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1 | INTRODUCTION

of Threatened Species (Lopes-Lima et al., 2017). North America has

the richest fauna of mussels worldwide, but over 70% of species are

Freshwater mussels (Bivalvia: Unionoida) are long-lived, sedentary,
burrowing invertebrates that play important ecological roles in lakes
and rivers worldwide (Vaughn & Hakenkamp, 2001). Mussels have
one of the highest imperilment rates of any group of organisms and
are undergoing a global decline (Lopes-Lima et al., 2014; Ricciardi &
Rasmussen, 1999). Globally, 44% of the 511 mussel species are
listed as near-threatened or threatened in the 2015 IUCN Red List

considered imperilled to some degree and 37 species are presumed
extinct (Lopes-Lima et al.,, 2017). The recognition of the decline in
mussel populations has mobilised conservation efforts at local,
national and international levels (FMCS, 2016; Haag & Williams,
2014; Lopes-Lima et al., 2017). Recent studies have aided in under-
standing the distributional range, historical records, population trends

and demographic data of mussels (see Haag, 2010). Our ability to
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predict mussel distribution and abundance remains inadequate
(Strayer, 2008; FMCS, 2016), and temporal and spatial patterns in
mussel habitat across multiple scales and life stages are poorly
understood (FMCS, 2016).

In rivers, mussels often occur as dense, multispecies assemblages
called mussel beds that are patchily distributed and separated by
areas where mussels do not occur or are sparse (Strayer, 2008).
Mussel beds have been observed to persist for many decades in the
same river reach (Haag, 2012). For example, Vaughn (2000) found
19 mussel beds in nine tributaries to the Red River in Oklahoma and
Texas that had persisted in the same location from as far back as
1910 (Isely, 1924; Valentine & Stansbery, 1971), and Williams and
Schuster (1989) found that 64% of the mussel beds in the Ohio
River surveyed in 1967 were still in existence in 1982 (as cited in
Haag, 2012). As a demonstration of the widespread occurrence of
this phenomenon, we compiled a list of 24 rivers in the United
States where mussel beds have existed at the same river reach from
20 to more than 100 years (Table 1). The factors responsible for the
patchiness and long-term persistence of mussel beds in rivers, how-
ever, are not well understood. Mussels have a unique life history in
which adults are sedentary and the larvae (glochidia) are ectopara-
sites on fish. Thus, at a regional scale, mussel distribution is partially
dependent on host fish populations and mussel aggregations likely
occur in favourable habitats for fish hosts and juvenile mussels
(Strayer, 2008; Vaughn & Taylor, 2000). At local scales, however,
habitat variables such as water depth, water velocity and sediment
composition, quantified mostly during low flow surveys, have failed
to adequately explain mussel occurrence or abundance when criti-
cally examined (Brim Box, Dorazio, & Liddell, 2002; Holland-Bartels,
1990; Layzer & Madison, 1995; Strayer, 1981, 2008; Strayer & Ral-
ley, 1993; Vaughn & Pyron, 1995). Instead, the prevailing hypothesis
is that areas of the river channel where sediments are stable are a
critical component to the ecological success and resiliency of mus-
sels. Strayer (1999) further hypothesised that mussels occur in flow
refugia patches where “shear stresses during floods with moderately
long return periods (e.g. 3-30 years) are too low to displace unionids
or the sediments in which they are bedded.” This hypothesis is
mainly supported by studies correlating mussel occurrence to areas
of low shear stress during low flow where shear stresses are not a
limiting factor to mussel distribution (Allen & Vaughn, 2010; Gan-
gloff & Feminella, 2007; Layzer & Madison, 1995; Stone, Barndt, &
Gangloff, 2004) or anecdotal evidence suggesting large boulders pre-
vent significant scour during floods (Hastie, Boon, Young, & Way,
2001; Vannote & Minshall, 1982). Only a few studies covering a
small range of rivers, flows and sediment sizes, however, have suc-
cessfully correlated mussel occurrence to areas of low shear stresses
during floods by directly quantifying or modelling sediment dynamics
within mussel beds (Howard & Cuffey, 2003; May & Pryor, 2016;
Strayer, 1999).

The suggestion, implicit or otherwise, that significant portions of
a river bed in which mussels live remain immobile for decades or
more is in stark contrast to the fundamental understanding of river
mechanics. A central tenet in fluvial geomorphology is the concept

of channel-forming discharge, wherein a natural river channel attains
bankfull flow conditions every 1-2 years. The dimensions of the
channel therefore are determined by the erosive potential of this
flow event and river morphology is self-formed (Williams, 1978;
Wolman & Miller, 1960). River channels can further be categorised
based on the frequency in which bed sediments are entrained. For
example, bed sediments in labile channels are relatively easily and
frequently entrained by the flow, whereas transitional channels have
flow events that mobilise bed sediments less frequently (Church,
2006).

As shown in Table 1 and reported elsewhere worldwide, fresh-
water mussels are ubiquitous in rivers displaying a wide range of
size, channel gradient and bed texture (see Bogan & Roe, 2008;
Geist, 2010; Haag, 2012; Quinlan et al., 2015; Strayer, 2008; Wil-
liams, Warren, Cummings, Harris, & Neves, 1993). Self-formed rivers
with labile beds are common in nature, and it is highly likely that
most of the rivers listed in Table 1 would often experience channel-
forming discharge events accompanied by significant sediment trans-
port, certainly at frequencies greater than once per the lifespan of
mussels (Church, 2006). As a result, river beds populated by fresh-
water mussels would often experience fully mobile bed conditions.
Long-term sediment stability, however, is not often quantified in
reaches with mussel beds, only a few studies have provided support
to the flow refugia hypothesis during flood events (Howard & Cuf-
fey, 2003; May & Pryor, 2016), and the frequency and extent to
which mussels experience bed mobility have rarely been tested (but
see Allen & Vaughn, 2010, 2011).

In this study, we tested the hypothesis that sediment stability is
critical to the long-term persistence of mussel beds. We investigated
the relationship between long-term occurrence of mussel assem-
blages and the dynamic river systems in which they live by: (a) docu-
menting the long-term persistence of freshwater mussel
communities at-a-station (i.e. the same reach) in a river and (b) deter-
mining the relative bed mobility within these mussel beds. We sur-
veyed mussel assemblages in two streams with robust historical
records to document their long-term persistence, and we simulated
bed mobility with a two-dimensional flow and sediment transport
model to estimate bedload transport during channel-forming dis-
charges. We hypothesised that mussel assemblages would remain
relatively unchanged at-a-station and that channel-forming dis-
charges occurring every 1-2 years would be capable of mobilising
large portions of the stream bed where mussels occur. Such empiri-
cal evidence would challenge the current paradigm for mussel bed

persistence in rivers.

2 | METHODS

We selected two streams with historically and ecologically significant
mussel communities to examine the long-term persistence of mussels
and to assess the occurrence of channel-forming discharges and rela-
tive bed mobility. Tonawanda Creek originates in western New York
and flows north and then west into the Niagara River (Figure 1a). A
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TABLE 1 Description of select rivers with historically and ecologically significant mussel beds that have remained intact for decades or
more at given river reaches. Cl = clay; St = silt; S = Sand; G = gravel; Co = cobble; Bo = boulder and R = bedrock

Drainage Mean
area Bed gradient
River (State) (km?) composition  (m/m)
Fourche La Fave River 583 St, S, G, Co  0.00092 21
(AR)
Kinniconick Creek (KY) 658 G 0.00169 17
Elk River (TN, AL) 868 S, G, Co 0.00044 38
Big Darby Creek (OH) 1,442 St, S, G, Co, 0.00121 35
Bo
Tonawanda Creek (NY) 1,700 St, S, G, Co 0.00183 19
Tippecanoe River (IN) 1,890 S, G 0.00043 40
Clinton River (Ml) 1,977 St, S, G, Co 0.00113 26
Bourbeuse River (MO) 2,183 G 0.00054 27
Big River (MO) 2,473 S, G, Co, Bo 0.00118 17
French Creek (NY, PA) 3,200 St, S, G, Co, 0.00126 25
Bo
Kiamichi River (OK) 4,740 S, G, Co 0.00151 22
Cache River (MO, AR) 5,240 Cl, St, S 0.00030 26
Duck River (TN) 8,100 St, G 0.00061 54
Meramec River (MO) 10,255 St, S, G, Co  0.00060 34
Little River (OK, AR) 10,889 S, G, Co 0.00196 26
Clinch River (VA, TN) 11,430 St, S, G, Co 0.00113 46
Sangamon River (IL) 14,035 St, S, G 0.00026 28
White River (IN) 14,880 S, G, Co 0.00040 59
St. Croix River (WI, 20,000 S, G, Co 0.00041 41
MN)
Rock River (WI, IL) 27,270 St, S, G, Co 0.00026 27
Wabash River 39,950 Cl, St, S, G, 0.00027 62
(OH, IN, IL) Co
Cumberland River 48,000 St, S, G, Co, 0.00024 72
(KY, TN) Bo, R
Susquehanna River (NY, 71,225 St, S, G, Co, 0.00048 11
PA, MD) Bo
Tennessee River 105,000 St, S, G, Co 0.00015 126

(TN, AL, MS, KY)

total of 19 mussel species were recorded during a basinwide survey
in 1998 (Marangelo & Strayer, 2000). French Creek also originates in
western New York and flows south through Pennsylvania to its con-
fluence with the Allegheny River (Figure 1b). French Creek is among
the most biodiverse streams in the northeast (Smith & Crabtree,
2010) and contains over 80 native fish species and 29 native mussel
species (Bier, 1994; Smith & Crabtree, 2010). Smith and Crabtree
(2010) observed 25 mussel species during a survey in 2003-2005

and further noted that mussel density, abundance, and diversity

Number
of extant
species

Period of record  Source(s)

1992-2001 Dortch, Tillman, & Bunch, 1992; Harris, 1992;
Harris et al., 2009

1983-2012 Warren, Cicerello, Camburn, & Fallo, 1984;
Evans, 2012

1924-1980 Ahlstedt, 1983; Dunn, Sietman, & Kelner, 1999

1986-1996 Watters, 1998; State of Ohio EPA, 2004

1998-Present Marangelo & Strayer, 2000; This Study

1900-1991 Cummings, Mayer, & Page, 1992

1870-1978 Strayer, 1980, 1981; Morowski, James, &
Hunter, 2009

1978-1997 Hinck et al., 2012

1978-1997 Meneau, 1997; Hinck et al., 2012

1993—-Present Bier, 1994; Smith & Crabtree, 2010;

This Study

Vaughn, Mather, Pyron, Mehlhop, & Miller, 1996;
Vaughn, 1997; Atkinson, Julian, & Vaughn, 2012

1911-Present

1914-1994 Christian, Harris, Posey, Hockmuth, & Harp, 2005

1884-2010 Ahlstedt et al., 2004; Hubbs, Chance, Colley, &
Butler, 2011

1978-1997 Hinck et al., 2012

1987—-Present Vaughn, 1997; Atkinson et al., 2012; Davidson,

Brady, & Fotinos, 2014

1912-2009 Ortmann, 1918; Eckert, Ferraro, Pinder, &
Watson, 2008; Jones et al., 2014

1910-1989 Schanzle & Cummings, 1991

1906-1987 Cummings et al., 1992

1945-2010 Fuller, 1980; Hornbach, 2001

1926-2009 Bales, Price, & Shasteen, 2012

1900-1988 Cummings et al., 1992

1885-1989 Wilson & Clark, 1914; Starnes & Bogan, 1988;
Gordon & Layzer, 1989

1955-1997 Strayer & Fetterman, 1999;
Pennsylvania DEP, 2014

1897-2001 Starnes & Bogan, 1988; Hubbs et al., 2011

remained intact since a survey in 1993 (Bier, 1994). In both streams,
mussel beds occur as patches in space, and they typically occur in
riffle-run reaches.

Qualitative mussel surveys were conducted at select sites previ-
ously examined by Marangelo and Strayer (2000) in Tonawanda
Creek and by Smith and Crabtree (2010) in French Creek. On Ton-
awanda Creek, surveys were conducted at sites 1, 2 and 7 during
the summer of 2016 (Figure 1a). On French Creek, surveys were
conducted at river kilometres (RKM) 74, 93, 109 and 125 during the
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summer of 2016 (Figure 1b; RKM 93 was also resurveyed during
2017). The sites, and their numbers, were selected on the basis of
high species diversity and mussel abundance as previously docu-
mented in each stream (Marangelo & Strayer, 2000; Smith & Crab-
tree, 2010). All sites were a minimum of 2 km upstream or
downstream from the next nearest mussel bed. Qualitative assess-
ments consisted of a timed-visual mussel survey to document spe-
cies richness and catch-per-unit-effort (CPUE) values (Smith, Villella,
& Lemarie, 2001). Visual surveys were conducted throughout 2016
and 2017 during low flows via mask and snorkel and followed similar
protocols and effort outlined in Marangelo and Strayer (2000) and
Smith and Crabtree (2010). While almost all mussels observed were
visible at the surface, observers occasionally brushed away or lightly
probed sediment during each search. On average, site reaches were
limited to ~100 m in length with a minimum effort of one person-

hour (Table 2; Strayer, Claypool, & Sprague, 1997; Vaughn, Taylor, &
Eberhand, 1997).

More detailed quantitative surveys were also conducted at one
site in each stream (Site 3 in Tonawanda Creek; RKM 98 in French
Creek; Figure 1). Similar to the selection of the qualitative sites,
the quantitative sites had high species diversity and mussel abun-
dance reported in the previous surveys, and provided an accurate
representation of the typical mussel-covered reaches within each
stream. Quantitative assessments included a timed-visual mussel
survey as well as (a) an excavated quadrat analysis (30, 0.25 m?
quadrats excavated up to 0.15 m deep) to determine mussel den-
sity, (b) channel cross sections to generate bathymetry maps, (c)
stream gaging using a hand-held FlowTracker ADV (SonTek, San
Diego, CA, USA) and (d) a Wolman's pebble count (Wolman, 1954)

to determine the surface texture of the channel bed. All quadrats
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TABLE 2 Channel dimensions and grain size
distribution for the sites surveyed in Tonawanda
Creek, NY, and French Creek, PA

Length (m)

Mean
Width (m)

Tonawanda Creek

French Creek

Freshwater Biology =AWVA| LEYJL73

Site  Site Site  Site RKM  RKM RKM RKM RKM
1 2 3 7 74 93 98° 109 125
90 100 90 115 90 90 100 90 100
15 12 13 9 27 24 22 20 18
3.4 1.7 04 0.6 7.7 3.6 3.0 1.0 0.9
6.5 66 15 12 201 7.8 7.6 6.5 31
10.5 11.3 38 19 285 10.7 11.7 10.0 75
56.9 398 289 120 611 30.7 498 431 28.5
972 796 813 28.9 900 52.6 848 640 81.3

Note. Site 3 in Tonawanda Creek and RKM 98 in French Creek are the quantitative sites
used for the modelling efforts and are displayed in Figures 2 and 3.

were georeferenced with a hand-held GPS (Garmin eTrex 20; Gar-
min, Olathe, KS, USA). The pebble count began at the downstream
end of the study site and proceeded upstream in a zigzag pattern
until reaching the upstream end. A minimum of 100 pebbles were
measured at each site. The quantitative surveys were conducted
throughout 2016 and 2017, also during low flow conditions. Spe-
cies richness (live and total), abundance and CPUE data were
grouped by site within each stream, and differences between sur-
vey years were compared using a Wilcoxon signed-rank test (V
statistic) to test the null hypothesis that mussel communities (i.e.
mussel richness, abundance, CPUE) were not significantly different
between survey years (using p < 0.05).

At each quantitative site, a flow frequency analysis was con-
ducted using the maximum daily flow rate from the closest down-
stream USGS gage station. For Tonawanda Creek, 38 years (1979-
2017) of data were obtained at Rapids, NY (USGS gage 04218000).
For French Creek, 29 years (1988-2017) of data were obtained at
Meadville, PA (USGS gage 03023100). To account for hydrologic dif-
ferences between the quantitative sites and downstream gaging sta-
tions, the flow frequency analysis was empirically corrected for
upstream drainage area by determining the proportion of catchment
area at the respective gaging station.

Flow and sediment transport were simulated at the quantitative
sites using the International River Interface Cooperative (iRIC)
Nays2DH solver, a two-dimensional depth-averaged numerical model
(Nelson et al., 2016). Nays2DH solves the depth-averaged momen-
tum equations, and model inputs include discharge, topography,
Manning's roughness coefficient and downstream water surface ele-
vation.

Hydrodynamic models without sediment transport were first cali-
brated by adjusting Manning's roughness coefficient n to match mea-
sured flow depth and flow velocity from one stream-gaging activity
(Tonawanda Creek discharge of 1.1 m%/s; French Creek discharge of
3.5 m%s). Initial selection of Manning's n was estimated as
n = 0.062dspY® (Chow, 1959; dso is the median grain size of the

bed) and subsequently adjusted as needed. Calibrated models were

obtained by adjusting Manning's n to 0.04 for Tonawanda Creek and
0.055 for French Creek to minimise the mean absolute error of lin-
ear regressions between observed and predicted depth and velocity
measurements (Figure 2b, c, respectively; Supporting Information
Table SlI-1). Similarly, models were subsequently validated for sepa-
rate flow events (Tonawanda Creek discharge of 2.3 m%/s; French
Creek discharge of 3.0 m%/s) that were also measured with the
stream-gaging activities (Figure 2a, d, respectively; Supporting Infor-
mation Table SI-1). Once validated, sediment transport was simu-
lated for two constant discharges at each site: base-flow and
bankfull conditions. The former was simulated to aid in further vali-
dating the model by comparing the predicted hydrodynamic variables
with sediment transport to our stream-gaging measurements. When
sediment transport was activated for the base-flow conditions, the
predicted hydrodynamic results were unchanged and bedload trans-
port was minimal, as expected. Bankfull condition was simulated to
estimate bedload transport rates at the channel-forming discharge.
Bedload transport was modelled in Nays2DH using the Ashida—
Michiue formula for each grain size with a heterogeneous bed
(Ashida & Michiue, 1972). A computational mesh maintained a 2:1
(streamwise:cross-stream) aspect ratio with grid discretisation
approximately 1.0:0.5 m. A k-e turbulence model was selected for
turbulence closure. The downstream boundary flow condition used a
constant water surface elevation derived from the stage-discharge
relationship and the upstream boundary condition assumed uniform
and steady flow calculated from the bathymetry data. Sediment
transport was initiated after the hydrodynamics reached steady state
(around 200 s). The time step of calculation was 0.01's, and the
maximum number of iterations for water surface computation was
20. All simulations were run until hydrodynamics and sediment
transport reached steady state (c. 1,000 s). The spatial distribution of
mussels within each quantitative site was statistically compared to
the simulated bedload transport during the bankfull flow event using
a linear regression analysis. Simulated transport rates within a one
metre diameter around the excavated quadrats were averaged and

regressed on mussel density within the respective quadrat to
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determine whether mussels exhibited a spatial preference in regard

to transport rate.

3 | RESULTS

In Tonawanda Creek, a total of 958 mussels from 21 species (17 live
species) were observed in the qualitative surveys (Table 3). CPUE
ranged from 104 to 391 mussels/p-hr (median = 243 mussels/p-hr).
At the quantitative site in Tonawanda Creek, 165 mussels from 13
species were observed in the quadrat analysis. Mussel density ran-
ged from O to 56 mussels/m? (median = 12 mussels/m?; Figure 3a).
In French Creek, a total of 1,445 mussels from 21 species (18 live
species) were observed in the qualitative mussel surveys (Table 3).
CPUE ranged from 58 to 191 mussels/p-hr (median = 160 mussels/p-
hr). At the quantitative site in French Creek, 203 mussels from 17
species were observed in the quadrat analysis. Mussel density ran-
ged from O to 108 mussels/m? (median = 26 mussels/m?; Figure 3b).

Despite a span of nearly 20 years between the mussel surveys,
mussel diversity and abundance at specific locations in Tonawanda
Creek and French Creek have remained relatively unchanged in time
(Table 3). Mean abundance, mean species richness and CPUE were
statistically similar for the two surveys in both streams (Tonawanda
Creek—species richness, live: V = 0, p = 0.10; species richness, total:
V=45 p=0.59; abundance: V=0, p=0.13; CPUE: V=0,

05 000102030405060708
Observed Depth (m)

measurements were 0.05 m/s and 0.02 m
in both Tonawanda Creek and French
Creek, respectively

p = 0.13; French Creek—species richness, live: V = 15, p = 0.06; spe-
cies richness, total: V = 10, p = 0.10; abundance: V = 15, p = 0.06;
CPUE: V =0, p = 0.06).

Bankfull discharges of 67 and 113 m%s, corresponding to a
return interval of 1.8 and 1.4 years for Tonawanda Creek and French
Creek, respectively, were calculated from the Log-Pearson Type llI
flow frequency analysis and used as the discharge boundary condi-
tions. In Tonawanda Creek, the mean bedload transport for this flow
was 116.9 cm®s (0-3,621 cm®s) and 90% of the bed area was
mobile for the bankfull flow condition (Figure 3a). While 10% of the
bed remained immobile, no mussels were found in these locations
during the visual survey or quadrat analysis. In French Creek, the
mean bedload transport for this flow was 223.6 cm®/s (0
1,139.6 cm®/s) and 92% of the bed area was mobile for the bankfull
flow condition (Figure 3b). Likewise, no mussels were found within
the 8% of the bed that remained immobile. The spatial patterns of
mussel density showed no statistical relation to variation in relative
bedload transport rate (Tonawanda Creek: df = 34, F =0.48,
p = 0.49, Figure 3a; French Creek: df = 25, F = 3.15, p = 0.09, Fig-
ure 3b). Based on a probability density function, mussels were not
generally found within the portions of the stream with the highest
bedload transport, but nearly all of the excavated quadrats in Ton-
awanda Creek and French Creek were located in areas of the stream
bed that were mobile during bankfull conditions and would remain
within the active channel during base-flow conditions.
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4 | DISCUSSION

We found that aggregations of mussels, or mussel beds, remained in
the same stream locations and had similar mussel abundance and
community composition over a 20-year time span. In other words,
mussel beds persisted in space, in time and in kind. Moreover, typi-
cal environmental drivers of change, such as hydrologic variability,
land use/land cover and other anthropogenic activities, while not
quantified here, appear to have had little effect on these mussel
communities over the past two decades. Other studies have also
documented mussel bed persistence over long periods of time from
both small streams and rivers (Vaughn, 2000) to large rivers such as
the Mississippi (Ries, De Jager, Zigler, & Newton, 2016).

We also effectively demonstrate that the bed sediments in which
mussels live in these two streams are mobilised during bankfull flow
events with recurrence intervals of <2 years. The frequency of sedi-
ment mobility predicted by the model is consistent with the concept
of channel-forming discharge events in labile river channels (Church,
2006). Further, the results of the flow frequency analysis demon-
strate that bankfull flow events in each stream are numerous and
recurred frequently for the historical record of flow (Figure 1c, d). As
a result, mussels in Tonawanda Creek and French Creek have often
experienced significantly large flow events that mobilised almost the
entirety of the stream bed. Moreover, mussel density in Tonawanda
Creek showed no variation to local bedload transport rates at

bankfull flow events, while only a weak and negative, but not signifi-
cant, correlation was observed in French Creek. This suggests addi-
tional forces other than long-term sediment stability are important to
mussel bed persistence in these two streams.

The mussel beds we sampled have persisted for more than two
decades at the same river reach in Tonawanda Creek and French
Creek. Despite low statistical power to compare mussel richness,
abundance and effort for the Wilcoxon tests (min = 0.09, mean =
0.47, max = 0.98), a high percentage of species were observed in
both temporal surveys in each stream. Additionally, because mussels
are long-lived and relatively sedentary, it is probable that many indi-
viduals we sampled have also persisted within the same river reach
despite experiencing multiple flow events capable of mobilising much
of the stream bed. Verifying this would require mark-recapture of
tagged individual mussels. While we do not have such data for this
system, Vaughn (unpublished data) has consistently recaptured
tagged individual mussels within metres of their release point in the
Kiamichi and Little rivers in Oklahoma, some over more than
20 years. Further, it is unlikely that adult mussels moved from one
mussel bed to another in this system. The sites sampled in Ton-
awanda Creek and French Creek were a minimum of 2 km from the
next nearest mussel bed, and mussel mortality may be considerable
if mussels become dislodged during high flow events and fail to re-
establish in suitable habitat (Fraley & Simmons, 2006; Haag, 2012;
Hastie et al.,, 2001). While dislodged mussels have been shown to
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successfully re-establish and create new mussel beds if suitable habi-
tat is present (Hastie et al., 2001), no new mussel beds have been
observed in Tonawanda Creek since 2014 (Sansom, personal obser-
vation) despite multiple bankfull flow events. Any emigration or
immigration from one mussel bed to another would most likely occur
by larvae attached to fish hosts or by drifting juveniles (Vaughn,
2012). These events are relatively rare (Vaughn, 2000) and cannot
explain the persistence of mussel beds that we observed.

The primary issue here is defining the mechanism by which adult
mussels can repeatedly withstand flow events capable of mobilising
the sediments in which they live, thus allowing the persistence of
mussel beds for decades or more. Although mussels may move hori-
zontally across or vertically into the substrate, such movement is lim-
ited in time and space (cm/hr vertically and cm/day horizontally;
Schwalb & Pusch, 2007; Allen & Vaughn, 2009; Kappes & Haase,
2012). While mussels can burrow as deep as 0.3 m, most mussels
are found at modest depths ranging from 0.05 to 0.1 m (Schwalb &
Pusch, 2007). The active layer thickness, or the effective thickness
of the moving bed layer during a sediment transport event, depends
on transport stage. The active layer thickness can be estimated as a
function of grain size (Parker, 2008; van Niekerk, Vogel, Slingerland,
& Bridge, 1992) or bedform height or flow depth (Armanini & Di
Silvio, 1988; Langendoen, 2000; Rahuel, Holly, Chollet, Belleudy, &
Yang, 1989). In Tonawanda Creek and French Creek, for example,
the mean (maximum) thickness of the active layer as a function of
grain size is 5.3 (15.9) and 13.1 (35.1) cm, respectively (van Niekerk
et al., 1992). Similarly, as a function of flow depth, the mean (maxi-
mum) thickness of the active layer in Tonawanda Creek and French
Creek is 14.1 (26.1) and 14.1 (27.5) cm, respectively (Langendoen,
2000). As such, the bed-mobilising hydrologic events are likely to
have shorter timescales and larger length-scales than those for
mussel reaction, movement and burrowing depth. Moreover, it also
seems likely that many of the river reaches with long-term records
of mussel assemblages, summarised in Table 1, are labile river
channels, experiencing relatively frequent hydrologic events with
significant sediment transport and bed mobility.

Many field studies and modelling exercises have suggested that
mussels are found in stream areas where sediments are stable, and
in particular where shear stresses are relatively low during high flow
events (Allen & Vaughn, 2010; Gangloff & Feminella, 2007; Howard
& Cuffey, 2003; May & Pryor, 2016; Morales, Weber, Mynett, &
Newton, 2006; Steuer, Newton, & Zigler, 2008; Vannote & Minshall,
1982; Zigler, Newton, Steuer, Bartsch, & Sauer, 2008). While it is
likely that mussels occupy stream areas that are relatively more
stable (i.e. riffles and runs composed of gravel-sized substrate; Bey &
Sullivan, 2015; Clifford & Richards, 1992; Macwilliams, Wheaton,
Pasternack, Street, & Kitanidis, 2006; Parmalee & Bogan, 1998), our
results indicate that even these areas do not remain immobile for
decades at a time and that the flow refugia hypothesis (Strayer et al.,
2004) alone cannot explain the long-term persistence of mussel beds
at-a-station. It is clear that mussels have adapted to live in such
dynamic environment, but the mechanisms enabling such persistence
are not known.
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Strayer et al. (2004) synthesised possible mechanisms that could
affect the local occurrence of mussel communities and recognised
that shear stress and sediment stability may only provide a partial
explanation. Additional mechanisms include complex interactions
between host fish distribution, food quality and quantity, well-oxyge-
nated sediments for juvenile establishment, refuge from predators,
negative mechanisms (e.g. downstream washout, burial, starvation)
and positive mechanisms (e.g. high fecundity in favourable habitats
or habitat selection by juveniles (Strayer et al., 2004). These mecha-
nisms, however, do not adequately explain the ability of mussels to
persist in chronically unstable environments.

Rather than long-term immobility of channel substrates, an alter-
native hypothesis is that mussels may actively engineer their habitat
to enhance anchoring abilities and to increase local bed stability
through biologically mediated activity. For example, Di Maio and
Corkum (1997) found that mussels in a hydrologically variable river
were oriented more parallel to the flow than mussels in a hydrologi-
cally stable river. Burrowing activity can increase sediment com-
paction and local stability (Zimmerman & De Szalay, 2007), and
dense assemblages of adult mussels may stabilise sediments (Strayer
et al., 2004; Vaughn & Spooner, 2006). Mussels with thin, slender
shells can burrow more rapidly and to greater depths (Stanley, 1981;
Watters, 1994), whereas shells with ridges and other ornaments can
increase or decrease mussel-anchoring potential (Levine, Hansen, &
Gerald, 2014; Watters, 1994) or reduce scour around exposed shell
material (Stanley, 1981). Vannote and Minshall (1982) found that in
the Salmon River, Idaho, Margaritifera falcata was restricted to areas
behind boulders, whereas Gonidea angulata, with well-formed distal
inhalant and exhalant syphons and a strong angular and wedge-
shaped shell, appears adapted for aggrading areas. Dense, multi-
species assemblages of mussels with different shell morphology also
can provide vertical niche partitioning that might help avoid dislodg-
ment during high flows (Allen & Vaughn, 2009). This brief summary
suggests that the complex interactions between shell size, shape and
sculpture, burrow behaviour, anchor potential and bed composition
need further examination.

While there is ample evidence for long-term persistence of mus-
sel assemblages throughout the United States, the implications of
mussel persistence in labile channels in this study are limited to the
recent past. There are only 38 and 29 years of hydrologic data and
20 and 15 years of mussel assemblage data in Tonawanda Creek
and French Creek, respectively. It is well known that anthropogenic
activities such as agriculture, urbanisation and reservoir impound-
ments have significantly altered the magnitude of sediment transport
in rivers, the form of river channels and the delivery of this sediment
to the oceans, and these altered hydrologic and geomorphic pro-
cesses would greatly impact aquatic ecology (Knox, 2006; Merritts
et al., 2011; Poff, Bledsoe, & Cuhaciyan, 2006; Syvitski, Vorosmarty,
Kettner, & Green, 2005; Wilkinson & Mcelroy, 2007; Wolman &
Schick, 1967). Such long-term trends, as well any short-term pertur-
bations, are not captured in our data set. Therefore, the results of
our model, and future modelling efforts, are limited to the context of
modern sediment regimes. Events responsible for excessive sediment
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yields (e.g. dam removal, urbanisation and other land cover/land use
changes) should be considered on a case-by-case situation. Modelling
efforts similar to ours, however, are important to understand the
occurrence, frequency and magnitude of sediment transport events
in rivers where mussels live, and to enhance the understanding of
mussel distribution throughout stream ecosystems.

A physically robust explanation for the persistence of mussel
location and biodiversity with time remains unresolved. We contend
that mussels have adapted to proliferate in labile river channels with
hydrologic events known to fully mobilise bed sediments. That is,
self-formed rivers with labile beds are common in nature (Church,
2006), and the long-term success and proliferation of mussels should
not depend upon exceptions to this rule, as evidenced by their wide-
spread occurrence and persistence (Table 1). Studies investigating
the interaction between biologically mediated activity and morpho-
logical adaptations are necessary to provide a better understanding
of the biophysical mechanisms enabling the persistence of long-term
mussel biodiversity, which will measurably enhance conservation and

management efforts.
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