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Abstract

1. Freshwater mussels are among the world’s most imperilled species, and much

effort has been expended to understand their precipitous decline. The current

paradigm is that relative river bed stability over decades is critical to maintaining

mussel beds at a given river reach. Such information, however, is in stark con-

trast to the fundamental understanding of self-formed rivers.

2. Here, we examine the relationship between long-term occurrence of aggregated

freshwater mussel communities (mussel beds) and the dynamic rivers in which

they live.

3. We surveyed mussel assemblages in two streams with historical records to docu-

ment their long-term persistence, and we simulated bed mobility with a two-

dimensional flow and sediment transport model to estimate bedload transport

during channel-forming discharges.

4. We found evidence of long-term mussel bed persistence, in time and in kind,

within these two streams and that significant bed mobility within mussel beds

occurs every 1–2 years, as to be expected for self-formed rivers with labile beds.

Flow refugia, or bed immobility, thus cannot completely explain the persistence

of these mussel beds.

5. Our results suggest that mussels have adapted to proliferate in river channels

that often experience significant bed mobility, but further studies are needed to

understand the biophysical mechanisms enabling the long-term persistence of

mussel communities.
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1 | INTRODUCTION

Freshwater mussels (Bivalvia: Unionoida) are long‐lived, sedentary,

burrowing invertebrates that play important ecological roles in lakes

and rivers worldwide (Vaughn & Hakenkamp, 2001). Mussels have

one of the highest imperilment rates of any group of organisms and

are undergoing a global decline (Lopes‐Lima et al., 2014; Ricciardi &

Rasmussen, 1999). Globally, 44% of the 511 mussel species are

listed as near‐threatened or threatened in the 2015 IUCN Red List

of Threatened Species (Lopes‐Lima et al., 2017). North America has

the richest fauna of mussels worldwide, but over 70% of species are

considered imperilled to some degree and 37 species are presumed

extinct (Lopes‐Lima et al., 2017). The recognition of the decline in

mussel populations has mobilised conservation efforts at local,

national and international levels (FMCS, 2016; Haag & Williams,

2014; Lopes‐Lima et al., 2017). Recent studies have aided in under-

standing the distributional range, historical records, population trends

and demographic data of mussels (see Haag, 2010). Our ability to
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predict mussel distribution and abundance remains inadequate

(Strayer, 2008; FMCS, 2016), and temporal and spatial patterns in

mussel habitat across multiple scales and life stages are poorly

understood (FMCS, 2016).

In rivers, mussels often occur as dense, multispecies assemblages

called mussel beds that are patchily distributed and separated by

areas where mussels do not occur or are sparse (Strayer, 2008).

Mussel beds have been observed to persist for many decades in the

same river reach (Haag, 2012). For example, Vaughn (2000) found

19 mussel beds in nine tributaries to the Red River in Oklahoma and

Texas that had persisted in the same location from as far back as

1910 (Isely, 1924; Valentine & Stansbery, 1971), and Williams and

Schuster (1989) found that 64% of the mussel beds in the Ohio

River surveyed in 1967 were still in existence in 1982 (as cited in

Haag, 2012). As a demonstration of the widespread occurrence of

this phenomenon, we compiled a list of 24 rivers in the United

States where mussel beds have existed at the same river reach from

20 to more than 100 years (Table 1). The factors responsible for the

patchiness and long‐term persistence of mussel beds in rivers, how-

ever, are not well understood. Mussels have a unique life history in

which adults are sedentary and the larvae (glochidia) are ectopara-

sites on fish. Thus, at a regional scale, mussel distribution is partially

dependent on host fish populations and mussel aggregations likely

occur in favourable habitats for fish hosts and juvenile mussels

(Strayer, 2008; Vaughn & Taylor, 2000). At local scales, however,

habitat variables such as water depth, water velocity and sediment

composition, quantified mostly during low flow surveys, have failed

to adequately explain mussel occurrence or abundance when criti-

cally examined (Brim Box, Dorazio, & Liddell, 2002; Holland‐Bartels,
1990; Layzer & Madison, 1995; Strayer, 1981, 2008; Strayer & Ral-

ley, 1993; Vaughn & Pyron, 1995). Instead, the prevailing hypothesis

is that areas of the river channel where sediments are stable are a

critical component to the ecological success and resiliency of mus-

sels. Strayer (1999) further hypothesised that mussels occur in flow

refugia patches where “shear stresses during floods with moderately

long return periods (e.g. 3–30 years) are too low to displace unionids

or the sediments in which they are bedded.” This hypothesis is

mainly supported by studies correlating mussel occurrence to areas

of low shear stress during low flow where shear stresses are not a

limiting factor to mussel distribution (Allen & Vaughn, 2010; Gan-

gloff & Feminella, 2007; Layzer & Madison, 1995; Stone, Barndt, &

Gangloff, 2004) or anecdotal evidence suggesting large boulders pre-

vent significant scour during floods (Hastie, Boon, Young, & Way,

2001; Vannote & Minshall, 1982). Only a few studies covering a

small range of rivers, flows and sediment sizes, however, have suc-

cessfully correlated mussel occurrence to areas of low shear stresses

during floods by directly quantifying or modelling sediment dynamics

within mussel beds (Howard & Cuffey, 2003; May & Pryor, 2016;

Strayer, 1999).

The suggestion, implicit or otherwise, that significant portions of

a river bed in which mussels live remain immobile for decades or

more is in stark contrast to the fundamental understanding of river

mechanics. A central tenet in fluvial geomorphology is the concept

of channel‐forming discharge, wherein a natural river channel attains

bankfull flow conditions every 1–2 years. The dimensions of the

channel therefore are determined by the erosive potential of this

flow event and river morphology is self‐formed (Williams, 1978;

Wolman & Miller, 1960). River channels can further be categorised

based on the frequency in which bed sediments are entrained. For

example, bed sediments in labile channels are relatively easily and

frequently entrained by the flow, whereas transitional channels have

flow events that mobilise bed sediments less frequently (Church,

2006).

As shown in Table 1 and reported elsewhere worldwide, fresh-

water mussels are ubiquitous in rivers displaying a wide range of

size, channel gradient and bed texture (see Bogan & Roe, 2008;

Geist, 2010; Haag, 2012; Quinlan et al., 2015; Strayer, 2008; Wil-

liams, Warren, Cummings, Harris, & Neves, 1993). Self‐formed rivers

with labile beds are common in nature, and it is highly likely that

most of the rivers listed in Table 1 would often experience channel‐
forming discharge events accompanied by significant sediment trans-

port, certainly at frequencies greater than once per the lifespan of

mussels (Church, 2006). As a result, river beds populated by fresh-

water mussels would often experience fully mobile bed conditions.

Long‐term sediment stability, however, is not often quantified in

reaches with mussel beds, only a few studies have provided support

to the flow refugia hypothesis during flood events (Howard & Cuf-

fey, 2003; May & Pryor, 2016), and the frequency and extent to

which mussels experience bed mobility have rarely been tested (but

see Allen & Vaughn, 2010, 2011).

In this study, we tested the hypothesis that sediment stability is

critical to the long‐term persistence of mussel beds. We investigated

the relationship between long‐term occurrence of mussel assem-

blages and the dynamic river systems in which they live by: (a) docu-

menting the long‐term persistence of freshwater mussel

communities at‐a‐station (i.e. the same reach) in a river and (b) deter-

mining the relative bed mobility within these mussel beds. We sur-

veyed mussel assemblages in two streams with robust historical

records to document their long‐term persistence, and we simulated

bed mobility with a two‐dimensional flow and sediment transport

model to estimate bedload transport during channel‐forming dis-

charges. We hypothesised that mussel assemblages would remain

relatively unchanged at‐a‐station and that channel‐forming dis-

charges occurring every 1–2 years would be capable of mobilising

large portions of the stream bed where mussels occur. Such empiri-

cal evidence would challenge the current paradigm for mussel bed

persistence in rivers.

2 | METHODS

We selected two streams with historically and ecologically significant

mussel communities to examine the long‐term persistence of mussels

and to assess the occurrence of channel‐forming discharges and rela-

tive bed mobility. Tonawanda Creek originates in western New York

and flows north and then west into the Niagara River (Figure 1a). A
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total of 19 mussel species were recorded during a basinwide survey

in 1998 (Marangelo & Strayer, 2000). French Creek also originates in

western New York and flows south through Pennsylvania to its con-

fluence with the Allegheny River (Figure 1b). French Creek is among

the most biodiverse streams in the northeast (Smith & Crabtree,

2010) and contains over 80 native fish species and 29 native mussel

species (Bier, 1994; Smith & Crabtree, 2010). Smith and Crabtree

(2010) observed 25 mussel species during a survey in 2003–2005
and further noted that mussel density, abundance, and diversity

remained intact since a survey in 1993 (Bier, 1994). In both streams,

mussel beds occur as patches in space, and they typically occur in

riffle–run reaches.

Qualitative mussel surveys were conducted at select sites previ-

ously examined by Marangelo and Strayer (2000) in Tonawanda

Creek and by Smith and Crabtree (2010) in French Creek. On Ton-

awanda Creek, surveys were conducted at sites 1, 2 and 7 during

the summer of 2016 (Figure 1a). On French Creek, surveys were

conducted at river kilometres (RKM) 74, 93, 109 and 125 during the

TABLE 1 Description of select rivers with historically and ecologically significant mussel beds that have remained intact for decades or
more at given river reaches. Cl = clay; St = silt; S = Sand; G = gravel; Co = cobble; Bo = boulder and R = bedrock

River (State)

Drainage
area
(km2)

Bed
composition

Mean
gradient
(m/m)

Number
of extant
species Period of record Source(s)

Fourche La Fave River

(AR)

583 St, S, G, Co 0.00092 21 1992–2001 Dortch, Tillman, & Bunch, 1992; Harris, 1992;

Harris et al., 2009

Kinniconick Creek (KY) 658 G 0.00169 17 1983–2012 Warren, Cicerello, Camburn, & Fallo, 1984;

Evans, 2012

Elk River (TN, AL) 868 S, G, Co 0.00044 38 1924–1980 Ahlstedt, 1983; Dunn, Sietman, & Kelner, 1999

Big Darby Creek (OH) 1,442 St, S, G, Co,

Bo

0.00121 35 1986–1996 Watters, 1998; State of Ohio EPA, 2004

Tonawanda Creek (NY) 1,700 St, S, G, Co 0.00183 19 1998–Present Marangelo & Strayer, 2000; This Study

Tippecanoe River (IN) 1,890 S, G 0.00043 40 1900–1991 Cummings, Mayer, & Page, 1992

Clinton River (MI) 1,977 St, S, G, Co 0.00113 26 1870–1978 Strayer, 1980, 1981; Morowski, James, &

Hunter, 2009

Bourbeuse River (MO) 2,183 G 0.00054 27 1978–1997 Hinck et al., 2012

Big River (MO) 2,473 S, G, Co, Bo 0.00118 17 1978–1997 Meneau, 1997; Hinck et al., 2012

French Creek (NY, PA) 3,200 St, S, G, Co,

Bo

0.00126 25 1993–Present Bier, 1994; Smith & Crabtree, 2010;

This Study

Kiamichi River (OK) 4,740 S, G, Co 0.00151 22 1911–Present Vaughn, Mather, Pyron, Mehlhop, & Miller, 1996;

Vaughn, 1997; Atkinson, Julian, & Vaughn, 2012

Cache River (MO, AR) 5,240 Cl, St, S 0.00030 26 1914–1994 Christian, Harris, Posey, Hockmuth, & Harp, 2005

Duck River (TN) 8,100 St, G 0.00061 54 1884–2010 Ahlstedt et al., 2004; Hubbs, Chance, Colley, &

Butler, 2011

Meramec River (MO) 10,255 St, S, G, Co 0.00060 34 1978–1997 Hinck et al., 2012

Little River (OK, AR) 10,889 S, G, Co 0.00196 26 1987–Present Vaughn, 1997; Atkinson et al., 2012; Davidson,

Brady, & Fotinos, 2014

Clinch River (VA, TN) 11,430 St, S, G, Co 0.00113 46 1912–2009 Ortmann, 1918; Eckert, Ferraro, Pinder, &

Watson, 2008; Jones et al., 2014

Sangamon River (IL) 14,035 St, S, G 0.00026 28 1910–1989 Schanzle & Cummings, 1991

White River (IN) 14,880 S, G, Co 0.00040 59 1906–1987 Cummings et al., 1992

St. Croix River (WI,

MN)

20,000 S, G, Co 0.00041 41 1945–2010 Fuller, 1980; Hornbach, 2001

Rock River (WI, IL) 27,270 St, S, G, Co 0.00026 27 1926–2009 Bales, Price, & Shasteen, 2012

Wabash River

(OH, IN, IL)

39,950 Cl, St, S, G,

Co

0.00027 62 1900–1988 Cummings et al., 1992

Cumberland River

(KY, TN)

48,000 St, S, G, Co,

Bo, R

0.00024 72 1885–1989 Wilson & Clark, 1914; Starnes & Bogan, 1988;

Gordon & Layzer, 1989

Susquehanna River (NY,

PA, MD)

71,225 St, S, G, Co,

Bo

0.00048 11 1955–1997 Strayer & Fetterman, 1999;

Pennsylvania DEP, 2014

Tennessee River

(TN, AL, MS, KY)

105,000 St, S, G, Co 0.00015 126 1897–2001 Starnes & Bogan, 1988; Hubbs et al., 2011
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summer of 2016 (Figure 1b; RKM 93 was also resurveyed during

2017). The sites, and their numbers, were selected on the basis of

high species diversity and mussel abundance as previously docu-

mented in each stream (Marangelo & Strayer, 2000; Smith & Crab-

tree, 2010). All sites were a minimum of 2 km upstream or

downstream from the next nearest mussel bed. Qualitative assess-

ments consisted of a timed‐visual mussel survey to document spe-

cies richness and catch‐per‐unit‐effort (CPUE) values (Smith, Villella,

& Lemarie, 2001). Visual surveys were conducted throughout 2016

and 2017 during low flows via mask and snorkel and followed similar

protocols and effort outlined in Marangelo and Strayer (2000) and

Smith and Crabtree (2010). While almost all mussels observed were

visible at the surface, observers occasionally brushed away or lightly

probed sediment during each search. On average, site reaches were

limited to ~100 m in length with a minimum effort of one person‐

hour (Table 2; Strayer, Claypool, & Sprague, 1997; Vaughn, Taylor, &

Eberhand, 1997).

More detailed quantitative surveys were also conducted at one

site in each stream (Site 3 in Tonawanda Creek; RKM 98 in French

Creek; Figure 1). Similar to the selection of the qualitative sites,

the quantitative sites had high species diversity and mussel abun-

dance reported in the previous surveys, and provided an accurate

representation of the typical mussel‐covered reaches within each

stream. Quantitative assessments included a timed‐visual mussel

survey as well as (a) an excavated quadrat analysis (30, 0.25 m2

quadrats excavated up to 0.15 m deep) to determine mussel den-

sity, (b) channel cross sections to generate bathymetry maps, (c)

stream gaging using a hand‐held FlowTracker ADV (SonTek, San

Diego, CA, USA) and (d) a Wolman's pebble count (Wolman, 1954)

to determine the surface texture of the channel bed. All quadrats

(a) (b)

(c)

(d)

F IGURE 1 Map of the field sites in
Tonawanda Creek (a) and French Creek (b).
The historical daily discharge is plotted with
return intervals representing the bankfull
event, and a 5‐, 10‐, and 25‐year flood to
show the frequency of such events for the
record of hydrologic data available at Site 3
in Tonawanda Creek (c) and RKM 98 in
French Creek (d) [Colour figure can be
viewed at wileyonlinelibrary.com]
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were georeferenced with a hand‐held GPS (Garmin eTrex 20; Gar-

min, Olathe, KS, USA). The pebble count began at the downstream

end of the study site and proceeded upstream in a zigzag pattern

until reaching the upstream end. A minimum of 100 pebbles were

measured at each site. The quantitative surveys were conducted

throughout 2016 and 2017, also during low flow conditions. Spe-

cies richness (live and total), abundance and CPUE data were

grouped by site within each stream, and differences between sur-

vey years were compared using a Wilcoxon signed‐rank test (V

statistic) to test the null hypothesis that mussel communities (i.e.

mussel richness, abundance, CPUE) were not significantly different

between survey years (using p < 0.05).

At each quantitative site, a flow frequency analysis was con-

ducted using the maximum daily flow rate from the closest down-

stream USGS gage station. For Tonawanda Creek, 38 years (1979–
2017) of data were obtained at Rapids, NY (USGS gage 04218000).

For French Creek, 29 years (1988–2017) of data were obtained at

Meadville, PA (USGS gage 03023100). To account for hydrologic dif-

ferences between the quantitative sites and downstream gaging sta-

tions, the flow frequency analysis was empirically corrected for

upstream drainage area by determining the proportion of catchment

area at the respective gaging station.

Flow and sediment transport were simulated at the quantitative

sites using the International River Interface Cooperative (iRIC)

Nays2DH solver, a two‐dimensional depth‐averaged numerical model

(Nelson et al., 2016). Nays2DH solves the depth‐averaged momen-

tum equations, and model inputs include discharge, topography,

Manning's roughness coefficient and downstream water surface ele-

vation.

Hydrodynamic models without sediment transport were first cali-

brated by adjusting Manning's roughness coefficient n to match mea-

sured flow depth and flow velocity from one stream‐gaging activity

(Tonawanda Creek discharge of 1.1 m3/s; French Creek discharge of

3.5 m3/s). Initial selection of Manning's n was estimated as

n = 0.062d50
1/6 (Chow, 1959; d50 is the median grain size of the

bed) and subsequently adjusted as needed. Calibrated models were

obtained by adjusting Manning's n to 0.04 for Tonawanda Creek and

0.055 for French Creek to minimise the mean absolute error of lin-

ear regressions between observed and predicted depth and velocity

measurements (Figure 2b, c, respectively; Supporting Information

Table SI-1). Similarly, models were subsequently validated for sepa-

rate flow events (Tonawanda Creek discharge of 2.3 m3/s; French

Creek discharge of 3.0 m3/s) that were also measured with the

stream‐gaging activities (Figure 2a, d, respectively; Supporting Infor-

mation Table SI-1). Once validated, sediment transport was simu-

lated for two constant discharges at each site: base‐flow and

bankfull conditions. The former was simulated to aid in further vali-

dating the model by comparing the predicted hydrodynamic variables

with sediment transport to our stream‐gaging measurements. When

sediment transport was activated for the base‐flow conditions, the

predicted hydrodynamic results were unchanged and bedload trans-

port was minimal, as expected. Bankfull condition was simulated to

estimate bedload transport rates at the channel‐forming discharge.

Bedload transport was modelled in Nays2DH using the Ashida–
Michiue formula for each grain size with a heterogeneous bed

(Ashida & Michiue, 1972). A computational mesh maintained a 2:1

(streamwise:cross‐stream) aspect ratio with grid discretisation

approximately 1.0:0.5 m. A k‐ε turbulence model was selected for

turbulence closure. The downstream boundary flow condition used a

constant water surface elevation derived from the stage–discharge
relationship and the upstream boundary condition assumed uniform

and steady flow calculated from the bathymetry data. Sediment

transport was initiated after the hydrodynamics reached steady state

(around 200 s). The time step of calculation was 0.01 s, and the

maximum number of iterations for water surface computation was

20. All simulations were run until hydrodynamics and sediment

transport reached steady state (c. 1,000 s). The spatial distribution of

mussels within each quantitative site was statistically compared to

the simulated bedload transport during the bankfull flow event using

a linear regression analysis. Simulated transport rates within a one

metre diameter around the excavated quadrats were averaged and

regressed on mussel density within the respective quadrat to

TABLE 2 Channel dimensions and grain size
distribution for the sites surveyed in Tonawanda
Creek, NY, and French Creek, PA

Tonawanda Creek French Creek

Site
1

Site
2

Site
3a

Site
7

RKM
74

RKM
93

RKM
98a

RKM
109

RKM
125

Length (m) 90 100 90 115 90 90 100 90 100

Mean

Width (m)

15 12 13 9 27 24 22 20 18

D16 (mm) 3.4 1.7 0.4 0.6 7.7 3.6 3.0 1.0 0.9

D35 (mm) 6.5 6.6 1.5 1.2 20.1 7.8 7.6 6.5 3.1

D50 (mm) 10.5 11.3 3.8 1.9 28.5 10.7 11.7 10.0 7.5

D84 (mm) 56.9 39.8 28.9 12.0 61.1 30.7 49.8 43.1 28.5

D95 (mm) 97.2 79.6 81.3 28.9 90.0 52.6 84.8 64.0 81.3

Note. aSite 3 in Tonawanda Creek and RKM 98 in French Creek are the quantitative sites

used for the modelling efforts and are displayed in Figures 2 and 3.
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determine whether mussels exhibited a spatial preference in regard

to transport rate.

3 | RESULTS

In Tonawanda Creek, a total of 958 mussels from 21 species (17 live

species) were observed in the qualitative surveys (Table 3). CPUE

ranged from 104 to 391 mussels/p‐hr (median = 243 mussels/p‐hr).
At the quantitative site in Tonawanda Creek, 165 mussels from 13

species were observed in the quadrat analysis. Mussel density ran-

ged from 0 to 56 mussels/m2 (median = 12 mussels/m2; Figure 3a).

In French Creek, a total of 1,445 mussels from 21 species (18 live

species) were observed in the qualitative mussel surveys (Table 3).

CPUE ranged from 58 to 191 mussels/p‐hr (median = 160 mussels/p‐
hr). At the quantitative site in French Creek, 203 mussels from 17

species were observed in the quadrat analysis. Mussel density ran-

ged from 0 to 108 mussels/m2 (median = 26 mussels/m2; Figure 3b).

Despite a span of nearly 20 years between the mussel surveys,

mussel diversity and abundance at specific locations in Tonawanda

Creek and French Creek have remained relatively unchanged in time

(Table 3). Mean abundance, mean species richness and CPUE were

statistically similar for the two surveys in both streams (Tonawanda

Creek—species richness, live: V = 0, p = 0.10; species richness, total:

V = 4.5, p = 0.59; abundance: V = 0, p = 0.13; CPUE: V = 0,

p = 0.13; French Creek—species richness, live: V = 15, p = 0.06; spe-

cies richness, total: V = 10, p = 0.10; abundance: V = 15, p = 0.06;

CPUE: V = 0, p = 0.06).

Bankfull discharges of 67 and 113 m3/s, corresponding to a

return interval of 1.8 and 1.4 years for Tonawanda Creek and French

Creek, respectively, were calculated from the Log‐Pearson Type III

flow frequency analysis and used as the discharge boundary condi-

tions. In Tonawanda Creek, the mean bedload transport for this flow

was 116.9 cm3/s (0–3,621 cm3/s) and 90% of the bed area was

mobile for the bankfull flow condition (Figure 3a). While 10% of the

bed remained immobile, no mussels were found in these locations

during the visual survey or quadrat analysis. In French Creek, the

mean bedload transport for this flow was 223.6 cm3/s (0–
1,139.6 cm3/s) and 92% of the bed area was mobile for the bankfull

flow condition (Figure 3b). Likewise, no mussels were found within

the 8% of the bed that remained immobile. The spatial patterns of

mussel density showed no statistical relation to variation in relative

bedload transport rate (Tonawanda Creek: df = 34, F = 0.48,

p = 0.49, Figure 3a; French Creek: df = 25, F = 3.15, p = 0.09, Fig-

ure 3b). Based on a probability density function, mussels were not

generally found within the portions of the stream with the highest

bedload transport, but nearly all of the excavated quadrats in Ton-

awanda Creek and French Creek were located in areas of the stream

bed that were mobile during bankfull conditions and would remain

within the active channel during base‐flow conditions.

F IGURE 2 Model calibration and
validation for mean depth‐averaged
velocity (m/s) and water depth (m) in
Tonawanda Creek (a and b, respectively)
and French Creek (c and d, respectively).
The solid line on each panel represents the
one‐to‐one expected performance. All
regression analyses between the observed
and predicted values were significant and
had r2 > 0.97 (Supporting Information
Table SI-1). Mean error associated with the
observed velocity and observed depth
measurements were 0.05 m/s and 0.02 m
in both Tonawanda Creek and French
Creek, respectively
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4 | DISCUSSION

We found that aggregations of mussels, or mussel beds, remained in

the same stream locations and had similar mussel abundance and

community composition over a 20‐year time span. In other words,

mussel beds persisted in space, in time and in kind. Moreover, typi-

cal environmental drivers of change, such as hydrologic variability,

land use/land cover and other anthropogenic activities, while not

quantified here, appear to have had little effect on these mussel

communities over the past two decades. Other studies have also

documented mussel bed persistence over long periods of time from

both small streams and rivers (Vaughn, 2000) to large rivers such as

the Mississippi (Ries, De Jager, Zigler, & Newton, 2016).

We also effectively demonstrate that the bed sediments in which

mussels live in these two streams are mobilised during bankfull flow

events with recurrence intervals of <2 years. The frequency of sedi-

ment mobility predicted by the model is consistent with the concept

of channel‐forming discharge events in labile river channels (Church,

2006). Further, the results of the flow frequency analysis demon-

strate that bankfull flow events in each stream are numerous and

recurred frequently for the historical record of flow (Figure 1c, d). As

a result, mussels in Tonawanda Creek and French Creek have often

experienced significantly large flow events that mobilised almost the

entirety of the stream bed. Moreover, mussel density in Tonawanda

Creek showed no variation to local bedload transport rates at

bankfull flow events, while only a weak and negative, but not signifi-

cant, correlation was observed in French Creek. This suggests addi-

tional forces other than long‐term sediment stability are important to

mussel bed persistence in these two streams.

The mussel beds we sampled have persisted for more than two

decades at the same river reach in Tonawanda Creek and French

Creek. Despite low statistical power to compare mussel richness,

abundance and effort for the Wilcoxon tests (min = 0.09, mean =

0.47, max = 0.98), a high percentage of species were observed in

both temporal surveys in each stream. Additionally, because mussels

are long‐lived and relatively sedentary, it is probable that many indi-

viduals we sampled have also persisted within the same river reach

despite experiencing multiple flow events capable of mobilising much

of the stream bed. Verifying this would require mark–recapture of

tagged individual mussels. While we do not have such data for this

system, Vaughn (unpublished data) has consistently recaptured

tagged individual mussels within metres of their release point in the

Kiamichi and Little rivers in Oklahoma, some over more than

20 years. Further, it is unlikely that adult mussels moved from one

mussel bed to another in this system. The sites sampled in Ton-

awanda Creek and French Creek were a minimum of 2 km from the

next nearest mussel bed, and mussel mortality may be considerable

if mussels become dislodged during high flow events and fail to re‐
establish in suitable habitat (Fraley & Simmons, 2006; Haag, 2012;

Hastie et al., 2001). While dislodged mussels have been shown to

F IGURE 3 Bedload transport (m3/s;
heat map) and bed shear stress (Pa;
contour lines) at bankfull conditions in
Tonawanda Creek (a) and French Creek (b).
Mussel densities determined from the
quadrat surveys during 2016 were limited
to the extent of the base‐flow condition,
indicated by the dashed line, and are
represented with graduated symbols for
each stream [Colour figure can be viewed
at wileyonlinelibrary.com]
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successfully re‐establish and create new mussel beds if suitable habi-

tat is present (Hastie et al., 2001), no new mussel beds have been

observed in Tonawanda Creek since 2014 (Sansom, personal obser-

vation) despite multiple bankfull flow events. Any emigration or

immigration from one mussel bed to another would most likely occur

by larvae attached to fish hosts or by drifting juveniles (Vaughn,

2012). These events are relatively rare (Vaughn, 2000) and cannot

explain the persistence of mussel beds that we observed.

The primary issue here is defining the mechanism by which adult

mussels can repeatedly withstand flow events capable of mobilising

the sediments in which they live, thus allowing the persistence of

mussel beds for decades or more. Although mussels may move hori-

zontally across or vertically into the substrate, such movement is lim-

ited in time and space (cm/hr vertically and cm/day horizontally;

Schwalb & Pusch, 2007; Allen & Vaughn, 2009; Kappes & Haase,

2012). While mussels can burrow as deep as 0.3 m, most mussels

are found at modest depths ranging from 0.05 to 0.1 m (Schwalb &

Pusch, 2007). The active layer thickness, or the effective thickness

of the moving bed layer during a sediment transport event, depends

on transport stage. The active layer thickness can be estimated as a

function of grain size (Parker, 2008; van Niekerk, Vogel, Slingerland,

& Bridge, 1992) or bedform height or flow depth (Armanini & Di

Silvio, 1988; Langendoen, 2000; Rahuel, Holly, Chollet, Belleudy, &

Yang, 1989). In Tonawanda Creek and French Creek, for example,

the mean (maximum) thickness of the active layer as a function of

grain size is 5.3 (15.9) and 13.1 (35.1) cm, respectively (van Niekerk

et al., 1992). Similarly, as a function of flow depth, the mean (maxi-

mum) thickness of the active layer in Tonawanda Creek and French

Creek is 14.1 (26.1) and 14.1 (27.5) cm, respectively (Langendoen,

2000). As such, the bed‐mobilising hydrologic events are likely to

have shorter timescales and larger length‐scales than those for

mussel reaction, movement and burrowing depth. Moreover, it also

seems likely that many of the river reaches with long‐term records

of mussel assemblages, summarised in Table 1, are labile river

channels, experiencing relatively frequent hydrologic events with

significant sediment transport and bed mobility.

Many field studies and modelling exercises have suggested that

mussels are found in stream areas where sediments are stable, and

in particular where shear stresses are relatively low during high flow

events (Allen & Vaughn, 2010; Gangloff & Feminella, 2007; Howard

& Cuffey, 2003; May & Pryor, 2016; Morales, Weber, Mynett, &

Newton, 2006; Steuer, Newton, & Zigler, 2008; Vannote & Minshall,

1982; Zigler, Newton, Steuer, Bartsch, & Sauer, 2008). While it is

likely that mussels occupy stream areas that are relatively more

stable (i.e. riffles and runs composed of gravel‐sized substrate; Bey &

Sullivan, 2015; Clifford & Richards, 1992; Macwilliams, Wheaton,

Pasternack, Street, & Kitanidis, 2006; Parmalee & Bogan, 1998), our

results indicate that even these areas do not remain immobile for

decades at a time and that the flow refugia hypothesis (Strayer et al.,

2004) alone cannot explain the long‐term persistence of mussel beds

at‐a‐station. It is clear that mussels have adapted to live in such

dynamic environment, but the mechanisms enabling such persistence

are not known.

Strayer et al. (2004) synthesised possible mechanisms that could

affect the local occurrence of mussel communities and recognised

that shear stress and sediment stability may only provide a partial

explanation. Additional mechanisms include complex interactions

between host fish distribution, food quality and quantity, well‐oxyge-
nated sediments for juvenile establishment, refuge from predators,

negative mechanisms (e.g. downstream washout, burial, starvation)

and positive mechanisms (e.g. high fecundity in favourable habitats

or habitat selection by juveniles (Strayer et al., 2004). These mecha-

nisms, however, do not adequately explain the ability of mussels to

persist in chronically unstable environments.

Rather than long‐term immobility of channel substrates, an alter-

native hypothesis is that mussels may actively engineer their habitat

to enhance anchoring abilities and to increase local bed stability

through biologically mediated activity. For example, Di Maio and

Corkum (1997) found that mussels in a hydrologically variable river

were oriented more parallel to the flow than mussels in a hydrologi-

cally stable river. Burrowing activity can increase sediment com-

paction and local stability (Zimmerman & De Szalay, 2007), and

dense assemblages of adult mussels may stabilise sediments (Strayer

et al., 2004; Vaughn & Spooner, 2006). Mussels with thin, slender

shells can burrow more rapidly and to greater depths (Stanley, 1981;

Watters, 1994), whereas shells with ridges and other ornaments can

increase or decrease mussel‐anchoring potential (Levine, Hansen, &

Gerald, 2014; Watters, 1994) or reduce scour around exposed shell

material (Stanley, 1981). Vannote and Minshall (1982) found that in

the Salmon River, Idaho, Margaritifera falcata was restricted to areas

behind boulders, whereas Gonidea angulata, with well‐formed distal

inhalant and exhalant syphons and a strong angular and wedge‐
shaped shell, appears adapted for aggrading areas. Dense, multi-

species assemblages of mussels with different shell morphology also

can provide vertical niche partitioning that might help avoid dislodg-

ment during high flows (Allen & Vaughn, 2009). This brief summary

suggests that the complex interactions between shell size, shape and

sculpture, burrow behaviour, anchor potential and bed composition

need further examination.

While there is ample evidence for long‐term persistence of mus-

sel assemblages throughout the United States, the implications of

mussel persistence in labile channels in this study are limited to the

recent past. There are only 38 and 29 years of hydrologic data and

20 and 15 years of mussel assemblage data in Tonawanda Creek

and French Creek, respectively. It is well known that anthropogenic

activities such as agriculture, urbanisation and reservoir impound-

ments have significantly altered the magnitude of sediment transport

in rivers, the form of river channels and the delivery of this sediment

to the oceans, and these altered hydrologic and geomorphic pro-

cesses would greatly impact aquatic ecology (Knox, 2006; Merritts

et al., 2011; Poff, Bledsoe, & Cuhaciyan, 2006; Syvitski, Vorosmarty,

Kettner, & Green, 2005; Wilkinson & Mcelroy, 2007; Wolman &

Schick, 1967). Such long‐term trends, as well any short‐term pertur-

bations, are not captured in our data set. Therefore, the results of

our model, and future modelling efforts, are limited to the context of

modern sediment regimes. Events responsible for excessive sediment
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yields (e.g. dam removal, urbanisation and other land cover/land use

changes) should be considered on a case‐by‐case situation. Modelling

efforts similar to ours, however, are important to understand the

occurrence, frequency and magnitude of sediment transport events

in rivers where mussels live, and to enhance the understanding of

mussel distribution throughout stream ecosystems.

A physically robust explanation for the persistence of mussel

location and biodiversity with time remains unresolved. We contend

that mussels have adapted to proliferate in labile river channels with

hydrologic events known to fully mobilise bed sediments. That is,

self‐formed rivers with labile beds are common in nature (Church,

2006), and the long‐term success and proliferation of mussels should

not depend upon exceptions to this rule, as evidenced by their wide-

spread occurrence and persistence (Table 1). Studies investigating

the interaction between biologically mediated activity and morpho-

logical adaptations are necessary to provide a better understanding

of the biophysical mechanisms enabling the persistence of long‐term
mussel biodiversity, which will measurably enhance conservation and

management efforts.
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