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A B S T R A C T

In recent decades stereology-based studies have played a significant role in understanding brain aging and

developing novel drug discovery strategies for treatment of neurological disease and mental illness. A major

obstacle to further progress in a wide range of neuroscience sub-disciplines remains the lack of high-throughput

technology for stereology analyses. Though founded on methodologically unbiased principles, commercially

available stereology systems still rely on well-trained humans to manually count hundreds of cells within each

region of interest (ROI). Even for a simple study with 10 controls and 10 treated animals, cell counts typically

require over a month of tedious labor and high costs. Furthermore, these studies are prone to errors and poor

reproducibility due to human factors such as subjectivity, variable training, recognition bias, and fatigue. Here

we propose a deep neural network-stereology combination to automatically segment and estimate the total

number of immunostained neurons on tissue sections. Our three-step approach consists of (1) creating extended-

depth-of-field (EDF) images from z-stacks of images (disector stacks); (2) applying an adaptive segmentation

algorithm (ASA) to label stained cells in the EDF images (i.e., create masks) for training a convolutional neural

network (CNN); and (3) use the trained CNN model to automatically segment and count the total number of cells

in test disector stacks using the optical fractionator method. The automated stereology approach shows less than

2% error and over 5× greater efficiency compared to counts by a trained human, without the subjectivity,

tedium, and poor precision associated with conventional stereology.

1. Introduction

Unbiased stereology is a set of theoretical and practical methods

that allow for theoretically accurate (unbiased) estimation of stereology

parameters for stained cells by carefully avoiding all known sources of

methodological bias (West, 2012)(Mouton, 2011). Examples of

common stereology parameters include counts of total cell numbers and

cell density; region and mean cell volumes; surface area and surface

density; and total length and length density (Burke et al., 2009;

Mouton, 2011). Though based on theoretically unbiased principles, a

current weakness of state-of-the-art stereology systems is their depen-

dence on human data collectors. As a result, current stereology systems

are labor intensive, costly and prone to counting errors due to variable

user training, subjectivity and fatigue.

We have previously reported an automatic stereology approach

called Adaptive Segmentation Algorithm (ASA) for quantifying the total

numbers of NeuN immunostained neurons from extended depth of field

(EDF) images (Mouton et al., 2017; Bradley and Bamford, 2004). As

shown in Mouton et al. (2017), the ASA approach allows for compar-

able accuracy as trained human counters. However, a limitation of the

ASA is the domain specificity, since, modifications of ASA parameters

are needed to account for variations in cell size, staining intensity, and

background illumination. With the goal of more robust performance

across different staining domains, here we expand on that approach to

include an artificial intelligence (AI) technique known as deep learning

(LeCun et al., 2015).

Deep neural networks have lately generated considerable interest in

the medical imaging field where they have shown significantly better

performance over conventional engineered images analysis algorithms

(Lee et al., 2017). Although the idea of neural networks has been
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around for a long time, the emerging revolution of deep neural net-

works was partially due to the development of convolution neural

network (CNN); optimization algorithms (Hinton and Salakhutdinov,

2006; Nair and Hinton, 2010; Srivastava et al., 2014; Ioffe and Szegedy,

2015); highly efficient computation resources; and the availability of

large datasets (big data). Deep learning refers to the representation

learning methods that start from raw data and have multiple hidden

layers (neither input nor output) (LeCun et al., 2010). For instance,

images are the raw data for a neural network to learn a certain task (i.e.,

segmentation), whereas hidden layers contribute to features learning

process. In the medical field, large sets of labeled data are mostly hard

to find, which remains an obstacle to deep learning based applications.

Data augmentation such as the rigid and non-rigid transformation of

images can be used to address this problem. In this paper, a deep

learning architecture for medical image segmentation (Unet) was used

to create segmentation masks of EDF images (Ronneberger et al., 2015).

In Section 4, we explain Unet in further detail.

In this paper, we propose a pipeline method that includes state-of-

the-art deep learning architecture for segmentation and unbiased ster-

ology of histology images with improved accuracy, precision and

throughput efficiency as compared to current manual cell counting

stereology systems. A novel feature of our approach is that verified

segmentation masks from the ASA are used as ground truth for training

a deep neural network to make automatic counts of stained cells

(neurons) on test images. This innovation effectively reduces the human

effort on data labeling by using an unsupervised algorithm ASA to

create masks for EDF images. This patent-pending approach [FAST

(fully automatic stereology technology)] includes several automatic

and semi-automatic option for verification of results by trained experts.

2. Dataset

The use of animals in this study was approved by the USF

Institutional Animal Care and Use Committee according to NIH guide-

lines as described by Mouton et al. (2017). The dataset used in this

experiment was sampled in a systematic-random manner from the

neocortex of Tg4510 mouse brains. Among the phenotypic changes in

these mice are progressive neuron degeneration and activation of

neuroglia cells in the neocortex and other brain regions (Mouton et al.,

2017; Santacruz et al., 2005; Spires et al., 2006). Neu-N immunostained

neurons were segmented and counted in disector volumes according to

current stereology principles (Mouton et al., 2017; West et al., 1991),

and the total neuron number was calculated using the optical fractio-

nator feature in the Stereologer system (SRC Biosciences, Tampa, FL)

(Mouton et al., 2017). Briefly, after manual counts at systematic-

random x–y locations through the neocortex of nine mouse brains,

disector stacks (10 z-axis images 1 μm apart) were captured at the same

locations using high magnification objective (100× oil, 1.4 NA) for

brightfield microscopy. Table 1 shows the number of sections and

number of z-axis stacks (disector stacks) obtained and converted into an

EDF images, where the interval for stacks is 1.0 μm and the section

sampling fraction is 1/6th. A total of 966 EDF images with their cor-

responding ASA masks were used for automatic counts of Neu-N im-

munostained neurons as described in the following section.

3. Adaptive Segmentation Algorithm (ASA)

As detailed in Mouton et al. (2017), the ASA consists of multiple

steps optimized to segment neocortical NeuN-immunostained neurons.

The ASA includes a Gaussian mixture (GMM), morphological opera-

tions, Voronoi diagrams, and watershed segmentation. Our ASA starts

with EDF images to segment NeuN immunostained cells within an ROI

using a GMM, where a GMM uses pixel intensity for the expectation

maximization algorithm (EM) to estimate its parameters followed by

thresholding and morphological operations to get separate cells. A

processed EDF image using opening then closing by reconstruction was

used in the watershed foreground and background markers extraction.

These foreground and background markers used in applying watershed

segmentation were followed by segmentation approximation using a

Voronoi diagrams algorithm, and finally a smoothing process to en-

hance cell boundaries using the Savitzky–Golay filter (Savitzky and

Golay, 1964).

4. Deep learning

Deep learning is a representation learning technique that can learn

to perform specific tasks (i.e., detection, classification, and segmenta-

tion) from images, sound, text, or numbers (LeCun et al., 2015). This

technique does not require handcrafting features, but instead learns

discriminant and other powerful features automatically (Litjens et al.,

2017). Initially, deep learning was inspired by the biological brain

functions such as communication and processing of tasks on biological

neurons (Goodfellow et al., 2016). An example of deep learning is the

common CNN, a learning algorithm that consists of one or more con-

volution layers that serves as the main building block of a CNN for

learning to recognize features of images. Although a version of CNN has

existed since 1980, computation power and data availability had been

an obstacle until recently (Rawat and Wang, 2017).

In this paper, we use a CNN based architecture for medical image

segmentation known as Unet (Ronneberger et al., 2015). This neural

network is a simple, fast, and end-to-end fully convolutional network

(FCN) that contains contraction and expansion paths to capture context

and learn precise localization. Unet has 19 convolution layers where a

max pool layer follows every two convolution layers. Moreover, it has

skipping connections between the encoding and decoding path to add

precise localization of high resolution to segmented objects

(Ronneberger et al., 2015). Each convolution layer in encoding and

decoding paths are 2D convolution operations with a filter size of 3×3

followed by rectified linear unit (ReLU) activation function. A max-

pooling layer of size 2× 2 follows each of the two convolution layers in

the encoding path. In contrast, an up-sampling layer of size 2× 2 fol-

lows each of the two convolution layers in the decoding path. The last

layer is a 2D convolution layer of filter size 1× 1 followed by a sigmoid

activation function.

5. Methods

This section outlines steps in our proposed deep learning-based

unbiased stereology approach to segment and count cells in im-

munostained tissue sections. Our approach starts with data preparation

and verification, then training the deep learning model, after that a

post-processing step of predicted masks, and finally counting cells step

to calculate the total number of cells using the unbiased optical frac-

tionator method.

Table 1

Datasets mouse ID, number of sections per mouse and total number of stacks

per mouse.

Mouse ID Number of sections Number of stacks

02 8 113

03 6 121

14 8 90

17 7 91

29 8 135

21 7 102

24 8 103

67 8 104

09 6 107
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5.1. Image preparation and mask verification

Three-dimensional stacks of Z-axis images (disector stacks) con-

taining NeuN-immunostained neurons were captured from 6 to 8 mouse

brain sections sampled in a systematic-random manner through the

neocortex of nine mouse brains as shown in Table 1. This data collec-

tion was done using a commercial stereology system (Stereologer, SRC

Biosciences, Tampa, FL) consisting of Leica DM2500 bright-field mi-

croscope equipped with a motorized X–Y–Z stage, and high-resolution

digital camera. Data preparation and verification involved two main

steps: training set preparation and ground truth preparation as shown

in Fig. 1.

Training set preparation starts with preprocessing stacks of images

for converting images to grayscale followed by creating an extended-

depth-of-field (EDF) image (Fig. 1(a)). The EDF algorithm based on

discrete wavelet transformation that convert each disector stack into a

synthetic image in which all stained cells appear at their maximum

plane of focus (Bradley and Bamford, 2004). These in-focus cells are

“dropped” rather than projected onto a 2D plane. Stereology bias is

avoided by ensuring each cell in the disector stack has the same

probability (=1) of being counted inside a known volume (disector

volume). Bias from edge effects (Gundersen, 1977) is avoided through

the use of a unique plane (i.e., the most in-focus plane) to determine

whether the cell hits an exclusion plane. The ASA is applied to each EDF

image for segmentation, resulting in a binary mask of cells. We utilized

masks created by ASA rather than using manual annotation directly

since manual annotation has only counting marks and does not provide

an outline of the cell (i.e., mask) as shown in Fig. 2(a). After creating

the ASA mask, a human verification step is performed to verify the

agreement between the manual annotation and the ASA mask. If the

ASA mask matches the manual annotation except for the exclusion lines

(i.e., left and lower disector frame lines applied in a subsequent step),

then the human verifier accepts ASA mask. The accepted ASA masks

and their corresponding EDF images provided the training set. The steps

for training set preparation are illustrated in Fig. 1(a).

Ground truth preparation is similar to training set preparation in the

preprocessing step by creating EDF images and creating ASA masks (Fig

1 (a)). In a subsequent verification step an expert verifies the agreement

of ASA mask and manual annotation. If ASA masks match manual an-

notation except for the exclusion lines, then the ASA mask is accepted.

If the ASA mask does not match manual annotation, then the ASA mask

is rejected. It should be noted that rejection does not eliminate those

rejected masks from our study; instead, the expert fixes the rejected

masks manually to create ground truth for test images. Expert-based

manual fixing of rejected masks creates a segmentation of cells missing

on the ASA masks (false negatives) and eliminates cells that were

wrongly segmented by the ASA (false positives). The fixed masks and

accepted ASA masks together provide the ground truth for the whole

dataset. Finally, manual correction of rejected ASA masks allows for

calculation of the dice coefficient similarity metric. The schematic for

preparation of ground truth is shown in Fig. 1(a).

To minimize artifacts caused by rotation or elasticity, data aug-

mentation was applied to EDF images prior to cropping. EDF images

were reduced by cropping 20 pixels beyond the disector lines for

training and testing. Fig. 2 shows inclusion/exclusion lines of the dis-

ector frame on the manual annotation (Fig. 2(a)); an EDF image after

cropping 20 pixels around the disector frame (Fig. 2(a)); predicted

mask before post-processing (Fig. 2(c)); and cells contours after post-

processing overlaid on top of the manual annotation image (Fig. 2(d)).

5.2. Training and testing models

For training the deep learning model, EDF images and their corre-

sponding accepted ASA masks (i.e., the training set) were augmented to

increase the number of instances for the training set for a better per-

formance via a more general deep learning model. Data augmentations

used on this data are rotation augmentation, elastic deformation

(Simard et al., 2003), or combinations thereof, rotational augmentation

of 45° and 15°, or combined augmentation of elastic images using a

rotation of 45° and 15°. Augmented images and their corresponding

masks of size 400× 400 were used to train the Unet architecture with

the Adam optimizer algorithm implementation of Keras with Tensor-

flow backend (Chollet et al., 2015; Kinga and Adam, 2015; Abadi et al.,

2015). The Adam optimizer learning rate was set to 1e−4, while ex-

ponential decay rates for the moment estimates hyperparameters β1

and β2 were set to 0.9 and 0.999 respectively (Kinga and Adam, 2015).

Training the deep learning model is the process of using the training set

for learning discriminant and powerful features from the input images

using the deep learning (i.e., Unet) which yields a trained model that

can segment cells on an unseen test set. For validation purposes, we

have used leave-one-out cross-validation on the mouse level, which

means training was performed on images of eight mice and testing on

Fig. 1. (a) Training set preparation, where every stack image

is preprocessed for conversion to grayscale, then EDF image

creates an in-focus image from a stack of images, then ASA

creates a binary mask. Human verification is applied to accept

correct ASA masks. (b) Ground truth preparation, where every

image in a stack is preprocessed for conversion to grayscale,

then an in-focus EDF image is created from a stack of pre-

processed images, then ASA creates a binary mask. Human

verification is applied to accept or reject ASA masks based on

manual annotation. If an ASA mask is rejected, then a human

fixes the mask manually and the result is concatenated with

ASA accepted masks to form a ground truth for the whole

dataset.
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images of the ninth mouse alternatively. This approach ensures that

training set and testing set images do not overlap and avoids pre-

selection of a separate test set that could be biased. Thus, a trained

model is the result of training a deep learning model that can be used

for testing a separate mouse. The training stage is illustrated in

Fig. 3(a).

For testing a deep learning model, stacks of images were converted

to grayscale, followed by creating an in-focus image using the EDF al-

gorithm. The EDF images of the test mouse were provided to the trained

model to predict segmentation masks. Testing the deep learning model

is illustrated in Fig. 3(b).

5.3. Post-processing and counting

Each deep learning model created segmentation masks of the test set

that were subsequently post-processed for three goals: to remove small

amounts of segmented stain artifacts on an image background; to re-

move cells touching the exclusion line (i.e., left and lower disector box

lines); and to separate touching cells. Removing the small amount of

noise was done by thresholding the predicted mask based on the area in

pixels. For instance, using an area of 250 pixels (i.e., 3.86 μm2) as a

threshold removes small segmented stain artifacts on the background of

EDF images. This threshold was selected by surveying our dataset to

find the small stain artifacts to be excluded. Touching cells were

Fig. 2. Examples from our dataset where (a) is the manual annotation (counted neurons are denoted by blue marks), (b) is the EDF image, (c) predicted mask (before

post-processing), (d) predicted cells contours (after post-processing) overlaid on top of manual annotation image. The contours in (d) shows the counted cells by the

proposed method, where all cells marked in (a) were counted correctly and there is no overcount.

Fig. 3. (a) Training deep learning (i.e., Unet). (b) Testing the trained model followed by post-processing and counting cells.
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separated using the watershed algorithm, and a minimum cell size was

imposed to avoid over-segmentation (Meyer, 1994). It should be noted

that there was no maximum range size of cells to be counted. Therefore,

the proposed method can segment and count hypertrophy and atrophy

cells as long as the size of an atrophy cell is above the minimum area

threshold (250 pixels). After post-processing, a counting step was ap-

plied using the unbiased optical fractionator method. This approach

uses the disector principle (Sterio, 1984) to avoid overcounts by (1)

identifying cells when their top-most point moves from out-of-focus to

in-focus within the disector stack; and (2) adjusting the final count for

edge effects by applying Gundersens exclusion/inclusion planes in XYZ

Gundersen (1977). After imposing unbiased counting rules in the post-

processing step and obtaining total count of cells (∑Q−), Eq. (1) (Op-

tical Fractionator formula) was applied to estimate the total number of

cells in the neocortex, where (∑Q−) is the summation of counted cells

based on the unbiased stereology approach in a given sample (i.e.,

summation across all sections of a sample to reflect the number of

counted cells in a known fraction of the reference space) using manual

counting; ASA or deep learning, f1 is the reciprocal of the section

sampling fraction; f2 is the reciprocal of the area sampling fraction; and

f3 is the reciprocal of the thickness sampling fraction (West et al.,

1991).

∑= −Q f f fTotal ( )* 1* 2* 3NeuN (1)

6. Experiments and results

To fairly evaluate a trained deep learning model, mouse images

cannot be in common between training and testing. Therefore, training

was performed in eight mice and testing was done on the ninth mouse.

This procedure was performed alternatively nine times using cross-va-

lidation on the mouse level where a different mouse is left out for

testing each time. Eq. (2) was used for calculating the error rate for a

single mouse,

=
−y y

y
Error_r ate

| |
*100

true pred

true (2)

where ytrue is the total number of cells in ground truth (manual anno-

tation), and ypred is the total number of cells in predicted masks. The

Dice coefficient that measures spatial overlap of a predicted mask and

ground truth mask (Zou et al., 2004) was calculated by Eq. (3), where A

is the ground truth mask and B is the predicted mask. This section

discusses the experiment when training on EDF images and their cor-

responding ASA masks which match the manual annotation (i.e., ac-

cepted images by a human) as shown in Fig. 3(a). Overall error rate and

Dice coefficient results are the average over the results of nine different

models. The total number of accepted ASA masks was 167 masks,

whereas, the total number of ASA rejected (then fixed) masks was 799

masks. Table 2 shows results when training on original images with no

augmentation, in addition to five different augmentation approaches.

When no augmentation was applied, the average error rate (i.e., the

average error rate over nine mice, when testing on each mouse

individually) was 4.39% with Dice coefficient 0.786. Another experi-

ment tested the effects of elastic augmentation alone on the perfor-

mance of the CNN model as described in Simard et al. (2003). The

results showed improved CNN performance after elastic augmentation

with an average error rate 2.44% and Dice coefficient 0.796. Training

using rotation (45°) augmented images showed an average error rate

3.44% and a Dice coefficient of 0.801. The lowest average error rate

was 1.85%, with Dice coefficient 0.804 when training with rotation

(15°) augmentation of elastic augmented images [Table 2, Eq. (3)].

=
⋂

+
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A comparison between manual annotation, ASA, and deep learning

cell counts per mouse is shown in Fig. 4(a), whereas Fig. 4(b) shows a

comparison between ASA error rate and deep learning error rate across

all mice on our dataset. The average error rate over nine mice for ASA

and the deep learning model (11.9% versus less than 1.85%, respec-

tively) are shown in Fig. 4(c). The error rate of the deep learning

method proposed here was statistically significant (lower) at p < 0.05

using a two-tailed t-test, where the t-value is 5.29, and the p-value is

0.000073 compared to the ASA error rate. Thus, the proposed method

was able to precisely segment and count neurons compared to ASA

segmentation. Fig. 5 shows three examples of ASA versus our proposed

segmentation method using the Unet deep learning architecture, where

predicted masks contours are overlaid on top of manual annotation

images.

7. Discussion

We have previously proposed an automatic stereology segmenta-

tion-based counting method (i.e., ASA) (Mouton et al., 2017) that

achieved reasonable results; however, it requires manipulating specific

parameters to get the best performance. In our proposed deep learning

method, a significant improvement in terms of enhanced segmentation

and substantial reduction in error rate was achieved. Both ASA and the

Deep Learning involve data acquisition using an X–Y–Z motorized stage

to collect disector stacks of images at a systematic randomly sampled

(SRS) locations in routine Neu-N immunostained tissue. Here we pro-

pose a novel approach using EDF images of the disector stacks and ASA

masks matching the manual annotation to train deep learning models.

After training and testing the deep learning model, the post-processing

step was applied where unbiased counting rules were imposed and

separation of touching cells was done. Finally, the optical fractionator

was used to estimate the total number of cells in an anatomically de-

fined reference space (mouse neocortex).

The current study found that deep learning achieved more accurate

counting results than ASA counts [Table 2]. The lowest average error

rate was about 1.85% using rotation 15° of elastic augmented images as

compared to the ASA error rate of 11.94%, difference in error rates of

85%. Compared to manual stereology, both the deep learning method

proposed here for automatic stereology and our previous ASA approach

(Mouton et al., 2017) avoid the subjectivity, recognition bias, variable

training, and fatigue of manual data collectors. Reproducibility was

improved by the use of an objective method (i.e., deep neural network)

to segment and count target cells.

Lack of a large number of properly annotated images remain an

obstacle to many researchers, especially in the medical field, because

manual image annotation is labor-intensive, tedious, and error-prone

work. Another issue is the lack of expert labor to annotate a large

number of images for building a more robust model. Therefore, utilizing

a pre-existing algorithm (i.e., ASA) to generate masks for EDF images

overcomes the significant challenges of creating masks manually. As

shown here, user intervention was not eliminated but reduced, since

ASA masks need a verification step to accept masks that match manual

annotation.

We investigated a number of different data augmentations methods

Table 2

Results of our experiments when testing on each mouse independently (i.e.,

leave a mouse out for each mouse in our dataset).

Augmentation task Average error

rate (%)

Standard

deviation

Average Dice

coefficient

No augmentation 4.39 2.69 0.786

Elastic 2.44 1.50 0.796

Rotation 45° 3.44 4.03 0.801

Rotation 15° 3.89 2.61 0.802

Rotation 45° of elastic 3.68 2.72 0.804

Rotation 15° of elastic 1.85 2.07 0.804
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to increase the number of training images, thereby facilitating learning

of the segmentation by the CNN model. The small number of training

images was a result of (1) removing images with data acquisition issues

such as microscopy lighting level and tissue fold artifacts which re-

present about 1.5% images of the total number of images on our da-

taset; and (2) ASA masks based rejection of images/masks that do not

match manual annotation.

The semi-automatic and fully automatic unbiased stereology cell

counting can be achieved on brain cells (NeuN-immunostained neu-

rons) from EDF images created from disector stacks. The EDF images

have the potential for large cells to block counts of smaller cells located

distal to the observation plane (masking). Thicker sections are only an

issue when they involve more densely packed cells, but not for thicker

sections without high cell packing (e.g., Golgi stained sections). As for

human cell counters using manual stereology, highly dense cell packing

would introduce segmentation error for our automatic approach.

Therefore, the effects of masking on cell counts are expected to vary as

a direct function of the cell packing density. Fortunately, high-density

cell-packed regions are relatively rare in histology images. The present

work shows that any systematic error from masking, for neuron counts

in the mouse neocortex, is negligible for all practical purposes, as evi-

denced by the demonstration of less than 2% error using a CNN model

trained from EDF images of accepted ASA masks [Table 3]. Our ongoing

work is assessing techniques to minimize and eliminate potential op-

tical artifacts from masking and other sources relative to gold standard

counts [Table 3], including both semi-automatic and fully automatic

approaches [Table 3].

A predesign diagram for the stereology system that includes out-

lining an ROI, capturing stacks of images, auto-generating ASA and

deep learning segmentation, cell count, and exporting results is shown

in Fig. 6.

8. Conclusions

We propose a novel AI-based method that uses deep learning and

unbiased stereology counting criteria for automatically segmenting and

estimating the total number of immunostained cells in defined ROIs.

The lowest error rate of 1.85% was achieved using a deep learning

model trained on elastic and rotated EDF images compared to an error

rate of 11.94% for ASA alone. Another novel contribution in this work

is the demonstration that image augmentation can be a critical tool for

improving CNN performance after the automatic generation of ground

truth using the ASA. Thus, automatic generation of ground truth fol-

lowed by a verification process with automatic segmentation algo-

rithms such as ASA can be used to generate labels (i.e., segmentation

masks), thereby reducing the considerable time and effort for manual

data annotation to create masks.

Although these studies focused on counting immunostained brain

cells (neurons) on tissue sections, the approach can be applied to ste-

reology studies of stained cells from any tissue. This study opens a new

frontier for deep learning in combination with unbiased stereology re-

search that could accelerate a wide range of life science research and

drug discoveries. Our future work includes segmentation based un-

biased counts of cells using more precise region-based neural networks

Fig. 4. (a) Comparison between manual, ASA, and deep learning cell count results per mouse, (b) a comparison between ASA and deep learning error rate per mouse,

and (c) shows error rate mean and standard error of the mean of ASA and deep learning.
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such as Mask-RCNN (He et al., 2017), and expanding this approach to

other stereology parameters, including length and local size (mean cell

volume) estimators, and a range of semi-automatic and fully automatic

stereology approaches.
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Fig. 5. Comparison between ASA (a–c) and deep learning (d–f) cell segmentation, where cell mask contours are overlaid on top of manual annotation image, and a

line of 5 μm is shown for scale.

Table 3

Options for manual, semi-automatic and fully automatic counts by optical fractionator to estimate total cell number. A single asterisk (*) denotes the gold standard

methods, and double asterisks (**) denote the future and our ongoing work not reported in this paper.

Method Counting approach Type

1) Manual stereology* User clicks while thin focal-plane optical scanning in z-axis Fully manual

2) Disector Stacks* User clicks while scrolling through each disector stack Semi-automatic

3) EDF counts User clicks on EDF images created from disector stacks Semi-automatic

4) ASA – EDF images (Mouton et al., 2017) ASA counts cells on EDF images Fully automatic

5) ASA – EDF with edits User edits ASA counts on EDF images Semi-automatic

6) CNN – EDF images Automatic counts from CNN model applied to EDF images Fully automatic

7) Iterative deep learning** CNN model retuning after user edits of initial CNN results Semi-automatic

8) 3D deep learning** CNN model trained on each z-plane of disector stacks Fully automatic
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