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Abstract

Our recent experimental work on electron spin waves in atomic hydrogen gas has prompted a

revisit of the theory of the identical spin rotation effect (ISRE). A key characteristic determining

the properties of the spin waves is the quality factor of ISRE. Unfortunately, calculating this

quality factor takes some toil. In this paper we summarize some results of the ISRE theory in

dilute gases. We also derive asymptotic formulae for the quality factor and examine their

accuracy for hydrogen and 3He.

Supplementary material for this article is available online
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1. Introduction

Studies of quantum gases have been an integral part of

quantum optics for several decades. The ground state of spin-

polarized atomic hydrogen forms an interesting four-level

system that can be controlled by NMR (nuclear spin) and

ESR (electron spin) methods. The role of atomic collisions,

however, can be very different in this system compared to

laser spectroscopy or cooling of atoms. The key point is that

atomic collisions can lead to other collective spin phenomena

such as spin waves and their description with quasiparticles,

the magnons. Thus it is both interesting and crucial to

understand collisions in spin-polarized low-temperature

hydrogen atoms. By making this study we wish to honor

Professor Dr Wolfgang Schleich and his many significant

contributions to quantum optics and beyond.

In the scattering of atoms, indistinguishablity and iden-

ticalness play a central role. Crucially, identical atoms in the

same spin state experience interference effects, but identical

atoms in orthogonal spin states behave as distinguishable

atoms. The difference is particularly stark for fermions, where

the difference between parallel and orthogonal spin states

determines whether the lowest-order interaction is the partial

p-wave or s-wave, respectively.

The result is an effective spin-dependent interaction

between the atoms, known as the identical spin rotation effect

(ISRE) [1]. ISRE acts between identical atoms in neither

parallel nor orthogonal spin states. Its effect is a rotation of

the interacting spins around their sum, an inevitable con-

sequence of the different phase shifts that the different spin

components of a superposition state experience. As an

exchange effect, ISRE becomes more pronounced as the wave

function overlap Λth becomes larger than the typical interac-

tion range as, being significant already in the quantum gas

regime (Λth>as).
ISRE is intimately connected to transport phenomena

such as heat conduction and spin diffusion. In particular,

helical spin currents or spin waves have been predicted [2, 3]
and observed for example in nuclear spins [4, 5] and in

electron spins of atomic hydrogen [6, 7]. In electron spin

spectra these spin waves modify the shape of the main

absorption peak and create side peaks related to certain wave

numbers. The temperature and density behavior of one of the

peaks has also suggested that one may treat these spin waves

Physica Scripta

Phys. Scr. 93 (2018) 094002 (8pp) https://doi.org/10.1088/1402-4896/aad4d6

3
Current affiliation: Institute for Quantum Science and Engineering.

0031-8949/18/094002+08$33.00 © 2018 IOP Publishing Ltd Printed in the UK1



as quasiparticles (magnons) which undergo Bose–Einstein

Condensation [6]. Spin transport effects related with ISRE

have also been observed in liquid 3He [8], 3He gas [9, 10],
liquid 3He–4He mixtures [11], and in the cold gas of 87Rb

[12–14].
The main equations describing spin transport in quantum

gases turned out to be identical with those for the degenerate

Fermi liquids, e.g. in liquid 3He and mixtures of 3He in 4He,

where the spin precession occurs due to an effective molecular

field [15, 16]. In fact, the theory of degenerate Fermi liquids was

first used to predict and characterize spin waves in quantum gases

[17]. It was later shown [18] that this similarity of the ISRE

theory and the Leggett–Rice theory in Fermi liquids is not a

coincidence, but a consequence of the same physical origin of

spin transport phenomena in these systems.

The quality factor of the spin waves is central to char-

acterizing the region where spin waves persist. It is a measure of

the persistence of the spin waves against homogenizing diffusion,

and can be given as a ratio of the spin-wave frequency to their

time decay constant. Generally it is related to the spin-wave

quality factor μ, a ratio measuring the effect of ISRE to classical

diffusion. In the case of the spin-1/2 gas the quality factor of spin
waves is given by m∣ ∣S , where S stands for the spin polarization

density of the unperturbed spin gas. For higher spins one may

have different results [19]. Couplings to other degrees of freedom
may also significantly reduce the actual quality factor [3]. These
issues are elaborated on in section 2.

The calculation of the spin-wave quality factor μ is quite

complicated [20], generally involving various scattering quan-

tities at different momenta and their averages. However at low

temperatures only the s-wave scattering contributes significantly

to the interactions (for both bosons and fermions, as ISRE ulti-

mately occurs between non-parallel states). From heuristic

arguments it has been known that m ~ L
as

th as T → 0, where the

right-hand side is simply proportional to the ‘quantumness’ of the

gas. The asymptotic limit of μ was first derived in [18]; in
section 3, we repeat this derivation with more detail. For com-

parison, an expression with higher-order terms is also derived.

With this as a basis, we derive the asymptotic limit for μ of

electron spin waves based on the approach of Bouchaud and

Lhuillier [3], who considered specifically the case of b–c-

coherence in atomic hydrogen and treated hydrogen explicitly as

composed of a nucleus and an electron. Finally, in section 4 the

accuracy of these expressions as compared against a numerical

calculation of μ for hydrogen and 3He is provided.

2. Types of ISR equations

The ISR equation is a spin diffusion equation which accounts

for spin currents arising from symmetrization of wave func-

tions. The first step in its derivation is to derive the relevant

scattering cross section(s), first done by Pinard and Laloë [21]
and later repeated in [1, 22]. In the second step, the cross

section is used in a Boltzmann equation which is subse-

quently solved using a Chapman–Enskog expansion, which

examines at a small perturbation around the equilibrium spin

polarization density

S . This gives an expression for the spin

current [2, 3], which in conjunction with the equation for

precessing spin g
¶


¶
+ 


=


´


·

S

t
J S H leads to the ISR

equation for the transverse spin (polarization) density S+=
Sx+iSy:


g

m
m

¶
¶

+ =
-
+

+
+ +

S

t
H S D

S

S
Si

1 i

1
,z
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where

D0=spin diffusion coefficient

n=gas number density

ε =±1 for bosons/fermions

μ=spin-wave quality factor

S=magnitude of the longitudinal (z) spin polarization

S+=transverse spin polarization

Hz=component of

H parallel to S

γ=gyromagnetic ratio of the electron or the nucleus.

For a highly polarized gas S≈Sz, and the equation simplifies

slightly to


g

m
¶
¶

+ =
+

+
+ + ( )

S

t
H S D

S
Si

1

1 i
. 1z 0

2

This is the ISR equation based on the form given by Lhuillier

and Laloë (LL) [2], and is valid for spin- systems with

negligible couplings to other degrees of freedom, such as

nuclear spins of atoms with ‘frozen’ electron spins (i.e. the

electron spins are fully polarized and the electrons are bound

to their respective atoms during collisions).

LL used spin polarization density in their derivation instead

of magnetization; further, they chose their axes so that the Sz(≈S)

is always parallel to the positive z-axis. Specifically this means

that  S0 1z . A less obvious consequence is that the sign of γ

plays no role in the equation. In particular for electrons γ<0,
however the spins are aligned against the field. As Sz by defi-

nition always points in the positive z-direction, in order for them

to be aligned against the magnetic field, one must flip the

direction of Hz; this exactly cancels the sign of γ (see also

appendix A). Lastly, if one were to flip the polarization/mag-
netization of the gas, the correct way to account for it in the ISRE

equation would be to flip the magnetic field.

Bouchaud and Lhuillier [3] considered atomic hydrogen

taking into account both nuclei and electrons (in fact some of

their results are general to atoms with one valence electron

[22]) and allow electrons to jump from one nucleus to the

other during the collision. Specifically they consider the cases

of the 0–0 (F=0, mF=0−F=1, mF=0)—coherence in

weak magnetic field and the b–c (S=−1/2, I=−1/2—
S=1/2, I=−1/2) coherence in strong magnetic field. For

both cases they arrive at essentially the same ISR equation but

in the former case with a drastically modified quality factor Q,

which turns out to significantly limit the observability of 0–0

spin waves:

m
=

+ m+ -
( )Q

S

T1
. 2

z

S

D k

1
2
1z

z

2 2

2

2
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For the b–c coherence they obtain

*

* *m m
¶
¶

=
+ +


( )

( )
( )

z

t

D I

M S
z

1 i
, 3

z

1 2

2

where M, S, and I are various quantities characterizing

polarization (see section 3.1). This equation has no epsilons

(ε) because they are already included in the calculation of the

μ and the relationship is not as simple as it is for LL.

Earle [19] considered the spin-1 case of deuterium nuclei

and following LL derived the ISR equations for various spin

waves, but with μS replaced by 2μA±2 for g a« transition

and m -( )S A60 0 for g b« spin waves (Ais are the

components of the nuclear quadrupolar alignment tensor).

Generally the ISR equation has the form

m
g

¶
¶

=
+

 -+
+ + ( )

S

t

D

S
S H S

1 i
i 4z

0

eff

2

with various expressions substituting for μeff and depending

on approach, S may be positive (LL) or assume even negative

value (Bouchaud and Lhuillier).

2.1. Trapping magnons

The ISR equation is mathematically similar to Schrödinger

equation with magnetic field in the role of potential. While

physically the ISR equation is not in any obvious way connected

to the energy of spin waves, nonetheless one may use the

intuition from the Schrödinger equation to say something about

the spin waves. Just as one can speak of trapping quantum

systems in a potential, one may also speak of spin waves being

trapped by the potential (that is, the magnetic field). Whether the

spin waves are attracted to potential minima or maxima depends

essentially only on the sign of μ. For example, consider m ∣ ∣ 1:

one may then write the ISR equation as



m
g- = -  -+

+ +


   ( )∣ ∣

( )

5
S

t

D
S H Si

d

d
.

m

z

V r

0

2

2

2

(Here the modulus of γHz is used to emphasize the fact that the

sign of γ is not relevant.) This differs from a Schrödinger

equation only by the sign of
+S

t

d

d
; taking the complex conjugate

would recover a Schrödinger equation for the conjugate *+S , a

particle with mass
= m

m
D2

2

0

. What matters is that the sign of the

‘kinetic’ term is the same as in Schrödinger equation. Now for

μ>0, a strong magnetic field corresponds to a potential mini-

mum, so the resulting spin waves should concentrate in regions

of strong magnetic field. Spin waves in stronger magnetic field

would also have higher precession frequency: as the mode

number increases, the frequency should decrease as the modes

move out of the potential to regions of weaker magnetic field. An

increasing frequency spectrum would be observed for μ<0 or

flipped magnetization ( g g- ∣ ∣ ∣ ∣H Hz z ), but not for a change in

the sign of γ as previously explained.

3. The asymptotic expressions

The ISRE parameter μ characterizes the ratio of transverse

rotation of ISRE to the normal spin diffusion which tends to

homogenize the gas. It depends on three different cross sections

(momentum =

 k k ): the usual scattering cross section σk(θ)

of scattered atoms, an interference term t ( )kfwd
ex for transmitted

atoms, and an interference term for scattered particles t q( )k
ex [1].

From these one may obtain the angle-integrated cross sections

òp q q s q q= -s

p
( ) ( ) ( )[ ]Q k 2 sin 1 cos d .t t

0

The phase shift expansion of the T-matrix gives the expressions

of [20]:

å

å

å

p
d d

p
d d d d

t
p

d

= + -

= - + -

= - +

s

t

=

¥

+
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¥

+ +

=

¥

( )( ( ))

( ) ( ) ( ) ( ) ( )
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l
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1

2
0
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1

2
0

1 1
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2
0

k
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Here δl is the l-wave phase shift. From these, using the collision

integrals

òp b
g

b
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gW = =a
g

a

¥
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2 3
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one arrives at the definition of μ:

m =
W + X

W
t t

s

[ ]
( )

[ ]
( )

[ ]
( )

.

1,1 1

1,1
k

ex
fwd
ex

Assuming that for low momenta the phase shift behaves
asymptotically as d p= - ++( )ka nl l

l2 1 justifies the definition

of the l-wave scattering length:

d
= -

 +
+

⎜ ⎟
⎛

⎝

⎞

⎠
( ( ))

a
k

k
lim

tan
.l

k
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l

l

0 2 1

1
2 1

For l=0, 1 this usually works, but for higher partial waves

the scattering length defined thus may not be finite. However,

the phase shift may behave as~( )kal
q for some q, in which case

higher scattering lengths may be defined by suitably adjusting the

definition of the phase shift.

Expanding the angle-averaged quantities to second order

in k gives

p p= - + +s

⎛

⎝
⎜

⎞

⎠
⎟ ( )( )[ ] 8Q a a k

a
a k4 4

3
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0
2
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1
3 4
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

t
p

p

=

=- + + +

t

⎜ ⎟
⎛

⎝

⎞

⎠
( )

( )

( )

[ ]

9

Q k

a

k
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4
4

2

3
3 .

1 3

fwd
ex 0

0
3

1
3 3

ex

One could also take terms up to first-order in k, but most

likely owing to the rational form of μ these seem to be less

accurate. Higher-order terms may depend on a2 which, as

mentioned before, generally is not finite, and one may have to

3
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consider the sign of t[ ]Q1
fwd
ex due to nπ term of δl, which turns

out not to be an issue for s[ ]Q1
k

(square of sine) and tfwd
ex

(always a multiple of 2π).

In the next step the above expressions are integrated with

a Gaussian over all k. The validity of this approximation is

discussed in appendix B. The results are

 


 

p
p
b

p
b

p
b

p
b

p
b

W = - -

X =- + +

s

t

[ ]
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[ ]
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a m a m

a

a

m

a m a m

4
4 24
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2
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2

45

4
.
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0
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4

2

0

2 1
3

1 0 0
3

1
3

k

fwd
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3
2

3
2

3
2

Taking the first term of both expressions (with L = b
p
h

m2

2

),

the asymptotic behavior is

m = -
L⎛

⎝
⎜

⎞

⎠
⎟ ( )

a

3 2

16
. 10

0

The same result was obtained earlier in [18]. As can be seen,

the sign of μ at low temperatures is determined by the s-wave

scattering length.

Using all the terms of the collision integrals above, one

arrives at the first-order μ:

m
p p

p
p p

p
p p
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- L

L - -

+
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+
L

L - -
( )

( )
11

a a a

a

a a a

a

a a a a

3 2

16 32 192

5 2

8 16 96

45 2

16 2 12
.

3

2
0 0

3
1
3

0
2

2
0 0

3
1
3

1
3

0
2

0 0
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1
3

3.1. Asymptotic behavior of μ in Bouchaud and Lhuillier’s

treatment of b–c coherence in atomic hydrogen

Bouchaud and Lhuillier’s treatment of the ISRE problem is

far more detailed as compared to LLs, and as a result the

calculations are even more cumbersome. The expressions for

the *m factors in (3) are given by the following formulae:

*

*

m

m

= W -
+

W

+ - W - W + W

+ - W + W +
-

W

= X - W - W

+ X - X + W - W

=- X + X

+ W + W

s s

s s s

s s s

t t t

t t t t

t t

t t

⎜ ⎟
⎡

⎣⎢
⎤

⎦⎥
⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎡

⎣⎢
⎤

⎦⎥
⎤

⎦
⎥

⎡

⎣⎢
⎤

⎦⎥

⎡

⎣⎢
⎤

⎦⎥

( )

( ) ˜ ˜

( ) ˜

[ ˜ ˜

˜ ˜ ]

[

˜ ˜ ]

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

12

D
nm

kT

I

I

I
I I

D

nm

kT

D

nm

kT

8

3

1

2

1
1

2

1
3

2

1

2

8

6

3 6 2

8

6
3

2 6 .

0
1,1 1,1

1,1 1,0 0,0

1,0 1,0 1,1

1

0

1 1,1 1,1

0 1 0,0 1,1

2

0

1 0

1,1 0,0

d dt

dt dt t

t t d

d d t

t t
dt dt

t t

dt dt

ex ex
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The quantities in the formulae are similar to those used in the

previous section. A more comprehensive summary is given in

appendix C and supplementary material4.

Using the SymPy Python package [23] to perform the

expansions to first-order, the expressions for the μs one

obtains are

*m = -
L

- - + + +

( )

a

Ia Ia a Ia a a a a

3 2

4 16 4 10 4 34
,

13

g

g g u u g g u u
1 2 2 2 2
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- - + + +
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a a

Ia Ia a Ia a a a a

9 2

8 32 8 20 8 68
,

14

g u
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2 2 2 2 2
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1 2
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I
n n n n

n

S
n n n n

n

M
n n

n

nuclear polarization

electron polarization

.

a d b c

d c a b

c b

ag and au correspond to singlet and triplet potential scattering

lengths, and the ni (i=a, b, c, d) being the number density of

each spin state of atomic hydrogen in strong fields. For a gas

consisting of pure b-state, I=S=M=−1 and one obtains

* *m m m=- - = - -
L

+ +

+
L -

+ +

⎛

⎝
⎜⎜

⎞

⎠
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( )

a

a a a a

a a

a a a a

3 2

6 20 38

9 2

12 40 76
.

g

g g u u

g u

g g u u

1 2
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2
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,0 ,0 ,0
2

To compare with LL we artificially set ag,0=0: one is

left with - - »L L( ) 0.12
a a

9 2

76

2

u u,0 ,0

, to be compared with

LL’s em » - L
S 0.19

a

2

0

.

4. Comparison of exact and asymptotic curves for μ

Figures 1 and 2 show μ calculated for hydrogen’s triplet
potential ( s+b u

3 ) and 3He. The figures also show a comparison

between the asymptotic formulae and more comprehensive

calculations in the fashion of [20] (‘exact’). A trend that

seems to emerge from these examples is that the first-order

expression differs more from the exact result than the zeroth-

order asymptotic formula. Given the poorness of the results

especially for 3He, it seems likely that the first-order formula

is a poor approximation of μ, though it remains possible it is

the ‘exact’ μ which is inaccurate.

For hydrogen, a refined Kolos–Wolniewicz potential [24]
was used to calculate = Åa 0.71u

0 and = - Åa 2.70u
1 with

the variable phase method [25]; the results are in good

agreement with other calculations [26]. For the singlet scat-

tering length in the Bouchaud and Lhuillier approximation,

= Åa 0.16g
0 was used [27]. The required phase shift curves

for the ‘exact’ μ were calculated using a combination of

the variable phase method and a version of the usual

4
See supplemental material at stacks.iop.org/PS/93/094002/mmedia for

details of the derivations.
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solution-matching method [28]. The resulting asymptotic and

first-order curves are seen to follow the ‘exact’ curve,

although the relative discrepancy even at 0.1 K is around 30%

for both. Further, the first-order expression is clearly less

accurate. The Bouchaud and Lhuillier formula * *m m m= +
1 2

fares better at higher temperatures (above 0.1 K) compared to

either LL results. However the situation changes at about

0.1 K where the asymptotic Bouchaud and Lhuiller curve

departs from the other curves. On one hand this speaks of the

applicability of the LL treatment in many contexts, on the

other hand it shows that Bouchaud’s more detailed approach

differs from the more general treatment of LL to a degree

which cannot be explained by the LL theory. In particular it

would seem to suggest differences between electron spin

waves (b–c-coherence) and nuclear spin waves (a–d-coher-

ence) in hydrogen. With Bouchaud and Lhuillier’s definition

of M<0 for hydrogen gas in pure b-state and LL’s definition

M>0 always, the μeff M should have different sign for these

two approaches.

For 3He, a0=−8.0592Å and a1=−3.024Å, calcu-

lated from a Lennard-Jones potential [20]. Once again both

curves approximate the ‘exact’ result equally well until the

discontinuity; there the asymptotic formula fares better

though neither correctly approximates the behavior. A sum-

mary of scattering length used in this work is presented in

Table 1 of Appendix B.

5. Conclusions

We derived asymptotic expressions for the quality factor of

the ISRE nuclear spin waves in quantum gases of atomic

hydrogen and 3He using the theory of LL based on scattering

of identical particles with spin-
1

2
. For electron spin waves in

atomic hydrogen we used the more accurate treatment of

Bouchaud and Lhuillier where the true four-particle nature of

the scattering (two electrons, two nuclei) is considered. The

quality factor parameter μ was calculated with first and sec-

ond order approximations. Comparing the asymptotic values

of μ with results of exact numerical calculations we found

that they agree well with each other within the experimentally

accessible range of temperatures 0.1–1 K, and diverge at low

temperatures as Λ/a0.
Reminiscences from Kalle-Antti Suominen: I first met

Wolfgang in 1988 at a small meeting in Finland, organized by

Stig Stenholm, and later we met several times at different

occasions. Among the most memorable ones was the PhD

thesis defense of Dr Asta Paloviita in Helsinki, when my task

was to get Wolfgang into the official academic attire, namely

a tailcoat or ‘frack’. He made quite an impressive and

handsome sight. I also had the pleasure to visit him and Cathy

at Ulm, where they took me to see the famous Neuschwan-

stein castle in Bavaria. Wolfgang was also one of the key

Figure 1. Accuracy of the asymptotic approximations for hydrogen.
The figure shows the ‘exact’ calculation, the asymptotic formula
equation (10), the first-order formulaequation (11), and the
asymptotic Bouchaud formulaequation (15) forμ in hydrogen. The
inset shows the relative error from the ‘exact’ value. The discrepancy
is around 30% for T∼0.1 K for the LL formulae. The Bouchaud
and Lhuillier formula ( * *m m m= +

1 2
) differs more at low

temperatures.

Figure 2. Accuracy of the asymptotic approximations for 3He. The
figure shows the ‘exact’ calculation, the asymptotic formulaequa-
tion (10), and the first-order formulaequation (11) μ in 3He. The
inset shows the relative error from the ‘exact’ value. The discrepancy
is around 10% for T∼0.01 K. μ changes sign which leads to the
divergence of the first-order result.
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speakers at the CEWQO2009 conference in Turku, where we

both honored the 70th birthday of our friend and colleague

Stig Stenholm, to whom we both have many reasons to be

thankful (sadly, Stig passed away in 2017). Wolfgangs

scientific interests have been both broad and deep, and his

writings have had an essential impact on my research as well

as on my lectures on quantum optics. Together with my

colleagues in Turku, I congratulate Wolfgang on his 60th

birthday.
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Appendix A. The effect of the sign of γ

Assuming the time dependence of ISRE spin waves to be

given by eiΩt (with Ω generally being a complex number),

equation (4) becomes

m
gW =


 -+ + + ( )S

D
S H Si

1 i
i . A1z

0

eff

2

To make explicit the dependence of S on γ we substitute


=

g
S M;

2
the substitution cancels out everywhere but the

denominator on the right




g
g m

gW =


 -+ + + ( )M
D

M
M H Mi

2i
i . A2z

0

eff

2

Substituting γ →−γ leads to




g
g m

gW =
-

- 
 ++ + + ( )M

D

M
M H Mi

2i
i A3z

0

eff

2




g
g m

g=  ++ +
( )

D

M
M H M

2i
i . A4z

0

eff

2

Then we take the complex conjugate:

* * * *



g

g m
g-W =


 -

W

+ + +

  
( ) ( )M

D

M
M H Mi

2i
i . A5z

0

eff

2

The equation we have arrived at is exactly equation (A1) for

W
~
, so the solutions must be the same, with wW = +

~
t
i
for

w t, 0, and time dependence w- +te tit

. The solutions of the

original equation must then have * wW = -W = - +
~

t
i
and

time dependence w- -te ;tit

this is merely a reversal of the

precession direction.

Appendix B. Validity of the asymptotic expression

Various approximations were made in the course of the

deriving the asymptotic expressions and first-order

expressions. The finiteness and the asymptotic form the of the

scattering phase shift has already been alluded to. Immedi-

ately following is the approximation of the sine by its Taylor

expansion. Note that the argument being approximated is not

only the phase shift, but it can also be a difference of phase

shifts. This does not essentially change the situation: the

factors of π cancel out within the sine, and the remaining

quantities are small for small k.

The region of validity for these approximations is shown

in figure B1 for hydrogen. The figure compares equations (8)

and (9) with the numerically evaluated expressions for s[ ]Q1
k

and t ;fwd
ex

t[ ]Q1
ex is also shown for completeness. The

approximations are clearly robust for k<1×10−2Å−1,

beyond which they begin to deteriorate. In the good regime,

then, the following conditions should hold

p p+ 
+

 
⎛

⎝
⎜

⎞

⎠
⎟

∣ ∣

∣ ∣

( )

k a
a

a a k
a

a a
4

3
2 4

3

6
,

B1

2
0

0
3

1
3

0
2 2 0

0
3

1
3

p
p

+ 
+

  ∣ ∣

∣ ∣

( )

k a a
a

k
k

a

a a
4

2

3
3

4 3

2 9
.

B2

0
3

1
3 0 2 0

0
3

1
3

For tfwd
ex , - pa

k

4 0 seems to remain a good approximation even

beyond the point where the k term begin to depart from the

approximation (at the turn of the asymptotic formula).

Combined with the overwhelming magnitude of tfwd
ex this may

explain why the asymptotic formula remains robust for

hydrogen even beyond the region where these approximations

break down.

In the next step an integration over all momenta is carried

out. Obviously this is in contradiction with the small k

approximation needed for the preceding approximations.

However, the functions being integrated have a Gaussian

form, so for suitable parameter regimes the contributions from

higher momenta are negligible. In general the integrals in

equations (6) and (7) depend on the scaled momentum γ as

gg-e ;q
2

they are shown for a few temperatures in figure B1

(q=5). For 1 K the approximations are already not that

good, but in fact for hydrogen the approximations seem to be

valid below 0.01 K.

Clearly what is needed is for the Gaussian to be centered

at a region where the approximations hold. gg-e q2
is centered

at *g = =q

2

5

2
, giving *


=

b
( )k

m2 5

2 2
, which should be

smaller than the momentum where the approximations break

down. Combining this with equations (B1) and (B2) results in

two conditions for temperature:


+

= ∣ ∣

∣ ∣
( )T

a

mk a a
T

6

5 6
, B3

B

Q

2
0

0
3

1
3


+

= t ∣ ∣

∣ ∣
( )T

a

mk a a
T

6

5 2 9
. B4

B

2
0

0
3

1
3

Tτ is almost always the smaller of the two, except in the

narrow region where - < < -5 3
a

a

1
3

0

1

1
3 . Numerical evalua-

tions of the upper bounds TQ and Tτ for hydrogen and 3He are

presented in Table 1.
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Appendix C. A dictionary of cross sections

This section largely reproduces definitions and results from

[3]. However as [3] does not give all the required quantities,

some of them are derived in the supplementary material (see

footnote 4).

Equations (6) and (7) define Ω and Ξ. In addition another

angular average needs to be defined:

òp qs q q=s

p
˜ ( ) ( )[ ]Q 2 sin d . C1
t

0

W̃ uses this quantity instead of Q; further

= -
~ ~

s s s ( )[ ] [ ] [ ]Q Q Q . C2t t0

What remains is to list the relevant cross sections and angular

averages Q in equation (12). Some of these are given in [3]; in
addition changes between quantities s s« ex can be easily

done with the substitution + « - +( ) ( ) ( )L L2 1 1 2 1L . The

rest of the derivations are presented in the see supplementary

material (see footnote 4). The u and g indices in these

expressions stand for phase shifts calculated from the triplet

and single potentials of hydrogen, respectively.

å
p

d d= + -s
˜ ( ) ( )[ ]Q

k
L2 1 sin

L

L
g

L
u0

2
2

t

åp
d d= - + -s

˜ ( ) ( ) ( )[ ]Q
k

L
4

1 2 1 sin
L

L
L
g

L
u0

2
2

t
ex

åp

d d d d d d

= +

´ + + -

s
˜ ( )

[ ( ) ]

[ ]Q
k

L2 1

sin sin 2 cos sin sin

L

L
g

L
u

L
u

L
g

L
u

L
g

0

2

2 2

d

åp

d d d d d d

= - +

´ + + -

s
˜ ( ) ( )

[ ( ) ]

[ ]Q
k

L1 2 1

sin sin 2 cos sin sin

L

L

L
g

L
u

L
u

L
g

L
u

L
g

0

2

2 2

d
ex

åp
d d= + -s

˜ ( )[ ][ ]Q
k

L2 1 sin sin
L

L
g

L
u0

2
2 2

dt

åp
d d= - + -s

˜ ( ) ( )[ ][ ]Q
k

L1 2 1 sin sin
L

L
L
g

L
u0

2
2 2

dt
ex

åp
d d d d

d d d d

= + -

+ -

s + +

+ +

˜ ( )[ ( ) ( ) ( )

( ) ( ) ( )]

[ ]Q
k

L
4

1 sin sin sin

sin sin sin

L

L
u

L
g

L
g

L
u

L
u

L
g

L
g

L
u

1

2 1 1

1 1

dt

Figure B1. Accuracy of approximations at different momenta/temperatures. The figure shows s[ ]Q 1
k
, t fwd

ex for atomic hydrogen with their

series expansions equations (8) and (9), as well as t[ ]Q 1
ex . These quantities are multiplied with a Gaussian and integrated over all momenta; a

few Gaussians for a few different temperatures are shown. For high enough momenta the series expansions naturally break down, so in order
for the asymptotic formula to give a good approximation to μ the Gaussian should be concentrated in the area where the series expansions
approximate the quantities well. This gives upper bounds TQ and Tτ on temperature where the asymptotic formula can be expected to work.

Table 1. Small k regimes s-wave and p-wave scattering lengths and
the temperature upper bounds TQ and Tτ (equations (B3) and (B4))
for validity of asymptotic formula for a few atomic species under the
triplet potential interaction. TΛ is derived from the quantum gas
criterion >L

∣ ∣
1

as

th and is shown for comparison.

Species a0 a1 TQ Tτ TΛ

H 0.71 Å −2.70 Å 0.34 K 0.23 K 600 K
3He −8.1 Å −3.024 Å 0.22 K 0.11 K 1.54 K
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åp
d d d d

d d d d

= - + -

+ -

s + +

+ +

˜ ( ) ( )[ ( ) ( ) ( )

( ) ( ) ( )]
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sin sin sin
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t t
ex ex
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= - = -s s s s
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ex ex ex ex

= -s s s
˜ ˜

[ ] [ ] [ ]Q Q Q1 0 1

dt dt dt
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