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ABSTRACT

Efforts to understand population dynamics and identify high-quality habitat require information about spatial variation
in demographic parameters. However, estimating demographic parameters typically requires labor-intensive capture—
recapture methods that are difficult to implement over large spatial extents. Spatially explicit integrated population
models (IPMs) provide a solution by accommodating spatial capture-recapture (SCR) data collected at a small number
of sites with survey data that may be collected over a much larger extent. We extended the spatial IPM framework to
include a spatio-temporal point process model for recruitment, and we applied the model to 4 yr of SCR and distance-
sampling data on Canada Warblers (Cardellina canadensis) near the southern extent of the species’ breeding range in
North Carolina, USA, where climate change is predicted to cause population declines and distributional shifts toward
higher elevations. To characterize spatial variation in demographic parameters over the climate gradient in our study
area, we modeled density, survival, and per capita recruitment as functions of elevation. We used a male-only model
because males comprised >90% of our point-count detections. Apparent survival was low but increased with
elevation, from 0.040 (95% credible interval [Cl]: 0.0032-0.12) at 900 m to 0.29 (95% Cl: 0.16-0.42) at 1,500 m.
Recruitment was not strongly associated with elevation, yet density varied greatly, from <0.03 males ha™' below 1,000
m to >0.2 males ha™' above 1,400 m. Point estimates of population growth rate were <1 at all elevations, but 95% Cls
included 1. Additional research is needed to assess the possibility of a long-term decline and to examine the effects of
abiotic variables and biotic interactions on the demographic parameters influencing the species’ distribution. The
modeling framework developed here provides a platform for addressing these issues and advancing knowledge about
spatial demography and population dynamics.

Keywords: Cardellina canadensis, demography, distance sampling, elevation gradients, individual-based models,
range shifts, spatio-temporal point process, species distributions

Caracterizacion de la variacion espacio-temporal de la supervivencia y el reclutamiento usando modelos
poblacionales integrados

RESUMEN

Los esfuerzos para entender las dindmicas poblacionales e identificar habitat de alta calidad requieren informacién
sobre la variacion espacial de los parametros demogréficos. Sin embargo, la estimacion de los pardmetros
demogréficos requiere tipicamente métodos de captura-recaptura que demandan mucho esfuerzo y por ende son
dificiles de implementar sobre grandes extensiones espaciales. Los modelos poblacionales integrados (MPI)
espacialmente explicitos brindan una solucion al permitir acomodar datos espaciales de captura-recaptura colectados
en un pequefo numero de sitios con datos de censos que pueden ser colectados sobre una extensién mucho mayor.
Extendimos el marco espacial de MPI para incluir un modelo de proceso puntual espacio-temporal para reclutamiento,
y aplicamos el modelo a cuatro afnos de datos espaciales de captura-recaptura y datos de muestreo por distancia para
individuos de Cardellina canadensis cercanos al limite sur del rango reproductivo de la especie en Carolina del Norte,
EEUU, donde se predice que el cambio climtico causard disminuciones poblacionales y desplazamientos en la
distribucion hacia elevaciones mas altas. Para caracterizar la variacion espacial en los parametros demograficos a lo
largo de un gradiente climdtico en nuestra drea de estudio, modelamos la densidad, la supervivencia y el
reclutamiento per-capita como funciones de la elevacion. Usamos un modelo exclusivo para machos debido a que
representaron >90% de nuestras detecciones en los puntos de conteo. La supervivencia aparente fue baja, pero
aumenté con la elevacién, desde 0.040 (95% IC: 0.0032-0.12) a 900 m hasta 0.29 (0.16-0.42) a 1,500 m. El reclutamiento
no estuvo fuertemente asociado con la elevacion, aunque la densidad varié enormemente desde <0.03 machos ha™’
por debajo de los 1,000 m a >0.2 machos ha™' por arriba de los 1,400 m. Las estimaciones puntuales de la tasa de
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crecimiento poblacional fueron <1 en todas las elevaciones, pero el IC 95% incluyd 1. Se necesitan investigaciones
adicionales para evaluar la posibilidad de una disminucién de largo plazo y para examinar los efectos de las variables
abidticas y de las interacciones bidticas sobre los pardametros demogréficos que influencian la distribucion de la
especie. El marco de modelado desarrollado aqui brinda una plataforma para abordar estos temas y promover el
avance del conocimiento sobre demografia espacial y dindmicas poblacionales.

Palabras clave: Cardellina canadensis, demografia, desplazamientos de rango, distribuciones de especies,
gradiente de elevacidon, modelos de base individual, muestreo por distancia, proceso puntual espacio-temporal

INTRODUCTION

Early studies of population dynamics focused primarily on
temporal variation in demographic parameters (Errington
1945, Lack 1964), but a basic principle of modern
population ecology is that survival, recruitment, and
movement rates vary over both time and space (Holmes
et al. 1994, Tilman and Kareiva 1997, Hanski 1999).
Understanding the factors that influence spatio-temporal
variation in demographic parameters has become a central
objective of basic ecological research because this infor-
mation is needed to answer fundamental questions about
the dynamics of species distributions, the mechanisms
governing range shifts, and the role of density dependence
in population regulation and synchrony (Bjernstad et al.
1999, Paradis et al. 1999, Pagel and Schurr 2012, Gurevitch
et al. 2016). In applied settings, insights about spatial
variation in demographic parameters can be used for
purposes such as assessing management actions, identify-
ing high-quality habitat, and guiding reserve design (Van
Horne 1983, Murphy and Noon 1992, Sanderlin et al
2012).

Although information about spatial demography is
clearly needed, acquiring sufficient data for inference at
broad spatial scales has proved difficult. For example, data
on survival and recruitment typically come from mark-
recapture studies that require substantial effort and
financial resources (Williams et al. 2002, Saracco et al.
2010). Consequently, most long-term demographic studies
have been conducted over small spatial extents, often at
just a few plots (Perrins 1979, Rodenhouse et al. 2003,
Seether et al. 2016). Tremendous amounts of information
about temporal dynamics have resulted from these studies,
but they provide limited insights into the ecological
processes governing spatial variation in abundance and
distribution.

In contrast to long-term demographic studies conduct-
ed at a small number of plots, efforts to study and monitor
the dynamics of populations at broad spatial scales have
relied on count-based surveys such as the North American
Breeding Bird Survey and the British Breeding Bird Survey
(Freeman et al. 2007, Sauer et al. 2017). These studies have
been valuable for determining when and where population
changes occur, but they provide little information about
the demographic processes that contribute to the observed

dynamics. This has led to substantial debate about the
causes of population declines (Rappole and McDonald
1994, Latta and Baltz 1997). Recent efforts have sought to
enhance the value of count data for inference on
population dynamics by developing hierarchical models
with latent demographic processes (Newman et al. 2006,
Chandler and King 2011, Dail and Madsen 2011). This
framework makes it possible to study processes such as
structured population dynamics, instead of simple tempo-
ral trends, which are often the focus of conventional
analysis of count data (Buckland et al. 2007, Zipkin et al.
20144, 2014b). Although these methods represent a major
improvement over conventional approaches, not all
demographic parameters can be estimated from count
data, and it is difficult to account for individual
heterogeneity in vital rates and detection parameters.

Integrated population models (IPMs) have been devel-
oped out of the recognition of the strengths and
weaknesses of both mark-recapture data and survey data
in studies of population dynamics (Besbeas et al. 2002,
2003, Brooks et al. 2004, Gauthier et al. 2007, Schaub and
Abadi 2011). Conventional IPMs can be described as state-
space models, in which a time series model or a matrix
population model is used to describe the latent population
dynamics, with information about the dynamics coming
from more than one type of data, which are typically
mark-recapture and survey data (Newman et al. 2014).
Combining the 2 types of data often makes it possible to
learn about processes, such as immigration, that could not
be studied with either dataset in isolation (Schaub et al.
2007, Abadi et al. 2010b). Integrated population models
can also be used to assess the demographic contributions
to population growth and to answer important questions
about the factors affecting species of conservation concern
(Koons et al. 2017).

Spatially explicit IPMs were recently developed to
extend the scope of conventional IPMs (Chandler and
Clark 2014). This framework replaces the matrix popula-
tion model of IPMs with a latent individual-based model
(Diggle 2013, Gonzalez et al. 2016) describing spatio-
temporal variation in abundance and distribution. Al-
though numerous types of data could be accommodated
by spatial IPMs, efforts so far have focused on spatial
capture—recapture (SCR) data (Efford 2004, Borchers and
Efford 2008, Royle et al. 2014) and spatially referenced
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survey data (Chandler and Clark 2014). The primary
advantage of spatial IPMs is the ability to model spatial,
temporal, and individual-level variation in survival, re-
cruitment, and dispersal. Other benefits include the
potential to model all datasets conditional on the same
state process, avoiding the assumption that the datasets are
statistically independent (Abadi et al. 2010a). In addition,
by retaining the spatial information inherent in the data,
spatial IPMs can account for the ubiquitous source of
variation in detection rates attributable to the distance
between animals and sampling locations.

The objectives of the present study are to demonstrate
how spatial IPMs can be fitted to data on avian population
dynamics and to expand the spatial IPM framework to
directly model spatio-temporal variation in recruitment.
To demonstrate, we analyzed 4 yr of constant-effort mist-
net data and distance-sampling data collected on Canada
Warblers (Cardellina canadensis) over an elevation
gradient near the southern limit of the species’ breeding
range. Populations near low-latitude range limits are
predicted to decline and shift upward in elevation in
response to climate change (Hampe and Petit 2005,
Sekercioglu et al. 2008, Conroy et al. 2011), and as part
of a preliminary investigation of this topic, we sought to
determine how survival, recruitment, and population
growth rates varied over the elevation gradient in our
study area.

METHODS

We begin by describing the general spatial IPM framework
and then present the application to the Canada Warbler
data. Spatial IPMs are hierarchical models with an
ecological state model and at least 2 observation models
describing how the data arise conditional on the latent
state variables (Royle and Dorazio 2008, Chandler and
Clark 2014). The ecological state model describes how
abundance and spatial variation in density (i.e. distribu-
tion) change over time as functions of survival, recruit-
ment, and movement. A spatio-temporal point process
model is used as the state model because it provides a
framework for modeling individual-level variation in vital
rates. An overview of spatio-temporal point process
models is beyond the scope of the present study, but
briefly, these models are designed for inference about the
processes influencing the number and spatial distribution
of points over time (Diggle 2013, Gonzalez et al. 2016).
They can therefore be used as individual-based models of
population dynamics in which the points are animal
locations that enter, exit, and move within the spatial
region via recruitment, mortality, and dispersal. The
observation models in spatial IPMs describe how the
capture—recapture and survey data (and possibly other
types of data) arise conditional on the abundance and
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distribution of individuals during each sampling occasion.
The observation models would not be necessary if it were
possible to monitor each individual in the population over
its lifetime. Spatial sampling and imperfect detection make
this impossible in most studies, but hierarchical models
allow for inference on the underlying state process even
though it is only partially observed (Royle and Dorazio
2008).

We use the following notation throughout. Probability
density (and mass) functions are represented using the p(-)
notation. For example, if the random variable x is Poisson
distributed with rate 6, we would write p(x) = Pois(0).
Conditional probability densities will be denoted by p(-|-).
Continuing with the previous example, if the random
variable y is binomial and depends on the random variable
x, we would write p(y|x) = Bin(x,p). Note that the binomial
probability here is p, which should not be confused with
the density function p(-).

State Model

The state variable of interest in most studies of population
dynamics is abundance (N;), or density (D,), defined at
times t=1, ..., Twhere Tis the number of time periods in
the study. As with matrix population models, integral
population models, and integro-difference equations, we
treat time as discrete, which is justified when studying
birth-pulse populations and when analyzing data that are
collected during short periods of the annual cycle (Caswell
2001, Kot 2001). However, the model described below
could be formulated in continuous time if data were
collected throughout the year.

Unlike classical models of population dynamics, spatial
[PMs are spatially explicit individual-based models defined
in terms of 2 key latent variables. The first, z;, is a binary
variable indicating whether individual i is alive during time
period t. The second latent variable is s;, which represents
the average location of individual i during time period ¢.
The collection of all s;; variables comprises the “point
pattern,” which is modeled as a stochastic outcome of the
spatio-temporal point process (Diggle 2013). For territorial
species, s;; can be defined as a territory center. For other
species, it is often defined as a home-range center or
activity center (Royle et al. 2014). By modeling these 2
variables, we can model spatio-temporal variation in
abundance and density as functions of the individual-level
processes of survival, recruitment, and dispersal. Let N be
the number of individuals that were ever alive during the T’
time periods of the study. In other words, N is the super-
population size. If N was known, the number of individuals
in the population at time ¢ would be given by N, = Zf\i 1Zit
Moreover, if it were possible to observe and monitor all N
individuals in the population (instead of sampling the
population using capture—recapture and survey methods),
the matrix z would be the data and one could directly
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model the factors influencing recruitment and survival.
However, directly monitoring all individuals in a popula-
tion is rarely possible, and N is almost always unknown. To
address this challenge, we use data augmentation (Royle et
al. 2007, Royle 2009) to redefine the dimensions of z as M
X T rather than N X T, where M is chosen to be much
greater than N. By using M as the upper index of i, we fix
the dimensions of the parameter space, thereby facilitating
statistical inference. Choosing M can be accomplished in
an iterative manner to ensure that Pr(N=M) ~ 0 (Royle et
al. 2014).

Initial Abundance and Distribution
The first time period is modeled differently than
subsequent periods because there is no information about
the survival and recruitment processes that gave rise to the
initial population. We therefore model the initial period
using a spatial point process that is independent of the
other periods. Spatial point process models are character-
ized by an intensity function p(s) that describes the
expected number of points in an infinitesimally small area
located at s. In other words, ;(s) is the density surface at ¢
=1 that we wish to estimate. Here, s, without subscripts,
represents an arbitrary point in the two-dimensional
spatial region S C R? If density is uniform throughout
S, the state space of s;, the point process is said to be
homogeneous with the expected number of individuals
given by E(N;) = p,(s)|S| where |S| is the area of the state
space. If density varies throughout S, the point process is
inhomogeneous. Spatial variation in density can be
modeled as a function of covariates, for example with a
log-linear model: log (;(s,B)) = v'(s)B, where v(s) is the set
of spatially referenced environmental variables, which
typically are formatted as “raster” data, and P is the vector
of coefficients of the log-linear model. Although the
intensity function (y1;(s)) depends on the B coefficients, we
will suppress them to be concise.

When the point process is inhomogeneous, the expected
value of initial abundance is found by integrating the
intensity function over the spatial region:

E(NY) = Ay = / iy (s) ds (1)

S

Equation 1 is also used in the data augmentation scheme
to compute the probability that an individual is a member
of the initial population: p(z;1) =Bern (\\; = A; / M). The
distribution of activity centers is proportional to the
intensity function, and the probability density function
for a single point is found by normalizing: p(s; 1) = 11(s;1)/
A;. If the points are mutually independent, after
accounting for covariate effects, the joint density of the
point pattern is given by the product of M such terms.
Otherwise, the spatial dependence in point locations
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could be modeled with a Markov point process (Reich
and Gardner 2014).

Survival, Recruitment, and Dispersal

In subsequent time periods (¢t > 1), the probability of
being alive is modeled conditional on the individual’s
previous state. If it was alive in the previous period, it
survives with probability ¢. If the individual was not alive
and had not been previously recruited, then it becomes
recruited with probability ¥,. These processes are modeled
as

plae) = Bern(Y, = 210 +aia7)  fort>1 (2)
where
1 if max(zi,...,zir) =0
Gir = {0 otherwise ®)

The variable a simply indicates whether an individual is
available to be recruited. This formulation is now
commonly used in individual-based extensions of the
Jolly-Seber model (Royle and Dorazio 2008, Royle 2009).
However, unlike other open-population capture—recapture
models and spatial [IPMs, we model the probability that an
individual is recruited (7,) as a function of a point process
for the number and locations of recruits:

ER)=Ti= [16ha@ds  fore>1 (@

S

where v,(s) is the per capita recruitment rate at location s.
As with the point process for initial abundance and
distribution, the recruitment intensity function can include
spatial covariates. The intensity function could also be
expanded to include density dependence.

In the absence of dispersal, spatial variation in density at
t > 1 is determined by spatial variation in survival and
recruitment: p(s) = ¢r1(8)He—1(8) + Ve—1(s)1e—1(s); and the
expected population growth rate is A(s) = p(s)/p,1(s) =
Gr1(s) + vea(s). The probability that an individual is
recruited can be computed by dividing the expected
number of recruits by the number of individuals that are
available to be recruited: ¥,=1I",/A; where A, = Zf\il ais 1.

The recruitment point process describes the distribution
of newly recruited individuals, but when dispersal is
possible, the distribution of individuals that were recruited
prior to ¢ requires an additional model. Any dispersal
process could be considered, but here we focus on
dispersal kernels of the form x(s,s; 1, 1;), which could
be Gaussian, negative exponential, etc. The kernel specifies
the relative probability of dispersing to location s at time ¢,
conditional on being previously located at s;, ;, with t
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being the vector of parameters that govern the shape of the
kernel. The probability density function for s;, is therefore
a mixture that depends on whether the individual is
available to be recruited:

(8, 8it-1,T¢)
Sig|dig—1) X
p(silaii—1) {"{t(s)ut—l(s)

if ait—1 = 0
if ait—1 = 1

This probability density is proportional to either the
dispersal kernel or the intensity function, meaning that the
actual density requires computing a normalizing constant
found by integrating either function over the spatial region
S.

The recruitment point process and the Markovian
survival process determine the expected value of abun-
dance at time ¢ > 1 according to E(N,) = E(R,) + E(S,). The
expected number of recruits was defined previously, and,
in the case that survival probability is constant among
individuals, the expected number of survivors is E(S,) =
E(N; 1)d; 1. Although the expected value of abundance is
useful for prediction, and the observed data can be
modeled conditional on the expected values, interest will
often be on realized abundance—the number of individ-
uals actually alive in & at time t—which is given by
N, = Zf\il zit. Realized and expected values of abundance
can also be computed for any region within the state space.
For example, the realized number of individuals in region
B c Sis N(B) ="M I(s;; € B)zys, where I() is the
indicator function returning 1 if its argument is true and 0
otherwise.

In nonspatial open-population capture-recapture mod-
els, when permanent emigration is possible, ¢ must be
interpreted as “apparent survival;’ defined as the probability
of surviving and not permanently emigrating from the
study area. However, as with other recently developed
open-population SCR models (Ergon and Gardner 2014,
Schaub and Royle 2014), our model provides an opportu-
nity for estimating actual, instead of apparent, survival
because movement and survival can be distinguished.
However, if there aren’t enough data to estimate dispersal,
and hence the probability of permanent emigration, it may
be necessary to assume that activity centers do not move
among years. In this case, ¢ should be interpreted as
apparent survival, with permanent emigration being the
case where an individual permanently moves to an area
where its encounter rate is negligible.

To complete the state model, we introduce one more
partially observed latent variable, #;,, which denotes the
location of individual i during secondary sampling
occasion k in primary sampling occasion . Distinguishing
between primary and secondary sampling occasions
corresponds to the “robust design, in which it is assumed
that mortality and recruitment are negligible during, but
not among, primary periods (Pollock 1982). By collecting
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replicate observations within primary periods, it becomes
possible to account for more sources of heterogeneity in
capture probability. In our case, it also provides a way of
modeling the within-season movement process that
influences where individuals are detected during dis-
tance-sampling surveys. A simple model for z;, assumes
that the locations are independent bivariate normal
outcomes centered on thg individual’s activity center:
p(Mik|si) = Norm(sy, [G 1), where o is the scale
parameter related to home-range size. Alternatively, a
Markov movement model such as an Ornstein-Uhlenbeck
movement model could be used to account for serial
correlation and describe space use (Blackwell 1997, Hooten
et al. 2017).

Observation Models

Capture-recapture data. Nonspatial, open-population,
capture—recapture (CR) models are well-developed for
“capture history” data in which y;, is a binary variable
indicating whether individual i; i =1, ..., ny was captured
on secondary sampling occasion k; k = 1, ... , K within
primary sampling occasion ¢ (Jolly 1965, Seber 1965,
Pollock 1982). Such data do not retain information about
the location of capture, and nonspatial CR models ignore
the spatial region within which the population occurs. By
ignoring space, these models make it difficult to account
for variation in capture probability among individuals that
arises from the distance between animals and traps. Of
greater importance from the perspective of ecological
research is the fact that nonspatial CR models do not allow
for inference on spatial variation in density and other
demographic parameters, except when space can be
naturally subdivided into a small number of discrete units
(Nichols and Kendall 1995).

In SCR models, the location of capture is an important
component of the data structure. Although numerous
types of data are suitable for SCR models, the data are
commonly in the form of a four-dimensional array, in
which each element, y;,, is a binary variable indicating
whether individual i was captured or encountered at trap j;
j=1,..., ] on occasion k in year t. The location of each
trap is stored in a J X 2 matrix, with x; representing the
two-dimensional Cartesian coordinates of trap j. The
simplest nonspatial CR models treat capture probability
p as a scalar, whereas most SCR models assume that
capture probability is a function of the distance between
individuals and traps (Efford 2004, Royle et al. 2014). The
distance metric used in SCR models is not the distance
between an individual’s actual location (z;,) and a trap but
is instead the distance between an individual’s activity
center (s;) and the trap. The reason for this is that u;; is
unknown on occasions when the individual is not
captured, and accounting for this would require an explicit
movement model, which would add an unnecessary degree

The Auk: Ornithological Advances 135:409-426, © 2018 American Ornithological Society

Downloaded From: https://bioone.org/journals/The-Auk on 1/15/2019
Terms of Use: https://bioone.org/terms-of-use



414 Spatial IPMs

of complexity in studies that are not focused on fine-scale
movement behavior (Borchers 2012).

Numerous distance-based capture probability functions
can be considered, but a common choice is based on the
kernel of the Gaussian distribution: pj; = poexp(—dizjt /
20?), where dj = ||s; — ;|| is the Euclidean distance
between the activity center and the trap. The parameter pg
is capture probability at zero distance (i.e. capture
probability when an individual’s activity center is coinci-
dent with a trap). The scale parameter ¢ determines the
rate at which capture probability decreases with distance.
This is the same scale parameter that can be used in the
bivariate normal movement model described previously.
As with all CR models, additional temporal and behavioral
effects on capture probability could be considered.

If the encounter history data are binary, they could be
modeled as Bernoulli outcomes: p(yj|si,zi) =
Bern(pj;: X z;). The inclusion of z;; ensures that an animal
can only be captured if it is alive during primary period ¢.
The Bernoulli model is one of several possible encounter
models, and it assumes that an animal can be detected at
multiple traps during each secondary sampling occasion.
This implies that “traps” need not be standard live traps in
which individuals are physically restrained. Instead, SCR
models can be used with data from camera traps, hair
snares, acoustic recorders, and other types of passive
detectors, for which the Bernoulli assumption is not always
ideal. In the case of mist-net data, individuals are physically
restrained and, hence, they may not be captured at more
than one net per occasion. For this type of data, a
categorical observation model can be used in place of the
Bernoulli model. Data for the categorical model are
formatted such that y;, indicates the trap index at which
individual i was captured on secondary occasion k in
primary period ¢. Or, if an individual was not captured on a
particular occasion, yy, is recorded as / + 1. The model
then becomes p(yy|s:, zi,) = Categorical(m; s, ... » T 1,0,
with cell probabilities constructed using the multinomial
logit (Royle et al. 2014:254—-256). Although the categorical
model is often recommended for mist-net data, the
Bernoulli model may be more appropriate if a secondary
sampling occasion consists of many hours of netting, such
that an individual could be captured at more than one
location within an occasion. If these “same-day recapture”
events are independent, then the Bernoulli model could be
used. Otherwise, the same-day recaptures could be
discarded before implementing the categorical model.

Distance-sampling data. In distance sampling, individ-
uals are surveyed from either points or line transects, and
detection probability is assumed to decline with radial or
perpendicular distance from the transect (Buckland et al.
2001). Conventional distance-sampling models are non-
spatial, with the observed data being the distances to the
subset of detected individuals. Spatial distance-sampling
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models are different, in that detection is modeled
conditional on individual locations, which makes it
possible to directly model the spatial distribution of
individuals (Royle et al. 2014, Borchers et al. 2015). Below,
we describe how either location or distance data could be
modeled conditional on the point process model.

Let &, reference the /th survey location in a collection of
L point-count sites. The probability of detecting individual
i is based on a monotonically decreasing function of
distance between the observer and the animal, such as
Dire = Doexp(—d%,/26?), where the dot notation distin-
guishes distance-sampling parameters from their SCR
counterparts. The probability of detecting an animal at
zero distance, po, is usually taken to be unity because
animals can often be assumed to be detected with certainty
at the survey point. If the actual locations of individuals are
recorded when performing distance sampling, the ob-
served data would be the subset of u;;, detected from the L
points. However, reconciling these data with the SCR data
cannot be done with certainty because the identity of the
individuals detected during distance sampling will almost
certainly be unknown, because marks (such as color
bands) cannot easily be seen when conducting surveys. A
model is therefore needed to account for the unknown
identity of the detected individuals if the SCR and distance
sampling are to be modeled conditional on the same
realized point pattern.

To simplify the observation model, and to reflect the
nature of many distance-sampling datasets, assume that
the distance-sampling data are binned into B annuli within
the radius of the point-count plot. The number of
individuals in each annulus will be denoted by
Nipie = Z?ill (uie € Bip)ziz. The data in this case could
be modeled as binomial counts: p(ru;) = Bin(Npuy, p bkt )
with p,,, being the average detection probability within
each annulus, computed by integrating over the distance
cut points (cy, ..., cpy1):

Cht1

- 1 .
Ppie = @211 / exp( - r2/(202)>rdr

Ch

where r is the radial distance from the observer.

This approach to modeling the distance data conditional
on s; and uy, is extremely computationally challenging,
even if u;, is marginalized as described by Royle and
Dorazio (2008:238-241). A much more computationally
appealing approach is to model the distance-sampling data
conditional on the underlying density surface, 11,(s), instead
of on the realized point pattern. One option for doing this
is to assume that density within each point-count plot is
uniform and that the number of individuals in each plot is
Poisson distributed. This leads to a Poisson model for the
distance-sampling data in which the expected number of
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FIGURE 1. Location of mist-net plots and number of male Canada Warblers captured at each plot in Nantahala National Forest,
Macon County, North Carolina, USA. Background colors represent elevation (m). Only 2 sites were sampled in 2014. Not shown is
individual-level information about within- and among-season recaptures. UTM = Universal Transverse Mercator, zone 17N.

detections at point / in distance bin b is given by the
expected number of individuals in bin b multiplied by p,,
(Royle et al. 2004, Sillett et al. 2012).

Canada Warbler Data and Model Specification

We collected spatial capture-recapture and distance-
sampling data on Canada Warblers during May-]July,
2014-2017, in Nantahala National Forest, Macon County,
North Carolina, USA (35°4'35''N, 83°28'42""W). The
study area was selected because of the pronounced
elevation gradient (600—1,600 m) within a relatively small
area (63 km?) spanning the range boundaries of many
high-elevation bird species, including the Canada War-
bler. In the southern portion of their range, Canada
Warblers primarily occur above 1,000 m, where they
establish territories in hardwood forests with a dense
understory of woody vegetation (Reitsma et al. 2009,
Becker et al. 2012). Sampling along the elevation gradient
and across the range boundary was conducted as part of a
broader effort to understand the factors influencing

population dynamics near the southern limits of the
breeding range.

We collected SCR data at 9 sites, 8 of which were sampled
in more than 1 yr (Figure 1). At each site, 20 net locations
were established and arranged in 4 rows, with the outer
rows spaced by 50 m and the inner 2 rows spaced by 100 m.
Five nets were placed in each row, and midpoints of nets
within rows were separated by 25 m. In general, only 10 of
the 20 nets were operated each day, for ~6 hr day '
beginning 30 min before sunrise, from May 1 to July 1. The
4 days of sampling were usually consecutive, except when
weather interfered. Nets were not operated during rain or
high winds. To increase capture rates, we broadcast Canada
Warbler vocalizations using speakers placed at 2 nets on
days 2 and 4 of the netting session. We used nylon mist nets
(32 mm mesh, 12 m long, 1.5 m tall) that were checked
every 30—-60 min, and each captured individual was marked
with a USGS aluminum band and 3 color bands. Age, sex,
and morphological measurements were also recorded, and
birds were released within 30 min of being extracted.
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FIGURE 2. Location of point-count plots and number of male Canada Warblers detected at each plot in Nantahala National Forest,
Macon County, North Carolina, USA. Background colors represent elevation (m). Thirty-eight new plots were added in 2016.
Although only total counts are shown, time-to-detection and distance-sampling data were collected at each point. UTM = Universal

Transverse Mercator, zone 17N.

Distance-sampling data were collected at 70, 71, 109,
and 109 points in 2014, 2015, 2016, and 2017, respec-
tively. Survey locations were arranged on a 500 m grid
covering the study area (Figure 2). Each sampled location
was visited before 1100 hours once per year, between late
April and early July. Surveys lasted 10 min and were
divided into four 2.5 min intervals. For each detected
individual, we recorded the species, detection cue (e.g.,
song, chip, visual), time intervals of detection, and
location on a simple map with 10 annuli defined by radii
with 10 m distance increments. Prior to data collection,
observers were trained in distance estimation using range
finders. Distance data were collapsed into 5 distance bins
defined by 20 m increments from 0 to 100 m. By
recording both distance and time to detection, we were
able to estimate the effect of distance on detection
probability, as well as the effects of other covariates on py,
which in this case can be defined as the probability that
an individual vocalized (Alldredge et al. 2007, Chandler et
al. 2011, Sélymos et al. 2013).

We modeled initial density, survival, and recruitment as
functions of elevation. Although numerous other abiotic
factors and biotic interactions can influence survival and
recruitment, many of them are likely to covary with
elevation, and our intent here was not to tease apart these
effects but rather to demonstrate how spatial IPMs can be
used to draw inferences about spatial variation in
demographic parameters. We used an adult, male-only
model without dispersal because >90% of our point-count
detections were of males and because we did not observe
marked individuals moving >200 m between years (see
below). We considered 3 models for the relationship
between Canada Warbler demographic parameters and
elevation. The first model treated each parameter (initial
density, survival, and recruitment) as a linear function of
elevation on the link scale. Log link functions were used
for initial density and recruitment, and a logit link was
used for survival. The second model allowed for quadratic
effects of elevation on the link scale to allow for possible
non-monotonic relationships between demographic pa-
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rameters and elevation (Lichstein et al. 2002). The third
model used a logistic equation for each demographic
parameter to evaluate the possibility that demographic
rates had upper asymptotes. For example, the logistic
equation for initial density was p(s) = Bé“)/(l-i-
exp(—BYELEV(s))), where B’ is the asymptote and
Bg“ ) determines the rate at which density approaches the
asymptote over the elevation gradient. We aggregated a 30-
m-resolution digital elevation model to 180 m resolution,
and we assumed that survival, recruitment rate, and
density were constant within each grid cell. This allowed
us to evaluate the integrals in Equations 1 and 4 using a
Riemann sum.

We augmented the SCR data using M = 350, and we used
a Bernoulli observation model because we had several same-
day recaptures, which are incompatible with the categorical
observation model. Variation in capture probability was
modeled as a function of distance between activity centers
and nets, and we also accounted for the playback effect by
modeling a unique baseline capture probability, p,, for
passive and playback net occasions. To account for the fact
that not all nets were operated on each occasion, we fixed
capture probability to zero for net sites that were not
operational on a particular occasion. The state space was
created by placing a 400 m buffer around the trap locations.

The distance-sampling and time-of-detection data were
modeled conditional on the expected value of abundance
at each point-count plot, which was computed by area
expansion. Specifically, we multiplied local density, 1(s), by
the area of the 100 m radius point-count plots. We
assumed that time of detection and detection distance
were independent, which allowed us to model the data
using 2 independent multinomials. The multinomial cell
probabilities for the distance-sampling data were based on
Equation 6. The time-to-detection cell probabilities were
Po (1 = pobo, (1 — po)*Po» (1 — Po)°po, where py is the
probability that an individual vocalizes during a 2.5 min
interval. We modeled variation in po using a logit link with
time of day and date (days since May 1) as covariates.

We fitted models using JAGS 4.2.0 run with the “rjags’
package in R 3.4.1 (Plummer 2003, R Core Team 2017).
Vague prior distributions were used for all parameters
(Appendix 1). We created 3 Markov chains, each
consisting of 10,000 iterations, and we discarded the first
5,000 iterations as burn-in. Convergence was assessed
using visual inspections of the Markov chains and with the
Gelman-Rubin diagnostic (Gelman and Rubin 1992).
Model selection was based on posterior deviance. Code
is provided in Appendix 1.

RESULTS

We captured 109 adult male Canada Warblers during the 4
yr study. Seventy-six individuals (69.7%) were captured just
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TABLE 1. Deviance statistics used for model selection. The
logistic model was selected as the best model in the set because
it had lower mean deviance than the other models, and it was
tied for the lowest number of parameters. The number of
parameters does not include the number of latent variables,
which was constant among models.

Model Mean SD Parameters
Linear (on link scale) 14,492 26.5 13
Quadratic (on link scale) 14,498 26.0 16
Logistic 14,457 26.1 13

once, whereas 21 birds were captured twice, 6 were
captured 3 times, 4 were captured 4 times, 1 was captured
5 times, and 1 was captured 6 times. Twelve individuals
(11.0%) were captured in 2 consecutive years, and no
individuals were captured in >2 yr. All within- and
among-year recaptures were within 200 m of the original
capture location, and no individuals were captured at more
than 1 of the 9 sites, which suggests that site fidelity was
high and adult dispersal low. The total number of
individuals captured, averaged over the 4 yr, increased
with elevation (Pearson’s » = 0.68). No Canada Warblers
were captured at the 2 lowest sites, and the greatest
number of captures occurred at the highest site (Figure 1).
We detected 30, 25, 62, and 45 Canada Warblers on our
point-count plots during the 4 yr of the study. The
proportions of sites with >1 detection were 0.43, 0.35,
0.57, and 0.41 from 2014 to 2017. Some of the variation
among years was due to the addition of 38 new survey
locations in 2016. Annual counts and observed occupancy
tended to increase with elevation, but the relationship was
weaker than in the mist-net data (Pearson’s » = 0.41; Figure
2). Below 1,000 m, Canada Warblers were detected at only
2 of the 30 point-count plots. The proportion of point-
count plots with detections was higher above 1,000 m (38
of 79 plots), yet in contrast to the increasing trend
observed in the mist-net data, observed occupancy and
average counts were relatively constant above 1,000 m
(Figures 1 and 2). Detection frequencies in the five 20-m-
wide annuli were 37, 53, 30, 30, and 12. Note that detection
frequencies would have increased with distance if detec-
tion probability was 1, because the area of each annulus
increases with distance. The frequencies of first detections
during the four 2.5 min intervals were 109, 26, 18, and 9,
indicating that most birds were first detected early in the
10 min surveys.

All 3 models converged, with Gelman-Rubin statistics
<1.1 for each parameter. The choice of M = 350 was
deemed sufficient because the estimated probability that
the super-population size was greater than 300 was
<0.001. The most supported model was the logistic model,
in which each ecological process (initial density, apparent
survival, and recruitment) was modeled with an upper
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TABLE 2. Posterior summary statistics for the most supported (logistic) model, including 95% credible intervals (Cl).

Description Parameter Mean SD 95% Cl
Asymptote of initial density (males km2) 'S 28345 35503  21.86 to 35.8976
Effect of elevation on initial density S“) 0.866 0.1100 0.65 to 1.0794
Asymptote of apparent survival () 0309  0.0736 0.18 to 0.4652
Effect of elevation on apparent survival 5‘“ 1.479 0.6348 0.48 to 2.8989
Asymptote of per capita recruitment E;’) 1.531 0.1291 1.28 to 1.7880
Effect of elevation on per capita recruitment 57) —0.127 0.0651 —0.26 to 0.0017
Baseline capture probability without playback Po 0.029 0.0061 0.02 to 0.0437
Baseline capture probability with playback Po 0.156 0.0353 0.10 to 0.2417
Scale parameter of spatial capture-recapture (SCR) encounter function olsen 241.077 55.3130  155.05 to 362.2461
Intercept of song rate (po) function oo 0.173 0.2206  —0.29 to 0.5806
Effect of date on song rate o 0.143 0.1971 —0.25 to 0.5234
Effect of time of day on song rate o —0.360 0.1982 —0.75 to 0.0196
Scale parameter of distance-sampling detection function o' 31.508 1.3055 29.12 to 34.2525

asymptote and a lower boundary at zero (Table 1). The
mean deviance for this model was 35 units less than the
next most supported model (the linear model), and it
included the same number of parameters. The quadratic
model had 3 more parameters than the other 2 models, but
these parameters did little to reduce the mean and variance
of the posterior deviance.

Initial abundance increased rapidly with elevation, as
indicated by a positive value of [3(1”) and a 95% credible
interval (CI) that did not include zero (Table 2). The effect
can be seen clearly in the 2014 density surface (Figure 3).
Density was <0.03 males ha' below 1,000 m and
increased more than sixfold to 0.20 males ha ' at high
elevations in the study area.

Apparent survival increased with elevation, from 0.040
(95% CI: 0.0032—-0.12) at 900 m to 0.29 (95% CI: 0.16—0.42)
at the highest elevation (Figure 4). The 95% CI for Bg‘b), the
effect of elevation on apparent survival, did not include
zero (Table 2). There was much less evidence that per
capita recruitment varied over the elevation gradient. The
95% CI for BY’ ) included zero, and the effect size was small
(Table 2 and Figure 4). Point estimates suggest that
recruitment was not high enough to offset (apparent)
mortality, as posterior means of 1,(s) were <1 over the
elevation gradient (Figures 4 and 5). However, 95% Cls
include 1, indicating that there is not enough evidence to
conclude that the population was declining.

Playback had a large effect on capture probability.
Without playback, the baseline capture probability (po) was
0.029, compared to 0.156 at nets with playback (Table 2).
The scale parameter (o) of the capture probability model
indicated that capture probability was negligible at nets
that were >500 m from an individual’s activity center
(Figure 6). The probability that a bird vocalized during the
10 min point count was 0.96 (Figure 6) and was not
strongly affected by either date or time of day (Table 2).
Canada Warbler detection probability decreased rapidly

with distance, being approximately zero at 100 m (Figure
6).

DISCUSSION

We described a spatially explicit, individual-based model
that allows for population-level inference from capture—
recapture and survey data. Unlike previous spatial IPMs
that focused on temporal variation in recruitment
(Chandler and Clark 2014), we developed an approach
for modeling spatio-temporal variation by adopting a point
process for the abundance and distribution of recruits in
each year. The model can be used to assess the effects of
environmental variables on demographic parameters in
studies of population dynamics, and it should be useful for
informing conservation decisions because it provides a
means of identifying high-quality habitat, defined as
environmental conditions where survival and recruitment
are highest (Van Horne 1983).

Our model yields maps of spatio-temporal variation in
density, and it can therefore be viewed as a type of
hierarchical species distribution model (Hefley and Hooten
2016). However, most species distribution models are
designed for presence-only data or survey data, whereas
our spatial IPM accommodates data on marked individ-
uals, allowing for insights into the demographic processes
that contribute to changes in species distributions (Schurr
et al. 2012, Normand et al. 2014). Although numerous new
methods have been developed for using data on unmarked
animals to study the effects of environmental variables on
species distributions and population dynamics (Dail and
Madsen 2011, Sollmann et al. 2015, Nadeem et al. 2016),
data on unmarked animals provide much less direct
information about demographic processes than capture—
recapture data. For example, if a population is at
equilibrium, count data collected on unmarked animals
cannot be used to determine whether mortality is equal to
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FIGURE 3. Estimated density surfaces for the 4 yr of the study. Color indicates number of male Canada Warblers per hectare; gray
contour lines show elevation. In years 2015-2017, density was modeled as a function of spatial variation in apparent survival and
recruitment. Data are from 109 point-count locations (+) and 9 mist-net sites (X) in Nantahala National Forest, Macon County, North

Carolina, USA. UTM = Universal Transverse Mercator, zone 17N.

recruitment or mortality and recruitment rates are low. By
accommodating data on marked animals, we can distin-
guish between these possibilities and obtain precise
estimates of vital rates (Zipkin 2014a). In particular,
monitoring marked animals over multiple years provides
much more information about survival than can be
obtained from surveys of unmarked individuals. Although
less informative than the data on marked individuals, the
survey data do provide important information about
spatial variation in apparent survival and recruitment.
For example, if abundance is increasing in some regions of
a study area but not in others, it must be the result of
spatial variation in recruitment. Similarly, declines in
abundance indicate that recruitment is not sufficient to
offset losses due to mortality or emigration. Nonetheless, if
resources were unlimited, the survey data would not be
needed because SCR data provide all of the required
information about distribution and demography. The
primary reason for utilizing the survey data is that it is
typically cost prohibitive to collect SCR data at a fine

spatial resolution over a sufficiently large region to
characterize spatial population dynamics. Combining
capture—recapture with survey data, which can be
collected with much less effort, is therefore desirable. This
intuitive idea has been recognized by avian ecologists for
many years, but only recently has it been made possible in
a statistical inference framework (Rappole et al. 1998,
Ahrestani et al. 2017).

The state model in our IPM is a spatio-temporal point
process, in which the points (individuals) enter and exit the
population via recruitment and mortality. Point process
models have a long history in ecological research for
datasets in which the points are directly observed (Stoyan
1982, Rathbun and Cressie 1994). However, in our case,
the points are unobserved activity centers whose locations
are inferred from the capture and detection locations. The
use of a spatio-temporal point process model allows for
inferences about individual, spatial, and temporal variation
in demographic parameters, and the inferences are scalable
from the individual to the population level and from small
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FIGURE 4. Estimated relationships between Canada Warbler
vital rates and elevation over the range of elevations in our
study area in Nantahala National Forest, Macon County, North
Carolina, USA. Apparent survival (¢) is the probability of
surviving and remaining in the study area. Recruitment (y) is
defined as the per capita rate at which new individuals enter the
population. Population growth rate is A = v + ¢. See text for
details.

to large spatial regions. Spatial scaling is possible because
the intensity functions vary continuously in space and can
be used to predict demographic parameters at any point in
the study area, yet they also can be averaged over larger
regions that may be of interest to managers. Among the
benefits of modeling individuals is that it alleviates
problems such as the ecological fallacy—drawing infer-
ences on individuals from group data—and the “modifiable
aerial unit problem” in which inferences become strongly
scale dependent when modeling aggregated spatial data
(Robinson 1950, Openshaw and Taylor 1979, Clark et al.
2011). Point process models avoid these dilemmas by
modeling the aggregated data (e.g., the observed counts)
conditional on the individual-level latent variables. In
addition to avoiding bias due to aggregation, these models
provide an opportunity for understanding the spatial scale
at which environmental variables most strongly influence
ecological processes (Chandler and Hepinstall-Cymerman
2016). Moreover, point process models allow for statistical
inference and therefore overcome many of the limitations
of conventional individual-based models that are often
criticized as being too ad hoc and complex to allow for
generalizable insights from empirical data (Grimm 1999,
Hooten and Wikle 2010).

Although spatial IPMs allow for individual-level varia-
tion in demographic parameters, the only source of
individual heterogeneity that we focused on was that due

R. B. Chandler, J. Hepinstall-Cymerman, S. Merker, et al.

to location. Location is clearly important because individ-
uals in different environments often have different
probabilities of surviving and reproducing, but we ignored
other important sources of variation arising from differ-
ences in sex, age, and individual traits, which are the focus
of most matrix population models and integral projection
models (Easterling et al. 2000, Caswell 2001, Ellner and
Rees 2006, Ghosh et al. 2012). Future work could
accommodate these sources of variation by borrowing
ideas from the nonspatial capture—recapture literature in
which individual-level covariates are modeled as partially
observed latent variables (King et al. 2008). For example,
data on sex-specific detection rates could be used to
estimate the sex ratio of the entire population. Distin-
guishing between males and females would make it
possible to estimate fecundity, which would allow for the
assessment of hypotheses about reproduction. In addition,
a sex-structured model with dispersal would allow one to
understand the relative contributions of fecundity and
dispersal to recruitment (Ergon and Gardner 2014, Schaub
and Royle 2014), which would be difficult to achieve with
matrix or integral projection models (Merow et al. 2014).

One limitation of the proposed modeling framework is
computation time. Excessive run times (>1 wk model )
led us to simplify our model by treating the SCR and
distance-sampling data as conditionally independent.
Specifically, we modeled both datasets conditional on the
same intensity function, but not on the same realized point
pattern. The latter option is straightforward but very
computationally challenging with distance-sampling data
because each detection is conditional on the unobserved
activity centers and movement events of all individuals in
the state space. By ignoring the identity of the individuals
detected in our distance-sampling surveys, we avoided
much of the computational burden, but we discarded some
information about the locations of activity centers and the
scale parameter o, which is associated with territory size.
Ignoring this information should have no effect on
inference if the capture-recapture and survey locations
are far enough apart to ensure that individuals captured in
mist nets are not detected during distance sampling.
Future work should attempt to develop computationally
efficient methods for implementing the conditional
modeling approach to account for this form of statistical
dependence.

Our application of the spatial IPM to the Canada
Warbler data provided several interesting insights. First,
apparent survival was low compared to that of other long-
distance passerines (Sillett and Holmes 2002), with <40%
of individuals surviving and remaining within the study
area. This low estimate resulted, in part, from the fact that
we never captured an individual in >2 consecutive years. It
is unlikely that permanent emigration contributed sub-
stantially to this low estimate because, like most passer-
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FIGURE 5. Spatially explicit population growth rates ((s)) for Canada Warblers in Nantahala National Forest, Macon County, North
Carolina, USA. Point estimates (posterior means) were <1 throughout the study area, but 95% credible intervals (Cl) included 1. UTM
= Universal Transverse Mercator, zone 17N.
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FIGURE 6. Estimated encounter functions for the point-count data (A) and mist-net data (B) for Canada Warblers in Nantahala
National Forest, Macon County, North Carolina, USA. “Distance” in A is the distance between an observer and a bird. “Distance” in B

is the distance between a mist net and an activity center.

ines, Canada Warblers exhibit high site fidelity (Hallworth
et al. 2008, Cline et al. 2013) and none of the marked birds
in our sample were observed to move >200 m among
years. It is more likely that events during the nonbreeding
season and interactions among seasons contributed to the
low apparent survival (Sillett and Holmes 2002, Small-
Lorenz et al. 2013, Rockwell et al. 2017). Although
apparent survival was low, and the point estimates for
population growth suggested that the population was
declining, the credible intervals for population growth
rates included 1, indicating that recruitment may be high
enough to offset low survival. However, with only 4 yr of
data, more research is needed to determine whether this
population is undergoing a long-term decline as predicted
by climate-change models (Matthews et al. 2004).

We found evidence that the pronounced density
gradient in our study area was the result of apparent
survival increasing with elevation. Both the SCR and
distance-sampling data indicated that individuals at lower
elevations returned less often than individuals at higher
elevations, either because they died or because they
dispersed beyond our study area. As more years of data
on dispersal become available, it should be possible to
distinguish between losses due to mortality vs. emigra-
tion. In contrast to apparent survival, per capita
recruitment did not exhibit substantial variation over
the elevation range. Rather, the number of recruits in an
area was determined primarily by local density in the
previous year. For example, at low elevations where
density was low, recruitment was also low, as can be seen

by the consistent lack of detections at the point-count
plots below 1,000 m.

Additional research is needed on the mechanisms that
govern the relationships between elevation and apparent
survival and recruitment. Clearly, it is not elevation per se
that influences vital rates, and future work should attempt
to determine how demographic parameters are affected by
environmental variables that covary with elevation. For
example, modeling the direct effects of weather variables
could provide valuable insights, because recent research
has demonstrated that birds do not always shift their
distributions upward in elevation in response to climate
change, but instead may be more likely to track
precipitation and temperature patterns (Tingley et al
2009, 2012). More research is also needed to assess the
relative influences of dispersal and fecundity on spatial
variation in recruitment. The modeling framework devel-
oped here provides a platform for addressing these
research questions and advancing knowledge about the
factors that influence spatial population dynamics.
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APPENDIX

The following is the JAGS code used to implement the
spatial IPM with logistic relationships between demographic
parameters and elevation. See comments for details.
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model{

## Baseline encounter rate
pO.scr(1,1] - dunif(0,1) # Without playback

P0.scr(2,2] <- 0 # Could add other effects here
## Scale parameter of SCR and DS encounter functions
igamma (0.001, 0.001)
gma.scr"2
sigma.ds ~ dunif(0, 200)
## Parameters of initial demsity, apparent survival, and recruitment
## functions
mu0 - dunif(0,50) # Asymptote of initial density
mul - dnorm(0, 0.01) # effect of elevation
phi0 - dunif(0,1) # Asymptote of apparent survival
phil - dnorm(0, 0.01)
gamma0 - dunif(0,50) # povmptote of per-capita recruitement
gammal ~ dnorm(0, 0.01
## Spatial variation in initial density, survival, and recruitment
for(g in l:nkix) {
mu(g,1] <- mu0/(L+exp(-mulelev(g]))*area.pix
BRi(g) <= Phid/(Ltexp(-philelevig)))

for(t in 2:ne:
amma(q,t] <o gamma0/ (1texp (- gummaiselev(s))) malg, t-1]
[

mafg,t] <- mu[g,t-1)*philg] + gammalg,t

¥

EN[1] <- sum(mu[,1]) # Expected value of abundance in entire

EN.s[1] <- sum(mu[netPixels,1]) # Subset of spatial region where s(i) can

occur
Psi[l] <- EN.s[1]/M # Probability of being a member of the population

N[1] < sum(z[,1]) # Realized initial abundance in state-space
for(t in 2:nvears)
N[t) <= sun(z(,t])
Bt <= 2(E] Lt (gl eo1)) # Reoruits in state-space
ivors in state-space

S[t] <= z[,t] 8*% z[,t-1]
Expec(ed value of N in entire region
n state-space

EN(E) <- som(ma[,t
EN.s[t] <- sum(mi[netPixels,t]) # Expected valu
ER[t] <- sum(gammal,t)) # Expected value of recruitment
ER.s[t] <- sum(gamma[netPixels,t])

psi[t] <- ER.s[t]/sum(a[,t-1]) # Probability of being recruited

## Probability of being in each of the net pixels in each year
for(g in linNetPixels)
pilg,1] <- mulnetPixels[g],1]1/EN.s[1]

for(t in 2:nvears)
pilg,t] <- gamma[netPixels(g], t]/ER.s[t]

)
)
## Point process model for activity centers and SCR data
# The 'zeros trick’ is used to £ 55 model
## contribution is provided based on the intensity function
For(i in 1
s[5,1,1] - dunif(xlin(1],xlin(2])
s(i,2,1] - dunit(ylin(1),ylin(2])
for(g in 1:nNetpixels)
tif s is outside 'netpixels’
dx.sq(i,3,1) <- s(i,1,1)-gCoords netPixels(g], 1]
Gp-ssliisil] < sl 2, -gCaomdsinetriela(gl;2)
d2.59(i,g,1] < dx.39[i,g,1]°2 + dy.sli
Soutli,gi1) <o (abs(ax.baii,gr1])5 (ren/2))
Temingi,g,1] < equals{d2.sgri,g,1], nearest(i,

)
## ‘Ones-trick’ to enforce non-rectangular state-s;
ones[1,1] - dbern(l-equals(sum(sout[i,,1]), nNetPixels))
nearest(i,1] <- min(d2.sg(i,,1])

pix(i,1]
nll(i,1] < -log(pi(netpix(i,1],11)

zeros[i,1] - dpois(nllli,1]) # Zeros-trick to implement inhomogencous pp
2(4,1) - dbern(psi(1])

ali 1] <= 1-2(i,1]

## Point process for recruitable individuals
Slrecli 1t - Gunif(xlini1),x1in(2])
Sorecliiaie] - it (yLini yLn(e))

ecivers)

‘netpixels
< S reclis1, ] gCoords netpixels(al, 1]
< 3lreclis2)t]-gCoorasinetrixelsial,2]
<= dx.sq[l,g,t]‘z + dy.sg[i,g,t])"2
1 <= (abs(dx.s90i,, 10> (res/2)) ||

(abs(dy.sqli,g,t])>(res/2))
i/g,t) <- equals(d2.sg(i,g,t], nearest(i,t])

b
ones[i,t] ~ dbern(l-equals(sun(sout(i,,t]), nletPixels))

2(i,¢] - dbern(z(i,t-1)*phi[pix(i,e-1]] + a[i,t-1)*psi[t])
€] < (1-z(i,t])*ali,e-1]

ali,

)

For(t in linvears) (
for(3 in linNets) {

d2lsx3[4,3,8] <= (s[4,1,t]-x.50x(3,11)°2 +
2,t)-x.50x(3,2])°2
p20.scr(i,3,t] < exp(-d2.sx)(i,3,t]/5ig2.505) *2(1,¢]

# Next loop is only over days during which
# netting occurred each year. This saves a ton of time
for(k in l:nOperbays(t]) {

is only over nets that were
# operated on day k in year t. Big time saver
for(j in operNet[l:nOperNets[k,t], k,t]) {

# Probability of being captured as a function of distance and

playback
y-ser(i,3,k,t] ~ dbern(p0.scr(playback(j k,t],

¥
}
everalive(i] <- max(z[i,])
## Bstimate sigma.ds from binned distance d

## This uses the conditional multinomial likelihood
7 And vses the clwsed form i

for(b in linBins) {
BTl 141593+ (sigma.da 2+ (1-exp(-dbroska[be1] 2/ (2+signa.d8°2)) )
a.ds 2% (1-exp(-dbreaks(b]"2/ (2*signa.ds"2)))) /

p.ds(b

bin.area[b]
pi0.ds[b] <~ p.ds(b]*bin.prop[b]
pi.ds(b] <- pi0.ds[b] / sum(pi0.ds)

) # Jacs lizes int

spatial region

yans(wsgu,g,umresmy
1)

1)pz0.ser(i, i, t])

of the integral of the distance bins

ds.binned - dmulti(pi.ds,

## Model for observed point count data, including the

## time-of-detection dat

for(1 in 1:neCs) {
for(t in firstC[1]:nYears)
loqxttp.remll €1)
)<= p.rem(1,t]
Bilren(1,62] < porem(1,£]*(1-p.rem(1 1)
pi.zenll &3] < p.rem(lt)+(1-p.renilt])"2

Bilren(1,6,4] < porem(1,£1+(1pireni1,e])"
n.. ds[l t]) # JAGS will normalize

y.rem[1,,t] ~ dmulti(pi.rem(l,t,1:4],
p.bar[1,t] <- pbar.ds*sum(pi.rem[1,t,1:4])
## Expected value is local density * point

count area *

n.ds[1,¢] - dpois((mu[pixlookup[1],t]/area.pix)*area.pc+p-bar(l,t])

¥

Nsuper <- sum(everAlive)

{
<- alpha0 + alphal*date[l,t] + alpha2*time[1,t]
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