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Abstract—Prospection, the act of predicting the consequences
of many possible futures, is intrinsic to human planning and
action, and may even be at the root of consciousness. Surprisingly,
this idea has been explored comparatively little in robotics. In this
work, we propose a neural network architecture and associated
planning algorithm that (1) learns a representation of the world
useful for generating prospective futures after the application of
high-level actions from a large pool of expert demonstrations,
(2) uses this generative model to simulate the result of sequences
of high-level actions in a variety of environments, and (3) uses
this same representation to evaluate these actions and perform
tree search to find a sequence of high-level actions in a new
environment. Models are trained via imitation learning on a
variety of domains, including navigation, pick-and-place, and
a surgical robotics task. Our approach allows us to visualize
intermediate motion goals and learn to plan complex activity
from visual information.

I. INTRODUCTION

Humans are masters at solving problems they have never
encountered before. When attempting to solve a difficult prob-
lem, we are able to build a good abstract models and to picture
what effects our actions will have. Some say this act — the act
of prospection — is the essence of true intelligence [19]. If we
want robots that can plan and act in general purpose situations
just as humans do, this ability would appear crucial.

As an example, consider the task of stacking a series
of colored blocks in a particular pattern, as explored in
prior work [27]. A traditional planner would view this as a
sequence of high-level actions, such as pickup(block),
place(block,on_block), and so on. The planner will
then decide which object gets picked up and in which order.
Such tasks are often described using a formal language such
as the Planning Domain Description Language (PDDL) [8].
To execute such a task on a robot, specific goal conditions
and cost functions must be defined, and the preconditions
and effects of each action must be specified. This is a time
consuming manual undertaking [2]. Humans, on the other
hand, do not require that all of this information to be given to
them beforehand. We can learn models of task structure purely
from observation or demonstration. We work directly with high
dimensional data gathered by our senses, such as images and
haptic feedback, and can reason over complex paths without
being given an explicit model or structure.

Ideally, we would learn representations that could be used
for all aspects of the planning problem, that also happen to
be human-interpretable. A recent line of work in robotics
focuses on making structured predictions to inform plan-
ning [6, 5, 26, 16]: So far, however, these approaches focus on
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Figure 1: Example of our algorithm using learned policies to predict
a good sequence of actions. Left: initial observation x0 and current
observation xi, plus corresponding encodings h0 and hi. Right:
predicted results of three sequential high level actions.
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Figure 2: Predicting the next step during a suturing task based on
labeled surgical data. Predictions clearly show the next position of
the arms.

making relatively short-term predictions, and do not take into
account high-level variation in how a task can be performed.
One-shot deep imitation learning can produce general-purpose
models for various tasks, but relies on a task solution from a
human expert, and does not generate prospective future plans
that can be evaluated for reliable performance in new environ-
ments [27]; these approaches are also very data intensive.

We propose a supervised model that learns high-level task
structure from imperfect demonstrations. Our approach then
generates interpretable task plans by predicting and evaluating
a sequence of high-level actions, as shown in Fig. 1. In Fig. 1,
we predict the action that is most likely to succeed from the
observed state of the world, imagine what the result of that
action will be, and repeat.

Models are learned from labeled training data containing
both successes and failures, are not reliant on a large number



of good expert examples, and work in a number of domains
including navigation, pick-and-place, and robotic suturing
(Fig. 2). We also describe a planning algorithm that simulates
a set of possible futures and choose the best sequence of high-
level actions to execute, resulting in realistic explorations of
possible futures.

To summarize, our contributions are:1

• A network architecture and training methodology for
learning a deep representation of a planning task.

• An algorithm to employ this planning task to generate
and evaluate sequences of high-level actions.

• Experiments demonstrating the model architecture and
algorithm on multiple datasets.

II. RELATED WORK

Motion Planning: In robotics, effective TAMP approaches
have been developed for solving complex problems involving
spatial reasoning [22]. A subset of planners focused on Par-
tially Observed Markov Decision Process extend this capabil-
ity into uncertain worlds; examples include DeSPOT, which
allows manipulation of objects in cluttered and challenging
scenes [14]. These methods rely on a large amount of built-
in knowledge about the world, however, including object
dynamics and grasp locations.

A growing number of works have explored the integration
of planning and deep neural networks. For example, QMDP-
nets embed learning into a planner using a combination of a
filter network and a value function approximator network [11].
Similarly, value iteration networks embed a differentiable
version of a planning algorithm (value iteration) into a neural
network, which can then learn navigation tasks [21]. Vezhn-
evets proposed to generate plans as sequences of actions [25].
Other prior work employed Monte Carlo Tree Search (MCTS)
together with a set of learned action and control policies
for task and motion planning [17], but did not incorporate
predictions.

Prediction is intrinsic to planning in a complex world. While
most robotic motion planners assume a simple causal model
of the world, recent work has examined learning predictive
models. Lotter et al. [15] propose PredNet as a way of
predicting sequences of images from sensor data, with the goal
of predicting the future, and Finn et al. [5] use unsupervised
learning of predictive visual models to push objects around in
a plane. However, to the best of our knowledge, ours is the
first work to use prospection for task planning.

Learning Generative Models.: GANs are widely considered
the state of the art in learned image generation [3, 1], though
they are far from the only option. The Wasserstein GAN
is of particular note as an improvement over other GAN
architectures [1]. Isola et al. proposed the PatchGAN, which
uses an average adversarial loss over “patches” of the image,
together with an L1 loss on the images as a way of training
conditional GANs to produce one image from another [10].
Prior work has examined several ways of generating multiple

1Code and data is available at https://cpaxton.github.io/costar plan/

realistic predictions [18, 3, 7] More recently, [7] proposed to
learn a deep predictive network that uses a stochastic policy
over goals for manipulation tasks, but without the goal of
additionally predicting the future world state.

Learning Representations for Planning: Sung et al. [20]
learn a deep multimodal embedding for a variety of tasks. Finn
et al. [5] learn a deep autoencoder as a set of convolutional
blocks followed by a spatial softmax; they found that this
representation was useful for reinforcement learning. Recently,
Higgins et al. [9] proposed DARLA, the DisentAngled Repre-
sentation Learning Agent, which learns useful representations
for tasks that enable generalization to new environments.
Interpretability and predicting far into the future were not goals
of these approaches.

Finally, we must note current work in learning model-based
planning from scratch. Weber et al. [26] propose imagination-
based agents for reinforcement learning, but these include very
simple tasks with discrete actions. Other work has looked at
deep models for model predictive control [12, 6] or model-
based RL [16]. These operate over shorter horizons than
our work, and are not attempting to capture high-level task
structure in their predictions. To our knowledge, ours is the
first work examining deep generative models for making high-
level predictions about the world for task planning.

III. APPROACH

We define a planning problem with continuous states x ∈ X ,
where x contains observed information about the world such
as a camera image, and a set of high-level actions a ∈ A that
describe the task in semantically meaningful terms (e.g. “grab
the red block”) and can be encoded as integers.

Our objective is to learn a set of models representing the
necessary components of this planning problem, but acting in
this latent space H. In other words, given a particular action
a and an observed state x, we want to be able to predict both
an end state x′ and the optimal sequence of actions a ∈ A∗
necessary to take us there. We specifically propose that there
are three components of this prediction function:

1. fenc(x) → h ∈ H, an encoder mapping observations to
hidden states.

2. fdec(h) → (x), a decoder mapping from hidden state to
expected observations.

3. T (h, a)→ h′ ∈ H, maps between different hidden states
given a high-level action a.

In practice, we include the hidden state of the first world
observation as well in our transform function, in order to
capture any information about the world that may be occluded.
This gives the transform function the form:

T (h0, h, a)→ h′ ∈ H

We assume the hidden state h contains all the necessary
information about the world to make high level decisions as
long as this h0 is available to capture change over time. As
such, we can learn additional functions representing the value
of a given hidden state, the predicted value of actions moving
forward from each hidden state, and connectivity between



Figure 3: Overview of the prediction network for visual task planning. We learn fenc(x), fdec(x), and T (h, a) to be able to predict and
visualize results of high-level actions. We map from observations x ∈ X to hidden states h ∈ H, and then use a learned permissability
function p to determine which actions a ∈ A can be taken. The results of these actions h′ are predicted with h′ = T (h0, h, a).

hidden states. Given these components, we can appropriately
represent the task as a tree search problem.

A. Model Architecture

Fig. 3 shows the architecture for visual task planning. Inputs
are two images x0 and xi: the initial frame when the planning
problem was first posed, and the current frame. We include x0
and h0 to capture occluded objects and changes over time from
the beginning of the task. In Fig. 3, hidden states h0, hi, hj , hk
are represented by averaging across channels.

Encoder and Decoder. We train fenc and fdec using the
encoder-decoder architecture shown in Fig. 4 to find the
mapping in and out of H. Convolutional blocks are indicated
with Ck, where k is the number of filters. Most of our layers
are 5× 5 convolutions, although we used a 7× 7 convolution
on the first layer and we use 1×1 convolutions to project into
and out of the hidden space. Each convolution is followed
by an instance normalization and a ReLU activation. Stride
2 convolutions and transpose convolutions are then used to
increase or decrease image size after each block. The final
projection into the hidden state has a sigmoid activation in
place of ReLU and is not paired with a normalization layer.
In most of our examples, this hidden space is scaled down to
an 8× 8× 8 space.

Both dropout and normalization played an important role in
learning fast, accurate models for encoding the hidden state,
but we use the instance norm instead of the more common
batch normalization in order to avoid issues with dropout.
After every block, we add a dropout layer D, with dropout
initially set to 10%. Instance normalization has been found
useful for image generation in the past [23]. We do not apply
dropout at test time except with GANs.

Transform function. T (h0, h, a) computes the most likely
next hidden state. This function was designed to combine
information about the action and two observed states, and
to compute global information over the entire hidden space.

We use the spatial soft argmax previously employed by Finn
and Levine. [13, 6] and Ghadirzadeh et al. [7] to compute
a set of keypoints, which we then concatenate with a high-
level action label and use to predict a new image. This is
sufficient to capture the next action with a good deal of fidelity
(see Sec. V-B), but to capture background details we add a
skip connection across this spatial soft argmax bottleneck. In
practice, given fenc(x) and fdec(x), we train T (h0, h, a) as
an action subgoal prediction function, which is a mapping
fdec(T (fenc(x0), fenc(x), a))→ (x′).

Fig. 5 shows the complete transform block as used in the
block stacking and navigation case studies described below.
For the suturing case study, with a larger input and hidden
space, we add an extra set of size 64 convolutions to each
side of the architecture and a corresponding skip connection,
but it is otherwise the same. Each dense or convolutional layer
is followed by a ReLU nonlinearity. The final projection into
the hidden state also has a sigmoid activation and no instance
normalization layer, as in the encoder.

Value functions. V (h) computes the value of a particular
hidden state h as the probability the task will be successful
from that point onwards, and Q(h0, h, a, a

′) predicts the
probability that taking action a′ from the tree search node
(h0, h, a) will be successful. These are trained based on {0, 1}
labels indicating observed task success and observed failures.
We also train the function f(h0, h, a) which predicts whether
or not an action a successfully finished.

Structure prior. Value functions do not necessarily indicate
what happens if there are no feasible actions from a particular
state. To handle this, we learn the permissability function
p(a′|h0, h, a), which states that it is possible for a′ to follow
a, but does not state whether or not a′ will succeed.

These last four models are trained on supervised data, but
without the instance normalization in femc, fdec, and T , as
we saw this hurt performance. Q, p, and f were trained with



Figure 4: Encoder-decoder architecture used for learning a transform into and out of the hidden space h.

Figure 5: Architecture of the transform function T (h0, h, a) for computing transformations to an action subgoal in the learned hidden space.

two 1 × 1 convolutions on h and h0, then a concatenated,
followed by C64 − C64 − FC256 − FC128, where FCk
is a fully connected layer with k neurons. The value function
V (h) was a convolutional neural net of the form C32−C64−
C128− FC128.

B. Learning

We train our predictor directly on supervised pairs contain-
ing the state x′ = fdec(T (fenc(x), a)) resulting from action
a. First, we considered a simple L1 loss on the output images.
However, this might not capture all details of complex scenes,
so we also train with an augmented loss which encourages
correct classification of the resulting image. This approach
is in some ways similar to that used by [3], in which the
authors predict images while minimizing distance in a feature
space trained on a classification problem. Here, we use a
combination of an L1 term and a term maximizing the cross-
entropy loss on classification of the given image, which we
refer to as the L1+λC loss in the following, where λ is some
weight.

This classifier predicts, given an observation of a subgoal
xg , which action was performed to take us to this point.
This classification function should capture salient features
of a particular high-level action. We also explored using
two different GAN losses: the Wasserstein GAN [1] and the
pix2pix GAN from Isola et al. [10].

First we train the goal classifier C(x) on labeled training
data for use in testing and in training our augmented loss. Next
we train fenc(x) and fdec(x), which provide our mapping to
and from the hidden world state. Finally we train the transform

function T (h0, h, a) and the evaluation functions used in our
planning algorithm.

Transform Training. To encourage the model to make
predictions that remain consistent over time, we link two
consecutive transforms with shared weights, and train on the
sum of the L1 loss from both images, with the optional
classifier loss term applied to the second image. The full
training loss given ground truth predictions x̂1, x̂2 is then:

L(x1, x2) = ‖x̂1 − x1‖1 + ‖x̂2 − x2‖1 + λC(x2)

Implementation. All models were implemented in Keras
and trained using the Adam optimizer, except for the Wasser-
stein GAN, which we trained with RMSProp as per prior
work [1]. We performed multiple experiments to set the
learning and dropout rates in our models, and selected a
relatively low learning rate of 1e− 4 and dropout rate of 0.1,
which strikes a balance between regularization and crisp per-
pixel predictions when learning the hidden state.

C. Visual Planning with Learned Representations

We use these models together with Monte Carlo Tree Search
(MCTS) in order to find a sequence of actions that we believe
will be successful in the new environment. The general idea
is that we run a loop where we repeatedly sample a possible
action a′ according to the learned function Q(h0, h, a, a

′) and
use this action to simulate the effects of that high-level action
T (h0, h, a

′). We can then execute the sequence of learned or
provided black box policies to complete the motion on the
robot.

We propose a variant of MCTS as a general way of
exploring the tree over possible actions [17]. We represent each



Algorithm 1 Algorithm for visual task planning with a learned
state representation.

Given: max depth d, initial state x0, current state x, number of
samples Nsamples

h = fenc(x), h0 = h
for i ∈ Nsamples do

EXPLORE(h0,h,∅,0,d)
end for
function EXPLORE(h0,h,a,i,d)

vi = EVALUATE(h0, h, a)
if i ≥ d or vi < vfailed then return vi end if
a′ = SAMPLE(h0, h, a)
h′ = T (h0, h, a

′)
v′ = EXPLORE(h0,h′,a′,i+ 1,d)
UPDATE(a, a′, v′)
return vi · v′

end function

node in the tree by a unique instance of a high-level action (∅
for the root). The full algorithm is described in Alg. 1.

The EVALUATE function sets vi = V (h), but also checks
the validity of the chosen action and determines which actions
can be sampled. We also compute f(h0, h, a) to determine if
the robot would succesfuuly complete the action with some
confidence cdone. If not this is considered a failure (vi = 0).
If v′ < vfailed, we will halt exploration.

The SAMPLE function greedily chooses the next action a′

to pursue according to a score v(a, a′):

v(a, a′) =
cQ(h0, h, a, a

′)

N(a, a′)
+ v∗(a, a′)

where Q is the learned action-value function, N(a, a′) is
the number of times a′ was visited from a, and v∗(a, a′)
is the best observed result from taking a′. We set c = 10
to encourage exploration to actions that are expected to be
good. The UPDATE function is responsible for incrementing
N(a, a′). Sampled actions a′ are rejected if we predict a′ is
not reachable from its parent.

IV. EXPERIMENTAL SETUP

We applied the proposed method to both a simple navigation
task using a simulated Husky robot, and to a UR5 block-
stacking task. 2

In all examples, we follow a simple process for collecting
data. First, we generate a random world configuration, de-
termining where objects will be placed in a given scene. The
robot is initialized in a random pose as well. We automatically
build a task model that defines a set of control laws and
termination conditions, which are used to generate the robot
motions in the set of training data. Legal paths through
this task model include any which meet the high-level task
specification, but may still violate constraints (due to collisions
or errors caused by stochastic execution).

We include both positive and negative examples in our
training data. Training was performed with Keras [4] and
Tensorflow 1.5 for 45,000 iterations on an NVIDIA Titan Xp

2Source code for all examples will be made available after publication.

Figure 6: Simulation experiments. Left: Husky navigation task. The
robot is highlighted. Right: UR5 block-stacking task with obstacle
avoidance.

GPU, with a batch size of 64. Training took roughly 200 ms
per batch.

A. Robot Navigation

In the navigation task, we modeled a Husky robot moving
through a construction site environment to investigate one of
four objects: a barrel, a barricade, a construction pylon or a
block, as shown in Fig. 6(left). The goal was to find a path
between different objects, so that it takes less then ten seconds
to move between any two objects. Here, x was a 64x64
RGB image that provides an aerial view of the environment.
Data was collected using a Gazebo simulation of the robot
navigating to a randomly-chosen sequence of objects. We
collected 208 trials, of which 128 were failures.

B. Simulated Block Stacking

To analyze our ability to predict goals for task planning, we
learn in a more elaborate environment. In the block stacking
task, the robot needed to pick up a colored block and place
it on top of any other colored block. The robot succeeds if it
manages to stack any two blocks on top of one another and
failed immediately if either it touches this obstacle or if at the
end of 30 seconds the task has not been achieved. Training
was performed on a relatively small number of examples: we
used 6020 trials, of which 2991 were successful and 3029
were failures. The state x is a 64 × 64 RGB image of the
scene from a fixed external camera.

We provided a set of non-optimal expert policies and
randomly sampled a set of actions. This task was fairly com-
plicated, with a total of 36 possible actions divided between
two sub-tasks. Separate high-level actions were provided for
aligning the gripper with an object, moving towards a grasp,
closing the gripper, lifting an object, aligning a block with
another block below it, stacking the currently held block
on another, opening the gripper, and returning to the home
position, for each of the four blocks in the scene.

Each performance was labeled a failure if either (a) it
took more than 30 seconds, (b) there was a collision with
the obstacle, or (c) the robot moved out of the workspace
for any reason. The simulation was implemented in PyBullet,
and execution was stochastic and unpredictable. At times the
robot would drop the currently-held block, or it would fail to
accurately place the block held in its hands. There was also
some noise in the simulated images.



C. Surgical Robot Image Prediction

Next, we explored our ability to predict the goal of the
next motion on a real-world surgical robot problem. Minimally
invasive surgery is a highly skilled task that requires a great
deal of training; our image prediction approach could allow
novice users some insight into what an expert might do in their
situation. There is a growing amount of surgical robot video
available, and a growing body of work seeks to capitalize on
this to improve video prediction [24]. We used a subset of
the JIGSAWS dataset to train a variant of our Visual Task
Planning models on a labeled suturing task in order to predict
the results of certain motions.

The JIGSAWS dataset consists of stereo video frames, with
each pair labeled as belonging to one of 15 possible gestures.
For our task, We used only the left frames of the video stream.
The dataset contains the 3 tasks of suturing, know tying,
and needle passing, with each task consisting of a subset of
gestures. We reduced the image dimensions from 640 × 480
to a more reasonable 96× 128. For this application, we used
a slightly larger 12× 16× 8 hidden representation.

V. RESULTS

Our models are able to generate realistic predictions of
possible futures for several different tasks, and can use these
predictions to make intelligent decisions about how they
should move to solve planning problems. See Fig. 1 above
for an example: we give the model input images x0 and xi,
and see realistic results as it peforms three actions: lifting
closing the gripper, picking up the green block, and placing it
on top of the blue block. In the real data set, this action failed
because the robot attempted to place the green block on the
red block (next to an obstacle), but here it makes a different
choice and succeeds. We visualize the 8× 8× 8 hidden layer
by averaging cross the channels.

A. Learned Hidden State

First, we explore the meaning of the learned hidden space
H. Random samples in the hidden space learned for the block-
stacking task (Fig 7, far left) correspond to random parts of
objects and robots (Fig. 7, left). To understand what effect
T (h0, h, a) has on h ∈ H, we randomly sampled a number of
hidden states and repeatedly applied T (h0, h, a) with actions
drawn uniformly at random. After 200 steps, we see results
similar to those in Fig. 7(right), with objects and the arm
positioned randomly in the scene.

B. Model Architecture

We performed a set of experiments to verify our model
architecture, particularly in comparing different versions of
the transform block T . We compare three different options:
the block as shown in Fig. 5, the same block with the skip
connection removed, and the same block with the spatial
softmax and dense block replaced by a stride 2 and a stride 1
convolution to make a more traditional U-net similar to that
used in prior work [10].

Figure 7: From left to right: (1) randomly sampled hidden state h,
(2) fdec(h), (3) h′ after 200 T (h, h, a) operations for random a, and
(4) fdec(h′)

No Skip Connections

No Classifier Loss With Classifier Loss

Figure 8: Selected results different possible architectures for the
Transform block.

To compare model architectures and training strategies,
we propose a simple metric: given a single frame, can we
determine which action just occurred? This is computed given
the same pretrained discriminator discussed in Sec. III-B. We
compare versions of the loss function with and without the
classifier loss term, and with this term given one of two pos-
sible weights. Both the classifier loss term and the conditional
GAN discriminator term were applied to the second of two
transforms, to encourage the model to generate predictions
that remained consistent over time.

Model x1 label x1 error x2 label x2 error
Naive 87.2% 0.0161 74.3% 0.0261

L1 88.1% 0.016 84.5% 0.018
L1+0.01C 87.9% 0.0177 94.3% 0.0214

L1+0.001C 88.2% 0.016 85.4% 0.0184
No Skips 87.5% 0.0224 85.4% 0.0247

cGAN [10] 84.5% 0.0196 77.5% 0.0235

Table I: Comparison of different strategies for learning T (h0, h, a)
as assessed by image prediction error (MAE on pixels) and image
confusion on held-out successful examples only.

Model x1 label x1 error x2 label x2 error
Naive 89.3% 0.0182 77.3% 0.0276

L1 90.4% 0.0181 86.4% 0.0209
L1+0.01C 90.6% 0.0198 95.6% 0.0239

L1+0.001C 90.9% 0.0181 88.6% 0.0208
No Skips 90.1% 0.0243 89.3% 0.0271

cGAN [10] 86.5% 0.0216 79.9% 0.0260

Table II: Comparison of strategies for learning T (h0, h, a) as as-
sessed by image prediction error (MAE on pixels) and image confu-
sion on held-out test examples.



Tables I and II show the results of this comparison. There
were 37453 example frames from successful examples and
54077 total examples in the data set. In general, the pre-
trained encoder-decoder structure allowed us to reproduce
high-quality images in all of our tasks. The “Naive” model
indicates L1 loss with only one prediction; it performs notably
worse than other models due to errors accumulating over
subsequent applications of T (h0, h, a).

The classifier loss term improved the quality of predictions
on the second example, and improved crispness of results,
at the slight cost of some pixel-wise error on the output
images. Here, we see that adding the classifier loss terms
(L1+0.01C and L1+0.001C) slightly improved recognition
performance looking forward in time. This corresponds with
increasing image clarity corresponding to the fingers of the
robot’s gripper in particular. Pose and texture differences
largely explain the differences in per-pixel error.

The “No Skips” model was trained the same as the
L1+0.001C model, but without the skip connections in Fig. 5.
These connections allow us to fill in background detail cor-
rectly (see Fig. 8), but were not necessary for the key aspects
of any particular action.

The cGAN was able to capture feasible texture, but often
missed or made mistakes on spatial structure. It often mis-
placed blocks, for example, or did not hallucinate them at all
after a placement action. This may be because of the noisy
data and the large number of failures.

C. Plan Evaluation

Our approach is able to generate feasible action plans in
unseen environments and to visualize them; see Fig. 9 for an
example. All three traces are generated on the same environ-
ment. The first two plans produced by Alg. 1 are recognized
as failures, and then the algorithm correctly finds that it can
pick up the red block and place it on the blue without any
issues. The value function V (h) correctly identified frames
as coming from successful or failed trials 83.9% of the
time after applying two transforms – good, considering that
it is impossible to differentiate between success and failure
from many frames. It correctly classified possible next actions
96.0% of the time.

At each node in our tree search, we examine multiple
possible futures. This is important both for planning and for
usability: it allows our system to justify future results. Fig. 10
shows examples of these predictions in different environments.
We see how the system will predict a set of serious failures
in the middle row, when attempting to grasp the red or blue
blocks, and one possible failure when grasping the yellow
block.

We tested our method on 10 new test environments in the
stacking task. On each of these environments, we performed
a search with 10 samples. Our approach found 8 solutions to
planning tasks executing the demonstrated high-level actions,
and in 2 tasks it predicted that all of its actions would result in
failures, due to proximity to the obstacle. This highlights an
advantage of the visual task planning approach: in the event

of a failure, the robot provides a clear explanation for why
(see the second sample in Fig. 9 for an example).

D. Surgical Image Prediction

We trained our network on 36 examples in the JIGSAWS
dataset, leaving out 3 for validation. We were able to generate
predictions that clearly showed the location of the arms after
the next gesture, as shown in Fig. 2. The learned space H is
very expressive, but loses some fine details such as the thread
at times. The result of fdec(fenc(x)) still has almost all the
same detail as the goal image (right).

Image prediction created recognizable gestures, such as
pulling the thread after a suture. While our results are visually
impressive, error was higher than in the robotic manipulation
task: we saw mean absolute error of 0.039 and 0.062 for
generated images x1 and x2, respectively. This is likely
because the surgical images contain a lot more subtle but
functionally irrelevant data that is not fully reconstructed by
our transform. It therefore looks “good enough” for human
perception, but does not compare as well at a pixel-by-pixel
level. In addition, there is high variability on the performance
of each action and a relatively small amount of avaiable data.

Again, the cGAN did not have a measurable impact: MAE
of 0.039 and 0.067 across the three test examples. As such,
the longer training time of the cGAN does not seem justified.
In general, it appears to us that conditional GANs are good
at modifying texture, but not necessarily at hallucinating
completely new image structure.

VI. CONCLUSIONS

We described an architecture for visual task planning, which
learns an expressive representation that can be used to make
meaningful predictions forward in time. This can be used as
part of a planning algorithm that explores multiple prospective
futures in order to select the best possible sequence of future
actions to execute. In the future we will apply our method
to real robotic examples and expand experiments on surgical
data.
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