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In recent decades stereology-based studies have played a significant role in understanding brain aging and
developing novel drug discovery strategies for treatment of neurological disease and mental illness. A major
obstacle to further progress in a wide range of neuroscience sub-disciplines remains the lack of high-throughput
technology for stereology analyses. Though founded on methodologically unbiased principles, commercially
available stereology systems still rely on well-trained humans to manually count hundreds of cells within each
region of interest (ROI). Even for a simple study with 10 controls and 10 treated animals, cell counts typically
require over a month of tedious labor and high costs. Furthermore, these studies are prone to errors and poor
reproducibility due to human factors such as subjectivity, variable training, recognition bias, and fatigue. Here
we propose a deep neural network-stereology combination to automatically segment and estimate the total
number of immunostained neurons on tissue sections. Our three-step approach consists of (1) creating extended-
depth-of-field (EDF) images from z-stacks of images (disector stacks); (2) applying an adaptive segmentation
algorithm (ASA) to label stained cells in the EDF images (i.e., create masks) for training a convolutional neural
network (CNN); and (3) use the trained CNN model to automatically segment and count the total number of cells
in test disector stacks using the optical fractionator method. The automated stereology approach shows less than
2% error and over 5X greater efficiency compared to counts by a trained human, without the subjectivity,
tedium, and poor precision associated with conventional stereology.

1. Introduction called Adaptive Segmentation Algorithm (ASA) for quantifying the total

numbers of NeuN immunostained neurons from extended depth of field

Unbiased stereology is a set of theoretical and practical methods
that allow for theoretically accurate (unbiased) estimation of stereology
parameters for stained cells by carefully avoiding all known sources of
methodological bias (West, 2012)(Mouton, 2011). Examples of
common stereology parameters include counts of total cell numbers and
cell density; region and mean cell volumes; surface area and surface
density; and total length and length density (Burke et al., 2009;
Mouton, 2011). Though based on theoretically unbiased principles, a
current weakness of state-of-the-art stereology systems is their depen-
dence on human data collectors. As a result, current stereology systems
are labor intensive, costly and prone to counting errors due to variable
user training, subjectivity and fatigue.

We have previously reported an automatic stereology approach
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(EDF) images (Mouton et al., 2017; Bradley and Bamford, 2004). As
shown in Mouton et al. (2017), the ASA approach allows for compar-
able accuracy as trained human counters. However, a limitation of the
ASA is the domain specificity, since, modifications of ASA parameters
are needed to account for variations in cell size, staining intensity, and
background illumination. With the goal of more robust performance
across different staining domains, here we expand on that approach to
include an artificial intelligence (AI) technique known as deep learning
(LeCun et al., 2015).

Deep neural networks have lately generated considerable interest in
the medical imaging field where they have shown significantly better
performance over conventional engineered images analysis algorithms
(Lee et al., 2017). Although the idea of neural networks has been
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around for a long time, the emerging revolution of deep neural net-
works was partially due to the development of convolution neural
network (CNN); optimization algorithms (Hinton and Salakhutdinov,
2006; Nair and Hinton, 2010; Srivastava et al., 2014; Ioffe and Szegedy,
2015); highly efficient computation resources; and the availability of
large datasets (big data). Deep learning refers to the representation
learning methods that start from raw data and have multiple hidden
layers (neither input nor output) (LeCun et al., 2010). For instance,
images are the raw data for a neural network to learn a certain task (i.e.,
segmentation), whereas hidden layers contribute to features learning
process. In the medical field, large sets of labeled data are mostly hard
to find, which remains an obstacle to deep learning based applications.
Data augmentation such as the rigid and non-rigid transformation of
images can be used to address this problem. In this paper, a deep
learning architecture for medical image segmentation (Unet) was used
to create segmentation masks of EDF images (Ronneberger et al., 2015).
In Section 4, we explain Unet in further detail.

In this paper, we propose a pipeline method that includes state-of-
the-art deep learning architecture for segmentation and unbiased ster-
ology of histology images with improved accuracy, precision and
throughput efficiency as compared to current manual cell counting
stereology systems. A novel feature of our approach is that verified
segmentation masks from the ASA are used as ground truth for training
a deep neural network to make automatic counts of stained cells
(neurons) on test images. This innovation effectively reduces the human
effort on data labeling by using an unsupervised algorithm ASA to
create masks for EDF images. This patent-pending approach [FAST
(fully automatic stereology technology)] includes several automatic
and semi-automatic option for verification of results by trained experts.

2. Dataset

The use of animals in this study was approved by the USF
Institutional Animal Care and Use Committee according to NIH guide-
lines as described by Mouton et al. (2017). The dataset used in this
experiment was sampled in a systematic-random manner from the
neocortex of Tg4510 mouse brains. Among the phenotypic changes in
these mice are progressive neuron degeneration and activation of
neuroglia cells in the neocortex and other brain regions (Mouton et al.,
2017; Santacruz et al., 2005; Spires et al., 2006). Neu-N immunostained
neurons were segmented and counted in disector volumes according to
current stereology principles (Mouton et al., 2017; West et al., 1991),
and the total neuron number was calculated using the optical fractio-
nator feature in the Stereologer system (SRC Biosciences, Tampa, FL)
(Mouton et al., 2017). Briefly, after manual counts at systematic-
random x-y locations through the neocortex of nine mouse brains,
disector stacks (10 z-axis images 1 pm apart) were captured at the same
locations using high magnification objective (100x oil, 1.4 NA) for
brightfield microscopy. Table 1 shows the number of sections and
number of z-axis stacks (disector stacks) obtained and converted into an
EDF images, where the interval for stacks is 1.0 um and the section

Table 1
Datasets mouse ID, number of sections per mouse and total number of stacks
per mouse.

Mouse ID Number of sections Number of stacks
02 8 113

03 6 121

14 8 920

17 7 91

29 8 135

21 7 102

24 8 103

67 8 104

09 6 107
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sampling fraction is 1/6th. A total of 966 EDF images with their cor-
responding ASA masks were used for automatic counts of Neu-N im-
munostained neurons as described in the following section.

3. Adaptive Segmentation Algorithm (ASA)

As detailed in Mouton et al. (2017), the ASA consists of multiple
steps optimized to segment neocortical NeuN-immunostained neurons.
The ASA includes a Gaussian mixture (GMM), morphological opera-
tions, Voronoi diagrams, and watershed segmentation. Our ASA starts
with EDF images to segment NeuN immunostained cells within an ROI
using a GMM, where a GMM uses pixel intensity for the expectation
maximization algorithm (EM) to estimate its parameters followed by
thresholding and morphological operations to get separate cells. A
processed EDF image using opening then closing by reconstruction was
used in the watershed foreground and background markers extraction.
These foreground and background markers used in applying watershed
segmentation were followed by segmentation approximation using a
Voronoi diagrams algorithm, and finally a smoothing process to en-
hance cell boundaries using the Savitzky-Golay filter (Savitzky and
Golay, 1964).

4. Deep learning

Deep learning is a representation learning technique that can learn
to perform specific tasks (i.e., detection, classification, and segmenta-
tion) from images, sound, text, or numbers (LeCun et al., 2015). This
technique does not require handcrafting features, but instead learns
discriminant and other powerful features automatically (Litjens et al.,
2017). Initially, deep learning was inspired by the biological brain
functions such as communication and processing of tasks on biological
neurons (Goodfellow et al., 2016). An example of deep learning is the
common CNN, a learning algorithm that consists of one or more con-
volution layers that serves as the main building block of a CNN for
learning to recognize features of images. Although a version of CNN has
existed since 1980, computation power and data availability had been
an obstacle until recently (Rawat and Wang, 2017).

In this paper, we use a CNN based architecture for medical image
segmentation known as Unet (Ronneberger et al., 2015). This neural
network is a simple, fast, and end-to-end fully convolutional network
(FCN) that contains contraction and expansion paths to capture context
and learn precise localization. Unet has 19 convolution layers where a
max pool layer follows every two convolution layers. Moreover, it has
skipping connections between the encoding and decoding path to add
precise localization of high resolution to segmented objects
(Ronneberger et al., 2015). Each convolution layer in encoding and
decoding paths are 2D convolution operations with a filter size of 3 x 3
followed by rectified linear unit (ReLU) activation function. A max-
pooling layer of size 2 X 2 follows each of the two convolution layers in
the encoding path. In contrast, an up-sampling layer of size 2 x 2 fol-
lows each of the two convolution layers in the decoding path. The last
layer is a 2D convolution layer of filter size 1 x 1 followed by a sigmoid
activation function.

5. Methods

This section outlines steps in our proposed deep learning-based
unbiased stereology approach to segment and count cells in im-
munostained tissue sections. Our approach starts with data preparation
and verification, then training the deep learning model, after that a
post-processing step of predicted masks, and finally counting cells step
to calculate the total number of cells using the unbiased optical frac-
tionator method.
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Fig. 1. (a) Training set preparation, where every stack image
is preprocessed for conversion to grayscale, then EDF image
creates an in-focus image from a stack of images, then ASA

Training set

EDF
image

y Stack stack

Pre-process | jmages

each image Create EDF

Apply ASA

Accepted

ASA accepted
masks and

creates a binary mask. Human verification is applied to accept

on a stack Images

Images
Database

ASA masks

EDF images

correct ASA masks. (b) Ground truth preparation, where every

image in a stack is preprocessed for conversion to grayscale,
then an in-focus EDF image is created from a stack of pre-
processed images, then ASA creates a binary mask. Human

EDF images

(a) Training set preparation steps

verification is applied to accept or reject ASA masks based on
manual annotation. If an ASA mask is rejected, then a human
fixes the mask manually and the result is concatenated with
ASA accepted masks to form a ground truth for the whole
dataset.

Processed

[ images [ proprocess | o2k imagel )
images mask

cach image (0o"| Create EOF Apply ASA !

on a stack :

Human verification
]

. Rejected|
Reject | osa rejected | masks |
masks 1§
1 [

F i
(P
[T N

(b) Ground truth preparation steps

5.1. Image preparation and mask verification

Three-dimensional stacks of Z-axis images (disector stacks) con-
taining NeuN-immunostained neurons were captured from 6 to 8 mouse
brain sections sampled in a systematic-random manner through the
neocortex of nine mouse brains as shown in Table 1. This data collec-
tion was done using a commercial stereology system (Stereologer, SRC
Biosciences, Tampa, FL) consisting of Leica DM2500 bright-field mi-
croscope equipped with a motorized X-Y-Z stage, and high-resolution
digital camera. Data preparation and verification involved two main
steps: training set preparation and ground truth preparation as shown
in Fig. 1.

Training set preparation starts with preprocessing stacks of images
for converting images to grayscale followed by creating an extended-
depth-of-field (EDF) image (Fig. 1(a)). The EDF algorithm based on
discrete wavelet transformation that convert each disector stack into a
synthetic image in which all stained cells appear at their maximum
plane of focus (Bradley and Bamford, 2004). These in-focus cells are
“dropped” rather than projected onto a 2D plane. Stereology bias is
avoided by ensuring each cell in the disector stack has the same
probability (=1) of being counted inside a known volume (disector
volume). Bias from edge effects (Gundersen, 1977) is avoided through
the use of a unique plane (i.e., the most in-focus plane) to determine
whether the cell hits an exclusion plane. The ASA is applied to each EDF
image for segmentation, resulting in a binary mask of cells. We utilized
masks created by ASA rather than using manual annotation directly
since manual annotation has only counting marks and does not provide
an outline of the cell (i.e., mask) as shown in Fig. 2(a). After creating
the ASA mask, a human verification step is performed to verify the
agreement between the manual annotation and the ASA mask. If the
ASA mask matches the manual annotation except for the exclusion lines
(i.e., left and lower disector frame lines applied in a subsequent step),
then the human verifier accepts ASA mask. The accepted ASA masks
and their corresponding EDF images provided the training set. The steps
for training set preparation are illustrated in Fig. 1(a).

Ground truth preparation is similar to training set preparation in the
preprocessing step by creating EDF images and creating ASA masks (Fig
1 (a)). In a subsequent verification step an expert verifies the agreement
of ASA mask and manual annotation. If ASA masks match manual an-
notation except for the exclusion lines, then the ASA mask is accepted.
If the ASA mask does not match manual annotation, then the ASA mask
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is rejected. It should be noted that rejection does not eliminate those
rejected masks from our study; instead, the expert fixes the rejected
masks manually to create ground truth for test images. Expert-based
manual fixing of rejected masks creates a segmentation of cells missing
on the ASA masks (false negatives) and eliminates cells that were
wrongly segmented by the ASA (false positives). The fixed masks and
accepted ASA masks together provide the ground truth for the whole
dataset. Finally, manual correction of rejected ASA masks allows for
calculation of the dice coefficient similarity metric. The schematic for
preparation of ground truth is shown in Fig. 1(a).

To minimize artifacts caused by rotation or elasticity, data aug-
mentation was applied to EDF images prior to cropping. EDF images
were reduced by cropping 20 pixels beyond the disector lines for
training and testing. Fig. 2 shows inclusion/exclusion lines of the dis-
ector frame on the manual annotation (Fig. 2(a)); an EDF image after
cropping 20 pixels around the disector frame (Fig. 2(a)); predicted
mask before post-processing (Fig. 2(c)); and cells contours after post-
processing overlaid on top of the manual annotation image (Fig. 2(d)).

5.2. Training and testing models

For training the deep learning model, EDF images and their corre-
sponding accepted ASA masks (i.e., the training set) were augmented to
increase the number of instances for the training set for a better per-
formance via a more general deep learning model. Data augmentations
used on this data are rotation augmentation, elastic deformation
(Simard et al., 2003), or combinations thereof, rotational augmentation
of 45° and 15°, or combined augmentation of elastic images using a
rotation of 45° and 15°. Augmented images and their corresponding
masks of size 400 x 400 were used to train the Unet architecture with
the Adam optimizer algorithm implementation of Keras with Tensor-
flow backend (Chollet et al., 2015; Kinga and Adam, 2015; Abadi et al.,
2015). The Adam optimizer learning rate was set to le”*, while ex-
ponential decay rates for the moment estimates hyperparameters 1
and 2 were set to 0.9 and 0.999 respectively (Kinga and Adam, 2015).
Training the deep learning model is the process of using the training set
for learning discriminant and powerful features from the input images
using the deep learning (i.e., Unet) which yields a trained model that
can segment cells on an unseen test set. For validation purposes, we
have used leave-one-out cross-validation on the mouse level, which
means training was performed on images of eight mice and testing on
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Fig. 2. Examples from our dataset where (a) is the manual annotation (counted neurons are denoted by blue marks), (b) is the EDF image, (c) predicted mask (before
post-processing), (d) predicted cells contours (after post-processing) overlaid on top of manual annotation image. The contours in (d) shows the counted cells by the
proposed method, where all cells marked in (a) were counted correctly and there is no overcount.
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Fig. 3. (a) Training deep learning (i.e., Unet). (b) Testing the trained model followed by post-processing and counting cells.

images of the ninth mouse alternatively. This approach ensures that
training set and testing set images do not overlap and avoids pre-
selection of a separate test set that could be biased. Thus, a trained
model is the result of training a deep learning model that can be used
for testing a separate mouse. The training stage is illustrated in
Fig. 3(a).

For testing a deep learning model, stacks of images were converted
to grayscale, followed by creating an in-focus image using the EDF al-
gorithm. The EDF images of the test mouse were provided to the trained
model to predict segmentation masks. Testing the deep learning model
is illustrated in Fig. 3(b).
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5.3. Post-processing and counting

Each deep learning model created segmentation masks of the test set
that were subsequently post-processed for three goals: to remove small
amounts of segmented stain artifacts on an image background; to re-
move cells touching the exclusion line (i.e., left and lower disector box
lines); and to separate touching cells. Removing the small amount of
noise was done by thresholding the predicted mask based on the area in
pixels. For instance, using an area of 250 pixels (i.e., 3.86 um?) as a
threshold removes small segmented stain artifacts on the background of
EDF images. This threshold was selected by surveying our dataset to
find the small stain artifacts to be excluded. Touching cells were
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separated using the watershed algorithm, and a minimum cell size was
imposed to avoid over-segmentation (Meyer, 1994). It should be noted
that there was no maximum range size of cells to be counted. Therefore,
the proposed method can segment and count hypertrophy and atrophy
cells as long as the size of an atrophy cell is above the minimum area
threshold (250 pixels). After post-processing, a counting step was ap-
plied using the unbiased optical fractionator method. This approach
uses the disector principle (Sterio, 1984) to avoid overcounts by (1)
identifying cells when their top-most point moves from out-of-focus to
in-focus within the disector stack; and (2) adjusting the final count for
edge effects by applying Gundersens exclusion/inclusion planes in XYZ
Gundersen (1977). After imposing unbiased counting rules in the post-
processing step and obtaining total count of cells (2Q ™), Eq. (1) (Op-
tical Fractionator formula) was applied to estimate the total number of
cells in the neocortex, where (2Q ™) is the summation of counted cells
based on the unbiased stereology approach in a given sample (i.e.,
summation across all sections of a sample to reflect the number of
counted cells in a known fraction of the reference space) using manual
counting; ASA or deep learning, f1 is the reciprocal of the section
sampling fraction; f2 is the reciprocal of the area sampling fraction; and
f3 is the reciprocal of the thickness sampling fraction (West et al.,
1991).

Totalyeuy = (), Q7)1 2*f3 m

6. Experiments and results

To fairly evaluate a trained deep learning model, mouse images
cannot be in common between training and testing. Therefore, training
was performed in eight mice and testing was done on the ninth mouse.
This procedure was performed alternatively nine times using cross-va-
lidation on the mouse level where a different mouse is left out for
testing each time. Eq. (2) was used for calculating the error rate for a
single mouse,

|ytrue - ypredl

Error_r ate = *100

2)
where y,. is the total number of cells in ground truth (manual anno-
tation), and y,q is the total number of cells in predicted masks. The
Dice coefficient that measures spatial overlap of a predicted mask and
ground truth mask (Zou et al., 2004) was calculated by Eq. (3), where A
is the ground truth mask and B is the predicted mask. This section
discusses the experiment when training on EDF images and their cor-
responding ASA masks which match the manual annotation (i.e., ac-
cepted images by a human) as shown in Fig. 3(a). Overall error rate and
Dice coefficient results are the average over the results of nine different
models. The total number of accepted ASA masks was 167 masks,
whereas, the total number of ASA rejected (then fixed) masks was 799
masks. Table 2 shows results when training on original images with no
augmentation, in addition to five different augmentation approaches.
When no augmentation was applied, the average error rate (i.e., the
average error rate over nine mice, when testing on each mouse

ytrue

Table 2
Results of our experiments when testing on each mouse independently (i.e.,
leave a mouse out for each mouse in our dataset).

Augmentation task Average error Standard Average Dice
rate (%) deviation coefficient
No augmentation 4.39 2.69 0.786
Elastic 2.44 1.50 0.796
Rotation 45° 3.44 4.03 0.801
Rotation 15° 3.89 2.61 0.802
Rotation 45° of elastic ~ 3.68 2.72 0.804
Rotation 15° of elastic  1.85 2.07 0.804
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individually) was 4.39% with Dice coefficient 0.786. Another experi-
ment tested the effects of elastic augmentation alone on the perfor-
mance of the CNN model as described in Simard et al. (2003). The
results showed improved CNN performance after elastic augmentation
with an average error rate 2.44% and Dice coefficient 0.796. Training
using rotation (45°) augmented images showed an average error rate
3.44% and a Dice coefficient of 0.801. The lowest average error rate
was 1.85%, with Dice coefficient 0.804 when training with rotation
(15°) augmentation of elastic augmented images [Table 2, Eq. (3)].

_ 2414038l

Dice = ————
|Al + IBI

3)

A comparison between manual annotation, ASA, and deep learning
cell counts per mouse is shown in Fig. 4(a), whereas Fig. 4(b) shows a
comparison between ASA error rate and deep learning error rate across
all mice on our dataset. The average error rate over nine mice for ASA
and the deep learning model (11.9% versus less than 1.85%, respec-
tively) are shown in Fig. 4(c). The error rate of the deep learning
method proposed here was statistically significant (lower) atp < 0.05
using a two-tailed t-test, where the t-value is 5.29, and the p-value is
0.000073 compared to the ASA error rate. Thus, the proposed method
was able to precisely segment and count neurons compared to ASA
segmentation. Fig. 5 shows three examples of ASA versus our proposed
segmentation method using the Unet deep learning architecture, where
predicted masks contours are overlaid on top of manual annotation
images.

7. Discussion

We have previously proposed an automatic stereology segmenta-
tion-based counting method (i.e., ASA) (Mouton et al., 2017) that
achieved reasonable results; however, it requires manipulating specific
parameters to get the best performance. In our proposed deep learning
method, a significant improvement in terms of enhanced segmentation
and substantial reduction in error rate was achieved. Both ASA and the
Deep Learning involve data acquisition using an X-Y-Z motorized stage
to collect disector stacks of images at a systematic randomly sampled
(SRS) locations in routine Neu-N immunostained tissue. Here we pro-
pose a novel approach using EDF images of the disector stacks and ASA
masks matching the manual annotation to train deep learning models.
After training and testing the deep learning model, the post-processing
step was applied where unbiased counting rules were imposed and
separation of touching cells was done. Finally, the optical fractionator
was used to estimate the total number of cells in an anatomically de-
fined reference space (mouse neocortex).

The current study found that deep learning achieved more accurate
counting results than ASA counts [Table 2]. The lowest average error
rate was about 1.85% using rotation 15° of elastic augmented images as
compared to the ASA error rate of 11.94%, difference in error rates of
85%. Compared to manual stereology, both the deep learning method
proposed here for automatic stereology and our previous ASA approach
(Mouton et al., 2017) avoid the subjectivity, recognition bias, variable
training, and fatigue of manual data collectors. Reproducibility was
improved by the use of an objective method (i.e., deep neural network)
to segment and count target cells.

Lack of a large number of properly annotated images remain an
obstacle to many researchers, especially in the medical field, because
manual image annotation is labor-intensive, tedious, and error-prone
work. Another issue is the lack of expert labor to annotate a large
number of images for building a more robust model. Therefore, utilizing
a pre-existing algorithm (i.e., ASA) to generate masks for EDF images
overcomes the significant challenges of creating masks manually. As
shown here, user intervention was not eliminated but reduced, since
ASA masks need a verification step to accept masks that match manual
annotation.

We investigated a number of different data augmentations methods
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Fig. 4. (a) Comparison between manual, ASA, and deep learning cell count results per mouse, (b) a comparison between ASA and deep learning error rate per mouse,
and (c) shows error rate mean and standard error of the mean of ASA and deep learning.

to increase the number of training images, thereby facilitating learning
of the segmentation by the CNN model. The small number of training
images was a result of (1) removing images with data acquisition issues
such as microscopy lighting level and tissue fold artifacts which re-
present about 1.5% images of the total number of images on our da-
taset; and (2) ASA masks based rejection of images/masks that do not
match manual annotation.

The semi-automatic and fully automatic unbiased stereology cell
counting can be achieved on brain cells (NeuN-immunostained neu-
rons) from EDF images created from disector stacks. The EDF images
have the potential for large cells to block counts of smaller cells located
distal to the observation plane (masking). Thicker sections are only an
issue when they involve more densely packed cells, but not for thicker
sections without high cell packing (e.g., Golgi stained sections). As for
human cell counters using manual stereology, highly dense cell packing
would introduce segmentation error for our automatic approach.
Therefore, the effects of masking on cell counts are expected to vary as
a direct function of the cell packing density. Fortunately, high-density
cell-packed regions are relatively rare in histology images. The present
work shows that any systematic error from masking, for neuron counts
in the mouse neocortex, is negligible for all practical purposes, as evi-
denced by the demonstration of less than 2% error using a CNN model
trained from EDF images of accepted ASA masks [Table 3]. Our ongoing
work is assessing techniques to minimize and eliminate potential op-
tical artifacts from masking and other sources relative to gold standard
counts [Table 3], including both semi-automatic and fully automatic
approaches [Table 3].
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A predesign diagram for the stereology system that includes out-
lining an ROI, capturing stacks of images, auto-generating ASA and
deep learning segmentation, cell count, and exporting results is shown
in Fig. 6.

8. Conclusions

We propose a novel Al-based method that uses deep learning and
unbiased stereology counting criteria for automatically segmenting and
estimating the total number of immunostained cells in defined ROIs.
The lowest error rate of 1.85% was achieved using a deep learning
model trained on elastic and rotated EDF images compared to an error
rate of 11.94% for ASA alone. Another novel contribution in this work
is the demonstration that image augmentation can be a critical tool for
improving CNN performance after the automatic generation of ground
truth using the ASA. Thus, automatic generation of ground truth fol-
lowed by a verification process with automatic segmentation algo-
rithms such as ASA can be used to generate labels (i.e., segmentation
masks), thereby reducing the considerable time and effort for manual
data annotation to create masks.

Although these studies focused on counting immunostained brain
cells (neurons) on tissue sections, the approach can be applied to ste-
reology studies of stained cells from any tissue. This study opens a new
frontier for deep learning in combination with unbiased stereology re-
search that could accelerate a wide range of life science research and
drug discoveries. Our future work includes segmentation based un-
biased counts of cells using more precise region-based neural networks
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(d)

()

Fig. 5. Comparison between ASA (a—c) and deep learning (d-f) cell segmentation, where cell mask contours are overlaid on top of manual annotation image, and a

line of 5um is shown for scale.

such as Mask-RCNN (He et al., 2017), and expanding this approach to
other stereology parameters, including length and local size (mean cell
volume) estimators, and a range of semi-automatic and fully automatic
stereology approaches.
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Options for manual, semi-automatic and fully automatic counts by optical fractionator to estimate total cell number. A single asterisk (*) denotes the gold standard
methods, and double asterisks (**) denote the future and our ongoing work not reported in this paper.

Method

Counting approach Type

1) Manual stereology*

2) Disector Stacks*

3) EDF counts

4) ASA — EDF images (Mouton et al., 2017)
5) ASA — EDF with edits

6) CNN — EDF images

7) Iterative deep learning**

8) 3D deep learning**

User clicks while thin focal-plane optical scanning in z-axis
User clicks while scrolling through each disector stack
User clicks on EDF images created from disector stacks
ASA counts cells on EDF images

User edits ASA counts on EDF images

Automatic counts from CNN model applied to EDF images
CNN model retuning after user edits of initial CNN results
CNN model trained on each z-plane of disector stacks

Fully manual

Semi-automatic
Semi-automatic
Fully automatic
Semi-automatic
Fully automatic
Semi-automatic
Fully automatic
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Fig. 6. Stereology system design that include outline RO, auto capture stacks, auto count using deep learning, and export results.
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