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Abstract Physical insights into processes governing temporal organization and evolution of cloud fields
are of great importance for climate research. Here using large eddy simulations with a bin microphysics
scheme, we show that warm convective cloud fields exhibit oscillations with two distinct periods (~10 and
~90 min, for the case studied here). The shorter period dominates the nonprecipitating phase, and the longer
period is related to the precipitating phase. We show that rain processes affect the domain’s
thermodynamics, hence forcing the field into a low-frequency recharge-discharge cycle of developing
cloudiness followed by precipitation-driven depletion. The end result of precipitation is stabilization of the
lower atmosphere by warming of the cloudy layer (due to latent heat release) and cooling of the subcloud
layer (by rain evaporation, creating cold pools). As the thermodynamic instability weakens, so does the
cloudiness, and the rain ceases. During the nonprecipitating phase of the cycle, surface fluxes destabilize the
boundary layer until the next precipitation cycle. Under conditions that do not allow development of
precipitation (e.g., high aerosol loading), high-frequency oscillations dominate the cloud field. Clouds
penetrating the stable inversion layer trigger gravity waves with a typical period of ~10 min. In return, the
gravity waves modulate the clouds in the field by modifying the vertical velocity, temperature, and humidity
fields. Subsequently, as the polluted nonprecipitating simulations evolve, the thermodynamic instability
increases and the cloudy layer deepens until precipitation forms, shifting the oscillations from high to low
frequency. The organization of cold pools and the spatial scale related to these oscillations are explored.

Plain Language Summary Large eddy simulations with bin microphysics are used to study spatial
and temporal organization in shallow convective cloud fields. It is shown that warm convective cloud
fields exhibit oscillations with two distinct periods of ~10 and ~90 min. The low frequency is driven by
recharge-discharge cycles of thermodynamic instability, while the high frequency is driven by gravity waves.

1. Introduction

Warm convective clouds are ubiquitous over the oceans (Norris, 1998) and play an important role in the
boundary layer's energy and moisture budgets. Moreover, these clouds are responsible for the largest uncer-
tainty in tropical cloud feedback in climate models (Bony & Dufresne, 2005; Webb et al., 2006), and their prop-
erties often cannot be obtained from space-based observations due to resolution limitations (Platnick et al,,
2003). Hence, understanding the processes controlling their properties is of great importance.

Both the internal dynamics of warm cloud fields (referred to as self-organization) and external forcing factors
(such as sharp changes in the surface properties) tend to organize the clouds into detectable patterns. Trade
cumulus clouds exhibit a range of organization levels from fields that appear to be almost randomly distrib-
uted to strict patterns such as cloud streets, clusters, or mesoscale arcs (Malkus & Riehl, 1964; Nair et al., 1998;
Seifert & Heus, 2013). Such organization was recently suggested to play a role in low-cloud feedback to global
warming (Vogel et al,, 2016) because of its effect on clouds’ properties and on the clouds’ effect on the
thermodynamic condition.

Organization can be determined as a deviation from randomness in the spatial and temporal domains. It can
manifest as emerging spatial patterns (see examples in Figure 1) and as temporal oscillations in key cloud
properties (such as total mass, total rain, and cloud cover). Several self-organization mechanisms have been
previously proposed for shallow cloud fields related to gravity waves and precipitation.

Gravity waves (a wave disturbance in which buoyancy acts as a restoring force on parcels displaced from
hydrostatic equilibrium, Nappo, 2013) can be generated by clouds that penetrate a stable atmospheric
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Figure 1. Examples of organized warm cloud fields. (a) Gravity waves that generate warm clouds. This satellite image was
taken by MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (Platnick et al,, 2003) on 12 November 2004, and it
covers the Arabian Sea (20.2°-25.4°N and 58.1°-65.2°W). (b) Mesoscale cloud arcs. This satellite image was taken by
MODIS Terra on 11 March 2002, and it covers the Pacific Ocean near Marshall Islands (10.1°-12.5°N, 198.5°-203.3°W).

layer and produce perturbations in it. This process modulates the formation of the next generation of clouds
by changing the updraft, temperature, and humidity fields in parts of the atmospheric profile, which generate
additional gravity waves, and so on (Huang, 1990). Areas with negative air vertical velocity (due to the gravity
waves) slightly inhibit cloud development, while areas with positive vertical velocity encourage it. Hence, it
has been proposed as a cloud self-organization mechanism (Atkinson & Zhang, 1996; Clark et al., 1986;
Huang, 1990).

Changes in rain properties are a key factor in facilitating high levels of organization of warm convective cloud
fields (Heiblum et al,, 2016; Seifert & Heus, 2013; Seigel, 2014; Xue et al., 2008). The link between rain and
organization relates to rain evaporation below the cloud base that generates cold pools (Zuidema et al,,
2012) near the surface (Heiblum et al., 2016; Seifert & Heus, 2013). The negatively buoyant cold pools affect
the spatial organization of the clouds by reducing the likelihood of convective thermals originating beneath
the clouds from reaching cloud base level and promoting cloud generation at their boundaries (Heiblum
et al, 2016; Seifert & Heus, 2013; Seigel, 2014).

Temporal oscillations have been reported for marine stratocumulus precipitating clouds (Feingold et al,,
2010; Koren et al,, 2017; Koren & Feingold, 2011). Evaporative cooling of rain below the cloud base promotes
downdrafts that reach the surface, diverge, and collide with the outflows of neighboring precipitating cells.
The convergence due to the collision of outflows near the surface generates updrafts and new cloud forma-
tion (Feingold & Koren, 2013; Koren & Feingold, 2013), thus generating both spatial organization and
temporal oscillations.
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Temporal oscillations have been also reported for deep convective clouds (i.e. Yano & Plant, 2012). In this
case, cycles of recharge-discharge of thermodynamic instability were identified (Bladé & Hartmann, 1993).
Those cycles were explained as follow: once sufficient convective potential energy accumulates in the atmo-
sphere the convection begins, hereafter it reduces (consumes) the instability, until the convection stops. Next
the instability builds up again until launching another cycle (Yano & Plant, 2012). These oscillations were sug-
gested to play a key role in Madden-Julian oscillation (Benedict & Randall, 2007; Thayer-Calder &
Randall, 2009).

Aerosols acting as cloud condensation nuclei have been shown to influence warm convective clouds’ pro-
cesses, including rain formation, and hence to affect all of the abovementioned organization mechanisms
(Dagan et al, 20153, 2015b; Dey et al, 2011; Jiang et al, 2006; Koren et al, 2014; Rosenfeld, 1999;
Rosenfeld et al, 2013; Savane et al, 2015; Small et al,, 2009; Xue & Feingold, 2006; Yuan et al., 2011).
Elevated aerosol loading has been shown to fully suppress rain formation in marine stratocumulus clouds,
conferring a closed cell structure (Goren & Rosenfeld, 2012; Rosenfeld et al.,, 2006) for which no oscillations
are observed (Feingold & Koren, 2013; Koren & Feingold, 2011). In addition, aerosol concentration has been
shown to affect the clouds’ impact on their environment (Dagan et al.,, 2016), that is, shallow convective
clouds developing in a polluted environment act to increase thermodynamic instability with time, whereas
clean clouds consume it.

Here we explore the self-organization mechanisms of warm marine cumulus clouds under a wide range of
aerosol conditions, using large eddy simulations (LES) with bin microphysics. Understanding such mechan-
isms of organization is likely to yield a better understanding of both cloud-aerosol interactions, which have
been shown to be mediated by cloud organization (Seifert et al., 2015), and low-cloud feedback, which has
been shown to be sensitive to cloud organization due to the latter’s effect on the cloud properties (Vogel
etal, 2016).

2. Methodology

The BOMEX (Barbados Oceanographic and Meteorological Experiment) case study of trade cumulus clouds
(Holland & Rasmusson, 1973; Siebesma et al., 2003) is simulated by the System for Atmospheric Modeling,
nonhydrostatic, anelastic LES model, version 6.10.3 (Khairoutdinov & Randall, 2003). The BOMEX case study
is based on observations made near Barbados in June 1969. The simulations are initialized using the setup
specified in Siebesma et al. (2003), which includes large-scale forcing (see details in Dagan et al., 2016) and
surface fluxes that are prescribed in all simulations. The horizontal resolution is set to 100 m and the vertical
resolution to 40 m. We use two different domain sizes in the simulations: a small domain of
12.8 x 12.8 x 4.0 km® and a large domain of 51.2 X 51.2 x 4.0 km? (unless otherwise noted, the small domain
results are presented). The time step is 1 s, and the simulation periods are 8, 16, or 32 hr depending on the
specific simulation, The first 2 hr of all simulations are excluded from the statistical analysis (considered as
spin-up time).

We use a bin microphysics scheme that solves warm microphysical processes, including droplet nucleation,
diffusional growth, collision coalescence, sedimentation, and breakup (Khain & Pokrovsky, 2004). Six different
aerosol-loading conditions are simulated, from extremely pristine to polluted (total concentrations of: 5, 50,
100, 500, 2,000, and 5,000/cm? near ground level). We use a marine aerosol size distribution (see details in
Jaenicke, 1988; Altaratz et al., 2008) and a scaler to determine the initial integrated concentration. This
approach reduces the results’ sensitivity to the shape of the aerosol size distribution and focuses on examin-
ing the effect of the aerosol number concentration. The aerosol amount is initialized with a constant mixing
ratio with height, and it is assumed to be composed of ammonium sulfate. Activation of the aerosols is based
on the Kohler theory (the scheme is described in Khain et al., 2000). A prognostic equation is solved for the
aerosol mass, including removal by wet scavenging (surface rain) and regeneration upon drop evaporation.
There is no external aerosol source; hence, under precipitating conditions the total aerosol concentration
decreases with time (Heiblum et al., 2016). The aerosol and water drop size distributions are calculated from
5nmto 2 um and 2 pm to 3.2 mm, respectively. For both aerosol and drops, successive bins represent dou-
bling of the mass.

It was recently shown that only below a grid size as small as 10 m a good numerical convergence is achieved
for predicting the cloud cover in simulated shallow convection (Sato et al.,, 2017, 2018). Here due to limited
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Figure 2. Temporal evolution of total cloud (blue) and rain (green) masses in the domain and standard deviation of the
buoyancy near the surface (std (B}—brown) for simulations with aerosol concentrations of (a) 100 and (b) 2,000 cm 3,

The two different mass categories are defined according to a 40-um threshold for drop radius. The black vertical lines and x
mark one oscillation period (~90 min) which is further analyzed below.

computational resources (as we use bin microphysics, and relatively large domain for long simulations), we
are unable to use such high resolution.

3. Results and Discussion

To set the stage, we explore the evolution of two representative simulations: clean (with aerosol concentra-
tion of 100 cm™3) and polluted (2,000 cm—3). Figure 2 presents the evolution of the total cloud mass (blue
curve) and rain mass (green curve) in the domains of the two simulations. Under clean conditions
(Figure 2a), the water mass (including both cloud and rain masses) oscillates in time, with a dominant fre-
quency of ~90 min. On the other hand, under polluted conditions (Figure 2b), where there is no rain and
all of the water mass is attributed to cloud droplets, it oscillates at high frequency with a typical time period
of ~10 min.

Beside the evolution of the cloud and rain masses, Figure 2 presents the evolution of the standard devia-
tion of the buoyancy (std(B)) near the surface (at altitude of 20 m, the lowest grid cell). We note that under
clean precipitating conditions (Figure 2a), in which the cloud and rain masses oscillate with time, the std
(B) oscillates as well, with a similar periodicity (~90 min) but with a shift in time (~20 min delay after the
rain mass oscillations). On the other hand, under polluted nonprecipitating conditions (Figure 2b), std (B) is
almost constant with time and it is lower than the clean case values (Figure 2a). The std (B) can be used as
a measure of the magnitude of the cold pools in the domain. The rain that evaporates below the cloud
base produces cold pools (Zuidema et al., 2012), and this increases the partition of the buoyancy field near
the surface into designated areas of strong negative buoyancy (cold pools) surrounded by areas of strong
positive buoyancy.

Under polluted nonprecipitating conditions, there are no cold pools (Figures 3d-3f). The impact of cold pools
on cloud spatial organization is shown by the black contours. Note that the clouds tend to be larger and
clustered (with larger cloud-free regions in the domain) under clean conditions, whereas under polluted con-
ditions, clouds are smaller in size and distributed more uniformly over the domain. Such organization pat-
terns and the link to cold pools have been shown previously (Heiblum et al., 2016; Seifert & Heus, 2013;
Seigel, 2014; Xue et al,, 2008). A similar oscillation periodicity of ~90 min has been shown for simulated warm
cumulus cloud fields (see Figure 2 in Seigel, 2014) and from satellite obsrvations of open cells (Koren &
Feingold, 2013).

To further examine the dominant frequency of the water mass oscillations in the different simulations

(conducted under different aerosol-loading conditions), we calculated the total water mass cumulative
power spectrum as a function of time for four simulations (Figure 4). This demonstrates that under clean
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Figure 3. Buoyancy near the surface of the domain (ata height of 20 m, red-blue color bar [m/sz]) and cloud cover (liquid water path >10 gfmz, black contours). (a-c)

Clean precipitating simulation with aerosol concentration of 100 cm ™

3; (d-f) Polluted nonprecipitating simulation with aerosol concentration of 2,000 cm™ 3 Each

column presents different times of the simulations: 435 min (a and d), 470 min (b and e), and 520 min (c and f). These three times are marked by x in Figure 2a.

conditions (5 and 100 cm™3), the cumulative power spectrum increases gradually during the short periods
(<60 min) and it changes into a sharper slope at ~90 min (1.5 hr). On the other hand, under polluted
conditions (500 and 5,000 cm—3), the cumulative power spectrum increases more sharply in the short
periods, suggesting higher contribution of high-frequency oscillations.

The results presented in Figures 2 and 4 demonstrate a shift between two dominant oscillation periods of
~10 min (dominant under polluted nonprecipitating conditions) and ~90 min (dominant under clean pre-
cipitating conditions). We focus next on the physical mechanisms that dictate the frequency of
the oscillations.

Starting with the low-frequency cases, Figure 5 presents the evolution of one oscillation cycle on two phase
spaces: cloud mass versus rain mass (Figure 5a) and total mass (rain + cloud mass) versus std (B) (Figure 5b).
Figure S1in the supporting information presents few oscillations on these two phase spaces for demonstrat-
ing the robustness of the cycles. This specific cycle is marked in Figure 2a by two vertical black lines (at 413 to
500 min of simulation). The oscillation cycle starts with an increase in the cloud mass (red arrow in Figure 5a)

z 1
(7]
o 3
- —Scm”
K 0-8 —100 cm™>
S —500 ¢cm™>
1] -3
2 0.6 5000 cm
-
o
g 0.4
a
by 0.5
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0.
E 0 50 100
0 100 200 300 400 500 600 700 800 900
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Figure 4. Cumulative power spectrum of the total water mass in the domain as a function of time for four different aerosol
conditions (5, 100, 500, and 5,000 cm )
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dots and red crosses represent 1- and 20-min intervals, respectively.

followed by an increase in the rain mass (a delay of a few minutes, pink
arrow in Figure 5a) and then a decrease in both of them in the same order
(green and black arrows in Figure 5a, respectively). The cycle evolution on
the total mass versus std (B) phase space (Figure 5b) demonstrates that std
(B) (representing the cold pool magnitude) follows the total mass and
oscillates with the same periodicity but with a time shift of ~20 min (see
also Figure 2a).

To further explore the processes that dictate these oscillations, we fol-
lowed the changes in the domain-mean thermodynamic conditions.
Figure 6a presents the changes in the mean temperature vertical profile
between successive time lags of 1 min, while Figure 6b presents the evolu-
tion of the temperature difference (lapse rate) between the inversion base
height (1,500 m) and the lowest atmospheric grid cell (20 m). This repre-
sents the lower atmosphere convective instability—larger negative values
represent greater instability.

Figure 6 presents an analysis of the relatively clean and therefore preci-
pitating simulation. Under these conditions, the domain-mean convec-
tive instability decreases with time, meaning the lower atmosphere
stabilizes (Dagan et al., 2016). The results shown in Figure 6 explain this
trend by warming of the cloudy layer (~500-1,500 m) and cooling of the
subcloud layer. A similar mechanism also acts at distinct shorter times
that correspond to the typical time scale of the water mass oscillations
(~90 min) as shown in Figure 2a. Each cycle can be described by a
sequence of processes (as can be seen in Figure 6a) that starts with
warming of the subcloud layer followed by strong warming of the
cloudy layer, and later cooling of the subcloud layer (intensification of
the cold pools’ magnitude—Figure 2a). This sequence represents a
recharge-discharge cycle of atmospheric instability. During the rain inter-

mission, the surface fluxes warm and moisten the subcloud layer and hence recharge the instability. This
destabilization drives vigorous cloud development that leads to warming of the cloudy layer by latent heat
release (as can be seen in Figure 7). The condensed water sediments down as rain and partially evaporates
below the cloud base (Figure 7), cooling the subcloud layer. Both the warming of the cloudy layer and the

dT/dz [k/km]

10°°

- T GIRR | || |[k/min]
i ", 0|

‘|

T |
4 6 8 10 12 14 16
Time [h]

Figure 6. Temporal evolution of (a) the change between sequenced time steps (of 1 min) in mean temperature vertical pro-
file in the domain (K/min) for the simulation with aerosol concentration of 100 cm_3. (b) Temperature lapse rate (K/km)
between the initial inversion base height (H = 1,500 m) and the lowest atmospheric grid cell (H = 20 m). The black vertical
lines represent one oscillation cycle (~90 min) as in Figure 2a.

DAGAN ET AL.

2292



Assig

100 Journal of Advances in Modeling Earth Systems 10.1029/2018MS001416
2500 s gl0”
2000

— 1500
E | ol
o
- &‘ o | . PR . I
500 |
| SR -
2 4 6 8 10 12 14 16
Time [h]

Figure 7. Temporal evolution of the domain-mean condensation-evaporation vertical profile (g/kg/s) for the simulation
with aerosol concentration of 100 cm ™ >. The black vertical lines represent one oscillation period (~90 min) as in Figure 2a.

cooling of the subcloud layer stabilize the lower atmosphere and hence reduce cloud and rain develop-
ment. Once the rain stops, the surface fluxes start to rebuild the instability, and so forth.

How does the domain size affect the coherency of the oscillations? The results demonstrated above are the
run outputs of a relatively small domain (12.8 x 12.8 km?), and hence, periods of significant precipitation
manage to stabilize the whole domain. However, we can speculate that in a larger domain, different regions
will not be so well synchronized and therefore, local oscillations might be smoothed out by others that are in
a different phase. This leads to the question of what spatial scale is relevant to these oscillations, or what is the
right spatial scale to detect them? To answer this question, we conducted three additional simulations with a
larger domain of 51.2 x 51.2 km? (similar to Seifert & Heus, 2013), using aerosol concentrations of 5, 50, and
500 cm > and no background winds (for easier tracking of cloud evolution). All larger domain simulations
were conducted for 8 hr.

Figure 8 presents the evolution of the cloud and rain masses for different subdomains within the large
domain (for the simulation with aerosol concentration of 50 cm ™). For the entire domain (51.2 x 512 km?;
Figure 8a), the two curves (of the cloud and rain masses) are relatively smooth and no significant oscillations
are observed, Decreasing the window size down to 12.8 x 12.8 km? (Figure 8c) or even 64 x 64 km?

6_><101° a) 51.2x51.2 km?
p— e —
27 _
«1010 b) 25.6x25.6 km?
L
0.57 T
9 x10° ) 12.8x12.8 km?
b 4l /—W/\
o 2= - : e il— |
= «10° d) 6.4x6.4 km? =—Cloud (<40 pm)
% ' ~—Rain (>40 gm)
S ) 1.6x1.6 km?
10 %10 e)l. X. . m
0 ___
4 6 8
Time [h]

Figure 8. Evolution of the total cloud and rain masses in the domain for different subdomains in the simulation conducted
with a large domain and aerosol concentration of 50 cm_3. The different subdomains presented are (a) 51.2 x 51.2, (b)
256 % 25.6,(c) 128x 128, (d) 64 x 6.4, and (e) 1.6 x 1.6 kmz. The two different mass categories are defined accordingto a
40-um threshold for drop radius. To better display the oscillations, we focus on 4 hr of the simulation (4-8 hr).
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Figure 9. Evolution in a single column (in the middle of the large domain simulation with aerosol concentration of
500 cm_3) of the vertical profile of (a) air vertical velocity (w), (b) temperature perturbation (T; i.e., deviation from the
mean vertical profile), and (c) water vapor mixing ratio perturbation (QV). To better display the oscillations, we focus on 4 hr
of the simulation (2-6 hr).

(Figure 8d) reveals apparent oscillations. However, decreasing the window size to a typical cloud size
(1.6 % 1.6 km?, Figure 8e) enables inspecting the local development of a single cloud at a time.

As for the higher-frequency cases in the nonprecipitating simulations, a hint of the controlling mechanism
can be gleaned by following the vertical velocity in a single column located in the middle of the large
domain simulation with aerosol concentration of 500 cm > and no winds (Figure 9a). It reveals oscillations
with a typical period of ~10 min, which are noteworthy above the cloud base height (~500 m).
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0\/—\/
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Figure 10. Mean overall grid points ata given vertical level (262,144 points) autocorrelation of the air vertical velocity over
the last 80 min of the simulation (between 400 and 480 min) for different vertical levels (H): (a) 1,980, (b) 1,580, (c) 1,180, (d)
780, (e) 380, and (f) 60 m. Results are from the simulation with aerosol concentration of 500 cm ~, large domain.
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Figure 11. Spatial correlation of the air vertical velocity over the last 80 min of the simulation (between 400 and 480 min)
for different vertical levels (H): (a) 60, (b) 380, (c) 780, (d) 1,180, (e) 1,580, (f) 1,980 m. Results are from the simulation with
aerosol concentration of 5 cm™ >, large domain. To display the structures, we focus on the middle 20 x 20 km? of the
domain. The correlations are calculated compared to the middle point of the domain.
Autocorrelation of the vertical velocity average over all grid points (512 x 512) for a few vertical levels
(Figure 10) during the last 80 min of the simulation (between 400 and 480 min) shows significant time
oscillations at the upper cloudy and inversion layers (Figures 10a and 10b). These oscillations are discern-
ible all the way down to the lower cloudy layer (Figures 10c and 10d) but disappear below the cloud base
(Figures 10e and 10f). These high-frequency oscillations are generated by gravity waves, as shown in
previous works (Atkinson & Zhang, 1996; Clark et al, 1986; Huang, 1990), where they were seen to
be initiated by cloud updrafts penetrating the stable inversion layer. The ~10-min frequency of these
oscillations corresponds to the predicted frequency calculated according to the Brunt-Vaisald oscilla-
tions (the calculated gravity wave frequency—N, which is between 10 and 12 min depending on
the height, Nappo, 2013):
0.5
0.4
0.3
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=
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>
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SRR S
25 3 35
Figure 12. Same as Figure 11 but for the simulation with aerosol concentration of 500 em 3 large domain.
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Figure 13. Evolution of the total cloud and rain masses in the domain for the simulation with aerosol concentration of
500 cm > and long simulation period of 32 hr. The two different mass categories are defined according to a 40-um
threshold for drop radius.
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where g is the gravitational acceleration, e, is the potential virtual temperature, and z is the vertical coordinate.
The gravity waves perturb the vertical wind (Figure 9a), temperature (Figure 9b), and humidity (Figure 9¢)
fields and hence influence cloud development (Atkinson & Zhang, 1996; Clark et al,, 1986; Huang, 1990).

To exclude effects of the domain’s upper boundary, we implemented a damping layer at the top of the
domain (Khairoutdinov & Randall, 2003). We also conducted an additional simulation with aerosol concentra-
tion of 500 cm™> for a domain with double the vertical extent (8 km). It showed that even for the higher
domain, the gravity waves are noticeable (Figure $2), suggesting no important contribution from the upper
boundary of the simulated domain.

The spatial correlation of the vertical velocity for clean (Figure 11) and polluted (Figure 12) conditions (for
a few vertical levels) reveals the different organization mechanisms in those two cases. Under polluted
conditions, no significant spatial organization is apparent in the lower vertical levels (Figures 12a and
12b). Moving higher in the atmosphere reveals some spatial structures in the vertical velocity field, which
are most noteworthy at the upper cloudy and inversion layers (Figures 12e and 12f). This shows that in the
polluted nonprecipitating simulation, the organization is generated in the upper part (driven by gravity
waves) and propagates somewhat downward. On the other hand, under clean conditions, a clear structure
in the vertical velocity spatial correlation is observed near the surface. This large-scale structure is driven
by cold pools (as was shown above). The organization for the clean cases is generated mainly in the low
levels and only slightly modulated by the gravity waves from above (see slight organization in Figure 11f).
The difference in the generation of gravity waves between the clean and polluted conditions can be
attributed to the difference in updraft magnitude. Under polluted nonprecipitating conditions, the
updrafts are stronger (compared to the clean case, Dagan et al.,, 2017) and the droplet mobility is larger
(smaller droplets are pushed higher in the atmosphere, Dagan et al,, 2018; Koren et al, 2015) and hence
they penetrate the inversion layer more extensively and generate more significant gravity waves (see the
difference between Figures 11f and 12f).

We showed that under polluted conditions, the high-frequency oscillations are dominant and the absence of
precipitation results in deepening of the cloudy layer and destabilization of the atmosphere (Dagan et al.,
2016). However, given enough time for the polluted clouds to cool and moisten the upper cloudy layer,
thereby deepening it, precipitation can start (Seifert et al,, 2015) and the low-frequency oscillations can
become dominant. To examine this effect, we conducted an additional simulation of prolonged duration
(32 hr for the simulation with aerosol loading of 500 cm™3).
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Figure 14. Temporal evolution of (a) the change in mean temperature vertical profile in the domain (K/min) for the simula-
tion with aerosol concentration of 500 cm™> and long simulation period of 32 hr; (b) the temperature lapse rate between
the initial inversion base height (H = 1,500 m) and the lowest atmospheric grid cell (H= 20 m).

Prolonging the simulation (Figure 13) revealed substantial low-frequency oscillations, which started after
~13 hr of simulation (see also Figure S4 in the supporting information). Monitoring the thermodynamic con-
ditions along the simulation (Figures 14 and S3 in the supporting information) demonstrated that indeed the
cloudy layer deepens and the instability increases (Dagan et al.,, 2016). Once the rain becomes significant, the
destabilization process declines.

4. Summary

The evolution of water mass in simulated shallow, warm convective cloud fields was followed and
revealed temporal oscillations. For the case studied here, these oscillations were shown to have two dis-
tinct periods of ~90 and ~10 min. Under precipitating conditions, the low-frequency oscillations dominate
and express cycles of recharge-discharge of the thermodynamic instability. Net condensation at the cloudy
layer and net evaporation below the cloud base during rain phases act to stabilize the lower atmosphere.
This further restricts cloud and rain development, which then enables the surface fluxes to rebuild
the instability.

Under nonprecipitating conditions, the high frequency dominates. The source of the high-frequency oscilla-
tions are gravity waves that are produced by updrafts penetrating the stable inversion layer (Atkinson &
Zhang, 1996; Clark et al., 1986; Huang, 1990). These gravity waves modulate both the dynamic (i.e., vertical
velocity) and thermodynamic (i.e, temperature and humidity) fields and hence control cloud development.
This mechanism controls the self-organization of the cloud field as long as rain is absent. Once the thermo-
dynamic instability increases and the cloudy layer deepens sufficiently (Dagan et al., 2016) to produce signif-
icant precipitation, the cloud field will be pushed toward the low-frequency oscillations. In a large enough
domain (~50 km), these oscillations average out. The preferred spatial scale for observing these oscillations
is ~10 km, which is larger than that of a single, warm convective cloud but local enough to capture the domi-
nant oscillation phase.

The values of both the high- and low-frequency oscillation periods (10 and 90 min, respectively, for this study)
depend on the thermodynamic conditions such as instability, inversion base height, and large-scale forcing.
However, we suggest that the general behavior of these two different regimes of precipitating and nonpre-
cipitating conditions (low- and high-frequency oscillations, respectively) is universal. Moreover, limitations of
LES models, such as those caused by the impact of the double periodic boundary conditions on the cold
pools’ dynamics, can also affect the estimated period of oscillations.

Physical insights into the mechanisms controlling self-organization of warm convective cloud fields can
improve our understanding of cloud-aerosol interactions in these cloud types (Seifert et al., 2015) and low-
cloud feedback under climate change (Vogel et al,, 2016).
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