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Abstract—We present a novel egocentric visual localization 

algorithm for an indoor navigation system, called PERCEPT-V, 
which is designed to assist the blind and visually impaired users 
traveling independently in an unfamiliar indoor space. Through 
the integration of a background extraction module based on 
Robust Principle Component Analysis (RPCA) into the 
localization algorithm, we successfully improve the resilience of 
camera localization to the presence of crowds in the observed 
scene. Experiments using datasets of videos containing various 
levels of crowd activity show that the proposed algorithm can 
increase prominently the reliability of localization performance. 
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I. INTRODUCTION 
According to visual impairment and blindness statistics from 

the World Health Organization (WHO), there are 285 million 
people suffering from visual impairment worldwide [1]. Indoor 
wayfinding in complex public spaces poses a major challenge to 
blind and visually impaired (BVI) individuals and negatively 
affects their mobility and the quality of life. To increase the BVI 
individuals’ ability of travelling independently, we developed 
the PERCEPT indoor navigation system [2,3] using Near-Field 
Communication (NFC) tags; it was proved to be beneficial to the 
BVI users. From the experiments conducted with BVI subjects, 
PERCEPT has shown significant effectiveness on indoor 
wayfinding by delivering step-by-step audible navigation 
instructions to users. Although the PERCEPT system provides 
reliable localization and orientation to users by scanning the 
tags, the deployment of NFC tags requires changes in the 
environment, which can be costly. 

To make PERCEPT system scalable and cost-effective, we 
propose to develop an organic computer vision-driven 
smartphone-based indoor navigation system, which we name 
PERCEPT-V. For this system, we show that the visual 
localization algorithm [4] can determine the BVI user’s location 
and orientation in real-time using image or video captured by 
commercial devices, such as smartphones or wearable cameras. 
Moreover, the accuracy of the location and orientation estimates 
is sufficient for BVI users to navigate themselves safely in the 
space. While existing visual localization algorithms provide 
sufficiently accurate estimation of location and orientation, we 
find that there is a new technical challenge to PERCEPT-V: we 
must increase the reliability of the visual localization algorithm 
when crowds are present in the observed environment, and our 
algorithm must be resilient to instability in the framing and view 
of the images acquired by the BVI users. 

In order to address the two aforementioned issues, we 
propose to integrate a background extraction algorithm into the 
image processing pipeline to improve the resilience of visual 

localization to the presence of crowds in the observed scene. In 
contrast to most existing background subtraction algorithms, 
which simply identify a mask that identifies and extracts the 
foreground in the image, we focus on the use of background 
subtraction algorithms that create a model for all pixels of the 
background. We refer to such algorithms as background 
extraction algorithms. Removing the foreground helps prevent 
spurious matches between features corresponding to crowds 
(foreground) and the reference navigation space (background). 

In this paper, we leverage robust principle component 
analysis (RPCA) [5], an emerging formulation for background 
extraction that leverages a low-rank-plus-sparse matrix model, 
to represent the background in video sequences for the sake of 
increasing the number of correct keypoint descriptor matches 
between the target image and the reference images. In this 
formulation, the images in a video sequence are vectorized and 
arranged as columns of a matrix, which is then modeled as the 
sum of two separate components: the first component is a low-
rank matrix, while the second one is a sparse matrix. The low-
rank matrix corresponds to the background of the video which 
contains useful visual information of navigation space, as it 
models a component that is present consistently through 
different frames and densely present in the image sequence, 
while the sparse component models activity that is localized in 
each frame and it is likely to correspond to the moving crowds 
in the video. While the background of a static camera observing 
a simple setting can be modeled using a rank-one matrix, 
variations in illumination and minor camera movement can be 
accurately modeled by employing background matrices of 
higher rank; note that even in these cases the rank is usually 
much lower than the dimensions of the matrix (which almost 
always will correspond to the number of frames in the video). 
Furthermore, the low-rank-plus-sparse model allows for the 
estimation of the occluded pixels in each frame by exploiting the 
regularity of the background image via the low-rank model 
applied to the background component matrix. RPCA has 
potential benefits for low-power systems, such as PERCEPT-V, 
due to its compatibility with compressive sensing [6], a signal 
and image acquisition technique that allows for reductions in the 
dimensionality of the acquired data, and which often can be 
leveraged into simplified lower-power and lower-storage 
imaging systems. Additionally, the proposed crowd-resilient 
localization algorithm can increase the applicability of our 
indoor visual navigation system to more complex and 
challenging environments, e.g., shopping malls or heavily used 
transportation hubs.  
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Our contributions can be summarized as follows. We present 
a novel visual localization algorithm reslient to crowds in the 
observed scence with RPCA background extraction. Our work 
considers novel aspects of visual localization that, to the best of 
our knowledge, have not yet been address in the literature. 

The remainder of the paper is organized as follows. Section 
II summarizes a background and discusses related work. The 
algorithm framework and background extraction via RPCA are 
presented in Section III and Section IV, respectively. 
Experimental results are shown in Section V. Section VI 
concludes the paper. 

II. BACKGROUND AND RELATED WORK 

A. Visual Localization in Wayfinding for BVI individuals  
A class of visual systems uses a single camera and attempts 

to register the image obtained within a spatial model obtained 
by leveraging a training dataset – e.g., achieved using Structure 
from Motion (SfM) – for localization purposes. Many of these 
algorithms leverage robust feature extraction algorithms that are 
invariant to changes in scale, rotation, scene illumination, etc. 
The goal is that the same visual features can be detected on the 
reference images and the currently observed image so that the 
camera user can be localized with respect to the 3D coordinate 
system of the environment by (i) applying a suitable spatial 
transformation from camera coordinates to the world 
coordinates and (ii) leveraging information about the 2D-to-3D 
correspondences between the observed 2D features and 
registered 3D features. The most popular features for navigation 
are known as keypoint detectors, where representative examples 
include speeded-up robust features (SURF) and scale-invariant 
feature transform (SIFT) [23].  

For localization purposes, the keypoint descriptors extracted 
from the acquired image are compared to those obtained from 
reference images and registered in 3D coordinate system to 
search for the best match by measuring the distance. After 
obtaining the 2D-to-2D matches, the 2D-to-3D correspondences 
can be found easily. To estimate the pose of the camera when 
the 2D-to-3D correspondences are available, most methods use 
random sampling and consensus (RANSAC) to solve the PnP 
problem, which randomly selects the smallest necessary subset 
of the putative 2D-to-3D correspondences and finds the best 
geometrical transformation to match the correspondences; the 
transformation found is then evaluated on all remaining data, 
selecting the best overall transformation over a fixed number of 
random draws. The process is repeated until sufficient 
agreement is observed between different trials or, alternatively, 
until the number of 2D-to-3D correspondences that agree with 
the transformation (known as the inlier set) is sufficiently large. 

An alternative framework known as simultaneous 
localization and mapping (SLAM) [7,8] does not require a 
training dataset; rather, the structure of the environment is 
established by using the SfM algorithms on the sequence of 
previously observed images. New images are also matched 
against previously observed images in the sequence for 
localization purposes. SLAM is very popular in camera-based 
navigation of unknown environments. However, such a system 
is unnecessarily complicated for large public spaces that can be 
surveyed in advance. Similar methods by [9,10], and [11-13] use  

Fig. 1. Flow chart of data processing pipeline for PERCEPT-V 

SLAM, optical flow, and RBG-D imaging, respectively, for 
obstacle avoidance. 

There is prior research work on navigation systems for BVI 
users that leverage visual localization approaches both indoors 
and outdoors [14,15]. While most of these systems cover a wide 
range of functions, the end devices are inconvenient for daily 
use because they are heavy, complex, and expensive, which is 
not a feasible option for a majority of the users. 

B. Background Subtraction vs. Background Extraction 
There is a rich literature on background subtraction 

algorithms that are commonly employed in computer vision 
applications, where the background is not of interest to the 
application or system [16]. We will use the fuzzy self-organizing 
background subtraction (FuzzySOBS) algorithm [17] in our 
examples to compare the performance against the RPCA 
background extraction. FuzzySOBS poses a statistical model for 
all pixels of the background image and is one of the best-
performing background subtraction algorithms in the literature. 
In terms of computational efficiency, the running time of 
FuzzySOBS and RPCA background extraction are 𝑂𝑂(𝑚𝑚𝑚𝑚) and 
𝑂𝑂(𝑚𝑚�𝑛𝑛�), respectively, where m and n are the width and height 
of the input frame. 

Nonetheless, we believe that standard algorithms for 
background subtraction will not suffice for our purposes even 
though they are more computationally efficient than RPCA 
background extraction. This is due to the fact that these 
algorithms simply identify the pixels that correspond to activity 
in the image, but do not provide an estimate of the background 
for those regions of the field of view. Thus, even if the removal 
of the foreground also removed the presence of keypoint 
descriptors associated with them, the effect of occlusions and 
masking on the extraction of keypoint descriptors is still present. 
The effect of crowded activity in visual navigation for the blind 
has only recently begun to be studied [18-20]. 

III. ALGORITHM FRAMEWORK 
As shown in Fig. 1, in the standard approach (without the 

shaded block), after keypoint descriptors are extracted from the 
acquired and reference images, a search finds the best match 
between the descriptors among the reference images that are 
used to obtain the 3D model of the environment to those from 
the acquired image. Consequently, the pose estimation module 
calculates the most likely geometric transformation between the 
putative 2D-to-3D correspondences, providing an estimate of 
the location and orientation of the camera. Our proposed 
architecture adds the one shaded block: a background extraction 
scheme to remove activity from passerby before keypoint 
descriptors are obtained. By extracting the background, the 
proposed localization algorithm reduces the likelihood of 
mismatches from features for the foreground (crowds) to the 
reference images and increases the likelihood of recovering 



more useful features about background (navigation space) that 
can match with the registered features and benefit the 
localization performance simultaneously. 

IV. BACKGROUND EXTRACTION VIA RPCA 
Let the acquired video be comprised of n frames containing 

m pixels each. We store this video in a matrix 𝐷𝐷 ∈ 	𝑅𝑅�×�; each 
column of the matrix D corresponds to a video frame, and each 
row represents the evolution of a specific pixel over the 
acquisition time. In RPCA, we consider the following 
decomposition for the video matrix [21]: 

𝐷𝐷 = 𝐴𝐴 + 𝐸𝐸,                                     (1) 
where A is a low-rank matrix corresponding to the background 
and E is a sparse matrix corresponding to the foreground or 
activity of passerby. This decomposition is motivated by the 
small number of degrees of freedom for the background and the 
localized and highly concentrated passerby activity. Note that 
only A will be subject to the processing used by the visual 
localization algorithm, while E is discarded. 

The exact recovery of the low-rank matrix A of interest from 
the sum D can be solved by the following convex optimization 
problem: 

argmin
�,	�

∥ 𝐴𝐴 ∥∗+ 𝜆𝜆‖𝐸𝐸‖�,		𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑡𝑡𝑡𝑡	𝐷𝐷 = 𝐴𝐴 + 𝐸𝐸,      (2) 

where ∥∙∥∗ denotes the nuclear norm of a matrix, ‖∙‖� represents 
the 𝐿𝐿� norm of a matrix, and λ is a positive weighting parameter. 
We apply the accelerated proximal gradient method [22] to solve 
the optimization problem in (2). Its convergence rate is O(𝑘𝑘��), 
where k is the number of iterations. 

V. EXPERIMENTAL RESULTS 
In this section, we show the performance improvement of 

our proposed visual localization algorithm, including the RPCA 
background extraction, using two experiments. In our first 
experiment, we test the reliability of feature extraction from 
background extracted images with both RPCA background 
extraction and FuzzySOBS background subtraction in the new 
block in PERCEPT-V. In our second experiment, we will test 
the performance improvement (in terms of localization 
reliability) achieved by using RPCA background extraction to 
recover higher-quality keypoint descriptors that can be useful 
for localization purposes. Since there is no benchmark dataset 
that is publicly available for our case, we collect our own dataset 
with human crowds in a public space to evaluate the 
performance of the algorithm. 

A. Feature Extraction Reliability 
For our first experiment, we use data from video sequences 

captured at the UMass Amherst Campus Center. The reference 
dataset consists of images of the center’s first floor space that 
were taken while the center was closed. The test dataset consists 
of 63 video sequences taken in two groups: 26 sequences were 
taken during low levels of activity (winter break) and 37 
sequences were taken during high levels of activity. The number 
of frames in each video sequence is 200 and the resolution of 
each frame is 192 x 108. We performd SIFT feature extraction
and subsequent feature matching for three different 
versions of each video sequence: (i) the original video sequence 
Fig. 2. Average performance of SIFT decriptor-based image matching for (i) 
original video sequences, (ii) backgrounds obtained from the FuzzySOBS 

algorithm, (iii) backgrounds obtained from the RPCA algorithm. Top row: 
Average number of SIFT feature matches for each frame of the video sequence. 
Bottom row: Average percentage of SIFT features matched during camera 
localization. Left Column: Sequences with low and medium-level activity. 
Right Column: Sequences with high-level activity. 
 
frames, (ii) the background frames extracted from the 
FuzzySOBS algorithm, and (iii) the background frames 
extracted with the RPCA model. We consider not only the 
number of matches obtained from each frame of the video 
sequence, but also the percentage of keypoint descriptors from 
the tested image that are successfully matched to descriptors in 
the reference image.  
 Fig. 2 shows the average number of matches from each of 
the video frames as a function of the frame index, as well as the 
average percentage of those descriptors that are successfully 
matched during the feature matching process. These quantities 
are averaged over the 26 video sequences containing low 
activity. The results show that the quality of FuzzySOBS is poor, 
resulting in a very low percentage of features being matched. 
Moreover, the quality of the background degrades as further 
frames are processed. Furthermore, the percentage of keypoint 
descriptors matched in the RPCA background image is higher 
than that obtained from the original images, which is indicative 
of the higher quality background keypoint descriptors obtained 
from RPCA. 
 We also processed video sequences with high levels of 
activity, which poses a more challenging setting for background 
subtraction algorithms. The percentage of features that are 
matched between the captured images and the reference images 
is very small, as shown in Fig. 2, due to the large number of 
features obtained from the foreground activity. Since the 
background extraction algorithms are not completely successful, 
the percentage of matched SIFT features stays low. Nonetheless, 
it is still the case that the RPCA background image provides 
higher-quality keypoint descriptors (in aggregate) than the two 
alternatives. 

 



Fig. 3. Comparison of number of 2D-to-3D correspondences (inlier set) before 
and after RPCA-based background extraction is applied to the frames of the 
video sequences. 

B. Improvement of Localization Performance 
 For our second experiment, we collected an additional set of 
test data at the UMass Amherst Campus Center. The new test 
dataset contains 77 video sequences and there are 15,400 frames 
in total. The number of frames in each video sequence is 200 and 
the resolution of each frame is 480 x 270. The goal for this 
experiment is to determine the impact of RPCA background 
extraction on the performance of visual localization algorithm 
as measured by the number of 2D-to-3D correspondences in the 
inlier set returned by the pose estimation (last block in Fig. 1) 
using RANSAC. An increase in the number of inlier 
correspondences is indicative of improved localization 
performance, given that there are more higher-quality keypoint 
descriptors that are recovered by RPCA and represent a single 
perspective hypothesis. We checked this impact by plotting the 
number of correspondences from the background image 
obtained by RPCA to the number of correspondences from the 
original image without processing by RPCA. 
 As shown in Fig. 3, we observe significant imcrements on 
the number of correspondences for many images after applying 
RPCA background extraction, as evident by the large number of 
points on the upper triangle of the figure. For the rest of the 
frames, almost all of the marks in the figure are close to the 
diagonal, implying that any negative effects on a frame from 
applying RPCA are minor. Among 15,400 frames, there are 
9,339 frames (60%) whose number of inlier correspondences 
after RPCA is larger or equal than that before RPCA.  
 Furthermore, since our interest focuses on recovering 
higher-quality keypoint descriptors as many as possible for the 
localization algorithm when the background is almost covered 
by passerby (i.e., frames containing less than 10 
correspondences, reflecting such scenarios), we analyzed the 
result particularly for these worst cases to check if RPCA 
background extraction can benefit the visual localization 
algorithm for this type of circumstances. Figure 4a shows a 
histogram for the increment of the number of correspondences 
due to the use of RPCA. The figure shows that the benefits of 
applying RPCA are much larger than the losses, since the range 
of increments is from -20 to 140. Among the 737 worst-case 
frames, 716 frames (97%) have equal or higher number of 
correspondences after applying RPCA background extraction.  
Fig. 4. Left: Histograms for increment in number of 2D-to-3D correspondences 
(inlier set) after RPCA. Right: CDF of localization accuracy in meters. 
 

Figure 4b shows the cumulative accuracy distribution function 
for localization with and without RPCA background subtraction 
in the processing pipeline. The figure presents the substantial 
improvement of localization accuracy after RPCA is applied due 
to the increment of number of 2D-to-3D correspondences, 
which occurs thanks to the higher number of higher-quality 
keypoint descriptors recovered by the RPCA background 
extraction. This result implies that the increase in the number of 
correspondences after applying RPCA results in an 
improvement of localization performance.  

VI. CONCLUSIONS  
In this paper, we propose PERCEPT-V, an indoor navigation 

system for the BVI users based on a novel visual localization 
algorithm resilient to crowds in the observed scene. We 
addressed the new challenges in localization faced by the system 
using RPCA background extraction to increase the localization 
reliability. Unlike popular background subtraction algorithms, 
RPCA background extraction enables us to model the 
background more accurately by leveraging a low-rank-plus-
sparse decomposition of a matrix representation of the tested 
video sequence. With more useful information available in the 
extracted background, the proposed visual localization 
algorithm can increase its reliability in the presense of crowds. 
 Our experimental results indicate two positive findings. 
First, we show that RPCA background extraction outperforms 
FuzzySOBS in obtaining an accurate background model for 
PERCEPT-V. Second, we demonstrate an improvement of 
localization accuracy when using RPCA background extraction 
that is due to the recovery of higher-quality keypoint descriptors 
that can be matched to those from the reference images. We 
anticipate future work in the direction of finding the best-
performed RPCA algorithm implementation by comparing 
among all candidates [25]. We also remain open to the 
introduction of additional modules that can augment the 
background extraction to further improve the performance of 
PERCEPT-V. We will also consider how to discern between 
background and foreground regions within the set of keypoint 
descriptors obtained from each frame. The expectation is to 
distinguish between these classes of keypoint descriptors (and 
possibly more refined classes) by leveraging both signal 
processing and machine learning schemes for keypoint 
descriptor classification. 
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