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ABSTRACT
The reduction of energy use and greenhouse gas (GHG)
emissions in the urban built environment has emerged as
one of the primary grand challenges facing society in the
21st century. The Paris Climate Agreement calls on the
global community to limit global temperature rise to 1.5 de-
grees Celsius through significant reductions in carbon emis-
sions. Given the need for immediate action, cities and local
governments are increasingly taking the lead in addressing
this challenge, as cities are positioned to make substantial
impacts through improvements to building and transit effi-
ciency, and face dramatic consequences of inaction through
increased risk from sea-level rise and extreme events. To
achieve these goals, new data-driven methodologies are needed
to identify and target energy efficiency and carbon reduc-
tion opportunities in the built environment at the building,
neighborhood, and city-scale.

We propose a new high spatial-temporal resolution model
of urban GHG emissions that combines data science, engi-
neering, and urban planning methods and expertise to lever-
age new streams of data from public, private, and citizen-
generated sources. Our aim is to advance carbon action
in cities in a way that is efficient, scalable, and rapidly
deployable. Our approach integrates numerous ”big” data
sources and develops a quantitative methodology that com-
bines data-driven statistical and physical models of energy
use and carbon emissions from buildings and transporta-
tion to generate a first-of-its-kind dynamic estimation of ur-
ban carbon emissions. Our data sources include the NYC
Mayor’s Office of Sustainability, NYC Department of En-
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vironmental Protection, NYC Department of Transporta-
tion, NYS Department of Transportation, U.S. Department
of Energy, Earth Networks, PlumeLabs, Crimson Hexagon,
and others. We then combine our model output with quality-
of-life measures to better understand how urban emissions
are associated with localized heat island effects, social senti-
ment, air quality, and socioeconomic disparities across New
York City. This tool is designed to support city leaders and
urban policymakers with an unprecedented view of localized
carbon emissions to enable evidenced-based climate action
policies based on rigorous scientific models.

Keywords
urban computing; data integration; greenhouse gas emis-
sions; climate action; urban modeling

1. INTRODUCTION
The reduction of energy use and greenhouse gases (GHGs)
emissions in the urban built environment has emerged as
one of the primary grand challenges facing society in the
21st century. The Paris Climate Agreement calls on the
global community to limit global temperature rise to 1.5◦C
through significant reductions in carbon emissions. Cities
and urban areas are increasingly taking the lead in address-
ing this challenge given their ability to make substantial im-
provements to building and transit efficiency, and as a result
of their vulnerability to the consequences of climate change
such as increased risk of sea-level rise and extreme weather
events. New York City, for example, recently announced a
commitment to align with the Paris Agreement as part of its
aggressive mandate to reduce GHG emissions by 80% from
2005 levels by the year 2050 [34]. Other cities have adopted
similar goals including Los Angeles, Chicago, Boston, Lon-
don, and Tokyo. To achieve these goals, however, new data-
driven methodologies are needed that can identify and tar-
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get energy efficiency and carbon reduction opportunities in
the built environment at the building, neighborhood, and
city-scale.

This work integrates numerous urban big data sources, in-
cluding public and private administrative datasets and user-
generated data, to develop a first-of-its-kind high resolution
spatial-temporal model of urban carbon emissions. We com-
bine data-driven models with physical models of energy us-
age and carbon emissions to estimate hourly city-wide emis-
sions from building and transportation systems down to a
spatial resolution of 500 meters. The results are then visual-
ized through a web-based, interactive dashboard that aims
to support city leaders and urban policymakers with an un-
precedented, hyper-local view of carbon emissions to enable
data-driven and evidenced-based climate action based on
rigorous scientific models.

2. LITERATURE REVIEW
Rapidly growing data streams generated in and about cities
and increasing computing capability have enabled researchers
to observe and model urban phenomena at the urban scale.
Recent studies have explored novel data collection and ana-
lytical methods to model spatial-temporal dynamics of sub-
systems in cities. Multiple urban observational studies re-
veal a temporal regularity described as the ‘pulse of the
city’ in transportation, energy consumption, social media
activity, urban mobility, and waste generation [11,19,21,33].
Other studies focus on spatial dynamics of air pollution, wa-
ter consumption, and public health and how they relate to
urban form, building typologies, urban forestry, or neigh-
borhood socio-economic characteristics [15, 18, 31, 40]. A
growing literature emphasizes the importance of localizing
urban GHG emissions, since they originate from economic
production and human activity occurring in urban environ-
ments [1]. GHG-related policy actions, including mitigation
and adaptation, are often designed and implemented at the
local scale, by multiple stakeholders within specific physical,
political, and social contexts [2, 3]. From a citizen engage-
ment perspective, localized data can also provide action-
able information for residents and community groups to pro-
mote behavioral change and public awareness through better
knowledge and empowerment [14, 20]. However, accurately
modeling the spatial-temporal dynamics of GHG emissions
has been a challenge, in part because high resolution data
sources across the urban systems that influence emissions
- physical, environmental, economic, socio-behavioral - are
limited [6, 10]. Integrating cross-domain data, at multiple
spatial and temporal scales from a variety of sources, can
confound attempts to generate hyperlocal urban models due
to non-standard data formats, structures, definitions, and
the non-linear complexities in urban phenomena that un-
dermine validation [23]. If we view a city a complex ‘System
of Systems (SoS)’ embedded within a socio-technical con-
text with non-trivial bio-physical variations, analyzing lo-
cal GHG emissions requires a robust model design involving
both data-driven and systems modeling approaches [13,26].
Necessary sub-system data are often generated and man-
aged by different sectors - public, private, non-profit, and
individuals - that operate in administrative and computing
silos [39].

3. METHODOLOGY

Figure 1: A 500m resolution hexagon-cell grid cov-
ering NYC.

3.1 Data integration
We begin by creating an indexed hexagonal tessellation grid
to localize datasets available at various spatial resolutions.
Our analysis is predicated on a 500 meter by 500 meter
grid defined by the distance between the centroid points of
two adjacent hexagonal cells. This grid contains a total of
2,169 cells covering the entire land area of New York City of
approximately 300 square miles, represented by the WGS-
84 Geographic Coordinate System (Figure 1). To quantify
hourly GHG emissions for each cell (GHGsi,t in cell i at time
t), we integrate numerous datasets from public and private
sources, which can be further categorized as administrative
data, sensor data, survey data, and transactional data (Ta-
ble 1). Together, these represent the full spectrum of urban
data, from static, point-based to dynamic, network-based
typologies.

We collect administrative data from multiple agencies at the
federal, state, and city levels, including the U.S. Department
of Energy (building energy reference models), NYS Depart-
ment of Transportation (traffic counts), NYC Department
of City Planning (tax lot and zoning information), NYC
Department of Buildings (building footprints and heights),
NYC Department of Transportation (street segments, in-
cluding length and width), and NYC Department of Parks
and Recreation (street trees, parks and open space). We lo-
calize cross-domain parameters for each cell by spatial join,
table join, aggregation, and downscaling to integrate dif-
ferent layers of information to the same spatial resolution
(Figure 2). For instance, the Department of City Planning
manages the Primary Land Use Tax Lot Output (PLUTO)
database that contains detailed information on each of the
more than 1,000,000 properties in NYC, with annual up-
dates [25]. The data include information on land use type,
zoning classification, floor area, building class, construction
and alteration year, and assessed value, among other char-
acteristics. By spatial join, we are able to identify spe-
cific buildings within each cell using the unique tax lot ID
(Borough-Block-Lot or ’BBL’ number) and can quantify ag-
gregate land use and building parameters for the cell, such
as total building gross square footage by land use type.



Table 1: Data Collection
Data Source Period Spatial unit Temporal unit Format

Weather sensor data Earth Networks 2015 Geopoint 5-minutes csv
Weather stattion locations Earth Networks 2015 Geopoint Annual csv
Land Use (PLUTO*) NYC DCP 2015 Lot Annual shapefile
Energy & Water Consumption (LL84** Disclosure) NYC MOS 2015 Tax Lot Annual csv
Reference Building Model Output U.S. Dept. of Energy 2015 Regional N/A csv
Annual Average Daily Traffic NYS DOT 2015 Road Segment Annual shapefile
Traffic short counts NYS DOT 2015 Geopoint Annual shapefile
Roadway traffic count report NYS DOT Varies Geopoint Varies pdf
Street Tree Census NYC Dept. Parks & Recreation 2015 Geopoint Decennial shapefile
Air Quality Plume Labs 2017 City Hourly csv
American Community Survey U.S. Census Bureau 2015 Census Block Group Annual (5-year average) csv

Figure 2: Data integration process.

To estimate GHG emissions from buildings and transport,
we integrate multiple consumption and emissions datasets
from from public and private sources. To model building
GHG emissions, we use a combination of data-driven and
engineering approaches. For all buildings larger than 50,000
square feet, we use NYC’s Local Law 84 (LL84) energy dis-
closure data. LL84 mandates that large properties annually
report their energy and water usage. The mandate applies
to more than 20,000 privately-owned buildings, and all mu-
nicipal buildings, accounting for approximately 45% of the
citywide total building area, energy use, and carbon emis-
sions [5]. We then use U.S. Department of Energy (DOE)
reference building energy models, matched to specific build-
ing types, to estimate hourly consumption patterns, and ad-
just these figures based on building-specific LL84 energy effi-
ciency data [9]. For buildings without LL84 data, we use the
unadjusted reference model output. For traffic-related GHG
emissions, the New York State Department of Transporta-
tion (NYSDOT) reports 2015 Annual Average Daily Traffic
(AADT) data for major road segments statewide [28], in-
cluding NYC. To define hourly vehicular traffic volume pro-
files, we use NYSDOT Short Counts data and the Roadway
Traffic Count Hourly Reports associated with selected traffic
counting locations. We then apply these counts to the NYC
street network by identifying the street segment type for
each street using the NYC-specific LION Single Line Street
Base Map (LION) data available from NYC DCP [29].

To localize our building GHG emission models, we collect
historical weather data from Earth Networks, one of the

largest monitoring networks worldwide providing near-real-
time localized weather data. This network covers NYC with
227 weather stations collecting data on temperature, wind
speed, humidity, and light intensity at five-minute intervals
[12]. We use Apache R© SparkTM to parse and aggregate the
20+ GB csv files into hourly temperature measurements by
station from 2015 to 2017. We then use the MapPLUTO
dataset from NYC DCP to extract built area and building
usage at the tax lot level to model and extrapolate localized
weather in areas not covered by the sensor network [25].

We utilize several ancillary, privately-held data sets to ex-
plore the relationship between localized GHG emissions and
quality of life across different neighborhoods and socioeco-
nomic groups. We use the Plume Labs API to query City
air quality data [30]. Plume Labs tracks hourly concentra-
tion levels of nitrogen dioxide (NO2), sulfur dioxide (SO2),
ozone (O3), particulate matter (PM2.5 and PM10), and sev-
eral air quality indices, including the American Air Qual-
ity Index (AQI), the Chinese Air Quality Index (AQI CN),
the Common Air Quality Index (CAQI), and the custom-
designed Plume Index (PI). Due to the lack of access to
historical data, we are only able to utilize air quality mea-
surements for the corresponding period of time in 2017 as
an representation of this potential functionality. We incor-
porate City-wide sentiment on air quality based on social
media activity, by using Crimson Hexagon R© âĂŹs social
media analytics platform [8]. Using “air quality” and “air
pollution” as key words and NYC as the spatial boundary,
we query the database using a random sample of posts on
social media platforms, including Twitter, Instagram, and
Facebook. Within Crimson Hexagon, the ForSightTM ana-
lytical tool is a sentiment classifier that labels each post or
tweet as ‘positive’, ‘negative’, or ‘neutral’ based on the post
content. We then calculate a ratio between negative and
positive posts to represent the hourly City-wide public sen-
timent on air quality. Finally, to identify socio-economic dis-
parities in the spatial patterns of GHG emissions, we collect
median household income data at the Census Block Group
level from the U.S. Census American Community Survey for
2015, and localize data to each hexagonal cell by spatial join
and aggregation.

3.2 Building GHG emissions estimation
We implement two approaches to estimate building-related
GHG emissions: (a) statistical modeling and (b) physics-
based modeling. The U.S. Department of Energy has devel-
oped energy models for 45 building typologies using Energy-
Plus, a widely adopted building energy simulation engine [7].



Figure 3: Illustration of building data aggregation
by hexagonal cell.

For each typology, we simulate the annual building energy
use intensity (EUI) in hourly intervals, expressed as:

EUIt = kBtut/ft
2 (1)

where kBtut is the building’s energy consumption in time t,
and t ∈ I {1, ..., 8760}. We break down energy consumption
by the two main fuel types encountered in NYC’s building
stock (electricity and natural gas) to obtain EUIelect and
EUIgast, similar to (Eq. 1). We also calculate the building
annual load profile, as ratios of the hourly EUIs over the
annual EUI (Eq. 2.

EUIratiot =
EUIt∑8760

n=1 EUIt
(2)

Using building class information extracted from PULTO
data, we match each property across the five boroughs of
NYC to the appropriate reference building model typology.
Almost 95% of the more than 1,000,000 properties were suc-
cessfully assigned to a corresponding energy model. Then,
we multiply each building’s modeled EUI values by its size
to compute hourly energy consumption, based on the DOE
model output (Eq. 3b). If the building is covered by LL84,
we multiply its annual energy consumption by the typology’s
EUIratiot to estimate its hourly energy consumption.

If LL84 energy data available then

ECi,t = Annual EC ∗ EUIratiot (3a)

otherwise

ECi,t = EUIt ∗ Total Area (3b)

The result is an hourly energy use prediction for each build-
ing in the City, adjusted based on available measured energy
efficiency data from LL84. Using the individual tax lot BBL
identifier and data from MapPLUTO (the spatial PLUTO
file that contains tax lot geometries), we calculate centroids
of each property expressed by geographic coordinates in the
WGS-84 geographic coordinate system. The location of each
property includes an associated reference model output. We
spatial join property centroid points with the hexagonal grid

to aggregate energy consumption output for each cell (Fig-
ure 3). Finally, we estimate the hexagon’s aggregate hourly
GHG emissions in CO2 equivalents (kg) using the appropri-
ate U.S. Environmental Protection Agency (EPA) emissions
coefficients for different fuel types (Eq. 4):

GHGX,t =
∑N

i (ECeleci,t ∗ β3) + (ECgasi,t ∗ β4) (4)

where ECeleci,t and ECgasi,t are the electricity and gas
consumption for building i at time t, and β3, β4 are the
GHG emission conversion coefficients for electricity and gas,
respectively.

3.3 Transportation GHG emissions estimation
We utilize traffic monitoring data and spatial interpolation
methods to estimate localized traffic GHG emissions. As
mentioned in the data integration section, we use Annual
Average Daily Traffic (AADT) data provided by the New
York State Traffic Data Viewer (TDV) as our primary dataset
and LION data as an ancillary dataset for the typologies of
individual street segments. We also use AADT reports for
specific road networks, which include measured hourly traf-
fic volumes. Hourly GHG emissions derived from each street
segment are then estimated through several steps. First, we
classify all road segments into two types - vehicle-only and
pedestrian-accessible - based on the LION data. A sample
street for each road type - (1) vehicle only: FDR Drive and
(2) pedestrian accessible: 14th street between 6th Avenue
and 7th Avenue in Manhattan - is selected as a reference
model for hourly traffic change patterns on all other street
segments.

Once we have calculated the hourly traffic of the road net-
work, we divide every road segment into 100-foot sub-segments
associated with computed hourly traffic. This process is
used to derive a homogeneous spatial unit for the entire road
network to allow for aggregation to the unified hexagon cell
grid. GHG emissions associated with the traffic network are
computed using the Vehicle Miles Traveled (VMT) measure
defined by the U.S. DOT to assess the total miles traveled
by vehicles within a specified region for a specified time pe-
riod. The âĂIJGreenhouse Gas Equivalences CalculatorâĂİ
created by National Oceanic and Atmospheric Administra-
tion (NOAA) is used to calculate GHG emissions for each of
the individual computed road sub-segments [27]. The tool
converts VMT values into metric tons of CO2 equivalent
(MTCO2e). VMT is calculated by multiplying the hourly
traffic of each sub-segment to the length of the sub-segments
(Eq. 5):

VMTs = HTs ∗ Ls (5)

WhereHTs is hourly traffic volume of the street sub-segment
and Ls is the length of the sub-segment, set to 100 feet. On
average, one (1) VMT is equivalent to 0.00053 MTCO2e.
Consequently, each street sub-segment is associated with
hourly GHG emissions according to (Eq. 6):

GHGs = VMTs ∗ 0.00053(MTCO2e) (6)



Figure 4: Spatial estimation of temperature by in-
verse distance weighting (IDW) interpolation.

Figure 5: Dashboard interface components.

Finally, we aggregate the GHG emission values for each cell
to estimate the hexagonâĂŹs hourly GHG emission (Eq. 7):

GHGX,t =

N∑

i

(GHGs) (7)

3.4 Localizing weather sensor data
We develop a weather localization algorithm to estimate
weather conditions at any geo-location in NYC by inter-
polating data from proximate weather stations (Figure. 4).
For any given location x, we estimate its local temperature
through Inverse Distance Weighting (IDW) interpolation.
We first search the three nearest stations activated at time t
to capture the temperature readings ui = u(xi) for i = 1,2,3
(Eq. 8):

u(x) =

∑3
i=1 wi(x)ui∑3

i=1 wi

(8)

where wi(x) =
1

d(x,xi)
and d is the euclidean distance from

interpolated point x to interpolating point xi.

3.5 Developing the interactive visualization
We create our data visualization tool using Tableau R© and
integrate the model dashboard on a jQuery R© enabled html
web page 1. Considering the size and comprehensiveness

1http://www.urbanintelligencelab.org/wp-content/
uploads/2017/11/Final_cut_short.mp4

of our data and methodology, the web page includes multi-
ple sections for users to navigate, including an introduction,
dashboards, video tutorial, an interactive story board ex-
plaining the methodology, and a Carto R© interactive map
showing Lower Manhattan as a neighborhood case study.
The dashboard is the primary interface for the hourly data
visualization, which includes social media sentiment, air qual-
ity index, GHG emissions, temperature, and household in-
come levels (Figure. 5). To demonstrate our output, we
show two weeks of data (Monday - Sunday) for the periods
from January 12th to the 19th and from July 13th to the
20th in 2017. Users can switch dashboards to explore how
real-time GHG emissions vary between winter and summer
seasons. Currently, we use these two one-week periods as in-
puts for the visualization tool due to limitations of the beta
version of the interactive web-based environment. In the
future, we plan to improve the current interface by integrat-
ing Tabelau R© dashboards and interactive data visualization
using D3.js and Leaflet.js.

4. RESULTS & DISCUSSION
Our model provides data-driven insights into local GHG
emissions at high spatial and temporal resolutions. As a val-
idation of our model estimations, we use official City statis-
tics provided by the Inventory of New York City Greenhouse
Gas Emissions for 2015 [6]. Compared to the reported an-
nual citywide emissions, our model overestimated building
emissions by less than 0.2% and underestimated traffic emis-
sions by 38%. The latter can be explained, in part, by the
fact that the AADT values do not cover the entire street
network in NYC, and we also do not account for differences
in emissions based on vehicle types. As expected, we find
significant variations across NYC, which follow the range of
land use types and building intensities, as well as the relative
traffic volumes and congestion patterns along certain key
segments of the surface transportation network (Figure. 6).
It should be noted that buildings account for more than 70%
of the City’s total emissions, given the relative efficiency of
the public transit system and thus lower per capita vehicle
usage. We also note non-trivial variations in localized tem-
perature, which highlights the significance of the urban heat
island effect in dense urban environments. These variations
are attributable to local wind patterns, traffic activity, built
environment morphology and use types, and the presence of
street trees and other natural features.

We make a number of simplifying assumptions in our pro-
posed methodology, which result in certain limitations of
our current approach. In the building emissions method-
ology, we rely on U.S. DOE prototypical building models,
which correspond to a limited number of residential and
commercial building types. Therefore, we are not captur-
ing the entire stock of industrial properties, which can sig-
nificantly contribute to overall GHG emissions. Similarly,
many New York City properties are mixed-use, which do
not match well with the generic DOE reference models. In
addition, the DOE models provide outputs only for elec-
tricity and natural gas consumption. While these are the
two major energy sources in the City, other fuels such as
steam and heavy fuel oils are widely used and can have a
differential impact on local emissions. Future versions of the
our model will adjust and modify the models using more
detailed building-specific data inputs, such as actual build-

http://www.urbanintelligencelab.org/wp-content/uploads/2017/11/Final_cut_short.mp4
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Figure 6: Spatial-temporal dynamics of local GHG emissions and temperature. Time-series plot shows intra-
day hourly localized GHG emissions and hourly temperature with a 90% confidence interval, including hourly
variations (red bands for GHGs and blue bars for temperature).

ing morphology parameters and hourly occupancy data, to
improve the accuracy of the reference models and our esti-
mates. Our ongoing work also involves developing detailed
machine learning models to infer Citywide building energy
consumption using property-specific data that can comple-
ment physics-based energy model hourly consumption esti-
mates.

Our estimate of traffic GHG emissions relies on static, an-
nual counts of traffic volume on major roads in the city. This
approach does not account for seasonal variations, and we
base our hourly traffic volume profiles drawn from a limited
set of daily observations. Increasing the number and speci-
ficity of road typologies used can alleviate this problem to
some extent. Another limitation is the fact that our current
methodology does not distinguish between different vehicle
classes, which impact emissions factors. We are working
with Waze data to better account for real-time congestion
and street segment speeds to adjust, or replace, the DOT
counts for actual conditions. In addition, the DOT’s traf-
fic cameras, when parsed with computer vision techniques,
could potentially improve the overall accuracy of our esti-
mations by providing real-time traffic counts by segment for
streets covered by these cameras.

5. CONCLUSION
Our framework provides a scalable platform and methodol-
ogy for estimating, evaluating, and visualizing local GHG
emissions in cities. By combining data from public, private,
and non-profit sources, together with citizen-generated data,
we are able to integrate statistical and physics-based mod-

els to estimate hourly GHG emissions for buildings and ve-
hicles down to 500m grid resolution. The tool is designed
to provide city leaders and urban policy-makers, working
across sectors and agencies, to understand highly-localized
patterns of GHG emissions across their city. Our prototype
model uses the data-rich environment of New York City as a
test case for a generalizable methodology that can be used in
a range of cities, thus expanding potential insights through
comparative studies and analysis.

Going forward, as part of a larger funded project, we plan
to expand the scope and impact of our methodology in three
significant ways. First, we will incorporate additional data,
such as real-time traffic congestion from Waze and LiDAR-
derived building shape parameters, to increase the robust-
ness and accuracy of our results, and account for the limi-
tations described above. This will also entail revising and
deepening our methods to increase the local precision of our
estimates. Second, we intend to develop a similar models
and visualizations for five other cities, representing a cross-
section of city sizes, regions, and urban morphologies. Fi-
nally, using the data and model outputs, we can analyze
causal relationships between different city phenomena and
GHG emissions. The objective will be to create a dynamic
policy scenario tool to provide decision-makers with a pro-
cess to examine the potential emissions impacts of a range
of regulatory, economic, and behavioral interventions. In
addition to providing an impact evaluation tool for GHG
emissions, we will also incorporate impacts on economic ac-
tivity, public health, and climate justice, with a specific fo-
cus on social equity and the distributional effects of policy



decisions.

As cities increasingly take their place on the front lines of the
battle against climate change, city leaders need new data-
driven and evidenced-based insights to evaluate future sce-
narios and competing policy options. We believe our work
significantly adds to the climate action toolkit by creating
a new method to understand and estimate high-resolution
emissions from cities. Although this work utilizes a signif-
icant collection of data sources, non-trivial resource limita-
tions mean that the described methodology and visualiza-
tion platform are a prototype version, with opportunities for
meaningful improvements. Nonetheless, we have developed
a scientifically-rigorous and actionable platform to advance
climate action and meaningfully address one of the most
significant challenges facing society.
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