+ µ′ 2

3

(

2
∂w̄

∂z
− ∂ū

∂x
− ∂v̄

∂y

)

(36)

τ ′xy = µ̄

(

∂u′

∂y
+
∂v′

∂x

)

+ µ′

(

∂ū

∂y
+
∂v̄

∂x

)

(37)

τ ′xz = µ̄

(

∂u′

∂z
+
∂w′

∂x

)

+ µ′

(

∂ū

∂z
+
∂w̄

∂x

)

(38)

τ ′yz = µ̄

(

∂v′

∂z
+
∂w′

∂y

)

+ µ′

(

∂v̄

∂z
+
∂w̄

∂y

)

, (39)

and the heat flux vector components are,

q′x = −
(

k̄
∂T ′

∂x
+ k′

∂T̄

∂x

)

(40)

q′y = −
(

k̄
∂T ′

∂y
+ k′

∂T̄

∂y

)

(41)

q′z = −
(

k̄
∂T ′

∂z
+ k′

∂T̄

∂z

)

. (42)

The disturbance component of the dynamic viscosity and heat conductivity are

µ′ =
∂µ̄

∂T̄
T ′ (43)

and

k′ =
∂k̄

∂T̄
T ′ =

cp
Pr

∂µ̄

∂T̄
T ′ . (44)

The disturbance pressure is
p′ = R(ρ′T̄ + ρ̄T ′) . (45)

C. Base Flow

The base or basic flow for the simulations was obtained by solving the one-dimensional (1-D) Navier-Stokes
equations. The equations governing 1-D laminar plane RBP flow are,

∂p

∂x
= µ

∂2u

∂y2
, (46)

∂p

∂y
= (1 − ρ)g , (47)

k
∂2T

∂y2
+ µ

(

∂u

∂y

)2

= 0 . (48)

The equations were derived from the incompressible Navier-Stokes equations under the assumption of parallel
flow (∂/∂x = 0, where x is the streamwise coordinate), zero wall-normal velocity (v = 0), and steady flow
(∂/∂t = 0).
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D. Channel Flow Relationships

The hydraulic diameter for a 2-D channel flow (height h and span b) is defined as

Dh =
4b× h

2(b+ h)
. (49)

For a channel with infinite width or span (b→ ∞), Dh = 2h. The bulk velocity is defined as

ub =
1

h

∫

u dy . (50)

From the x-momentum equation for a constant temperature laminar 2-D channel flow,

ν
∂2u

∂y2
=

1

ρ

∂p

∂x
, (51)

the velocity profile can be found by integration,

u =
1

2ρν

∂p

∂x

(

y2 − hy
)

. (52)

The maximum velocity is obtained at the channel half-height,

umax = − h2

8ρν

∂p

∂x
. (53)

The velocity profile expressed in terms of the maximum velocity is

u = 4umax

[

y

h
−
(y

h

)2
]

. (54)

From this the bulk velocity for the laminar profile can be obtained,

ub =
2

3
umax . (55)

The skin-friction coefficient can be computed from the near-wall gradient of the velocity profile,

∂u

∂y
= 4umax

(

1

h
− 2

y

h2

)

. (56)

At the wall,
∂u

∂y
= 4

umax
h

, (57)

and the skin-friction coefficient based on the bulk velocity becomes,

cf =
ρν ∂u

∂y

1
2ρu

2
b

= 12
ν

ubh
. (58)

The Darcy friction factor, f , is defined as

∂p

∂x
= −1

2
ρu2

b

f

Dh

. (59)

From a control volume analysis in the streamwise direction for a channel with span b,

hb
∂p

∂x
dx+ τ2bdx = 0 , (60)

the skin friction can be acquired,

τ = −h
2

∂p

∂x
. (61)

Making use of the friction factor,

τ =
h

2

1

2
ρu2

b

f

Dh

=
f

8
ρu2

b , (62)

is obtained which is valid for both laminar and turbulent channel flow. With this the skin-friction coefficient
becomes

cf =
τ

1
2ρu

2
b

=
f

4
. (63)
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E. Non-Dimensionalization

The governing equations were made dimensionless with a reference velocity, vref , a reference length scale,
Lref , a reference temperature, Tref , and a reference density, ρref . Pressure was non-dimensionalized with
ρrefv

2
ref . The Reynolds number based on bulk velocity and hydraulic diameter is

Reb =
ub2h

ν
, (64)

where h is the channel height. Gage and Reid10 based their Reynolds number on the maximum velocity and
channel half height,

Re =
umax

h
2

ν
. (65)

Using the expression for the bulk velocity,

Reb ≈
4

3

umaxh

ν
=

8

3
Re , (66)

is obtained where the approximate sign indicates that the expression is only valid for constant temperature
flow. For the present simulations, the bulk velocity was taken as reference velocity, vref = ub, and the
channel half-height was taken as reference length, Lref = h/2. The resulting reference Reynolds number is

Reref =
vrefLref

ν
=
ub

h
2

ν
=

1

4
Reb ≈

2

3
Re , (67)

For laminar flow cf = 24/Reb and therefore f = 96/Reb = 24/Reref . The negative pressure gradient made
dimensionless with the reference length, Lref = h/2, and the bulk velocity, ub is

−∂p
∂x

h
2

ρu2
b

=
f

8
=
dp

dx
. (68)

For the present simulations, this expression is added as a source term to the right-hand-side of the streamwise
momentum equation to maintain a constant bulk velocity.

The Rayleigh number is defined as

Ra =
γh3g∆T

να
, (69)

where γ = 1/Tav with Tav = (Thot + Tcold)/2 is the thermal expansion coefficient for a perfect gas, and
∆T = Thot − Tcold, is the temperature difference between the bottom and top wall. The Rayleigh number
can be written as

Ra = Re2ref
∆T

Tav

(

h

Lref

)3
(

g
Lref
v2
ref

)

Pr , (70)

where gLref/v
2
ref is the dimensionless gravitational acceleration. In accordance with Gage and Reid10 the

Prandtl number was set to one. The reference Mach number for the present simulations was 0.1.

F. Discretization

A grid transformation was employed for the convective terms of the Navier-Stokes equations in the wall-
normal direction. The resulting first derivatives were discretized with fifth-order-accurate upwind-biased,

1

2
f ′j−1 + f ′j +

1

6
f ′j+1 = − 1

18
fj−2 − fj−1 +

1

2
fj +

5

9
fj+1 , (71)

and downwind-biased,

1

2
f ′j+1 + f ′j +

1

6
f ′j−1 =

1

18
fj+2 + fj+1 −

1

2
fj −

5

9
fj−1 , (72)
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d = 1 d = 2

aj−1 { hj+1

hj+1+hj
}2 { hj+1

hj+hj+1
}{ h2

j+hjhj+1−h
2
j+1

h2
j
+3hjhj+1+h2

j+1

}

aj+1 { hj

hj+1+hj
}2 { hj

hj+hj+1
}{ h2

j+1+hjhj+1−h
2
j

h2
j
+3hjhj+1+h2

j+1

}

bj−1 − 2h2
j+1{2hj+hj+1}

hj{hj+1+hj}3 { hj+1

hj+hj+1
}{ 12

h2
j
+3hjhj+1+h2

j+1

}
bj

2{hj+1−hj}
hjhj+1

−12
h2

j
+3hjhj+1+h2

j+1

bj+1
2h2

j{hj+2hj+1}

hj+1{hj+1+hj}3 { hj

hj+hj+1
}{ 12

h2
j
+3hjhj+1+h2

j+1

}

Table 1. Coefficients for fourth-order accurate compact finite difference stencils for non-uniform grids.32

compact finite differences.31 For the spatial discretization of the 1st and 2nd derivatives that appear in the
viscous terms, fourth-order-accurate compact finite differences for non-equidistant meshes by Shukla et al.32

were utilized in the wall-normal direction,

aj−1f
(d)
j−1 + f

(d)
j + aj+1f

(d)
j+1 = bj−1fj−1 + bjfj + bj+1fj+1 . (73)

Here d (either 1 or 2) represents the order of the derivative. The coefficients are provided in Tab. 1 where
hj = yj − yj−1 corresponds to the wall-normal grid spacing. The resulting tridiagonal systems of equations
were solved with the Thomas algorithm. Streamwise (x-coordinate) and spanwise (z-coordinate) derivatives
were calculated in Fourier space.2,18 The forward and backward Fourier transforms were computed with fast
Fourier transforms (FFTs).33,34

A fourth-order-accurate Runge-Kutta method35 was applied for advancing the governing equations in
time,

Q1 = Qn +
∆t

2
R(Qn) (74)

Q2 = Qn +
∆t

2
R(Q1)

Q1 ⇐ Q1 + 2Q2 (75)

Q2 = Qn + ∆tR(Q2)

Q1 ⇐ 1

2
(−Qn + Q1 + Q2) (76)

Qn+1 = Q1 +
∆t

6
R(Q2) , (77)

where n and n+ 1 are the old and new time step and

∂Q

∂t
= R = H − ∂E

∂x
− ∂F

∂y
− ∂G

∂z
. (78)

G. Computational Domain

A coordinate transformation was employed in the wall-normal direction (grid line index, j; coordinate in
computational space, η=j; ∆η = 1) that clusters grid points near the walls. A total of J grid points were
distributed in the wall-normal direction,

yj =

[

tan−1(jc− f1)

f2
+ 1

]

× h

2
, (79)

where h is the channel height, c is a user specified constant, f1 = Jc/2, and f2 = tan−1(f1). The derivative
of the computational coordinate with respect to the physical coordinate is,

∂η

∂y
= 2

f2
ch

{

1 + tan2

[(

2y

h
− 1

)

f2

]}

, (80)
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and the derivative in physical space can be obtained from

∂f

∂y
= f ′

∂η

∂y
. (81)

H. Boundary Conditions

For the full Navier-Stokes (FNS) simulations, no-slip and no-penetration boundary conditions were enforced
at the walls. The bottom and top wall temperature were held constant at 350K and 300K, respectively.
Assuming ∂ρv/∂t = 0 and ∂/∂x = 0 at the wall, the momentum equation in the y-direction at the wall
simplifies to

∂p

∂y
= g(1 − ρ) . (82)

When the pressure differential is discretized with a one-sided fourth-order-accurate finite difference stencil,
the wall pressure at the bottom and top wall become,

p0 =
−12g ∂y

∂η
+ 48p1 − 36p2 + 16p3 − 3p4

25 − 12g
RT0

∂y
∂η

, (83)

and

pjx =
12g ∂y

∂η
+ 48pjx−1 − 36pjx−2 + 16pjx−3 − 3pjx−4

25 + 12g
RTjx

∂y
∂η

. (84)

For the linearized Navier-Stokes (LNS) simulations, the streamwise, wall-normal and spanwise disturbance
velocity, u′, v′ and w′, as well as the disturbance temperature, T ′, were set to zero at both the top and bottom
wall. The linearized wall-normal momentum equation at the wall simplifies to

∂p′

∂y
= −gρ′ . (85)

By making use of T ′ = 0 in Eq. 45, an expression for the disturbance density at the wall is obtained,

ρ′ =
p′

RT̄
, (86)

Using one-sided fourth-order-accurate standard finite difference stencils, the disturbance wall pressure at the
bottom and top wall can be found,

p′0 =
48p′1 − 36p′2 + 16p′3 − 3p′4

25 − 12g
RT̄0

∂y
∂η

, (87)

and

p′jx =
48p′jx−1 − 36p′jx−2 + 16p′jx−3 − 3pjx−4

25 + 12g
RT̄jx

∂y
∂η

. (88)

I. Numerical Linear Stability Analysis

According to what is customary in linear stability theory (LST), a wave ansatz of the form

v′(x, y, z, t) =
∑

v̂(y)ei(αx+βz−ωt) , (89)

is made for the disturbances where α=αr+iαi, β and ω=ωr+iωi are the streamwise wavenumber, spanwise
wavenumber and angular frequency, respectively. Here, v̂(y) are the eigenfunctions. The streamwise, λx, and
spanwise, λz, wavelengths can be obtained from the streamwise and spanwise wavenumbers, αr = 2π/λx and
β = 2π/λz. The wavelengths λx and λz are related to the streamwise domain extent, L, and the spanwise
domain extent, Z, through λx = L/l and λz = Z/k where l and k are the streamwise and spanwise mode
number. The period, T , is related to the real part of the angular frequency via ωr = 2π/T .
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For the temporal stability simulations discussed in this paper, the disturbances can only grow or decay
in time and therefore, αi = 0. The disturbances can then be expressed as,

v′(x, y, z, t) =
∑

v̂(y)ei[αrx+βz−(ωr+iωi)t]

=
∑

v̂(y)ei(αrx+βz−ωrt)eωit

=
∑

eiψA[v′(y, t)] , (90)

where the sum is taken over all Fourier modes and A and ψ = αrx+βz−ωrt are the Fourier mode amplitude
and phase. Accordingly, the temporal growth rates of the modes can be computed from

ωi =
∂lnA(v′)

∂t
, (91)

and the phase speed can be computed from

c =
ωr
αr

= −
∂ψ
∂x
∂ψ
∂t

. (92)

The wave angle is defined as λ = tan−1
(

β/α
)

.

III. Validation

The temporal stability of plane Poiseuille flow (no heated walls, no gravitational field) is considered first
to validate the present numerical simulations. Several researchers investigated the onset of hydrodynamic
instability in plane Poiseuille flow numerically.27,36,37 The first numerical solutions of the Orr-Sommerfeld
stability equation were obtained by Thomas36 using a five-point Numerov finite difference method. Using 50
and 100 grid points, Thomas36 found phase speeds of c=0.2375006+0.0035925i and c=0.2375243+0.0037312i,
respectively, for αr=1 and Re=10, 000. Gary and Helgason37 employed a sixth-order-accurate finite dif-
ference scheme for stretched coordinates and obtained c=0.23752964 + 0.00374248i (43 grid points) and
c=0.23752650+0.00373969i (100 grid points) for the same case. An accurate solution of the Orr-Sommerfeld
stability equation was achieved by Orszag27 using Chebyshev polynomials. According to Orszag,27 the cor-
rect phase speed for αr=1 and Re=10, 000 is c=0.23752679 + 0.00373967i.

J c = cr + ici |Error(%)| for ci

48 0.234799755+0.008879324i 137.43

72 0.235279754+0.004574262i 22.31

96 0.236793086+0.003758063i 0.49

120 0.237386419+0.003677396i 1.66

144 0.237606418+0.003677863i 1.65

168 0.237693085+0.003683529i 1.50

192 0.237733085+0.003686796i 1.41

216 0.237759752+0.003689329i 1.34

240 0.237766418+0.003691996i 1.27

264 0.237779752+0.003691396i 1.29

288 0.237779752+0.003692396i 1.26

312 0.237779752+0.003692663i 1.25

Table 2. Phase speed vs. wall-normal grid resolution and relative error with respect to Orszag27 result.

The base flow for the LNS validation simulations of the Orszag27 case was computed as explained in
section II.C. The top and bottom wall temperature were set to 300K which results in Ra=0. A number
of LNS simulations with different wall-normal grid resolutions were carried out and the phase speed error
was calculated with respect to the reference value obtained by Orszag27(Tab. 2). As the grid resolution was

11 of 25

American Institute of Aeronautics and Astronautics

D
o
w

n
lo

ad
ed

 b
y
 A

n
d
re

as
 G

ro
ss

 o
n
 J

an
u
ar

y
 1

4
, 
2
0
1
9
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
1
9
-2

3
2
0
 



increased, the phase speed obtained from the present simulations converged to the phase speed published in
the literature.27 The small remaining residue error can be explained by the fact that Orszag27 solved the
incompressible Navier-Stokes equations.

IV. Results

Numerical analyses for different stable and unstable cases in the vicinity of the stability boundaries
provided by Gage and Reid10 (Fig. 1 and Tab. 3) were performed. The number of Fourier modes in the
streamwise and spanwise direction counted from 0 is lmax and kmax, respectively. The individual cases
are either (1) stable (Re < Rec & Ra < Rac), (2) unstable with respect to 3-D waves (buoyancy-driven
instability, Re < Rec & Ra > Rac), and (3) unstable with respect to 2-D waves (viscosity-driven instability,
Re > Rec & Ra < Rac). For all simulations, very small (linear) disturbances were added to the initial
condition to raise the disturbance amplitudes slightly above machine roundoff. For parallel channel flow, the
wall-normal velocity is zero. The disturbance amplitudes, growth rates, frequencies, and phase speeds were
computed from the wall-normal velocity component in the center of the channel.

Figure 1. Neutral curves from stability analyses by Gage and Reid.10 Symbols represent parameters for
present simulations.

Dimensions L Z lmax kmax Re
√
Ra Type of instability

Case 1 3-D - 12 1 16 44.984 100 Buoyancy-driven

Case 2 3-D - 12 1 8 45.010 30 Buoyancy-driven

Case 3 2-D 30 - 16 1 30008.037 10 Viscosity-driven

Case 4 2-D 22.5 - 4 1 4501.626 10 Viscosity-driven

Table 3. Parameters for 2-D and 3-D simulations.

A. Buoyancy Driven Instability

A grid resolution study was conducted for Re = 44.984 and
√
Ra=100 before proceeding further. Several

linearized simulations were carried out using only two spanwise Fourier modes (k = 0 and k = 1). The
spanwise grid extent was held constant at Z = 3 (λz = 3 and β = 2.094) and the number of grid points,
J , in the wall-normal direction was varied. Based on the data provided in Tab. 4, it was decided to use
J = 72 for all simulations with buoyancy-driven instability. The Reynolds number, Rayleigh number, and
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spanwise domain extent for case 1 are Re = 44.984,
√
Ra = 100 and Z = 12 (Tab. 3). According to Gage

and Reid,10 case 1 is unstable. To determine how the wavelength, growth rate and amplitude of the unstable
mode depends on the spanwise wavenumber, the spanwise domain extent, Z, was varied. The growth rates
obtained from the LNS simulations are listed in Tab. 5 and plotted versus the spanwise wavenumber in
Fig. 2. The highest growth rate (ωi = 0.2181) is obtained for a spanwise wavenumber of β = 2.094 which
corresponds to a spanwise wavelength of λz = 2π/β = 3. The growth rate becomes zero for β ≈ 0.417 and
β ≈ 4.178. The very low and very high wavenumbers would of course be difficult to observe in practice since
the β = 2.094 disturbances grow much faster and develop first into observable flow structures.

J ωi

48 0.218147

60 0.218141

72 0.218134

84 0.218134

96 0.218127

Table 4. Grid resolution study for Re=44.984 and
√

Ra=100 (case 1).

λz β ωi

1.25 5.026 -0.1775

1.5 4.188 -0.0010

2 3.141 0.1554

2.5 2.513 0.2068

2.75 2.284 0.2156

3 2.094 0.2181

3.25 1.933 0.2165

3.5 1.795 0.2121

3.75 1.675 0.2060

4 1.570 0.1988

5 1.256 0.1656

6 1.047 0.1337

7 0.897 0.1062

8 0.785 0.0833

9 0.698 0.0643

10 0.628 0.0485

12 0.523 0.0243

14 0.448 0.0070

18 0.349 -0.0152

Table 5. Wavelength study for Re=44.984 and
√

Ra = 100 (case 1).

A linearized Navier-Stokes (LNS) simulation and a full Navier-Stokes (FNS) simulation for case 1 with
16 spanwise Fourier modes were then carried out for a spanwise domain extent of Z = 12 (four times the
most unstable wavelength). The mode amplitudes are plotted in Fig. 3. The growth rates are plotted in
Fig. 4 and listed in Tab. 6. Mode k = 4 (corresponding to λz = Z/4 = 3 and β = 2π/λz = 2.094) exhibits
the strongest linear growth, ωi = 0.2181 (Fig. 3a). Modes 1-3 and 5-7 are also amplified in accordance with
Fig. 2. This is a good example for the utility of the linearized code. The stability of several modes can
be investigated with one simulation since the modes are not interacting with each other. The same case
(case 1) was also simulated with the FNS code in order to validate the results obtained from the linearized
Navier-Stokes (LNS) simulation. In accordance with the LNS simulation, mode k = 4 exhibits the strongest
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Figure 2. Growth rate versus spanwise wavenumber and polynomial curve fit for case 1 with varying Z and
kmax = 2.

a) b)

Figure 3. Mode amplitudes versus time for case 1 with fixed Z = 12 and kmax = 16: (a) LNS and (b) FNS.

Figure 4. Growth rates versus spanwise wavenumber for case 1 and polynomial curve fit.

linear growth (Fig. 3b). The growth rates for t < 35 (linear growth) are in excellent quantitative agreement
with the LNS results (Fig. 4).
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k λz β ωi

1 12 0.523 0.02439

2 6 1.047 0.1337

3 4 1.570 0.1988

4 3 2.094 0.2181

5 2.4 2.617 0.2009

6 2 3.141 0.1554

7 1.714 3.665 0.0869

8 1.5 4.1887 -0.00107

9 1.333 4.712 -0.1064

10 1.2 5.235 -0.228

11 1.09 5.759 -0.3644

12 1 6.283 -0.5153

13 0.923 6.806 -0.680

14 0.857 7.33 -0.857

15 0.8 7.853 -1.0511

Table 6. Spanwise wavelengths and wavenumbers as well as growth rates for case 1.

a) b)

Figure 5. (a) Amplitude and (b) phase of u′ for k = 4 (case 1).

a) b)

Figure 6. (a) Mode amplitude and (b) phase of v′ for k = 4 (case 1).
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The amplitude and phase distributions of the streamwise disturbance velocity, u′, for mode k = 4 (case 1)
for t = 23, 49 and 63 are compared in Fig. 5. The amplitude distributions have two peaks and a phase-jump
of π for y ≈ 1. The amplitude and phase distributions of the wall-normal disturbance velocity, v′ for mode
k = 4 are compared in Fig. 6. Unlike for the u′ disturbance, only one amplitude peak exists at the mid-
channel height (Fig. 6a) and the phase distribution is constant (Fig. 6b). Iso-surfaces of the Q-criterion38

flooded by the streamwise vorticity and iso-contours of the wall-normal disturbance velocity obtained from
the FNS simulation for t = 75 reveal eight counter-rotating longitudinal vortices (Fig. 7).

a) b)

Figure 7. (a) Iso-surfaces of Q=2 flooded by streamwise vorticity and (b) iso-contours of v′ for case 1.

a) b)

Figure 8. Comparison between FNS and LNS results: (a) Growth rate vs. time and (b) phase vs. time for
case 1.

For the FNS simulation, the waves can interact and departures from linear growth are expected. Also,
non-linear effects and amplitude saturation are possible. All Modes initially grow according to the linearized
results (Fig. 8a). Sudden changes of the growth rate (such as for mode 8 for 40 < t < 50) can result from
resonance or in general, non-linear effects. Mode k = 12 (λz = 1) departs first from linear growth and is
followed by modes k = 11, 10, 9, 8 and so on. Interestingly, the mode 12 non-linear growth levels of as mode
11 begins to grow. Similarly, the mode 11 growth tapers of as mode 10 starts to grow. A similar observation
can be made for mode 10. Modes 9, 8, and 7 do not display this behavior. The non-linear growth of mode
k = 8 (λz = 1.5) is the strongest for 52 < t < 57 after which it is overtaken by mode 12. Sudden changes
in growth rate go hand-in-hand with a phase adjustment of the modes (Fig. 8b). For example, the suddenly
increased growth of mode 9 for t > 30 can be associated with a phase shift with respect to mode 4 that likely
results in an improved non-linear energy transfer.

The amplitude and phase distributions of the streamwise and wall-normal disturbance velocity for mode
k = 7 are plotted in Figs. 9 and 10 for t = 30 (linear growth), 48 (departure from linear growth) and 63
(constant non-linear ωi). As the growth rate changes from t = 30 to 63, the u′ phase becomes flat and the
v′ phase attains a phase-jump of π. The u′ amplitude distribution looses a peak whereas the v′ amplitude
distribution gains an extra peak. A similar scenario can also be observed for mode k = 9 as seen in Figs. 11
and 12.
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a) b)

Figure 9. (a) Amplitude and (b) phase of u′ for k = 7 (case 1).

a) b)

Figure 10. (a) Mode amplitude and (b) phase of v′ for k = 7 (case 1).

a) b)

Figure 11. (a) Amplitude and (b) phase of u′ for k = 9 (case 1).

Case 2 (Re = 30 and
√
Ra = 30) is stable according to Gage and Reid.10 Time histories of the disturbance

amplitudes reveal that this is also the case for the simulation (Fig. 13).
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a) b)

Figure 12. (a) Amplitude and (b) phase of v′ for k = 9 (case 1).

Figure 13. Time history of disturbance amplitudes for case 2.

B. Viscosity-Driven Instability

The same approach was taken to investigate the viscosity-driven instability. The Rayleigh number (
√
Ra =

10 <
√
Rac) was sub-critical and held constant. The Reynolds number was varied (Re=30, 008.037 &

4, 500.262). According to Gage and Reid,10 2-D disturbances in the form of Tollmien-Schlichting (T-S)
waves are amplified for Re > Rec = 5, 400. The objective was to investigate the impact of the Reynolds
number on the linear and non-linear stability for

√
Ra <

√
Rac. As for the bouyancy-driven instability, a

grid resolution study was carried out first for Re = 30, 008.037,
√
Ra=10, and L = 7 using LNS simulations

with two streamwise Fourier modes (l = 0 and l = 1). The number of wall-normal grid points, J , was varied.
Based on the grid resolution study (Tab. 7) it was decided to use 264 grid points in the wall-normal direction
for all of the viscosity-driven instability simulations.

Using lmax = 2, a wavelength study was conducted for the same parameters. The streamwise domain
extent was varied to find the streamwise wavenumber, αr, with the highest temporal growth rate. In Tab.
8 and Fig. 14, the temporal growth rates, ωi, and frequencies, ωr, are provided for different wavelengths,
λx, and wavenumbers, αr. The largest growth rate (ωi=0.00681) is obtained for a streamwise wavenumber
of αr = 2π/λx = 0.837 which corresponds to λx = 7.5 (Tab. 8 and Fig. 14a). Interestingly, this growth
rate is roughly 30 times smaller than the maximum growth rate for the previous case with buoyancy-driven
instability. Of course, this will change when the Reynolds number is increased. The phase speed for the
most unstable mode is 0.1831. The frequency, ωr, and phase speed, c, increase with the wavenumber, αr
(Tab. 8 and Fig. 14b).
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J ωi

48 0.01600

72 0.01083

96 0.00716

120 0.00602

144 0.00587

168 0.00591

192 0.00596

216 0.00599

240 0.00602

264 0.00603

288 0.00604

312 0.00604

Table 7. Grid resolution study for Re=30008.037 and
√

Ra=10.

λx αr ωi ωr c

6 1.047 -0.00380 0.2106 0.2011

6.25 1.005 0.00018 0.1997 0.1987

6.5 0.966 0.00299 0.1891 0.1957

6.7 0.937 0.00456 0.1811 0.1932

7 0.897 0.00603 0.1699 0.1894

7.25 0.866 0.00663 0.1613 0.1862

7.5 0.837 0.00681 0.1533 0.1831

7.75 0.810 0.00667 0.1459 0.1801

8 0.785 0.00630 0.1390 0.1770

8.25 0.761 0.00575 0.1326 0.1742

8.5 0.739 0.00507 0.1267 0.1714

9 0.698 0.00346 0.1161 0.1663

10 0.6283 -0.00009 0.0988 0.1572

Table 8. Wavelength study with lmax = 2 for Re=30008.037 and
√

Ra = 10 (case 3).

a) b)

Figure 14. (a) Growth rate and polynomial curve fit and (b) frequency and phase speed versus streamwise
wavenumber for Re=30008.037,

√

Ra = 10, and lmax = 2 (case 3).
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The streamwise domain extent was then set to four times the wavelength of the most amplified wave
(L = 4×7.5 = 30). Using 16 streamwise Fourier modes, this case was analyzed with the FNS and LNS code.
For the LNS simulation, in agreement with the earlier wavelength study, mode l = 4 grows linearly, mode
l = 3 is almost neutral, and mode l = 5 is weakly damped (Fig. 15a). All other modes are decaying. Up to
t = 400 the FNS results match the LNS results. The first mode to grow non-linearly is l = 8 (λx = 3.75)
followed by mode l = 12 (λx = 2.5) as seen in Fig. 15b. The growth rates for modes l = 4, 8, and 12
are plotted in Fig. 19. As for the buoyancy-driven instability, the non-linear growth rates (e.g. k = 8 and
k = 12) are larger than the linear growth rates (e.g. k = 4). The wavelengths, wavenumbers, frequencies,
phase speeds and growth rates for some of the modes are provided in Tab. 9.

a) b)

Figure 15. Mode amplitudes vs. time for case 3 with lmax = 16: (a) LNS and (b) FNS.

l λx αr ωr c ωi

4 (linear growth) 7.5 0.837 0.1533 0.1831 0.00681

8 (non-linear growth) 3.75 1.675 0.3066 0.18304 0.01362

12 (non-linear growth) 2.5 2.513 0.46008 0.18308 0.02042

Table 9. Streamwise wavelength & wavenumber, frequency, phase speed and growth rate for case 3.

a) b)

Figure 16. (a) Amplitude and (b) phase of u′ for l = 4 (case 3).

The u′ and v′ amplitude and phase distribution of mode l = 4 for t = 240 and 1080 are plotted in Figs.
16 and 17. As is typical for T-S waves, the u′ mode amplitude has maxima near the top and bottom wall
where the viscous affects are stronger (Fig. 16a) and a phase shift of π occurs at y ≈ 1 (Fig. 16b). On the
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a) b)

Figure 17. (a) Mode amplitude and (b) phase of v′ for l = 4 (case 3).

other hand, the v′ mode amplitude has only one peak at approximately the mid-channel height (Fig. 17a)
and the phase remains constant inside the channel (Fig. 17b). Iso-contours of the disturbance velocity (v′)
obtained from the LNS simulation for t = 1, 500 are plotted in Fig. 18. The flow visualization shows one T-S
wave.

Figure 18. Iso-contours of wall-normal disturbance velocity for case 3 (λx = 7.5)

Figure 19. Growth rates versus time for case 3.

Modes l = 8 and l = 12 grow linearly up to t ≈ 275 and t ≈ 500 after which the growth rates increase
strongly due to non-linear effects (Fig. 19). To better understand this phenomenon, the amplitude and
phase of the streamwise and wall-normal disturbance velocity for mode l = 8 were plotted for t = 240
(linear growth), 360 (departure from linear growth) and 900 (non-linear growth) (Figs. 20 and 21). The
u′ disturbance amplitude distribution adjusts strongly as the non-linear effects set in. Two pronounced
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a) b)

Figure 20. (a) Mode amplitude and (b) phase of u′ for l = 8 (case 3).

a) b)

Figure 21. (a) Mode amplitude and (b) phase of v′ for l = 8 (case 3).

near-wall maxima develop and one phase-jump is eliminated (Fig. 20). For the v′ disturbance amplitude
distribution, the amplitude peaks shift closer to the top and bottom wall and the phase-jump disappears
(Fig. 21).

Figure 22. Mode amplitudes versus time for case 4.

Finally, for case 4 (Re = 4, 501.626 < Rec), which is stable according to Gage and Reid,10 all mode
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amplitudes decay in time as seen in Fig. 22.

V. Conclusions

The plane Rayleigh-Bénard-Poiseuille flow can exhibit both buoyancy and viscosity-driven instability.
Gage and Reid10 were the first to provide neutral curves for plane RBP flow. According to Gage and Reid,10

buoyancy-driven instability occurs when the Reynolds number is below Rec=5,400 and the Rayleigh number
is above Rac=1,708. In addition, viscosity-driven (Tollmien-Schlichting) instability occurs for Re > Rec and
Ra < Rac. The most unstable waves are three-dimensional (3-D) for the former and two-dimensional (2-D)
for the latter. Gage and Reid10 also provided neutral curves for 3-D oblique waves. The objective of this
paper was to investigate both instabilities separately from each other.

To serve this objective, a linearized Navier-Stokes (LNS) and a full Navier-Stokes (FNS) code were devel-
oped for numerical stability investigations of RBP flows. The base flow profiles for the stability simulations
were obtained from numerical solutions of the one-dimensional governing equations. As a validation case, the
temporal stability results by Orszag27 were recomputed and matched with good accuracy. The buoyancy-
driven instability was investigated for a subcritical Reynolds number and an unstable (Ra > Rac) and stable
Rayleigh number. For the unstable case, the wavelength of the disturbances with the highest growth rate was
obtained first with the LNS code. Linearized and full Navier-Stokes stability simulations were then carried
out using a computational domain with a spanwise extent of four times the wavelength of the most unstable
mode. Fourier transforms of the wall-normal disturbance velocity provided the mode amplitude and phase
distribution and temporal growth rates as a function of the wavelength. Linear growth was observed for a
wide range of spanwise wavenumbers, β. The FNS simulation revealed the onset of non-linear growth for
a higher harmonic with a three times shorter wavelength relative to the most amplified linear wave. The
onset of non-linearity is characterized by a phase-shift (the waves realign in the spanwise direction) and an
additional zero-crossing of the mode amplitude distribution. As time progresses, an almost gradual reduc-
tion of the wavelength of the disturbances with the highest non-linear growth rate was observed. It may be
speculated that 3-D disturbances would experience stronger non-linear growth. However, this is beyond the
scope of this paper.

A subcritical Rayleigh number was chosen for the investigation of the viscosity-driven instability. Stability
simulations were carried out for an unstable, Re > Rec, and a stable Reynolds number. For the former, the
streamwise wavelength of the disturbance waves with the highest temporal growth rate was determined first.
The LNS simulations indicate that for a Reynolds number that is about six times higher than the critical
Reynolds number, the unstable wavenumber range is quite narrow and the maximum amplification rates
are roughly 30 times lower than for the case with buoyancy-driven instability where the Rayleigh number is
approximately six times larger than the critical Rayleigh number. Because of the lower amplification rates
and narrow wavenumber range, non-linear effects set in much later than for the cases with buoyancy-driven
instability. Waves with two and three times shorter wavelength (relative to the linearly most amplified mode)
are the first to experience non-linear growth. Three-dimensional waves may encounter stronger non-linear
growth but were not investigated. For the conditions considered here, buoyancy-driven instability will likely
first lead to transition. Non-linear interactions between the buoyancy and viscosity-driven instabilities will
be discussed in a forthcoming paper.
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