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Abstract— To create safer and less congested traffic operating
environments researchers at the University of Tennessee at
Chattanooga (UTC) and the Georgia Tech Research Institute
(GTRI) have fostered a vision of cooperative sensing and
cooperative mobility. This vision is realized in a mobile application
that combines visual data extracted from cameras on roadway
infrastructure with a user’s coordinates via a GPS-enabled device
to create a visual representation of the driving or walking
environment surrounding the application user. By merging the
concepts of computer vision, object detection, and mono-vision
image depth calculation, this application is able to gather absolute
Global Positioning System (GPS) coordinates from a user’s mobile
device and combine them with relative GPS coordinates
determined by the infrastructure cameras and determine the
position of vehicles and pedestrians without the knowledge of their
absolute GPS coordinates. The joined data is then used by an iOS
mobile application to display a map showing the location of other
entities such as vehicles, pedestrians, and obstacles creating a real-
time visual representation of the surrounding area prior to the
area appearing in the user’s visual perspective. Furthermore, a
feature was implemented to display routing by using the results of
a traffic scenario that was analyzed by rerouting algorithms in a
simulated environment. By displaying where proximal entities are
concentrated and showing recommended optional routes, users
have the ability to be more informed and aware when making
traffic decisions helping ensure a higher level of overall safety on
our roadways. This vision would not be possible without high
speed gigabit network infrastructure installed in Chattanooga,
Tennessee and UTC’s wireless testbed, which was used to test
many functions of this application. This network was required to
reduce the latency of the massive amount of data generated by the
infrastructure and vehicles that utilize the testbed; having results
from this data come back in real-time is a critical component.
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[. INTRODUCTION

To create safer, less congested, and more efficient mobility
operating environment, vehicles need to heighten the awareness
of changing conditions either next to the vehicle or at some
distance on the route. Typical vehicles capable of sensing
surrounding environments rely on sensors that are able to sense
within the line of sight of the sensor. If the line of sight is broken
the vehicle might lose awareness of what happens beyond the
sensing field of view. Even a bus that stopped on the side of the
road can significantly impede the sensory data collection, not
to mention presence of buildings or road curvature or changing
road grade. To eliminate this problem, we would like to
introduce the concepts of cooperative sensing and cooperative
mobility, which use streams of data from multiple sensors to
work together to provide cohesive information for the
application. The data collected from cooperative sensing and
cooperative mobility have the potential to reduce the number of
accidents by collecting information about current road
conditions and using Inter-Vehicle Communications (IVC),
Vehicle-to-Infrastructure ~ Communications  (V2I), and
Infrastructure-to-Vehicle Communications (I2V) to propagate
the information throughout the fleet. In addition, image and
point-cloud data are extremely processing intensive; thus, if we
can augment data sensed and processed by the vehicle with data
already processed elsewhere, we can improve processing
efficiency and create smart reuse of the data to navigate the road
network.

To achieve this objective, we employ a threefold approach:
1) gathering road conditions data from multiple sources:
sensors installed on the vehicles and roadside sensor units; 2)
using centralized traffic management system to simulate
optimal routes, and 3) creating an application to display route
navigation and route condition information to the users.

Current navigation applications primarily focus on data that
suits the need of the consumer on a personal level such as traffic



conditions, quickest route, or points of interest. There are other
real-time dynamic changes on the route such as accidents, road
construction, or debris on the road that might affect the driver
experience. Although WAZE [10] pools data from its
application users and reports it to a certain extent, it only uses
GPS coordinates emitted from mobile devices to plot users and
locations of interest. In addition, socially pooled data may not
be reported in real time and may not be accurate. The approach
described hereafter will provide systematic real-time data
collection from the vehicles or roadside sensor units to more
fully and accurately represent the route conditions and display
it to users.

This approach consists of an application which utilizes
positioning from multiple sensors, including GPS-enabled
mobile devices and wireless cameras, to anonymously track
multiple subjects of interest on a unified mapping interface. The
next two sub-sections will outline our contributions and analyze
related works pertaining to the topic of this paper. Section II
will explain the methods used during this project which include:
1) gaining the information to map the absolute GPS coordinate
via mobile devices (latitude and longitudes reported directly
from the mobile device’s location feature); 2) the relative GPS
coordinate (an approximate location derived from known
locations of other objects or points of interest) via object
detection and infrastructure communication; 3) steps taken to
achieve rerouting algorithms based on obstacles hindering the
driver on their typical route. Section III will discuss results
related to each of the items explained in the methods section.
Section IV will conclude this paper with a summary of findings
from this research and future work to be explored.

A.  Our Contributions

Our first contribution is providing additional information in
relation to pedestrian, cyclist, and vehicle localization through
both GPS-enabled devices, comparable to commercialized
applications, and through the use of computer vision, which
does not need to continuously gather GPS data to map
individuals. The ability to be able to track objects through
computer vision from static locations will also add functionality
in the case of GPS being unavailable in other locations.

Our second contribution is creating routing based on the
real-time data collected on the road network from other vehicles
and roadside units and simulating future conditions based on
the data to assign most optimal route. In addition, we
implemented re-routing function that can re-route vehicles
based on road blockages gathered by real-time, computer vision
data.

These two contributions work together to create an all-in-
one detection and routing mobile application that displays a
holistic view of the user’s environment, including pedestrian
locations, which gives the user a better understanding of their
surrounding area beyond their physical field of view. The data
used in this application can also be utilized without a visual
component and can be used directly for autonomous vehicle
decision and map-making and therefore expands the benefits of
the data gathering and usage of this application. This would
allow the knowledge of the vehicle’s environment to be more
robust and offers the vehicle more time for predictive analysis
in relation to on-road decision making.

To maximize the process of gathering the real-time data
used in the application, Chattanooga’s fiber optic Internet was
used. The fiber optic network is continuously used for the rapid
transfer between the clients (cameras and mobile devices) and
the server where the data is being analyzed. Given that the
network can transfer up to 10 Gbps, this speed and bandwidth
provided is a potential source for further exploration in to real-
time Big Data applications for various fields. This amount of
throughput allows data to be transferred efficiently. This data
can be analyzed for several statistics including times and
amounts of high traffic (both pedestrian and vehicular), amount
of jay-walking, amount of traffic lights run, and countless
others.

B. Related Works

Many previous explorations of this topic were focused on
single data sources, such as GPS and Global System for Mobile
Communications (GSM) coordinates [2]. In recent years, the
use of many heterogeneous sources at once has been adopted in
place of single data sources. One such example is Shotgun
Reading via Wi-F1i, a process inspired by DNA sequencing that
outputs a directed, weighted graph of the individual devices
discovered after a ‘burst’ read of a wide area [3]. Mobile Sensor
Networks have also been implemented, involving the use of a
fusion algorithm to measure a scalar field and construct its map
to discern occupants of the surveyed area [4]. Another viable
option is multi-sensor data-fusion or fusing recorded data from
multiple sensors together with pre-existing knowledge [2].
Traffic management systems typically consist of an advanced
traffic information system which transmits real-time data to the
user apart from routing the user based on real-time conditions.
Use of simulation software to replicate the real-world scenario
to manage and advise the vehicles to change speeds and warn
them about collisions was studied [11].

II. METHODS

This section is divided based on the components that were
used for each contribution. Sections A through C are related to
the first contribution that maps local objects using GPS-enabled
devices and infrastructure-based cameras using computer
vision to detect and localize objects using static GPS
coordinates instead of continuously changing coordinates that
are normally seen through mobile devices. Sections D and E
will highlight the second contribution, which relates to real-
time routing and rerouting based on detected objects using
traffic simulation model.

A. Tracking Objects via Computer Vision

This method used a single camera to capture and send an
image to an off-site server, the server then analyzed the image
for any useful information in relation to the image training set
the convolutional neural network (CNN) used and would then
send that information to a database to be used for adding the
relative location of an object to a map. Each of these steps,
including the mapped icons, were updated in real-time. This
algorithm does not rely on the use of GPS services directly;
instead it utilizes a trilateration algorithm which requires three
known points accompanied by three known distances based on
designated reference points. The following steps are taken to
obtain the needed reference points:



1) Object Detection

For object detection, a CNN called You Only Look Once
(YOLO) was used. YOLO version 2 can detect 80 different
class types using the pre-trained model [S]. These classes
include people, bicycles, cars, motorbikes, airplanes, and 75
other common objects. Using YOLO, multiple common
roadway objects can be detected and tracked, further increasing
driver awareness. YOLO was trained on full images rather than
separate sub-sections of a single image, which increased its
overall detection performance [5]. The YOLO network can
analyze real-time video at approximately 45 frames per second
(fps) with a latency of less than 25 milliseconds using the Titan
X graphical processing unit (GPU) [5]. Another advantage to
using YOLO is that the CNN looks at the training and test
images globally rather than sub-sections, and it can therefore
understand the features of the entire image compared to sub-
sections of the image (i.e. sliding windows) [5]. This approach
assists in less false positives when analyzing an image and
ultimately increases its overall accuracy. This object detection
process is also used in the calibration step that will be explained
in the next sub-section.

2) Camera Calibration Process

The first step to obtaining the three known location points
used to find the geographical coordinates of the detected object
is to calibrate the camera. During the calibration procedure,
absolute latitude and longitude coordinates are used together to
determine the geolocation of the camera. Once the geolocation
of the camera has been determined, two reference points on the
left and right side of the camera’s field of view are hardcoded
as GPS coordinates into the calibration method to give a
reference to compare with the camera and detected object to
calculate and approximate location of the detected object.

During the calibration process, a person must stand a known
distance away in the camera frame. At this point in the
calibration process, YOLO gives an approximate pixel-height
of the detected person where “x” is width and “y” is height. If
the number of pixels in the detected object’s bounding box
increases, we can assume the object is moving closer to the
camera, and if the pixel numbers decrease, we can assume the
object is moving away from the camera based on the bounding
box pixel area from the original calibration (see Figures 1 and
2).
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Figure 1. Detected object is farther away from camera and has
smaller pixel area within bounding box.
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Figure 2. Detected object is closer to camera with larger pixel
area within the bounding box.

3) Obtaining Distance from Three Known Points

There are three required distances: that from each of the
two reference points and that from the camera. The distance
from the reference points can be approximately calculated
using a pixel scalar. This scalar is calculated using a formula
which provides the distance in meters between two
geolocations, which can be used to determine the physical
distance between the two reference points in the camera’s
frame of view. Once complete, the physical distance can be
used with the pixel distance between the reference points to
create a ratio which can approximately convert pixels to
meters within the image.

Next, the distance in pixels between the bottom-center
point of a detected object and each of the known geolocations
are calculated. By choosing the bottom-center point, we are
allowing the point used to calculate distance to remain the
same. This point only changes in regards to two dimensions
instead of three. If the centermost point were used, then both
the X and Y coordinates of the center would change
corresponding not only to the objects X and Y movement, but
also Z movement; as the detected entity moves closer or
further from the camera, the bounding box size changes and
with it, so does the center. If the center point of the bounding
box were to be used, the point could shift with the increase or
decrease of the bounding box’s size and cause less accuracy
when calculating the distance between each of the reference
points.

The distance from the camera can be calculated by using the
bounding box distance and height from the calibration process.
Combining these two along with the current height of the
bounding box gets us a distance:

DistanceAtCalibration
(CurrentPixelHeight =+ PixelHeightAtCalibration)

The trilateration process must then be adapted from typical
implementations. In the typical implementation all reference
points are known and intersect at the same location, whereas in



this implementation measurement data taken via computer
vision are approximate. Therefore, minor adjustments must be
made. The algorithm begins by creating a ratio from the actual
distance, in meters, and distance in the image, in pixels,
between the reference points. This ratio is then applied to the
pixel distance between the subject and both reference points.
This gives two approximate radii for the circles needed to be
formed. The third circle is formed from the point where the
camera is mounted. An approximate distance from the camera
can be calculated using data from the calibration process.
During this process, the pixel-height of a person standing at a
known distance is recorded, as is the known distance. With this,
the new pixel-height can be used to approximate a new
distance. The intersections of the three circles can be used to
determine approximately where the subject is located in real,
three-dimensional space.

Using the distance and geolocation two circles are formed:
one at the camera and one at either reference point. The radii of
the circles are their respective distances. Next, the two
intersections between these circles are found and the
intersection closest to the unused reference point is chosen,
unless it is smaller; in this case, the further point is chosen (see
Figures 3 and 4). Through this method, the ability to take the
pixel coordinates of any object in an image and convert them to
a geolocation that is not relative to the scene is possible.

This one is used

Figure 3. Intersection point used in the case only two areas
intersect.

~Jhls one is used

Figure 4. Intersection point used in the case all three areas
intersect.

B. Tracking Objects via GPS-Enabled Devices

1) Cellular GPS

The second form of object localization was done by
utilizing the GPS functionality of a user’s mobile device if the
All-in-One (AIO) mobile mapping application is downloaded
onto a user’s i0S device. Given the application has access to
the user’s location services, the application will send the user’s
coordinates to the database to be mapped. To obtain the user’s
GPS coordinates, the application utilized a Cordova plugin to
provide current GPS information collected from a combination
of network signals such as the IP address, Wi-Fi, Bluetooth
MAC addresses, RFID, and GSM/CDMA cell IDS [6]. The
user’s device geo-coordinates were then updated every 250
milliseconds while the user had the application open and active.

2) Mobile Application Anonymity and Mobile

Classification

To ensure the security of the user’s location once the
application had been downloaded, the AIO application requires
i0S privacy control permissions to be granted by the user
before it could access its location. The application did not have
the ability to monitor a user’s location while inactive on the
mobile device. Privacy and anonymity concerns were
prioritized, and no self-identifying ID, service provider, or
name information was associated to any of the participating
device’s geo-coordinates stored in the database. Random IDs
were generated by the application and used to identify entries
on the Firebase server. A user could choose to identify their
type of transportation as pedestrian, vehicle, or cyclist. A user
who chose not to identify their transportation type was treated
as a pedestrian. The description of the user was associated with
the device’s geo-coordinates and sent back to the cloud
database. The transportation’s type was then used to determine
the type of icon that would be used to visualize the coordinates
on the mobile map.

Type

Apart from the initial image from the camera or GPS
coordinates from the mobile device, all processing and data
extraction explained during the previous three sections is
performed on the off-site server. Given the amount of data this
project was able to transfer in real-time with minimal delay, this
demonstrates the possibility of the creation or utilization this
high-speed network for other Big Data applications in the
future.

C. Mapping Objects

Once the objects have been identified and the location has
been determined, the mobile application or computer vision
algorithm will automatically upload the relative information,
such as the latitude and longitude of the object, to Google’s
Firebase database. Using the relative information, the database
places a custom icon corresponding to the identification of the
object onto the Google Maps API used for this project. Each of
the icons shown on the screen of the application, shown in
Figure 5, represent a different object based on the user’s
preference on the mobile device and the identity the computer
vision algorithm gave the object upon detection. These details
were successfully implemented into a mobile-based map as
well as a web-based map to show each of the icons moving in
real-time along with the user. The process of obtaining the data



represented on the application from both the infrastructure
camera and mobile application is shown in Figure 6.
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Figure 5. Custom icons created to represent different objects
related to items being used by the application and placed on
the map.
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Figure 6. Architecture for object data mapped to application.

A key feature that needed to be confronted was the ability
to delete items from the Google Firebase database. This was
necessary to avoid having objects displayed on the map that
have already left the camera’s field of view or if a user has
closed the application. The solution was simple for the mobile-
based communication; if the device stopped sending
information for a certain period of time, the database will delete
their entry and delete their icon from the map. Regarding
deleting the entry from the database in relation to the camera, if
the object moves out of the camera’s field of view, the database

entry related to that object is deleted. In doing this, the stability
of tracking of the object and retaining the unique identification
information of the object had to be continuously considered.

For the mobile front-end map application, choosing Google
Maps had several benefits in addition to its multifaceted API.
Aside from its availability on several platforms, this choice was
advantageous for its ability to utilize custom icons for its
markers. The latitude and longitude stored in the database were
used to determine the location of these markers, and their
location was updated in a regular interval to correspond to the
user’s movement. This polling rate from the server on the front-
end corresponds with the update rate of the locations from the
computer vision algorithm.

In addition to the mobile front-end, a web interface can be
made for testing and performance benchmarking. The Google
Maps and Google Firebase APIs both offer JavaScript
implementations, which aid in the creation of a rudimentary
map which can track the same subjects the mobile front-end can
see. This JavaScript-based front-end uses the same polling rate
from the database as the mobile front-end and the computer
vision algorithm.

D. Centralized Traffic Management System Design Utilizing
SUMO

To facilitate sharing of collected data throughout the
vehicular and pedestrian environments, a system is proposed
where the Centralized Traffic Management System (CTMS)
along with computational power inside the vehicle will work in
concert and will be able to access road network traffic
conditions and optimize road edge vehicle loading. The CTMS
will accumulate the information from different road segments
and constantly re-evaluate the most optimal routes for vehicles.
See-through [7, 8] with AIO technology developed for this
project by The University of Tennessee at Chattanooga (UTC)
can be employed and communicate via V2V and V2I channels.
Through V2V communication, vehicles can share the
information about pedestrians, bicycles, or obstacles on the
road and at the same time push this information to the CTMS
to be used by route planning algorithms and other vehicles. The
CTMS is intended to provide information, a monitoring
function, navigation, etc. The distributed control uses the
computing resources on the vehicles to capture data and send
information. The CTMS is designed to listen to the vehicles via
the AIO application and other stationary cameras for
information and calculate routes for the vehicle. The system
contains two major components, a server to communicate with
the car (V2X) and a virtual traffic simulation to track vehicles
on the road and calculate optimal routes using the A* search
algorithm. To create the described system, a virtual traffic
simulation was created using the Simulation of Urban Mobility
(SUMO) [9] as a simulation environment, a server which
communicates with the car to receive and send information and
route and reroute vehicles, and an in-car AIO mobility
application that can send and receive route information and can
graphically represent the route to the driver. SUMO simulation
software was chosen for this study as it includes required
modules such as altering traffic lights, simulating variable
message signs, and simulating Bluetooth devices. In addition to
having many developed modules built in, the open source



nature of the software allows for easy development of required
modules using Python. The Traffic Control Interface (TraCl)
feature of the software gives access to the running traffic
simulation allowing the user to alter the simulation in real-time.
TraCl has a Python interface which facilitates the interaction
between the simulation and the server.

E. Routing Capabilities

The routing functionality was also integrated with a CTMS
in order to test routes and analyze traffic situations. Typically
routing and re-routing is done based on current road conditions
such as speed and road blockages at the time when route is
calculated. For this project we are using traffic modeling and
simulation to assign routes based on simulated conditions for
the duration of the trip and not just current conditions. Routing
that is done based on current speeds for instance does not
consider that speeds may change in the future and original route
may not be optimal at that time. In the simulation we are
looking ahead into the future and assigning routes based on
condition that will exist throughout the trip. Example of routing
and re-routing is shown in Figure 7 and Figure 8. Figure 7
displays route that was originally identified as the most optimal
route by the simulation. Once the obstacle on the road is
detected (as shown in Figure 8) then the simulation created
alternative route shown in Figure 8. For this test, a simple traffic
scenario was chosen in order to explain how the vehicle was
routed using a two-step process. First, a CTMS was used to
simulate the traffic environment and decide the most efficient
path possible using rerouting algorithms. Second, data
displayed in AIO application will be provided by the CTMS.

—

Omigmal poude

el

Figure 7. Original route taken by vehicle given by a

navigation application.
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Figure 8. Alternative route given by application once object
has been detected and reported to the server.

III.RESULTS AND DISCUSSION

A. Object Tracking

Combining the components discussed in the methods
section provides an integrated solution for congregating data
gathered. Figure 9 and Figure 10 show the driver’s actual field
of view (left) relative to the AIO application communication
range (right). The application also gives the driver a wider view
of objects to come ahead while driving and can help them
prepare decision-making tasks earlier compared to what they
are able to see only from their field of view. For example, in
Figure 10, the driver is able to see a stalled vehicle on the side
of the road, but the hill in front of them prevents the ability to
see the vehicle approaching them from the other lane. If the
driver were to pass the stalled vehicle, an accident could occur,
but using the AIO mapping application, the driver is able to see
a vehicle approaching on the map and avoid an accident by
waiting for the driver to pass and rechecking the map to make
sure the lane is clear before advancing around the stalled
vehicle.

o

Figure 9. An infrastructure camera captures video from its field
of view (left) and the information is displayed in real-time on
the mapping application (right).

Figure 10. A vehicle waits as another vehicle passes to allow
the driver to drive around the stalled vehicle on the side of the
road (left) and maps the three vehicles and their positions on
the real-time map (right).

As the web-based front-end is written in JavaScript, it is
trivial to keep its features in line with the mobile application.
As such, a web front-end has been launched for testing
purposes with no issue. This interface does not offer tracking
of the current user (mostly due the lower accuracy of IP-based
geolocation), but it does allow the user to pan through the
Google Maps window and view all tracked subjects. During
this phase the accuracy of our system has a margin of error of
+/- 3 meters. Reducing this error is one of the future goals of
the project.



B. Rerouting Due to Obstacle

The current implementation for routing and rerouting
drivers requires the two-step process described in the methods
section. The simulation produces an original route which the
vehicle uses until the obstacle or a road closure is reported on
the route. If this happens the simulation provides an alternative
route based on what the CTMS deems most efficient in the
simulated traffic environment. The AIO rerouting feature can
help drivers avoid potentially hazardous obstacles detected by
the infrastructure cameras by giving the driver an alternative
route to consider. Furthermore, this feature adds to the AIO
application’s ability to assist the driver by visualizing useful
roadway information that can aid the driver’s decision-making
ability.

IV. CONCLUSION AND FUTURE RESEARCH

Our vision is to continue to develop the CTMS,
infrastructure object detection, and the AIO application. The
way it will work is as the vehicle moves on a road towards its
destination, the stationary cameras or other vehicles gather
information about obstacles on the road and sends it to the
CTMS. The CTMS runs a simulation including data that was
just received in real time and calculates the alternative routes
for the vehicles on the road and sends the new route information
to the vehicles. Using this approach will help us to have system
level control over the road network and optimize the
performance. Our next steps for this research include the
investigation of the efficiency of various routing algorithms
like A* search, Dijkstra, etc. We also plan to explore the
efficient use of IVC to increase mobility, improve safety, and
investigate benefits of connected vehicles and cooperative
mobility. The other possible application of this technology can
be platooning among connected fleet to increase the road
throughput capacity. The CTMS used in this application could
be tested on Chattanooga’s network over time to observe how
large these applications could theoretically be scaled before
implementing the in a real-world environment. If successful, a
similar model could be tested elsewhere with another city’s data
to enhance the development of their roadways.

Additional future research includes the possibility of
implementing UTC’s See-Through technology into the AIO
application. This integration could expand the view range of a
driver and increase their awareness of the driving environment
ahead. Further work can be accomplished through the addition
of cameras along UTC’s testbed in order to add more locations
where computer vision detection could take place. Gathering
obstacle and pedestrian activity from supplementary locations
would allow the AIO application to provide a more accurate
map of the current environment to the AIO user. This would in
turn help the user to make better informed decisions, resulting
in a campus safer for drivers and pedestrians. Next steps will
also be taken towards automating the obstacle detection
rerouting process. The computer vision implementation of
tracking objects offers the ability to detect and track up to 80
different objects. Should one of the objects not be categorized
as a pedestrian, vehicle, or bicycle, then it is broadly
categorized as an object warning. In the event that an object
warning is detected, future research will be focused on
implementing the optional rerouting process between the AIO

application and the CTMS in an automated way that replaces
the current manual two-step rerouting process.

Following the advancements on the application described
above, we want to make scalability a primary focus. In doing
so, we will be able to use large quantities of continuously
flowing data that we anticipate from the upcoming testbed
expansion in Chattanooga, Tennessee. This testbed will be
connected to gigabit fiber internet with up to 10Gbps
bandwidth, allowing our application to use the multiple
cameras, radars, LIDARSs, and other hardware located on the
testbed. With access to this equipment and location, we can test
the limits of our application to provide users, and eventually
autonomous vehicles, supplemental roadway data to make
better decisions. This will also provide enough data throughput
for other Big Data applications to be developed and tested at
varying scales.
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