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Electricity production is responsible for the largest share of green-
house gas emissions and for more than 60% of SO2 emissions1. 
Other major air emissions from electricity production include 

NOx, particulate matter, mercury and other air toxics2. Reducing 
electricity consumption through improving energy efficiency is a 
key strategy to reduce electricity production and the associated air 
and greenhouse gas emissions. Commercial buildings are particu-
larly important for energy efficiency because they are responsible 
for 36% of total electricity consumption in the United States3. Two 
voluntary green building certification systems encourage the invest-
ment of energy-efficient and sustainable buildings: (1) Energy Star 
and (2) Leadership in Energy and Environmental Design (LEED). 
Various types of incentives and policies for building energy effi-
ciency improvements exist, such as direct rebates, building codes, 
real property tax exemption for green-certified commercial build-
ings, and expedited permitting processes for new buildings and 
major renovations receiving LEED certification4. Since 1995, the 
number of commercial buildings that have obtained these green 
certificates has increased dramatically.

Most existing studies that evaluate the environmental gains 
from green commercial buildings using a large sample of buildings 
rely on aggregate energy consumption data at the monthly or even 
yearly level5–9. Some of these studies report modest energy savings 
from green commercial buildings, while others do not find any sav-
ings. Such findings are used to support policy arguments against 
green building incentives. Besides, it is common knowledge that 
every time data are aggregated, potentially valuable information 
is lost. Due to technology and storage limitations, disaggregated 
data are not often available. Yet, benefits from green buildings do 
not only derive from an aggregated level of consumption. When 
higher-frequency data become available, information previously 
lost through aggregation can be recovered to shed additional light 
on long-debated questions. While existing studies are useful from 
an energy management perspective, they cannot be used to estimate 
intra-day hourly energy savings and thus are not particularly valu-
able for environmental sustainability assessment. The fuel types for 

electricity generation vary throughout the day10. This has crucial 
implications for both environmental sustainability and for an eco-
nomic benefit assessment of green buildings.

Both the season and the time of day determine the environmen-
tal costs associated with electricity consumption due to varying 
marginal emission factors10. Energy savings during hours when fos-
sil fuels are used as the marginal-generation fuel source have larger 
environmental benefits than savings during hours when power is 
generated by renewable energy. In other words, even if green build-
ings do not consume less electricity than their traditional counter-
parts, if their hourly electricity usage profile shifts, there would still 
be positive or negative impacts on environmental sustainability. 
Such empirical assessment can only be conducted with higher-fre-
quency data. In terms of evaluating the economic benefits, green 
commercial building technologies are important for peak power 
grid load reduction11,12. Electricity providers need to switch peak-
ing generation power plants on and off frequently to satisfy demand 
fluctuations. The associated negative results to electricity providers 
include accelerated deterioration to expensive equipment, higher 
operation costs and a longer recovery period of upfront capital 
investment13,14. All of these effects can be mitigated if the energy sav-
ings from energy efficiency improvements occur during peak hours 
instead of non-peak hours (or occur more during peak hours).

Examining the timing of electricity savings (for example, by 
hour of day) has only become possible in recent years as the recent 
deployment of smart meters makes high-frequency electricity 
usage data available. In 2014, 58.8 million smart metering infra-
structure installations provided high-frequency energy demand 
data (often in 15 min intervals) for US electricity utility companies 
and their customers15. Smart meters are in 43% of the country and 
are quickly becoming the norm16. Yet, energy efficiency evalua-
tions that apply advanced computational methods to large-sample 
smart meter data remain rare17,18. There are three exceptions. Two 
such studies are Boomhower and Davis18 and Novan and Smith19, 
which focus on residential buildings instead of commercial build-
ings. Another such study is Burlig et al.20, which focuses on energy 
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efficiency investments in public kindergarten to twelfth-grade 
school buildings in California. Our paper improves on these stud-
ies by providing empirical evidence showing that higher-frequency 
energy data improve the accuracy of environmental impact evalua-
tions. It also covers a wider range of commercial building types and 
geographical areas.

This study investigates the energy savings by hour of day for 
green-certified commercial buildings. The detailed data add a valu-
able new dimension to green building sustainability studies. Then, 
using the estimated hourly savings and hourly marginal emissions 
damages from CO2, SO2, NOX and particulate matter, we assess more 
precisely the environmental gain from green buildings. Building on 
the empirical results from Arizona, we also assess environmental 
sustainability of green-certified buildings in all other continental 
US states.

We examine the LEED- and Energy Star-certified commercial 
buildings (green buildings hereafter) in the Phoenix metropoli-
tan area of Arizona (see Supplementary Fig.  1 for the locations 
and distribution of business customers located in certified green 
buildings as of 2016). We analyse three components: the estima-
tion of the hourly electricity usage profiles of green buildings, an 
environmental impact assessment for green buildings in Arizona, 
and environmental impact assessments by industry and for other 
regions. Because there are many similar growing cities exposed to 
warm temperatures worldwide21,22, our results have broader applica-
bility beyond Phoenix. We evaluate the electricity savings by hour 
of day from Energy Star- and LEED-certified commercial buildings, 
using account-level high-frequency (hourly) usage data provided 
by a major Arizona electricity utility company for 2013–2016. Data 
availability allows for more comprehensive and rigorous analy-
sis. Methodologically, this study controls for confounding factors 

and endogeneity issues through statistical matching methods and 
panel regressions using a rich set of fixed effects. Consequently, the 
results’ robustness affords engineers, policymakers and investors 
greater confidence when making relevant decisions.

Results of econometric models
Participating in a LEED or Energy Star programme is a voluntary 
decision and this raises the issue of selection bias. For example, 
more energy-savvy or environmental-conscious occupants might 
be more likely to choose to locate in a green building. In addi-
tion, potential omitted variable issues can also cause endogeneity 
concerns. Examples of these confounding factors include building 
codes, changes of building occupancy, and changes to electricity 
pricing plans, which can influence both the selection of green certi-
fication and energy consumption.

We used a combination of matching and difference-in-dif-
ferences approaches to address the potential endogeneity issues, 
following the approach by Fowlie et al.23. The nearest-neighbour-
matching method described in the Methods yielded a sample of 33 
and 8 pairs of control and treatment customers for the analysis of 
Energy Star and LEED, respectively. Control customers are business 
customers occupying non-green-certified buildings, and treatment 
customers refer to those in green-certified buildings. To conduct 
difference-in-differences analyses, both pre- and post-certification 
data were needed. Hence, our main analysis only examines those 
buildings that obtained green certificates between 2013 and 2016 
due to the availability of hourly data. We list the summary statis-
tics of pre-certification hourly electricity consumption (kWh) of 
both treatment and control customers and calculate the balanc-
ing statistics to demonstrate that the treatment and control groups  
are comparable (see Supplementary Tables 1–4). We also plot the 
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Fig. 1 | Intra-day electricity savings by hour using a subsample with both pre- and post-treatment hourly consumption data. a–d, Coefficients of the 
interaction terms of Energy Star (a and b) or LEED certification (c and d) dummy variables and dummy variables indicating the hour of the day in summer 
(a and c) and winter (b and d). The solid dots indicate the magnitudes of the coefficients, while the vertical lines show the 95% confidence intervals. The 
values of the coefficients show the change in energy consumption at a particular hour due to green buildings. Negative values indicate electricity savings.

Nature Sustainability | VOL 1 | NOVEMBER 2018 | 642–649 | www.nature.com/natsustain 643

http://www.nature.com/natsustain


Articles NATURE SUsTAinAbiLiTy

0

0.0050

0.0100

0.0150

0.0200

0.0250

0 4 8 12 16 20 24

$ 
kW

h–1

Hour of day

CO2

0

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0 4 8 12 16 20 24

$ 
kW

h–1

Hour of day

SO2

0

0.0005

0.0010

0.0015

0.0020

0.0025

0 4 8 12 16 20 24

$ 
kW

h–1

Hour of day

NOx

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009
0.0010

0 4 8 12 16 20 24

$ 
kW

h–1

Hour of day

Particulate matter

Fig. 2 | Marginal damages for the WECC (in US dollars from the year 2000) from carbon and air emissions by hour of day. The marginal damage factor 
from a pollutant represents the additional damage (negative impact of pollution as measured in dollar values) caused by the emission of this pollutant 
from an additional 1 kWh electricity usage in a region. Data from ref. 26.
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Fig. 3 | Comparison of avoided environmental damages from CO2, SO2, NOX and particulate matter calculated using hourly electricity savings versus 
aggregate savings. Negative values mean reduced environmental damage, and vice versa. Values are in US$ per customer per day.
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average summer and winter load profiles for both groups to show 
that the load curves for occupants in green buildings become flatter 
after certification (see Supplementary Fig. 2).

We estimated the fixed-effects panel regression models 1 and 2 
described in the Methods (see Supplementary Tables  5 and 6 for 
full model results). The coefficients for the interaction terms of 
Energy Star or LEED certification and hour-of-day indicator report 
the hourly electricity savings from green certification. We plot these 
coefficients and their 95% confidence intervals obtained from equa-
tion (2) in Fig. 1. These results were obtained after controlling for 
confounding factors, including price plans, marginal electricity 
prices, temperature effects and a rich set of fixed effects that control 
for characteristics at building, occupant, regional and macro levels.

Fig.  1a,b shows that in the summer, Energy Star certifica-
tion helps building occupants save electricity from 08:00 to 18:00, 
and the average hourly electricity saving during these hours is 
5 kWh h−1. These are exactly the peak and shoulder-peak hours for 
the utility company in summer months. Furthermore, these occu-
pants use more electricity during some off-peak hours (from 22:00 
to 07:00), which makes load curves flatter. For winter months, occu-
pants in Energy Star-certified buildings save the majority of energy 
from 07:00 to 22:00. Fig. 1c,d shows that for LEED-certified build-
ings, the majority of summer electricity savings also happen during 
peak and shoulder-peak hours from 09:00 to 17:00, and the average 
hourly saving during these hours is 7 kWh h−1. These occupants use 
more energy between 19:00 and 00:00.

For a larger sample size, we also conducted the matching and 
econometric analysis including those buildings that obtained green 
certificates before 2013, giving a total of 128 and 42 accounts for 
Energy Star and LEED analysis, respectively. The results using the 
larger sample are similar (see Supplementary Fig. 3).

Our main analysis uses dry-bulb temperature data. Engineering 
studies show that analyses using wet-bulb temperature data might 

generate different results24,25. As a robustness check, we ran the 
same regression models using wet-bulb temperature data. We dem-
onstrate that the electricity savings estimated using wet-bulb tem-
perature data are very similar to those estimated using dry-bulb 
temperature data (see Supplementary Fig. 4 for the key coefficients).

Environmental impact assessment. The hourly impact on electric-
ity consumption enables us to improve the accuracy of environmen-
tal impact assessment for green buildings. We conducted an analysis 
of the carbon and air emissions impact using the marginal damage 
factors by hour of day (Fig. 2) for North American Electric Reliability 
Corporation (NREC) regions estimated by Holland et al.26.

Fig. 3 shows the calculated avoided environmental damage per 
customer per day, using both the hourly electricity savings and the 
aggregate savings (the simplified method). A large discrepancy exists 
for environmental sustainability assessment between using hourly 
savings versus aggregate savings. The largest avoided damages for 
Energy Star are from CO2, followed by SO2, NOX and then particu-
late matter. Our main data are provided by the utility company Salt 
River Project (SRP). As of 2017, there were 888 business customers 
located in Energy Star-certified buildings in SRP service territory. 
Together, these Energy Star business customers are responsible for 
US$311,479 yr−1 of avoided damage from CO2, SO2, NOX and par-
ticulate matter (see Methods). Fig. 3 shows that the avoided dam-
ages per customer per day from LEED certification are much smaller 
compared with Energy Star certification. In fact, in the winter, there 
are actually more damages from LEED certification.

Fig.  3 also shows the differences between the avoided dam-
ages calculated using hourly electricity savings (blue columns) and 
aggregate savings (orange columns). Ignoring the intra-day varia-
tion in energy savings can bias the estimation of environmental 
benefits of green commercial buildings by about 94% for CO2, 95% 
for SO2, 93% for NOX and 104% for particulate matter. If we use the 
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Fig. 4 | Avoided environmental damages by industry type. Industry group 1: ‘educational service’ or ‘health care and social assistance’; industry group 
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remediation services’. Negative values mean reduced environmental damage, and vice versa.
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aggregate electricity savings, the Energy Star business customers are 
only responsible for US$16,848 year−1 of avoided damage from CO2, 
SO2, NOX and particulate matter. Compared with the more precise 
estimate of US$311,479 yr−1, policymakers and environmental plan-
ners could potentially underestimate the environmental sustainabil-
ity benefit of Energy Star by 95%. The reason for this huge gap is due 
to the large variation in the types of marginal fuel responsible for 
electricity generation at different hours of the day.

Environmental impact assessment by industry type. We also 
examined the impact by industry type. For Energy Star build-
ings in our sample, there are two major clusters of industry type 
based on one-digit North American Industry Classification System 
(NAICS) code: (1) ‘educational service’ or ‘health care and social 
assistance’; and (2) ‘retail trade’. For LEED buildings, most busi-
nesses are in the cluster of ‘finance and insurance’, ‘real estate rental 
and leasing’ or ‘administrative and support and waste management 
and remediation services’. We then analysed the hourly electricity 
savings for these types of industries. For the remaining industries 
in our sample, including mining, construction and utility compa-
nies, and food services, we did not have a large enough sample to 
generate statistically meaningful results. Hence, we did not con-
duct the analysis for these other industries. The coefficients for the 
interaction terms of Energy Star/LEED certification and hour-of-
day indicator by industry type measure the change in electricity 
consumption for each hour of the day (see Supplementary Fig. 5). 
The results show that for the service industries other than the retail 
trade, there are electricity savings during the day time and peak 
hours for both Energy Star and LEED certification—very similar to 
our main results. In comparison, retail trade with Energy Star cer-
tification has smaller hourly electricity savings during the day time. 
We calculated the avoided damage from environmental pollution 
for each industry (Fig. 4). In particular, retail trade generated lower 
environmental benefit from Energy Star and LEED certification 
than other service industries. Also, the percentage miscalculation 
of environmental benefit using aggregate electricity savings was 
higher for the retail trade.

Environmental impact assessment in other regions. To show 
that our findings can be generalized to a broader geographical 
context, we used the following simulated data provided by the US 

Department of Energy Open Data Catalog: the commercial hourly 
electricity usage profiles for major typical meteorological year 
(TMY3) locations in major cities of all other US states (except Alaska 
and Hawaii). We calculated the hourly electricity savings of aver-
age commercial buildings for each location for summer and win-
ter months and their associated environmental benefits. From the 
simulation analysis, we reached three conclusions. First, for other 
regions in the USA, the majority of electricity savings in summer 
seasons also happen during peak hours (see Supplementary Fig. 7). 
Second, traditional methods to assess sustainability that ignore the 
timing of savings can miscalculate the environmental benefit of 
green commercial buildings across US states (see Supplementary 
Figs.  8–11). The exact amount of miscalculation depends on the 
load profile and hourly marginal pollution damages for a specific 
location. Third, based on the simulation results from other regions, 
we demonstrate that our main conclusions can be generalized. We 
also further illustrate the importance of using high-frequency elec-
tricity data to improve the precision of sustainability assessment.

Economic impact results. Based on the electricity rate informa-
tion of SRP and the estimated savings by hour of day, we calculated 
the energy bill savings of customers in green-certified commercial 
buildings. The results are listed in Table 1. Since time-of-use elec-
tricity rates have electricity prices that vary by hour of day, estimated 
savings at the hourly level can enable more precise evaluations of bill 
savings. The annual bill savings for a business tenant in an Energy 
Star-certified building range from US$1,452 to US$1,746, depend-
ing on which price plan the tenant is on. This is equal to about 2% 
bill savings based on the average annual electricity bills of commer-
cial customers. For tenants in LEED-certified buildings, there are 
bill increases, especially during winter, due to the fact that there are 
energy consumption increases in winter peak hours when heating is 
needed and the electricity price is high.

There are also other real benefits for users from green-certified 
buildings. Studies show that green buildings have improved thermal 
comfort27, improved indoor air quality and lighting28, can improve 
occupant productivity and organizational success29, and may posi-
tively affect public health30. Green buildings are shown to play an 
important role in mitigating climate change due to their location 
in dense urban areas and access to employment and services31.  
The impact of climate change is exacerbated in urban areas due to 

Table 1 | Energy bill savings for tenants in Energy Star- and LEED-certified buildings

Price plan E32 E33 E36

Summer Winter Summer Winter Summer Winter

Monthly energy 
bill savings

Energy Star US$74 US$188 US$56 US$186 US$77 US$214

LEED (US$31) (US$239) (US$3.5) (US$231) (US$29) (US$239)

Electricity price information 
E32: 
  •​ May, June, September and October: US$0.1521 kWh−1 from 15:00–21:00; US$0.1030 kWh−1 from 12:00–15:00 and 21:00–23:00; US$0.0528 kWh−1 for 
all other hours. 
  •​ July and August: US$0.1671 kWh−1 from 15:00–21:00; US$0.1093 kWh−1 from 12:00–15:00 and 21:00–23:00; US$0.0538k kWh−1 for all other hours. 
  •​ January, February, March, April, November and December: US$0.1151 kWh−1 from 06:00–09:00; US$0.1036 kWh−1 from 18:00–21:00; 
US$0.0512 kWh−1 for all other hours. 
E33: 
  •​ May, June, September and October: US$0.2701 kWh−1 from 16:00–19:00; US$0.0642 kWh−1 for all other hours. 
  •​ July and August: US$0.2781 kWh−1 from 16:00–19:00; US$0.0643 kWh−1 for all other hours. 
  •​ January, February, March, April, November and December: US$0.1115 kWh−1 from 06:00–08:00; US$0.0644 kWh−1 for all other hours. 
E36: 
  •​ May, June, September and October: average of US$0.0989 kWh−1 for all hours. 
  •​ July and August: average of US$0.1211 kWh−1 for all hours. 
  •​ January, February, March, April, November and December: average of US$0.0790 kWh−1 for all hours.

Numbers in parentheses indicate energy bill increases rather than savings.
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its distinctive biophysical features, such as less vegetated surfaces 
and the urban heat island effect32. Thus, green urban infrastructure 
including green buildings is critical to provide comfortable living 
environments and, meanwhile, reduce carbon emissions.

There are three potential economic benefits for electricity util-
ity companies. First, because of usage shift from peak hours to off-
peak hours, they can save on their cost of providing electricity by 
selling more electricity at a lower marginal cost and less electricity 
at a higher marginal cost. Second, reducing peak-hour electricity 
consumption can help utility companies maintain the stability of 
their grid by avoiding blackouts during peak hours. Lastly, in the 
long run, reducing peak-hour electricity consumption can help 
utility companies delay expensive capital investment in peaking 
power plants—the capacity values18,19. We estimate that, on aver-
age, for each business tenant located in an Energy Star building, 
utility companies can save US$1,537 annually by selling more 
electricity at a lower cost in off-peak hours and less electricity at 
a higher cost in peak hours (see Methods). For a business ten-
ant located in a LEED building, utility companies can save about 
US$300 annually.

In terms of delaying the capital cost of peaking power plants, we 
use the capital cost of power plants to estimate such economic value. 
According to the US Energy Information Administration33, the 
overnight capital cost of a combined-cycle natural gas power plant 
is about US$978 kW−1. Our results show that during summer peak 
hours at around 16:00, a business tenant located in an Energy Star 
or LEED building can reduce energy consumption by 6–8 kWh h−1, 
which is equal to a reduction of generating capacity of 6–8 kW. This 
is equivalent to a delay of US$6,846 investment cost per customer 
(see Methods for an alternative way to calculate capacity values).

Discussion
This study uses previously unavailable high-frequency electricity 
consumption data to improve sustainability assessment of green 
buildings. Given that electricity savings are uneven throughout 
the day, policymakers should adopt more sophisticated methods 
to accurately examine the environmental benefit of green build-
ings, taking into consideration the variation in marginal emis-
sion factors during the day. Average emission factors aggregated 
at daily, monthly or yearly levels should be avoided in evaluating 
the environmental benefits of energy efficiency, because the mix of 
fuel for electricity generation differs by time of day and can yield 
misleading results.

The estimated electricity savings in this paper are the net of any 
electricity consumption behavioural changes. A main behavioural 
factor is the ‘rebound effect’—the actual energy savings of energy 
efficiency upgrades are lower than theoretical savings34–37. Our 
study contributes to the literature on rebound effects by showing 
that the magnitudes of rebound effects could potentially differ by 
hour of the day as well. Overall, rebound effects from LEED certifi-
cation are larger than those from Energy Star certification.

In terms of economic benefits, traditionally, without regula-
tory mandates, utility companies do not have incentives to encour-
age energy efficiency because it reduces their revenue from selling 
electricity. Our results show that energy efficiency through green 
certification of commercial buildings can potentially give utility 
companies economic benefits by reducing peak hour demands, 
and hence reducing costs by lowering the idle capacity. Currently, 
in addition to energy-efficiency-related rebates aiming to reduce 
overall energy consumption regardless of intra-day timing, utility 
companies have also implemented incentives to encourage their 
customers to participate in demand-side management, which 
focuses on reducing peak demand. Our finding that green-certi-
fied commercial buildings can help reduce peak-hour electricity 
demand should encourage utility companies to provide incentives 
of green certification to commercial consumers.

Methods
Data. Electricity consumption data of individual commercial electricity customers 
were obtained through SRP—a major utility company in the Phoenix metropolitan 
area. The dataset contains account-level hourly interval electricity demand data 
for 2013–2016. The dataset also includes information such as monthly electricity 
pricing plans, customer locations and industry codes. For commercial customers, 
there are three electricity pricing plans: the E32 time-of-use (TOU) general service 
plan; E33 TOU experimental plan; and E36 standard general service plan. E32 has 
higher energy prices during peak hours (for example, 14:00–19:00 in the summer) 
and lower energy prices during off-peak hours. E33 has shorter peak hours from 
16:00–19:00 and higher peak-hour prices than E32. E36 has a decreasing block 
rate, meaning that the marginal energy prices decrease when customers consume 
more energy and the prices do not differ by time of day.

We also collected LEED and Energy Star certification data from the US Green 
Building Council and Environmental Protection Agency websites. This dataset 
includes rich information on all green-certified commercial buildings in the 
Phoenix metropolitan area. For Energy Star, this dataset contains building names, 
industry types, building owners, property managers, addresses, Energy Star 
ratings, Energy Star label years, floor spaces and years built. For LEED, this dataset 
contains project names, addresses, LEED system versions, LEED points achieved, 
certification levels, registration dates, certification dates, owner types, floor 
spaces and project types. We matched the addresses from the LEED and Energy 
Star database to the SRP database to identify the commercial electricity accounts 
located in green-certified commercial buildings.

We obtained the hourly temperature data, including both dry-bulb and wet-
bulb temperatures, for each electricity customer from National Oceanic and 
Atmospheric Administration (NOAA) Climate Data Online (https://www.ncdc.
noaa.gov/cdo-web/). NOAA provides hourly historical temperature data for all US 
weather stations. Based on the addresses of electricity customers, we matched each 
customer with the nearest weather station. Then, based on the temperature data, 
we calculated cooling degree days and heating degree days on a 65° threshold.

Empirical strategy. Matching method. Both LEED and Energy Star programmes 
are voluntary, which can lead to selection bias. For example, more energy-savvy 
or environmental-conscious occupants might be more likely to choose to locate 
in a green building. In addition, potential omitted variable issues can also cause 
endogeneity. Examples of these confounding factors include building codes38, 
changes of building occupancy, and changes of electricity pricing plans, which can 
influence both the selection of green certification and energy consumption.

In this study, we used a combination of matching and difference-in-differences 
approaches to address the potential endogeneity issues, following the approach 
by Fowlie et al.23. Although existing post-occupancy evaluation analyses of 
green buildings also adopt matching methods6,39, the key challenge is to find the 
comparable control group. Limited by data availability, existing studies usually 
do not have the energy consumption data of similar buildings located in the 
same district as the green buildings in their sample. Instead, existing studies use 
commercial buildings with similar characteristics in the same census division 
found in the Energy Information Administration’s Commercial Buildings Energy 
Consumption Survey as their control groups. This matching process is coarse 
because key characteristics that can dramatically affect energy consumption are 
omitted (for example, building occupant types and electricity pricing plans). In 
addition, the weather conditions within a census division can vary significantly. 
This study significantly improves the quality of the matched control group using 
an advanced matching algorithm, the accuracy of which is improved by the much 
better availability of closely approximated matches.

Our primary analysis is at the electricity account level, instead of at the 
building level. A commercial building could have multiple electricity accounts or 
occupant units. We chose this unit of analysis to control for changes of occupancy 
characteristics within a commercial building and sorting of building occupants 
into different types of buildings. In addition, in our main analysis, we chose to 
analyse electricity accounts located in green-certified buildings that have both 
pre- and post-certification high-frequency electricity consumption data to enable 
difference-in-differences analysis. In other words, these green building tenants 
went through the certification process during 2013–2016. We analysed LEED and 
Energy Star buildings separately.

We used the single-nearest-neighbour method to match on the Euclidian-
type distance based on two observed attributes: the average pre-certification 
summer load profile and average pre-certification winter load profile. For every 
customer located in a green-certified commercial building (that is, each treatment 
customer), we found a control customer with the same North American Industry 
Classification System code, located in the same zip code but not located in a green-
certified building, and with the most similar summer and winter electricity load 
profiles before the treatment. To match on electricity load profiles, we calculated 
the Euclidian-type distance using the average energy consumption (kWh) of every 
hour of the day for summer and winter.

Balancing statistics between the treatment and control groups in the pre-
certification period were also checked to ensure comparability. To test the sample 
equivalence, we used the standardized mean difference (SMD) for sample means 
and variance ratios for distribution40. For a given attribute Yj, the SMD was defined 
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Rubin41 suggests that if the SMD is greater than 0.25, or the variance ratio falls 
outside of the range between 0.5 and 2, the two groups are not balanced in 
means and distribution. We calculated the balancing statistics for hourly energy 
consumption to ensure matching on electricity load profiles.

Econometric model. The key purpose of this study was to examine the timing 
of electricity savings. To do so, we used smart meter data, which only became 
available in Arizona in late 2013. The timing and absolute amount of savings are 
important from an electric load management perspective, and for evaluating the 
economic and environmental benefits of green buildings. Thus, in this analysis, 
instead of using natural logs of energy consumption, we used the absolute amount 
of energy demand as the dependent variable, following Boomhower and Davis18. 
We ran the following panel regressions:

∑ ∑
∑
φ λ γ

ρ θ η μ φ ξ ω ε

= × × + + ×

+ × + ′ × ∣∣ + + + + + +

kWh P P R

R f W it

hour of day

( )
(1)

it h it it
h

it r it it

r it i y m d h ih

where i denotes the individual account, t indicates the hour of the sample, it is an 
indicator variable equal to 1 if a building is green-certified in hour t of the sample, 
hour of day it

h  is the indicator variable of hour of day and there are 24 such dummy 
variables, Pit is the marginal electricity price faced by account i at time t, Rit is the 
electricity pricing plan faced by account i at time t, f(W||it) is the cooling degree 
day and heating degree day spline, ni represents individual account fixed effects 
that can control for unobservable confounding factors such as building occupant 
characteristics and the duration (time length of recorded energy consumption data) 
of each building occupant in our dataset, μy is the year-of-sample fixed effect, which 
can control for annual changes that can impact building energy consumption such 
as macroeconomic and policy conditions, φm is the month-of-year fixed effect, ξd 
is the day-of-month fixed effect and ωh is the hour-of-day fixed effect. There are 24 
coefficients φh, which measure the electricity savings of green-certified buildings 
by hour of day. We also ran the following model specification with day-of-sample 
fixed effects ρds, which required more computational resources to run but could 
control for more time-variant unobservables at the daily level:
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Environmental impact assessment. The hourly impact on electricity consumption 
enables us to improve the accuracy of environmental impact assessments for green 
buildings. We conducted an analysis of the carbon and air emissions impacts 
using the marginal damage factors by hour of day for NREC regions estimated by 
Holland et al.26. Arizona is located in the Western Electricity Coordinating Council 
(WECC) region, so we used the average hourly marginal damage factors for the 
WECC. Following Holland et al.26, we assumed that a unit of electricity savings at 
any building within a given NERC region had the same marginal emissions factors 
as a unit of electricity savings at any other building located in the same NERC 
region. We analysed CO2, SO2, NOX and particulate matter, which are the major 
pollutants from electricity production. The marginal damages were lower during 
the day and higher during the night, due to marginal electricity-generating units 
being cleaner during peak hours during the day.

We calculated the daily avoided damages for each business customer from 
CO2, SO2, NOX and particulate matter using φ∑ MDh h h

, where h indicates the 
hour of the day, MDh represents the marginal damages per kWh from each 
of the pollutants for hour h, and φh is the electricity savings (kWh) for hour h 
obtained from equation (2). MDhφh is the avoided damage for hour h. To obtain 
daily avoided damages, we summed the hourly avoided damages across all hours, 

φ∑ MDh h h
. In the absence of hourly electricity savings, researchers can apply a 

‘simplified’ method of using aggregate average daily electricity savings and average 
marginal damage factors to calculate the avoided damages per customer per day. 
We calculated this ‘simplified’ avoided damage using ∑ φ∑

p
MD

24
p , where ∑ MD

24
p  is 

the average marginal damage factor (in US$ kWh−1) across all hours of the day and 
∑ φp

 represents the average daily electricity savings calculated by adding up the 
hourly savings.

After obtaining daily avoided damage from environmental pollution for each 
business customer, we calculated the annual avoided environmental damage for all 
business customers located in an Energy Star-certified building under SRP‘s service 
territory. The annual total benefits were calculated by multiplying the avoided 
damage (per customer per day) by the number of Energy Star customers and the 
number of days for each season. As of 2017, there were 888 business customers 
located in Energy Star-certified buildings in SRP’s service territory. From Fig. 3, 
we know that the avoided damage from CO2 is US$0.21 customer−1 day−1 for 

summer months and US$1.28 customer−1 day−1 for winter months; the avoided 
damage from SO2 is US$0.015 customer−1 day−1 for summer months and 
US$0.255 customer−1 day−1 for winter months; the avoided damage from NOx is 
US$0.015 customer−1 day−1 for summer months and US$0.118 customer−1 day−1 
for winter months; and the avoided damage from particulate matter is −​
US$0.001 customer−1 day−1 for summer months and US$0.03 customer−1 day−1 
for winter months. The total avoided damage from all four types of pollution for 
summer months per customer is therefore (0.210 +​ 0.015 +​ 0.015 −​ 0.001) ×​ 365/2, 
where 365/2 is used to calculate the number of days for summer months; and 
the total avoided damage from all four types of pollution for winter months per 
customer is (1.28 +​ 0.255 +​ 0.118 +​ 0.03) ×​ 365/2. Adding avoided damages for 
winter and summer months together for each customer and multiplying by the total 
number of Energy Star business customers, we get ((0.210 +­­­​ 0.015 +­­​ 0.015 −­​ 0.001) ×​  
365/2 +​ (1.28 +​ 0.255 +​ 0.118 +​ 0.03) ×​ 365/2) ×​ 888 =​ US$311,479 yr−1. Thus, 
together, these Energy Star business customers are responsible for US$311,479 yr−1 
of avoided damage from CO2, SO2, NOX and particulate matter.

Simulation analysis for other states. To prove that our findings can be drawn to 
a broader geographical context, we conducted the following four-step simulation 
analysis for other US continental states.
	1.	 We obtained the average summer and winter month load profiles for com-

mercial buildings in a major city of each state. The data were obtained from 
the US Department of Energy Open Data Catalog (https://openei.org/doe-
opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-
tmy3-locations-in-the-united-states), which contains hourly load profiles for 
16 commercial building types. We calculated the average load profile across 
all building types. We then plotted the summer and winter commercial build-
ing load profiles for each location across the USA (see Supplementary Fig. 6).

	2.	 Then, using the coefficients that measure the hourly electricity savings  
from Energy Star and LEED certification, as well as the pre-certification 
hourly electricity consumption information, we calculated the percentage 
change in electricity savings for each hour from Energy Star and  
LEED certification.

	3.	 Next, using the percentage savings obtained from step (2) and the hourly load 
profile in step (1), we calculated the hourly electricity savings due to Energy 
Star and LEED certification for each location. We then plotted the hourly 
savings for each state (see Supplementary Fig. 7). Positive values indicate an 
increase in electricity consumption while negative values indicate a decrease 
in electricity consumption.

	4.	 Lastly, we obtained the average hourly marginal damages (US$ kWh−1)  
from CO2, SO2, NOX and particulate matter in each of the NREC regions.  
We merged each location with its corresponding NREC region. Then, we  
multiplied the hourly savings with the hourly marginal damages to calculate 
the avoided damages from these environmental pollutants due to Energy  
Star and LEED certification. As a comparison, we also report the avoided 
damage using aggregate electricity savings. We plotted the avoided  
per-customer daily damages from each of the pollutants for each state  
(see Supplementary Figs. 8–11).

Calculating savings for utility companies using wholesale electricity prices.  
To quantify the impact for electricity utility companies, hourly wholesale  
electricity price data were needed. However, such information is not public and 
is hard to obtain from utility companies. We borrowed the hourly wholesale 
electricity prices of California (a neighbouring state of Arizona), as reported in 
Boomhower and Davis18. Then, we calculated the estimated daily cost savings 
per business customer based on the hourly wholesale electricity prices and 
our estimated savings by hour of day using φ∑ ℘h h h

. Here, ℘h
 is the wholesale 

electricity price for hour h, and φh is the electricity savings (kWh) for hour h 
obtained from equation (2).

An alternative method to calculate the value from reducing capacity cost. 
We also used another method to calculate the value of capacity cost reduction. 
We used the average monthly contact price of US$2.66 month−1 for capacity 
from California’s Resources Adequacy Program42 from 2013–2014 as a proxy for 
capacity value in Arizona. Because the system peak load reduction estimated 
from our study is 6–8 kW (using 7 kW as a midpoint), this is equivalent to 
US$2.66 ×​ 7 ×​ 12 =​ US$223.4 year−1 customer−1. Assuming a 20-year lifetime of a 
power plant and 5% interest rate, this yearly value is then equal to US$2,785 per 
customer. This estimate is on the same order of magnitude as that obtained from 
using investment costs for power plants.

Data availability
The weather data are available from NOAA at https://www.ncdc.noaa.gov/cdo-
web/. The Energy Star data are available from https://www.energystar.gov/index.
cfm?fuseaction=​labeled_buildings.locator. The LEED data are available from 
https://www.usgbc.org/projects. The high-frequency electricity data that support 
the findings of this study are available from the SRP, but restrictions apply to their 
availability. These data were used under a non-disclosure agreement in the current 
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study, and so are not publicly available. However, they are available from the 
authors upon reasonable request and with permission from the SRP.
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