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Interactions between climate and ecosystem properties that control phenological responses to climate warming
and drought are poorly understood. To determine contributions from these interactions, we used space-borne
remotely sensed vegetation indices to monitor leaf development across climate gradients and ecoregions in the
southeastern United States. We quantified how air temperature, drought severity, and canopy thermal stress
contribute to changes in leaf flushing from mountainous to coastal plain regions by developing a hierarchical
state-space Bayesian model. We synthesized daily field climate data with daily vegetation indices and canopy
surface temperature during spring green-up season at 59 sites in the southeastern United States between 2001
and 2012. Our results demonstrated strong interaction effects between ecosystem properties and climate vari-
ables across ecoregions. We found spring green-up is faster in the mountains, while coastal forests express a
larger sensitivity to inter-annual temperature anomalies. Despite our detection of a decreasing trend in sensi-
tivity to warming with temperature in all regions, we identified an ecosystem interaction: Deciduous dominated
forests are less sensitive to warming than are those with fewer deciduous trees, likely due to the continuous
presence of leaves in evergreen species throughout the season. Mountainous forest green-up is more susceptible
to intensifying drought and moisture deficit, while coastal areas are relatively resilient. We found that with
increasing canopy thermal stress, defined as canopy-air temperature difference, leaf development slows fol-
lowing dry years, and accelerates following wet years.

1. Introduction

Changes in the speed and timing of leaf development during spring
green-up influence biosphere-atmosphere exchange of carbon (Keenan
et al.,, 2014b; Peichl et al., 2015) and water cycles (Fitzjarrald et al.,
2001; Hayhoe et al., 2007; Hufkens et al., 2016), length of the growing
season (Fridley, 2012; Keenan and Richardson, 2015), and perhaps
even species distributions (Fridley, 2012; Polgar et al., 2014). Strong
interaction effects on phenology involving temperature, moisture, and
plant characteristics at the individual scale (Clark et al., 2014a) suggest
that regional phenological change could depend on such climate-eco-
system interactions. These individual-scale changes, combined with
widespread impacts of phenological changes observed at the con-
tinental scale (Fu et al., 2015b), raise two important questions. First,
could climate-ecosystem interactions control, perhaps even dominate,
the green-up process across different ecoregions relative to broad scale

climate effects? Second, could water availability and canopy thermal
stress slow green-up development in ways that could be directly
quantified? If so, we might better anticipate the combined effects of
warming and drought on leaf phenology (Fu et al., 2014). Answers to
these questions require spatio-temporal analysis that admits full un-
certainty on continuous phenological development and observations
thereof across regions. Clark et al. (2014a) introduced this approach to
phenology at the individual scale. We extend it here to the role of in-
teractions at biogeographic scales. Here, we combine field data with
remotely sensed observations of forest vegetation indices to quantify
how inter-annual variations in environmental variables influence the
speed of spring green-up across ecoregions and climatic gradients in the
southeastern United States.

Inconsistency in phenology measurement and analysis could be
partly responsible for inconsistent interpretations (Cleland et al., 2007;
Fu et al., 2015a; Fu et al., 2015b; Polgar and Primack, 2011; Richardson
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Fig. 1. Static (a) vs. dynamic or continuous de-
velopment models (CDM) (b) for green-up phe-
nology. Unlike static frameworks, the CDM pre-
dicts changing sensitivity over time, while
accounting for the dependence structure within
time-series data. Dynamics models infer both rate
and timing of events, i.e., continuous changes in
rate. Figure b shows a simulated dynamic model
of phenology. DOY indicates day of year.

et al., 2013; Schwartz et al., 2006; Xie et al., 2015). Phenological trends
have been measured by a range of metrics, including a date of onset of
green-up, of minimum greenness, or of peak greenness (Fisher et al.,
2006). It can be duration, such as length of growing season (Reyes-Fox
et al., 2014). It can be a rate, such as the slope of greenness with respect
to time at a specific date (Buitenwerf et al., 2015) or continuous
throughout the development period (Clark et al., 2014b). Some studies
have used multiple metrics in combination (Buitenwerf et al., 2015),
yet most models have focused on the date or degree days at budburst
(Fig. 1a). Despite the large number of studies on leaf phenology (Fisher
et al., 2006; Fridley, 2012; Keenan et al., 2014b; Xiao et al., 2006), the
interactions involving climate and ecosystem properties remain poorly
understood (Beedlow et al., 2013; Cufar et al., 2012; Yue et al., 2015).

Models that can evaluate continuous leaf development are needed
to determine the climate-ecosystem interactions that control the
growing season. Paradoxically, while green-up starts earlier in warm
regions, it is in fact slower (Clark et al., 2014b). In other words, across a
region, mean temperature has a positive effect on onset of green-up,
while its correlation with the rate of green-up is negative. Moreover,
global warming is all about temperature anomalies—changes in daily
temperatures from one year to the next. If temperature has opposing
effects on onset versus rate, then warming effects must be inferred
dynamically. The paradoxical slower development in warm regions is
accurately quantified by the continuous development model (CDM),
because it captures both timing and rate. Unlike degree-day models,
which aggregate temperature variation into a single number for a given
day, the CDM tracks its changing impacts over time. Because it is
continuous, it further separates the effects of mean temperature and the
day-to-day anomalies. This dynamic capability can embrace the inter-
actions that involve both static and dynamic variables (Fig. 1-b). CDMs
can quantify influence of environmental variables such as warming and
droughts and their interactions with ecosystems by quantifying the
development process over time.

CDM allows us to reconsider the important insights from a range of
previous analyses, while combining them to infer climate-ecosystem
interactions. Changing temperature, precipitation, moisture and their
interactions may or may not affect green-up across ecoregions.
Temperature effects on green-up (Cleland et al., 2007; Polgar and
Primack, 2011; Schwartz et al., 2006) have been demonstrated with
cumulative heat indices (e.g. degree days) (Jing et al., 2016; Kwit et al.,
2010), but there could be interactions that regulate its effects. Sensi-
tivity of spring green-up to warming may be limited by unmet vernal
chilling and/or photoperiod requirements (Fu et al., 2015b). The effects
of warming may vary throughout spring green-up, due to changing
physiological sensitivity during plant development. Hydrological stress,
as a result of warming or lack of moisture, could also delay leaf de-
velopment (Wang et al., 2016). Ecoregions in the southeastern (SE) US
range from coastal zones to mountainous forests and rolling Piedmont.
This region provides an opportunity to examine interactions that in-
volve daily, seasonal, and inter-annual climate variations across
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ecosystems with a full range of leaf habit, from deciduous to evergreen.

There is growing evidence that temperature effects interact with soil
moisture and precipitation. Inter-annual and geographic variation in
precipitation may influence spring green-up (Zeppel et al., 2014). In
many regions, soils are fully recharged in early spring, and soil moisture
deficit remains low. Where moisture is not limiting during green-up
there could be little response to spring rainfall (Hernandez-Calderon
et al., 2013; Kaye and Wagner, 2014; Rollinson and Kaye, 2012).
During hot days and/or drought, stomata closure reduces photosynth-
esis thereby delaying leaf-out (Yousfi et al., 2015). Green-up may be
delayed during multi-year droughts and in regions characterized by
spring moisture deficits (Hayden et al., 2010; Kaye and Wagner, 2014).

Strong climate-ecosystem interactions could determine green-up
variation across ecoregions, but current evidence does not agree on
how. For example, green-up could be more responsive to temperature
anomalies at high latitudes and elevations compared with warm low
latitudes and elevations (Cufar et al., 2012). Alternatively, green-up
may respond most to warming where growing seasons are long at low
latitudes and in moderate maritime climates near coastlines (Yue et al.,
2015). Individual tree green-up phenology may be more sensitive to
warming in southern than northern US forests, potentially due to the
compressed seasons in the north. Similarly, experimental data from
climate gradients suggest that early spring growth in coastal sites is
more sensitive to temperature anomalies than in mountain sites
(Beedlow et al., 2013).

Variation in leaf habit across ecoregions could determine how
phenology responds to warming (Zhang et al., 2015), but this has not
been quantified at the ecosystem scale. On the one hand, evergreens
may respond more slowly to climate change than deciduous species, as
they tend to display a weak seasonality (Dalmolin et al., 2015). On the
other hand, deciduous trees may be less sensitive to daily weather
variability because the green-up period is compressed. Leaf habit may
also interact with moisture deficit. Green-up phenology and growth of
deciduous trees may be more sensitive to deficit than evergreens or
mixed forests (Montserrat-Marti et al., 2009). Deciduous species with
large leaves could disproportionately respond to changing evapo-
transpiration demand, light, and incoming energy (Dalmolin et al.,
2015). Distinguishing deficit impacts varying with leaf habit can be
directly measured by CDM.

We develop a Bayesian state-space approach to quantify dynamic
daily changes in forest green-up at landscape scales. State-space models
quantify a dynamic development process (Ibanez et al., 2010), in-
cluding observation error (Burthe et al., 2011; Clark and Bjornstad,
2004), and the model uncertainty (Rizzardi, 2008). The CDM accom-
modates nonlinear responses of leaf phenology to environment (Korner
and Basler, 2010), which changes throughout development. We use this
approach to quantify how inter-annual variation in climate affects
phenology across six different ecoregions in the southeastern United
States. Analyses include the interactions involving temperature and
moisture, and how they differ from coastal to interior mountain
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environments with different levels of evergreenness. Using the CDM
developed for ecosystem scale green-up phenology, this study specifi-
cally addresses two key points on: a) how the interactions between
climate and ecosystem control spring green-up across a climate gradient
and different ecosystems; and b) how moisture limitation and thermal
stress could potentially delay spring green-up for different ecosystems.

2. Methods and study design

Climate-ecosystem interactions was determined at the regional
scale. Because it spans coastal lowlands to mountainous interior and a
range of climates, we analyzed vegetation and climate for the south-
eastern United States. This region falls within the coverage of the
MODIS h11vO05 tile, including the states of Georgia, Indiana, Kentucky,
Maryland, North Carolina, Ohio, South Carolina, Tennessee, Virginia
and West Virginia. To simplify discussion, we use physiographic
boundaries as a geographic reference. We selected specific sites for
analysis in the physiographic provinces that include the Appalachian
Plateau, Blue Ridge, Coastal Plain, Interior Low Plateaus, Piedmont,
and Valley and Ridge. The geographically adjacent provinces of
Appalachian Plateaus, Interior Low Plateaus, and Valley and Ridge are
merged as the reference class to focus on three regions: Blue Ridge
Mountains, Coastal Plain and Piedmont. A CDM was developed for and
fitted to daily remotely sensed datasets, automated field measurements,
and geospatial data.

2.1. Study area

Study sites coincide with the Remote Automated Weather Stations
(RAWS) dataset (http://www.raws.dri.edu/). Fig. 2a—c shows the dis-
tribution of the study sites with mean climate and phenology time
series. Automated weather stations are located in forests, savannahs,
shrublands, and grasslands. We analyzed sites with forest cover that
could be classified either as deciduous, evergreen or mixed forest. The
International Geosphere-Biosphere Programme (IGBP) global vegeta-
tion classification scheme was used to select sites with forest cover
including deciduous, and mixed forest. No sites were classified as fully
evergreen forest. Sites with other land classifications were not used in
this study. Sites at which land cover types has changed during the study
period were excluded from the model.

2.2. Field data and regional boundaries

Climate data were obtained from the RAWS dataset (available at
http://www.raws.dri.edu/), including average daily measurements of
air temperature, relative humidity, radiation, precipitation and poten-
tial evapotranspiration (estimated based on the Penman-Monteith
method (Choudhury, 1997)). The data were obtained from ground
stations and summarized as mean annual temperature (MAT,,) and
daily anomalies from MAT,,, or aTemp, .4, for location p in year t on
day d. Climate anomalies were taken as the difference between daily
values and the historical mean values for the same date and location
(Fig. 2a), the aTemp, . 4. Physiographic boundaries were obtained from
the physiographic divisions of the conterminous US (available at http://
water.usgs.gov/).

2.3. Remotely sensed data

Vegetation indices, canopy surface temperature, and land cover
type data between years 2001 and 2012 were obtained from the NASA's
Moderate Resolution Imaging Spectroradiometer (MODIS) on board the
Terra satellite. MODIS data products used in this study are listed in
Table 1. MODIS vegetation indices provide valuable insights on land
surface processes (Ran et al., 2016) and phenology (e.g. Huemmrich
et al. (1999)). The best available MODIS products from NASA's Aqua
and Terra satellites (i.e. MOD13A1, MOD13A2, MYD13A1, MYD13A2)

448

Remote Sensing of Environment 209 (2018) 446455

offer vegetation indices only every 16 days. This time interval is too
wide to capture rapid changes in leaf unfolding during the green-up
season (Klosterman et al., 2014). MODIS Enhanced Vegetation Index
(EVI) has been used extensively to study seasonality in forest dynamics
(Hess et al., 2009; Xiao et al., 2006). For this analysis, we calculated
daily EVI values (Huete et al., 1994) for each site from the daily surface
reflectance data of individual thermal and visual bands. The daily EVI
data provide extensive insight into green-up status. Our EVI index is
given by

Z.S(NIRp,t,d - Rp,t,d)
NIRp,t’d + 6Rp,t,d — 7-5Bp,t,d +1

EVIpia =
(€]

where NIR, R and B are the near infra-red, red and blue bands, re-
spectively. Again, subscript p, t and d indicate location, year and day.
Red and near infrared bands are obtained from MODIS band 1
(620-670 nm) and band 2 (841-876 nm) at 250-m resolution. The blue
band is obtained from MODIS band 3 (459-479 nm) at 500-m resolu-
tion. MODIS bands data are available from MODIS surface reflectance
data (MODO09GQ for bands 1 and 2 and MODOQ9GA for band 3). Given
the coarse spatial resolution of the greenness data, each pixel represents
the overall response of the dominant species. Land cover data for each
site were obtained from the yearly MODIS land cover type (MCD12Q1
v5.1, yearly, 500-m resolution). The MODIS classification was verified
by comparison with the US National Land Cover Dataset (NLCD2011
(Homer et al., 2015)) to exclude inconsistent data (Table S1).

Preseason water deficit status was obtained from the MODIS Global
Terrestrial Drought Severity Index (DSI) (Mu et al., 2013; Mu et al.,
2011), for December, January and February (DJF) before the green-up
season. DSI is a dimensionless metric for relative moisture with respect
to normal conditions, accounting for both anomalies in evaporation to
potential evaporation ration and variabilities in the Normalized Dif-
ference Vegetation Index (NDVI). DSI values are negative during
droughts, and positive in wet years. The preseason deficit variable is
defined as

deﬁcit = —DSID]F

where the bar indicates the seasonal average. To estimate canopy hy-
drological balance, we used the canopy-air temperature differential
(Kim et al., 2016; Still et al., 2014),

ATy 1da = Cpra — Aprds

for canopy temperature C,.q and air temperature A,.q, hereafter
termed as “thermal stress” (Seyednasrollah, 2017; Seyednasrollah et al.,
in review). High AT (canopy warmer than air) is expected at unmet
transpiration demand and low water availability (Mcnaughton and
Black, 1973) that accompanies stomatal closure and canopy heating.
Daily canopy temperature data were extracted from the MODIS land
surface temperature product (MOD11A1 v5) at 1-km resolution. Only
daytime temperature data were used in the model, when AT is expected
to be mostly dominated by stomatal closure. Data with average emis-
sivity error > 0.01 were excluded from the analysis. Only remotely
sensed data with the best quality index, minimum average error, and
clear sky conditions were used. Data during the green-up period
spanned from the onset of green-up until 21 days after leaf maturity.
This range (onset and end of the green-up season) varies for each site
and year; and was extracted using the MODIS Land Cover Dynamics
product (MCD12Q2). The layers “Onset_Greenness_Increase” and “On-
set_Greenness_Maximum” were used for the timing of green-up and
maturity, summarized by region in Fig. 2d and e. Environmental and
phenological variables are shown in the supplementary document.

2.4. Validation

The community green-up response (Fisher et al., 2006; Gressler
et al, 2015; Keenan et al., 2014a) is an aggregate of individuals
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Fig. 2. Historical variation of forest (a) air temperature (from RAWS dataset) and (b) greenness (as EVI) by region. (c) Study sites and ecoregions. Deciduous forests are open circles.
Mixed forests are filled triangles. (d) Length of the green-up season by region. (e) Variation in green-up onset and maximum greenness. The onset and maturity (maximum greenness)
dates are extracted from MODIS product MCD12Q2 for years 2001 to 2012. Whiskers in (d) and (e) are 95th percentiles. Boxes show 50th percentiles.

Table 1

List of MODIS datasets used in the study. The daily MODIS reflectance data from year
2000 to 2014 were downloaded in the original Sinusoidal projection. The grid data were
re-projected to the Equirectangular system.

Product Spatial res. Temporal res.  Use

MOD09GQ 250 m 1-2 days Red and NIR bands

MODO09GA 500 m 1-2 days Blue bands

MOD11A1 1km Daily Land surface
temperature

MCD12Q1 500 m Yearly Land cover data

MCD12Q2 500 m Yearly Land cover dynamics,
onset and maturity

NLCD2011 30m - Land cover verifications

MODIS Global 0.05 degree  Monthly Drought severity index

(Mu et al., 2013; Mu
et al., 2011).

Terrestrial Drought
Severity Index
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(Penuelas et al., 2009), which can be observed on the ground (Keenan
et al., 2014a). Ground truth data (MacBean et al., 2015) is particularly
important in remote sensing studies. We tested the near daily space-
borne observations of EVI against the ground-truth leaf area index (LAI)
at four sites in North Carolina, USA. Test field data were collected every
5-7 days over spring 2008 green-up using a LAI-2000 Plant Canopy
Analyzer (LI-COR, Lincoln, NE, USA), and the comparison of LAI and
EVI show close agreement (Fig. S5).

2.5. Model

We developed a hierarchical Bayesian state-space model for con-
tinuous development of leaf unfolding to infer the main effects and
interactions that control spring green-up. The hierarchical structure
consists of data, process, and parameters (Berliner, 1996). Data include
predictors and the response, greenness (EVI). The process stage de-
scribes phenological development. Consider phenological development
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Fig. 3. Model graph: the data model consists of observations of greenness EVI,, . 4 and predictors X, 4 for site p, year t, and day d. The process model is the time series of true greenness
(latent states, y;, q). Parameters include coefficients 8, process variance o2, and observation error 72 Latent phenology states are Vp,td-

state yp,.q per site p, year t, and day d (Fig. 3): Greenness can increase,
or not, in the interval (d, d + 1), initially at expected rate x,, . 4B, but
declining as development approaches full leaf expansion. This is not to
say that the environment no longer affects greenness following spring
green-up. Rather, the variation, after which spring green-up is com-
pleted, is not part of the green-up process. The submodels for each stage
are organized by the graph in Fig. 3.

The observed EVI values are related to the latent states (y) with a
Gaussian distribution:

EVIp1a~N O .45 rz)
Change in phenological state (dy,, ¢, ¢) from day dtod + 1,
yp,t,d+1 = yp,t,d + dyp,t,d

depends on environmental predictors in a design vector X, . 4, fitted
coefficients B, and process error, with variance o®. The rate can be
positive continuous, but with point mass at zero,

d _ Op,t,ds Op,r,d = 0
Yprd = 0, Sp,t,d <0

8p,t,a~N (Mp.t.d> ‘72)

Hp,t,d = Xp,t,dflﬁ(l - yp,[,d/yp,[,mgx)

where §,, ., 4 can be positive or zero, o is the process stochasticity and
Yp, t, maxis the asymptotic limit for greenness by the end of the green-up
season. The censoring at zero follows the Tobit model, used when
continuous variables may admit discrete zeros (Clark et al., 2017; Sahu
et al., 2010). Given a Gaussian prior distribution for 8, and uniform
prior distributions for 0® and 7%, the overall model can be expressed as:

[8,02% 7% Y, Yimax | X, EVI]

Op.td — Hprd
g

|: 1 [ ]]I(épy[,d > 0)
g
< ITTTTIN Ve 130007

p y d

1(8p,t,d<0)
1oofpaesse
o

X N (B By, Vo) Unif (6% | 0,00) Unif (t2 | 0,00) Unif (Yyax | 0,1.)

where ¢ and © are the standard normal density and distribution func-
tions, 3o and V, are the mean vector and covariance for the prior dis-
tribution of B. The indicator function I() = 1 when its argument is true
and zero otherwise. Non-informative priors are used for 8 (8 = O,
V, = o) and Unif indicate the uniform distribution as prior for o and .
A Metropolis—Hastings algorithm with Gibb's sampling through the
“rjags” package in R is used to fit the posterior distributions of f3, g, =
and y. Sensitivity maps were generated as predictive distributions of
derivatives (as shown in the supplementary document), marginalizing
over the posterior distributions of coefficients. The model was tested
and has performed well with simulated data. Diagnostics and the list of
predictors used are presented in supplementary document and Table
S3, respectively.

To test the model against realistic green-up data, we predicted the
time series of greenness for all study sites. We used climate and site data
as inputs along with the posterior distributions of parameters from the
fitted model to predict the entire time series for all site-seasons. For
each site-season, we predicted greenness from the initial value through
21 days after full green-up. We drew 500 samples for each time step,
leading to 500 predicted time series for each site-season. The model
predictions for a representative site (Duke Forest) are shown in Fig. S6a
for three seasons with contrasting moisture regimes (2002, 2009 and
2011). The accumulated error from previous time steps increases the
uncertainty later in the season. Observation error from the satellite data
contributes additional uncertainty. Despite multiple sources of un-
certainty, the model reliably predicts observations at all sites (in-sample
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Fig. 4. Posterior distributions of model predictors. Positive values accelerate leaf development, and negative slow leaf development. (a) main effects and climate interactions, (b)
interactions of moisture deficit with ecoregions. The main variables include aTemp: daily temperature anomaly, MAT: mean annual temperature, Deficit: preseason moisture deficit, and
AT: spring thermal stress. The boxes and whiskers represent 50% and 95% of the posterior distributions. Predictors not including zero in their 95th percentile are significant.

data Fig. S6b and an out-of-sample season (Duke Forest, 2012, Fig. S6c).
The root-mean-square error between predictions and observed green-
ness values was 0.13% of the range of greenness values. The R-squared
value was 0.76. The average error between modeled and observed
greenness was 0.12.

We predicted the overall sensitivity to warming by considering
three scenarios for temperature anomalies: cold (i.e. Temperature lower
than mean temperature by one standard deviation), normal and hot (i.e.
Temperature higher than mean temperature by one standard devia-
tion). To evaluate the interaction between deficit with thermal stress,
we estimated thermal stress sensitivity at three drought regimes based
on the Drought Severity Indices (DSI): +1 (wet), 0 (normal) and —1
(dry).

3. Results

The predictors with the largest effect on spring green-up were the
daily temperature anomaly for a given year (aTemp), followed by mean
annual temperature (MAT), preseason moisture deficit (deficit), and
thermal stress (AT) (Fig. 4). The high aTemp coefficient suggests a
dominant control of green-up compare to other predictors. Positive
linear and negative quadratic terms indicate limitations at low and high
aTemp. Across the entire study area, slow phenological development
was associated with high MAT and moisture deficit (Fig. 4-a). Although

AT did not delay green-up at all sites and ecoregions, the deficit effect
was amplified with increasing AT (negative AT: deficit interaction,
negative deficit). The interactions of deficit with ecoregions includes an
amplified deficit effect in the Blue Ridge (Fig. 4b), relative to the
Coastal Plain and the Piedmont. The interactions of daily temperature
anomaly with ecoregion and deciduousness suggest different trends
across regions. Our results showed the aTemp effect is comparatively
weak in the Blue Ridge and for deciduous trees (negative interaction
terms in Fig. 4a).

Based on the direct aTemp effects and its interactions, we quantified
the sensitivity of green-up speed to daily temperature anomalies for
deciduous and mixed forest sites. Fig. 5a shows sensitivity values for
three different daily temperature anomalies regimes at the Blue Ridge,
Piedmont and Coastal Plain. Sensitivity decreased with increasing
anomalies (cold to hot years). Sites located near the coast and in the
Piedmont were more sensitive to increasing daily temperature anomaly
than Blue Ridge forests. Deciduous sites showed lower sensitivity to
daily temperature anomalies than mixed forests in all ecoregions.
Fig. 5b shows how the temperature effect on spring green-up varies
with EVI during the green-up season for three main ecoregions: Blue
Ridge, Piedmont and Coastal Plain. Green-up was most sensitive to
daily temperature anomalies early in the growing season, especially in
the mountains.

The green-up response to moisture deficit varied across ecoregions
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Fig. 5. Sensitivity of the rate of change in
greenness to the daily temperature anomaly for
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and with leaf habit (Fig. 6a). Green-up speed was less affected by
moisture deficits near the coast, while the Piedmont and the Blue Ridge
became slower with increasing moisture deficit. Mixed forest sites at the
Blue Ridge and the Piedmont were less sensitive to deficit than decid-
uous sites, but with larger uncertainty. Green-up was insensitive to
thermal stress in years with average moisture balance. It was delayed
following dry winters, and accelerated following wet winters (Fig. 6b).

We mapped contrasting responses to warming and drought in the
mountains and coastal regions (Fig. 7a and b). To highlight regions of
strong effects, only sites for which 95% of posterior distributions ex-
clude zero are shown. Green-up was faster with increasing daily tem-
perature anomalies (aTemp) in all sites. Southern sites in the Piedmont
and Coastal Plain were most sensitive to warming. Deciduous sites of
the Blue Ridge were least affected by increasing aTemp (Fig. 7a). Sites
in the Valley and Ridge and the Appalachian Plateaus ranged from low
to moderate temperature sensitivity. Following dry winters, spring
deficit delayed green-up everywhere in the southeast, with the greatest
impacts in the Blue Ridge mountains (Fig. 7b).

4. Discussion

The daily spring green-up data shed light on the continuous devel-
opment of leaves across a wide range of climates and how these effects
are modified in dominant ecosystem. Using a continuous development
model (CDM), we found that mountainous and coastal forests had

(b)

contrasting responses to increasing temperature anomalies (warming)
and intensifying moisture deficit. Increasing temperature anomalies
have their greatest accelerating impacts on coastal forests and weakest
effects in the mountains. Conversely, forests in the mountains are more
negatively affected by spring moisture deficits. All environmental ef-
fects are mediated by ecosystem interactions. Our results showed that
ecosystem properties such as evergreenness interact with temperature
and deficit to control green-up phenology.

4.1. Climate impacts on green-up

The paradox of greatest effects of daily temperature anomalies in
the sites that are already warm likely results from the protracted green-
up period in warm climates. There is a long window during which
green-up can respond. However, green-up response to deficit depends
on ecosystem properties—the interactions, a point to which we return
below. Temperature effects enter through two variables: mean annual
temperature (MAT) and inter-annual daily temperature anomalies
(aTemp). Our results support findings from previous studies (e.g. Clark
et al. (2014a) and Yue et al. (2015)), indicating that warm regions are
most sensitive to increasing daily temperature anomalies. While climate
controls on phenology is described through MAT, the aTemp effect
explains how seasonal temperature variability during spring may in-
fluence leaf phenology. Changing temperature continues to influence
leaf development throughout the green-up season, but the effect is non-
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Sensitivity to preseason deficit
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Fig. 6. Sensitivity of change in greenness to (a) preseason deficit and (b) thermal stress
(AT). In (a) droughts slow green-up most at deciduous sites. In (b) the thermal stress
variable shifts from acceleration in wet (DSI > +1) to delay in dry (DSI < 1) years.
Sensitivity values are dimensionless using standard deviations of the predictors and re-
sponse. Moisture deficit has the strongest effect in the mountains. AT slows green-up in
springs following drought years and accelerates it after wet years.

linear, decreasing in magnitude as anomalies become large (Fig. S7).
Preseason deficit can slow leaf development and growth, depending on
interactions discussed in the next section.

(a) Sensitivity to temperature

(b) Sensitivity to deficit
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4.2. Ecosystem interaction with temperature anomalies

Mixed forests are disproportionately sensitive to increasing daily
temperature anomalies (aTemp) (Fig. 5a). Presence of leaves year-
round allows them to respond to conditions rapidly. A number of stu-
dies have documented photosynthesis in conifers during warm days in
late winter and spring (Tanja et al., 2003; Yin et al., 2008). Root de-
velopment could be another important factor causing the distinct trends
(Collet et al., 1996).

Regardless of leaf habit (deciduous or evergreen), forests in the
Coastal Plain and in the Piedmont are more sensitive to daily tem-
perature anomalies than sites in the mountains. This is true for all
temperature regimes: cold (negative temperature anomalies), normal
and warm (positive temperature anomalies) (Fig. 5a). Low temperature
sensitivity could be explained by the compressed season and rapid rate
of green-up in mountainous regions, where leaves quickly green-up
(Wang et al., 2015). For instance, EVI at a typical coastal site increases
from 0.25 to 0.6 in 150 days, while at a typical site in the mountains,
EVI ranges from 0.1 to 0.9 in only 60 days. When development is al-
ready fast, it may have limited capacity to change its rate. Moreover,
the adaptive value of accelerating development where it is already fast
could likewise be limited. With varying daily temperature anomaly, the
sensitivity of the rate of leaf development to aTemp changes. In colder
(negative temperature anomalies) seasons, forests respond quicker (fast
development) to increasing aTemp than in normal seasons. However,
leaf development is relatively insensitive to aTemp in years when
temperature is already high. Despite the strong variability of climate
and moisture across ecoregions, we found a monotonic response to
aTemp during green-up at all sites (Fig. 5-b). Green-up is most sensitive
to increasing aTemp at the beginning of the season in all ecoregions.
The sensitivity to warming decreases with increasing EVI, as leaves
reach full development. The Coastal Plain and Piedmont respond si-
milarly to raising daily temperature and to a greater degree than the
Blue Ridge mountains. Furthermore, high temperature anomalies may
damage foliar tissues (Hufkens et al., 2012) in coastal areas. The finding
is consistent with studies that used multidimensional metrics to com-
pare phenological trends across ecoregions (Buitenwerf et al., 2015).

The effects of temperature anomalies include strong geographical
patterns across the Southeast, with highest sensitivity in the southern sites
where it is already warm and lowest in the mountains (Fig. 7-a). Due to
warm climates and evergreenness, forests located in the Coastal Plain and
the Piedmont are more sensitive to temperature anomalies than sites in the
mountains. Evergreenness effect on spring green-up might be related to
both interspecific physiological differences of evergreen and deciduous
forests and dissimilarities in species compositions across sites. Studies that
focus on individual trees of evergreen and deciduous may help to under-
stand the underlying controls (Lu et al., 2016). In the mountains and
northern plateaus sensitivity is most variable. Sites in the southern Blue
Ridge show higher sensitivity than the northern Blue Ridge.

Fig. 7. Geographic sensitivity of green-up to tem-
perature and preseason deficit across the southeast.
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4.3. Ecosystem interactions with preseason deficit

The impact of preseason deficit depends on climate and ever-
greenness (Fig. 6a). Deciduous forests responded more to increasing
hydrological spring deficit than mixed forests. The response varied
across regions. The Coastal Plain is relatively insensitive to deficit. The
Blue Ridge shows highest sensitivity, followed by the Piedmont. Dif-
ferences might be partly explained by regional hydrology (Elliott et al.,
2006; Sayer and Newbery, 2003). The water table is commonly in-
accessible in the mountains (Hwang et al., 2014), but directly accessed
by trees on the coastal plain (Fan et al., 2013). The large uncertainty of
the results for deciduous forests in the coastal areas is due to lack of
data from deciduous sites in those regions. Similarly, the results show
larger credible intervals of sensitivity to temperature anomalies for
mixed forest sites in the Piedmont and the mountains, where deciduous
trees are more common (Fig. 7a).

The impact of thermal stress suggests contrasting trends following
wet versus dry years. Following droughts, soil moisture limitation may
cause stomatal closure and increase thermal stress, thus reduce pho-
tosynthesis and slow green-up. Conversely, following a wet year, in-
creasing thermal stress is correlated with accelerated leaf development.
When soil moisture is high, additional energy received may promote
carbon uptake and growth (Fig. 6b). This effect may also be interpreted
as the controlling effects of surplus evaporative energy interacting with
available moisture. While increasing deficit slows green-up across the
Southeast, mountainous areas are most susceptible to water shortage.
The Piedmont and coast are least impacted by deficit (Fig. 7b). Drought
sensitivity in the mountainous regions might also be related to snow-
melt in those regions, however additional data collection is necessary
for further investigations.

5. Conclusion

Interactions involving the local mean temperature with the tem-
perature anomalies means that the effect of “warming” on phenology
will shift as vegetation responds to temperature trends. We showed that
the interpretation of warming effects based on anomalies can lead to
opposite conclusions from analyses of geographic patterns. Long-term
remotely sensed spring green-up analyzed using a continuous devel-
opment model (CDM) showed that important interactions extend to
temperature, moisture deficit, ecosystems, and leaf habit. Unlike static
modeling of phenology, where an entire season may be represented by
only a few variables, the continuous development model (CDM) al-
lowed us to design the model based on the biological and environ-
mental forcing to directly quantify the effects on seasonal green-up in
forests. Strong responses to temperature anomalies in coastal zones
involve not only high mean temperatures there, but also evergreeness
and moisture. Green-up in mountainous sites and for deciduous trees is
disproportionately slowed by deficit relative to coastal forests where
water table is higher and evergreens are common. This is due to the fact
that evergreen needles could maintain an efficient hydrologic balance
during dry seasons.
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