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Abstract—We present a novel egocentric visual localization
algorithm for an indoor navigation system, called PERCEPT-V,
which is designed to assist the blind and visually impaired users
traveling independently in an unfamiliar indoor space. Through
the integration of a background extraction module based on
Robust Principle Component Analysis (RPCA) into the
localization algorithm, we successfully improve the resilience of
camera localization to the presence of crowds in the observed
scene. Experiments using datasets of videos containing various
levels of crowd activity show that the proposed algorithm can
increase prominently the reliability of localization performance.
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I. INTRODUCTION

According to visual impairment and blindness statistics from
the World Health Organization (WHO), there are 285 million
people suffering from visual impairment worldwide [1]. Indoor
wayfinding in complex public spaces poses a major challenge to
blind and visually impaired (BVI) individuals and negatively
affects their mobility and the quality of life. To increase the BVI
individuals’ ability of travelling independently, we developed
the PERCEPT indoor navigation system [2,3] using Near-Field
Communication (NFC) tags; it was proved to be beneficial to the
BVI users. From the experiments conducted with BVI subjects,
PERCEPT has shown significant effectiveness on indoor
wayfinding by delivering step-by-step audible navigation
instructions to users. Although the PERCEPT system provides
reliable localization and orientation to users by scanning the
tags, the deployment of NFC tags requires changes in the
environment, which can be costly.

To make PERCEPT system scalable and cost-effective, we
propose to develop an organic computer vision-driven
smartphone-based indoor navigation system, which we name
PERCEPT-V. For this system, we show that the visual
localization algorithm [4] can determine the BVI user’s location
and orientation in real-time using image or video captured by
commercial devices, such as smartphones or wearable cameras.
Moreover, the accuracy of the location and orientation estimates
is sufficient for BVI users to navigate themselves safely in the
space. While existing visual localization algorithms provide
sufficiently accurate estimation of location and orientation, we
find that there is a new technical challenge to PERCEPT-V: we
must increase the reliability of the visual localization algorithm
when crowds are present in the observed environment, and our
algorithm must be resilient to instability in the framing and view
of the images acquired by the BVI users.

In order to address the two aforementioned issues, we
propose to integrate a background extraction algorithm into the
image processing pipeline to improve the resilience of visual

This project was supported in part by Grant IIS-1645737 from the
National Science Foundation. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the National
Science Foundation.

localization to the presence of crowds in the observed scene. In
contrast to most existing background subtraction algorithms,
which simply identify a mask that identifies and extracts the
foreground in the image, we focus on the use of background
subtraction algorithms that create a model for all pixels of the
background. We refer to such algorithms as background
extraction algorithms. Removing the foreground helps prevent
spurious matches between features corresponding to crowds
(foreground) and the reference navigation space (background).

In this paper, we leverage robust principle component
analysis (RPCA) [5], an emerging formulation for background
extraction that leverages a low-rank-plus-sparse matrix model,
to represent the background in video sequences for the sake of
increasing the number of correct keypoint descriptor matches
between the target image and the reference images. In this
formulation, the images in a video sequence are vectorized and
arranged as columns of a matrix, which is then modeled as the
sum of two separate components: the first component is a low-
rank matrix, while the second one is a sparse matrix. The low-
rank matrix corresponds to the background of the video which
contains useful visual information of navigation space, as it
models a component that is present consistently through
different frames and densely present in the image sequence,
while the sparse component models activity that is localized in
each frame and it is likely to correspond to the moving crowds
in the video. While the background of a static camera observing
a simple setting can be modeled using a rank-one matrix,
variations in illumination and minor camera movement can be
accurately modeled by employing background matrices of
higher rank; note that even in these cases the rank is usually
much lower than the dimensions of the matrix (which almost
always will correspond to the number of frames in the video).
Furthermore, the low-rank-plus-sparse model allows for the
estimation of the occluded pixels in each frame by exploiting the
regularity of the background image via the low-rank model
applied to the background component matrix. RPCA has
potential benefits for low-power systems, such as PERCEPT-V,
due to its compatibility with compressive sensing [6], a signal
and image acquisition technique that allows for reductions in the
dimensionality of the acquired data, and which often can be
leveraged into simplified lower-power and lower-storage
imaging systems. Additionally, the proposed crowd-resilient
localization algorithm can increase the applicability of our
indoor visual navigation system to more complex and
challenging environments, e.g., shopping malls or heavily used
transportation hubs.



Our contributions can be summarized as follows. We present
a novel visual localization algorithm reslient to crowds in the
observed scence with RPCA background extraction. Our work
considers novel aspects of visual localization that, to the best of
our knowledge, have not yet been address in the literature.

The remainder of the paper is organized as follows. Section
II summarizes a background and discusses related work. The
algorithm framework and background extraction via RPCA are
presented in Section III and Section IV, respectively.
Experimental results are shown in Section V. Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Visual Localization in Wayfinding for BVI individuals

A class of visual systems uses a single camera and attempts
to register the image obtained within a spatial model obtained
by leveraging a training dataset — e.g., achieved using Structure
from Motion (SfM) — for localization purposes. Many of these
algorithms leverage robust feature extraction algorithms that are
invariant to changes in scale, rotation, scene illumination, etc.
The goal is that the same visual features can be detected on the
reference images and the currently observed image so that the
camera user can be localized with respect to the 3D coordinate
system of the environment by (i) applying a suitable spatial
transformation from camera coordinates to the world
coordinates and (ii) leveraging information about the 2D-to-3D
correspondences between the observed 2D features and
registered 3D features. The most popular features for navigation
are known as keypoint detectors, where representative examples
include speeded-up robust features (SURF) and scale-invariant
feature transform (SIFT) [23].

For localization purposes, the keypoint descriptors extracted
from the acquired image are compared to those obtained from
reference images and registered in 3D coordinate system to
search for the best match by measuring the distance. After
obtaining the 2D-to-2D matches, the 2D-to-3D correspondences
can be found easily. To estimate the pose of the camera when
the 2D-to-3D correspondences are available, most methods use
random sampling and consensus (RANSAC) to solve the PnP
problem, which randomly selects the smallest necessary subset
of the putative 2D-to-3D correspondences and finds the best
geometrical transformation to match the correspondences; the
transformation found is then evaluated on all remaining data,
selecting the best overall transformation over a fixed number of
random draws. The process is repeated until sufficient
agreement is observed between different trials or, alternatively,
until the number of 2D-to-3D correspondences that agree with
the transformation (known as the inlier set) is sufficiently large.

An alternative framework known as simultaneous
localization and mapping (SLAM) [7,8] does not require a
training dataset; rather, the structure of the environment is
established by using the SfM algorithms on the sequence of
previously observed images. New images are also matched
against previously observed images in the sequence for
localization purposes. SLAM is very popular in camera-based
navigation of unknown environments. However, such a system
is unnecessarily complicated for large public spaces that can be
surveyed in advance. Similar methods by [9,10], and [11-13] use

Fig. 1. Flow chart of data processing pipeline for PERCEPT-V
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SLAM, optical flow, and RBG-D imaging, respectively, for
obstacle avoidance.

There is prior research work on navigation systems for BVI
users that leverage visual localization approaches both indoors
and outdoors [14,15]. While most of these systems cover a wide
range of functions, the end devices are inconvenient for daily
use because they are heavy, complex, and expensive, which is
not a feasible option for a majority of the users.

B. Background Subtraction vs. Background Extraction

There is a rich literature on background subtraction
algorithms that are commonly employed in computer vision
applications, where the background is not of interest to the
application or system [16]. We will use the fuzzy self-organizing
background subtraction (FuzzySOBS) algorithm [17] in our
examples to compare the performance against the RPCA
background extraction. FuzzySOBS poses a statistical model for
all pixels of the background image and is one of the best-
performing background subtraction algorithms in the literature.
In terms of computational efficiency, the running time of
FuzzySOBS and RPCA background extraction are O (mn) and
0(m®n®), respectively, where m and n are the width and height
of the input frame.

Nonetheless, we believe that standard algorithms for
background subtraction will not suffice for our purposes even
though they are more computationally efficient than RPCA
background extraction. This is due to the fact that these
algorithms simply identify the pixels that correspond to activity
in the image, but do not provide an estimate of the background
for those regions of the field of view. Thus, even if the removal
of the foreground also removed the presence of keypoint
descriptors associated with them, the effect of occlusions and
masking on the extraction of keypoint descriptors is still present.
The effect of crowded activity in visual navigation for the blind
has only recently begun to be studied [18-20].

III. ALGORITHM FRAMEWORK

As shown in Fig. 1, in the standard approach (without the
shaded block), after keypoint descriptors are extracted from the
acquired and reference images, a search finds the best match
between the descriptors among the reference images that are
used to obtain the 3D model of the environment to those from
the acquired image. Consequently, the pose estimation module
calculates the most likely geometric transformation between the
putative 2D-to-3D correspondences, providing an estimate of
the location and orientation of the camera. Our proposed
architecture adds the one shaded block: a background extraction
scheme to remove activity from passerby before keypoint
descriptors are obtained. By extracting the background, the
proposed localization algorithm reduces the likelihood of
mismatches from features for the foreground (crowds) to the
reference images and increases the likelihood of recovering



more useful features about background (navigation space) that
can match with the registered features and benefit the
localization performance simultaneously.

IV. BACKGROUND EXTRACTION VIA RPCA

Let the acquired video be comprised of # frames containing
m pixels each. We store this video in a matrix D € R™*"; each
column of the matrix D corresponds to a video frame, and each
row represents the evolution of a specific pixel over the
acquisition time. In RPCA, we consider the following
decomposition for the video matrix [21]:

D=A+E, (1)

where A4 is a low-rank matrix corresponding to the background
and E is a sparse matrix corresponding to the foreground or
activity of passerby. This decomposition is motivated by the
small number of degrees of freedom for the background and the
localized and highly concentrated passerby activity. Note that
only 4 will be subject to the processing used by the visual
localization algorithm, while E is discarded.

The exact recovery of the low-rank matrix 4 of interest from
the sum D can be solved by the following convex optimization
problem:

argrEigl I All.+ A|E|l;, subjecttoD =A+E, (2)

where |||l denotes the nuclear norm of a matrix, ||-||; represents
the L, norm of a matrix, and A is a positive weighting parameter.
We apply the accelerated proximal gradient method [22] to solve
the optimization problem in (2). Its convergence rate is 0(k~2),
where £ is the number of iterations.

V. EXPERIMENTAL RESULTS

In this section, we show the performance improvement of
our proposed visual localization algorithm, including the RPCA
background extraction, using two experiments. In our first
experiment, we test the reliability of feature extraction from
background extracted images with both RPCA background
extraction and FuzzySOBS background subtraction in the new
block in PERCEPT-V. In our second experiment, we will test
the performance improvement (in terms of localization
reliability) achieved by using RPCA background extraction to
recover higher-quality keypoint descriptors that can be useful
for localization purposes. Since there is no benchmark dataset
that is publicly available for our case, we collect our own dataset
with human crowds in a public space to evaluate the
performance of the algorithm.

A. Feature Extraction Reliability

For our first experiment, we use data from video sequences
captured at the UMass Amherst Campus Center. The reference
dataset consists of images of the center’s first floor space that
were taken while the center was closed. The test dataset consists
of 63 video sequences taken in two groups: 26 sequences were
taken during low levels of activity (winter break) and 37
sequences were taken during high levels of activity. The number
of frames in each video sequence is 200 and the resolution of
each frame is 192 x 108. We performd SIFT feature extraction
and subsequent feature matching for three different
versions of each video sequence: (7) the original video sequence

Fig. 2. Average performance of SIFT decriptor-based image matching for (i)
original video sequences, (if) backgrounds obtained from the FuzzySOBS
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algorithm, (ii7) backgrounds obtained from the RPCA algorithm. Top row:
Average number of SIFT feature matches for each frame of the video sequence.
Bottom row: Average percentage of SIFT features matched during camera
localization. Left Column: Sequences with low and medium-level activity.
Right Column: Sequences with high-level activity.

frames, (ii)) the background frames extracted from the
FuzzySOBS algorithm, and (iii)) the background frames
extracted with the RPCA model. We consider not only the
number of matches obtained from each frame of the video
sequence, but also the percentage of keypoint descriptors from
the tested image that are successfully matched to descriptors in
the reference image.

Fig. 2 shows the average number of matches from each of
the video frames as a function of the frame index, as well as the
average percentage of those descriptors that are successfully
matched during the feature matching process. These quantities
are averaged over the 26 video sequences containing low
activity. The results show that the quality of FuzzySOBS is poor,
resulting in a very low percentage of features being matched.
Moreover, the quality of the background degrades as further
frames are processed. Furthermore, the percentage of keypoint
descriptors matched in the RPCA background image is higher
than that obtained from the original images, which is indicative
of the higher quality background keypoint descriptors obtained
from RPCA.

We also processed video sequences with high levels of
activity, which poses a more challenging setting for background
subtraction algorithms. The percentage of features that are
matched between the captured images and the reference images
is very small, as shown in Fig. 2, due to the large number of
features obtained from the foreground activity. Since the
background extraction algorithms are not completely successful,
the percentage of matched SIFT features stays low. Nonetheless,
it is still the case that the RPCA background image provides
higher-quality keypoint descriptors (in aggregate) than the two
alternatives.
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Fig. 3. Comparison of number of 2D-to-3D correspondences (inlier set) before
and after RPCA-based background extraction is applied to the frames of the
video sequences.

B. Improvement of Localization Performance

For our second experiment, we collected an additional set of
test data at the UMass Amherst Campus Center. The new test
dataset contains 77 video sequences and there are 15,400 frames
in total. The number of frames in each video sequence is 200 and
the resolution of each frame is 480 x 270. The goal for this
experiment is to determine the impact of RPCA background
extraction on the performance of visual localization algorithm
as measured by the number of 2D-to-3D correspondences in the
inlier set returned by the pose estimation (last block in Fig. 1)
using RANSAC. An increase in the number of inlier
correspondences is indicative of improved localization
performance, given that there are more higher-quality keypoint
descriptors that are recovered by RPCA and represent a single
perspective hypothesis. We checked this impact by plotting the
number of correspondences from the background image
obtained by RPCA to the number of correspondences from the
original image without processing by RPCA.

As shown in Fig. 3, we observe significant imcrements on
the number of correspondences for many images after applying
RPCA background extraction, as evident by the large number of
points on the upper triangle of the figure. For the rest of the
frames, almost all of the marks in the figure are close to the
diagonal, implying that any negative effects on a frame from
applying RPCA are minor. Among 15,400 frames, there are
9,339 frames (60%) whose number of inlier correspondences
after RPCA is larger or equal than that before RPCA.

Furthermore, since our interest focuses on recovering
higher-quality keypoint descriptors as many as possible for the
localization algorithm when the background is almost covered
by passerby (i.e., frames containing less than 10
correspondences, reflecting such scenarios), we analyzed the
result particularly for these worst cases to check if RPCA
background extraction can benefit the visual localization
algorithm for this type of circumstances. Figure 4a shows a
histogram for the increment of the number of correspondences
due to the use of RPCA. The figure shows that the benefits of
applying RPCA are much larger than the losses, since the range
of increments is from -20 to 140. Among the 737 worst-case
frames, 716 frames (97%) have equal or higher number of
correspondences after applying RPCA background extraction.

Fig. 4. Left: Histograms for increment in number of 2D-to-3D correspondences
(inlier set) after RPCA. Right: CDF of localization accuracy in meters.
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Figure 4b shows the cumulative accuracy distribution function
for localization with and without RPCA background subtraction
in the processing pipeline. The figure presents the substantial
improvement of localization accuracy after RPCA is applied due
to the increment of number of 2D-to-3D correspondences,
which occurs thanks to the higher number of higher-quality
keypoint descriptors recovered by the RPCA background
extraction. This result implies that the increase in the number of
correspondences after applying RPCA results in an
improvement of localization performance.

VI. CONCLUSIONS

In this paper, we propose PERCEPT-V, an indoor navigation
system for the BVI users based on a novel visual localization
algorithm resilient to crowds in the observed scene. We
addressed the new challenges in localization faced by the system
using RPCA background extraction to increase the localization
reliability. Unlike popular background subtraction algorithms,
RPCA background extraction enables us to model the
background more accurately by leveraging a low-rank-plus-
sparse decomposition of a matrix representation of the tested
video sequence. With more useful information available in the
extracted background, the proposed visual localization
algorithm can increase its reliability in the presense of crowds.

Our experimental results indicate two positive findings.
First, we show that RPCA background extraction outperforms
FuzzySOBS in obtaining an accurate background model for
PERCEPT-V. Second, we demonstrate an improvement of
localization accuracy when using RPCA background extraction
that is due to the recovery of higher-quality keypoint descriptors
that can be matched to those from the reference images. We
anticipate future work in the direction of finding the best-
performed RPCA algorithm implementation by comparing
among all candidates [25]. We also remain open to the
introduction of additional modules that can augment the
background extraction to further improve the performance of
PERCEPT-V. We will also consider how to discern between
background and foreground regions within the set of keypoint
descriptors obtained from each frame. The expectation is to
distinguish between these classes of keypoint descriptors (and
possibly more refined classes) by leveraging both signal
processing and machine learning schemes for keypoint
descriptor classification.
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