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Cooperative Heterobimetallic Catalysts in Coordination Insertion 

Polymerization 
 

In this tutorial, we describe the applications of well-defined heterobimetallic 

complexes in coordination insertion polymerization catalysis. The presence of 

two different metals in a single catalyst platform imparts reactivity patterns that 

are distinct from those of their homobimetallic and monometallic counterparts. 

We will demonstrate that heterobimetallic complexes are a versatile and unique 

class of catalysts by providing representative examples from recent studies of 

carbon dioxide/epoxide, lactone, lactide, and olefin polymerization. We will 

focus on the various strategies employed to synthesize mixed metal species, 

methods to characterize their solid state and solution structures, and the 

mechanistic roles of the metal ions during polymerization. In many cases, the 

precise nature of heterobimetallic cooperativity is not well understood, which 

underscores the need for further research to enable the development of the next 

generation of advanced polymerization catalysts.  

Keywords: heterobimetallic complexes; cooperativity; catalyst design; 

homogenous catalysts; polymerization 

 

Introduction 

 Biological enzymes often take advantage of multimetallic active sites to mediate 

chemically challenging reactions. Their distinct metal centers can participate in 

complementary tasks either simultaneously or sequentially. Cooperative catalysis in 

enzymes can manifest in various ways, such as in the selective binding of external 

substrates to the active site, stabilization of unusual transition states, or tuning of metal 

redox potentials. Some examples of multimetallic enzymes include cytochrome c 

oxidase,[1] phosphoglycerate mutase,[2] and nitric oxide reductase.[3] Synthetic chemists 

have long sought to emulate the extraordinary capabilities of biological enzymes by 

creating small-molecule mimics. For example, Collman and coworkers synthesized 
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cytochrome c oxidase models comprising iron porphyrin and copper tris(amine) units 

that can promote the electrocatalytic reduction of O2 to H2O.[4] Lehnert and coworkers 

have demonstrated that non-heme diiron complexes that model nitric oxide reductases 

can convert NO directly to N2O.[5] Studies of multimetallic protein mimics have allowed 

us to gain new insights into many fundamentally important molecular transformations. 

 

 

Scheme 1. Examples of heterobimetallic catalysts used in small molecule activation and 

other molecular transformations. 

 

Inspired by nature, synthetic chemists have taken advantage of metal-metal 

cooperativity in chemical catalysis using heterobimetallic complexes.[6-8] Catalyst 

systems that feature two different metal centers are advantageous over those that have 

just one or even two of the same metals for several reasons. For example, 

heterobimetallic catalysts can be tuned simply by interchanging metals without having 
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to modify the ligand framework. In some systems, both metal ions are directly involved 

in catalysis whereas in others, the primary metal is the site where catalysis occurs and 

the secondary metal modulates its reactivity. The many different M–M′ (where M ≠ M′) 

combinations that are possible add a new dimension for catalyst design, which can 

complement traditional strategies that focus on making structural or electronic ligand 

variations. An advantage of heterobimetallics over homobimetallics is that when both 

metals have synergistic roles in catalysis, they can avoid deactivating each other (e.g. in 

homobimetallic systems, both metal ions can compete with one another during 

polymerization).  

The versatility of heterobimetallic platforms is exemplified by several elegant 

examples of M–M′ cooperative catalysts. Lu and coworkers showed that Ni(0)-Ga(III) 

complexes supported by double-decker ligands can catalyze both olefin[9] and carbon 

dioxide hydrogenation[10] (Scheme 1A). It was found that the key to success was the 

ability of the Ga(III) metalloligands to stabilize anionic nickel-hydride intermediates 

that are capable of hydrogenating substrates.  In another example, Yang and coworkers 

developed iron salen macrocycles that can bind K+ and Ba2+ cations.[11] Their studies 

showed that iron-potassium and iron-barium complexes were capable of aerobic C–H 

bond oxidation, even though their metal redox potentials were significantly lower than 

those of mononuclear iron salen complexes with strongly electron withdrawing 

substituents (Scheme 1B). Yang’s group attributed this unusual reactivity in part to the 

electrostatic effects of K+ and Ba2+, which can accelerate the rate-determining step of 

the reaction without shifting the redox potential of the catalyst to extreme values. 

Finally, Miller and coworkers have synthesized iridium pincer crown ether complexes 

that are capable of coordinating Li+, Na+, and K+ ions (Scheme 1C).[12,13] They observed 
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that the presence of Li+ could enhance the rate of allylbenzene isomerization by up to 

1000× compared to that using just the iridium catalyst alone.  

 

Chart 1. General heterobimetallic structure classifications. Abbreviations: M, M′ = 

different metal ions, L = ligand, X = bridging ligand or atom.  
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of the current literature. We will focus on the methods employed to prepare 

heterobimetallic compounds, techniques used to determine their structures and 

compositions, and the mechanistic roles of M and M′ during the polymerization process. 

Finally, we will summarize the challenges of research in this field and offer advice on 

how to avoid some common pitfalls. 

Epoxide and Carbon Dioxide Copolymerization  

 The alternating copolymerization of epoxide and carbon dioxide (CO2) is an 

appealing strategy for the preparation of polycarbonates because CO2 is an inexpensive 

and abundant C1 feedstock.[18,22,23] Since Inoue’s discovery of heterogeneous ZnEt2/H2O 

mixture for the copolymerization of propylene oxide and CO2 in 1969,[24] many 

homogenous systems have now been developed, such as those using Zn(II)(β-

diiminate),[25] Co(III)(salen),[26] or Cr(III)(salen)[27] (salen = N,N′-bis(salicylidene)-1,2-

diaminoalkane). It is believed that the general mechanism for epoxide and CO2 

copolymerization involve initiation by nucleophilic attack of a Lewis acid-activated 

epoxide to generate a metal alkoxide complex (Scheme 2A). This species can insert 

CO2 to give a metal-carbonate intermediate that can undergo chain propagation through 

repetitive sequences of epoxide ring opening and CO2 insertion reactions. Chain 

termination occurs by chain transfer with water or alcohol. The disadvantages of some 

catalysts are that they can homopolymerize epoxides, decarboxylate to give ether 

polymer linkages, or form cyclic carbonates through backbiting. Furthermore, achieving 

both high activity and stereoselectivity during the polymerization process can also be 

challenging.  
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Scheme 2. Mechanisms for epoxide/CO2 copolymerization by A) monometallic and B) 

heterobimetallic catalysts. 
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80°C for 24 h, no metal exchange to 4 was observed. However, upon further heating for 

an additional 24 h, about 25% of the heterobimetallic species was detected by 1H NMR 

spectroscopy. These experiments suggest that the heterobimetallic species are 

thermodynamically favored over their homobimetallic analogues. However, 

redistribution of the metals is slow once the dinuclear complexes are formed (i.e. this 

process if kinetically slow). 

   

Chart 2. Examples of heterobimetallic catalysts for epoxide/CO2 copolymerization. The 

X-ray structure of 5 (X = OiPr) shows that the Zn center is four-coordinate in the solid 

state (Ref. 34). 
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zinc ion enhances epoxide coordination while the labile magnesium accelerates 

carbonate attack.  

 Williams’ group also extended their heterobimetallic studies to titanium/zinc 

complex 5 (Chart 2) for epoxide and CO2 copolymerization.[34] The mixed metal 

compound was prepared successfully by sequential metallation of diphenol tetraamine 

macrocycles with Ti(OiPr)4, followed by the addition of ZnEt2.  In addition to 

characterization by elemental analysis and MALDI-TOF, compound 5 was shown to be 

a single species in solution by DOSY NMR, which showed that all of the resonances 

have the same diffusion coefficient. When tested in cyclohexene oxide and CO2 

copolymerization, the heterobimetallic 5 exhibited moderate activity, whereas the 

monometallic titanium and zinc analogues were inactive. Although 5 appears to be less 

active than the Ti diphenolate and Ti bis(salophen) complexes that require co-catalysts, 

it can initiate polymerization without any external additives. 

  

Scheme 3. Mechanisms for the coordination insertion polymerization of A) lactide and 

B) caprolactone.  
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Lactide and Caprolactone Polymerization 

 Polyesters such as polylactides and polylactones are popular commodity plastics 

because of their attractive material properties.[36-38] For single-use or short shelf-life 

applications, polyesters are advantages over polyolefins because they can be readily 

degraded in the environment and thus, do not accumulate in landfills and natural 

habitats. The low toxicity of polyesters allows them to be integrated into many 

biomedical applications, such as in drug delivery, surgical sutures, and implantable 

contraceptives. Furthermore, monomers such as ε-caprolactones and lactides are 

relatively low cost and can be derived from biorenewable resources. Although 

polyesters can be synthesized using polycondensation, cationic polymerization, or 

anionic polymerization, coordination insertion polymerization using metal catalysts is 

advantageous because it enables the preparation of narrowly dispersed high molecular 

weight polymers.[39-44] The coordination insertion mechanism is proposed to involve 

binding of a monomer to the Lewis acidic metal, which renders the carbonyl group 

more susceptible to nucleophilic addition (Scheme 3). Subsequent attack by an alkoxide 

then leads to polymer chain growth and propagation. Polymer termination occurs upon 

hydrolysis or alcoholysis of the propagating species. The current challenges in 

coordination insertion polymerization of cyclic esters are achieving high activity and 

selectivity. Some undesired side reactions that commonly occur are transesterification, 

formation of cyclic oligomers, and back reaction to monomers. Furthermore, for 

functionalized ε-caprolactone and lactide monomers, stereoselectivity is important 

because polymer tacticity (the relative arrangement of adjacent chiral centers in the 

macromolecule) determines the material’s crystallinity and thermal and mechanical 

properties.[45] 
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Chart 3. Examples of heterobimetallic complexes for lactide and lactone 

polymerization. 
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polymers with Mw/Mn > 2.0, which suggests that 6 catalyzes more controlled 

polymerizations than Y(N(SiMe3)2)3.  

Heterobimetallic cooperativity in lactide polymerization was also explored by 

Sarazin and coworkers.[48] They reported that group 4 complexes could be prepared 

cleanly from the protonolysis of aminophenol ligands with M(N(SiMe3)2)2 (M = Ge, Sn, 

or Pb). The germanium and tin complexes that feature aza-15-crown-5 side arms were 

capable of binding Li(SO3CF3) to yield the corresponding Ge-Li (7a) and Sn-Li (7b)  

heterobimetallics (Chart 3). Metallation attempts starting from the lithiated ligand, 

followed by the addition of Ge(N(SiMe3)2)2 or Sn(N(SiMe3)2)2 did not furnish 7a and 

7b, respectively. The addition of Na(SO3CF3) or [Na(OEt2)4][NH2(B(C6F5)3)2] instead 

of Li(SO3CF3) to the monometallic germanium or tin compounds also failed to yield the 

desired heterobimetallic species.  The identities of the pure mixed-metal complexes 

were confirmed in the solid state by X-ray crystallography and in solution by 

heteronuclear NMR spectroscopy (119Sn, 29Si, and/or 7Li). Notably, the lithium ion in 7a 

and 7b has no direct interactions with the neighboring germanium or tin center. When 

the heterobimetallics were tested in lactide polymerization, 7a was about 2× more active 

and 7b was about 4× less active than their parent monometallic complexes. The authors 

proposed that the reaction rate acceleration using 7a was due to the presence of the 

Lewis acidic lithium cation, which was able to activate incoming monomers for ring 

opening polymerization. However, this hypothesis has not yet been established 

experimentally. In the case of 7b, its lower catalyst activity was attributed to rapid 

catalyst decomposition under the reaction conditions employed. 	

 In a separate study, Sarazin, Carpentier and coworkers used (R)-enantiopure 

Binap-based hydroxy-imine ligands to assemble yttrium-lithium heterobimetallics (8, 

Chart 3).[49] The researchers found that the one pot reaction of the protonated ligand, 

Y(N(SiMe3)2)3, and LiN(SiMe3)2 in a 2:1:1 ratio afforded 8 in quantitative yield. 



 13 

Interestingly, the 1:1 reaction of the Binap-based ligand with Y(N(SiMe3)2)3 did not 

provide the mononuclear yttrium complex. The heterobimetallic 8 was characterized by 

NMR spectroscopy (1H, 19F, and 7Li), X-ray crystallography, and elemental analysis. Its 

solid-state structure shows that both yttrium and lithium ions are six-coordinate and that 

the Y–Li bond distance is too long to have any direct metal-metal interactions. Studies 

by DOSY NMR spectroscopy and diffusion molecular weight analysis suggest that 8 

exists as a heterobimetallic species in THF solvent. This complex was demonstrated to 

be highly active in lactide ring opening polymerization. Remarkably, 8 generated 

polylactide with 99% heterotacticity (stereoregular sequences of -RRSS- blocks) from 

racemic lactide (RR + SS monomers) and 80% syndiotacticity (stereoregular sequences 

of -RS-) from meso lactide (RS monomers). In comparison, a mononuclear indium 

catalyst ligated by the same Binap-based ligand gave polymers with lower 

heteroselectivity and molecular weight. However, because the lithium ion in 8 is an 

essential structural component of the heterobimetallic motif, direct reactivity 

comparisons with its monometallic analogues are difficult to make since their metal 

centers have different geometries and donor sets. Kinetic studies by NMR spectroscopy 

indicate that 8 polymerizes D-lactide at the same rate as L-lactide, which is consistent 

with the high heteroselectivity observed.  
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Scheme 4. Mechanism for the coordination insertion polymerization of ethylene. Chain 

walking to give branched polymers can also occur (not depicted).  
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high molecular weight and random functional group distribution.[57,58] The discovery of 

high performance catalysts that can simplify the synthesis of common polyolefins or 

provide practical routes to novel polyolefins would be a major advance in materials 

science. 

 Researchers have explored many creative strategies to improve the performance 

of existing olefin polymerization catalysts, such as by using structural constraints,[59-61] 

hemilabile ancillary donors,[62,63] or hydrogen[64] and fluorine bonding.[65,66] There is 

growing interest in the application of heterobimetallic complexes as olefin 

polymerization catalysts because of their unique multi-functionality.  

 Ethylene Trimerization/Polymerization Tandem Catalysts: Delferro, Marks, and 

coworkers have developed titanium-chromium platforms to achieve more efficient 

tandem catalysis.[56,67] Their heterobimetallic complexes were synthesized in a stepwise 

fashion, by first reacting Ti(NMe2)4 with asymmetrically functionalized indene ligands 

to yield chelated half-sandwich titanium complexes. These compounds were then -

treated with SiMe3Cl, followed by CrCl3(THF)3 to generate the corresponding titanium-

chromium species (Chart 4). A series of heterobimetallics was prepared, in which each 

complex has a different linker length connecting the titanium to the chromium center 

(9a-9c, n = 0, 1, 3, respectively). The mixed metal compounds were characterized by 

elemental analysis, 1H NMR spectroscopy (peaks were broad due to paramagnetism), 

and MALDI-TOF mass spectrometry.  

 The motivation behind Delferro/Marks’ titanium-chromium catalyst design was 

to take advantage of the close proximity of an olefin polymerization catalyst (Ti) with 

an ethylene trimerization catalyst (Cr) to synthesize linear low-density polyethylene 

using ethylene as the sole monomer feed.[56,67] It was proposed that the 1-hexene formed 

by the chromium center could be delivered to the adjacent titanium center to be 
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incorporated in a subsequent ethylene/1-hexene enchainment process. The investigators 

observed that the Ti-Cr complexes showed increasing catalyst activity and polymer 

molecular weight according to the trend 9a > 9b > 9c. Catalyst 9a provided polymers 

with higher density of butyl branches (~26 per 1000 carbons) compared to that by 9b 

(~18 branches) and 9c (~7 branches) (Figure 1). Ethylene polymerization using a 1:1 

mixture of mono-titanium 10 and mono-chromium 11 in a conventional tandem 

catalysis reaction gave polyethylene with only ~7 branches per 1000 carbons. 

Interestingly, the branching density of the polymer obtained using heterobimetallic 9a 

was independent of polymerization time, whereas the tandem catalysts 10+11 provided 

polymers with greater branching density at longer reaction times. These data strongly 

suggest that having short Ti–Cr bond distances improve the shuttling of the 1-hexene 

monomers generated from chromium to titanium and enable synergistic interactions 

between the metal centers.  

 

Chart 4. Structures of the heterobimetallic titanium-chromium (9a-9c) and 

monometallic 10 and 11 complexes studied in ethylene trimerization/polymerization. 
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Figure 1. Comparison of the branching density observed in polyethylene produced by 

catalysts 9a-9c, and 10+11 under identical reaction conditions.   
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observed that the heterobimetallic 13-Zn complexes were more active ethylene 

polymerization catalysts than their parent mononickel complex 13. The heterobimetallic 

catalysts, however, gave polymers with broad polydispersities (Mw/Mn = ~4–11). It was 

hypothesized that the zinc ion in 13-Zn could dissociate during polymerization to yield 

at least two different catalytically active nickel species. 

 

Chart 5. Structures of heterobimetallic catalysts tested in olefin polymerization. 
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modal and their relative molecular weight distributions varied as a function of time. 

These data clearly indicated that the 14-Zn heterometallic formed multiple active 

species during polymerization. We postulate that our current carboxamidatetriazole 

platform is incapable of supporting discrete heterobimetallic species in solution, which 

suggests that further ligand modifications are needed to access well-defined single site 

catalysts.    

Expanding the Capabilities of Olefin Polymerization Catalysts: The 

tremendous potentials of heterobimetallic catalysts in olefin polymerization provide 

many unexplored avenues for further research. For example, we envision that a wide 

array of different polyolefin microstructures could be obtained by judicious pairing of a 

secondary metal salt with a Ni or Pd catalyst. Because the electrophilicity, charge, size, 

and chemical properties of metals can differ significantly, this strategy offers a simple 

way to customize catalysts to different user preferences. Furthermore, we hypothesize 

that it might be possible to overcome the tendency of polar groups to form chelated 

metallacycles in ethylene and polar vinyl olefin copolymerization by exploiting outer 

sphere Lewis acid interactions (Scheme 5).[72,73] Excitingly, there is some literature 

precedence that multi-nuclear catalysts can access reactivity patterns that are different 

than those of mononuclear catalysts.[74,75] 

 

 

Scheme 5. Proposed pathway for ethylene and methyl acrylate copolymerization by 

heterobimetallic catalysts. The insertion step can occur through either a 1,2– (shown 

above) or 2,1–insertion pathway.  
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 As proof of concept, our lab first investigated the effects of alkali ions (Li+, Na+ 

and K+) on the polymerization activity of nickel phenoxyimine catalysts.[76-78] To 

reinforce a short nickel–alkali bond distance, we installed polyethylene glycol (PEG) 

chains to the nickel complex as binding arms for secondary metals. We determined by 

metal titration studies that the nickel phenoxyimine-PEG complexes could form both 

1:1 and 2:1 nickel-alkali species in solution. Our data suggest that the match between 

the PEG chain length and the cation size determines their relative metal binding 

affinities. Complex 15a (R= iPr), which has a tetra(ethylene glycol) unit, formed 

exclusively 1:1 nickel-sodium species. Several of our heterobimetallic structures were 

determined by X-ray crystallography, including the nickel-sodium and nickel-potassium 

complexes. We demonstrated that the addition of 1.1 equiv. of NaBArF
4 (BArF

4
– = 

tetrakis(3,5-bis(trifluoromethyl)phenyl)borate anion) to 15a led to a ~77× increase in 

catalyst activity as well as branching in comparison to polymerizations using 15a 

without salt additives.  Since the presence of Na+ enhances both the electrophilicity and 

steric bulk of the nickel center, it is difficult to determine how each of these factors 

contributed to the observed reactivity. We also prepared bulky catalyst variants with R 

= phenyl (15b) and 3,5-bis(trifluoromethyl)phenyl (15c) N-substituents. When 

combined with either Na+ or K+ ions, these catalysts displayed up to ~30× greater 

activity for ethylene polymerization compared to that of a control catalyst lacking 

secondary alkali ions. Unfortunately, our heterobimetallic catalysts were significantly 

inhibited in the presence of polar olefins such as vinyl acetate, allyl acetate, and propyl 

vinyl ether, which is a known limitation for nickel phenoxyimine catalyst systems. 
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Chart 6. Examples of heterobimetallic complexes for Lewis-acid promoted olefin 

copolymerization. 

 

 Our early success using a Lewis acid/secondary metal activation strategy 
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phosphate group to provide a second metal binding site for alkali ions.[81] Using the 

method of continuous variation, we demonstrated that the 1:1 palladium:alkali (Li+, Na+, 

or K+) complex is the optimal stoichiometry in solution. The identity of the palladium-

sodium complex was confirmed by X-ray crystallography. Consistent with our previous 

studies, addition of alkali salts to 16 generated single-site catalysts (16-M) that are more 

active for ethylene polymerization than 16 itself. The palladium-alkali catalysts also 

showed improved activity for ethylene and alkyl acrylate copolymerization compared to 

their parent monopalladium catalysts, although their effect on polymer branching and 
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140°C. Studies are currently underway to understand the reasons for their greater 

catalyst activity and thermal stability.  

 

Challenges and Future Outlook 

 Although many successful examples of heterobimetallic catalysts have now been 

reported, constructing synthetic systems that take advantage of metal–metal 

cooperativity is still a formidable goal. First, the preparation of well-defined 

heterobimetallic compounds is not always a trivial task. Metallation of symmetric 

dinucleating ligands can lead to a mixture of homobimetallic and heterobimetallic 

species that are difficult to separate.[32] Furthermore, a ligand having two identical sets 

of donor groups might not be able to support a specific M–M′ combination due to the 

different coordination preferences of the individual metals. Although asymmetric 

dinucleating ligands can solve the metal selectivity problem by having two distinct sets 

of donors that accommodate two different metal ions, they are typically more time 

consuming to synthesize than symmetric ligands. In many cases, ligand synthesis is the 

rate-limiting step of the catalyst development process.  

 Second, once the desired heterobimetallic complexes have been prepared, 

rigorous physical characterization work must be performed to establish their identities 

and structures. Determining the X-ray crystal structures of the heterobimetallic 

complexes provide useful information about their atom connectivity in the solid state. 

However, it is also necessary to employ methods to determine their speciation in 

solution, such as by mass spectrometry (e.g. ESI, MALDI-TOF),[32,67] NMR 

spectroscopy (e.g. 1-D, DOSY),[32,48,49] or metal binding studies (e.g. titration, Job 

Plot).[76,81] It is important to assess whether the heterobimetallic species equilibrate in 

solution to form homobimetallics or self-assemble into higher nuclearity species (i.e. 

greater than 2). 



 23 

  Finally, a third challenge in heterobimetallic catalyst development is identifying 

the factors that contribute to the cooperative effect. One of the most compelling 

evidence for M–M′ cooperativity comes from reactivity studies. If a heterobimetallic 

catalyst displays reactivity that is different than that of their homobimetallic or 

monometallic analogues, then a case could be made for synergistic heterobimetallic 

interactions. A potential problem, however, is that synthesizing suitable homobimetallic 

or monometallic complexes for reactivity comparisons is not always possible. Even if a 

heterobimetallic effect is supported by experimental data, investigating the specific 

roles of M and M′ in catalysis can be exceedingly difficult. To obtain a complete 

mechanistic picture, we need to acquire information about the structures of key catalyst 

intermediates and gain insights into the thermodynamics and kinetics of the elementary 

steps in the polymerization process. This mechanistic work is particularly challenging if 

the intermediates of interest cannot be trapped or observed by current physical 

characterization techniques.   

 Despite the challenges delineated above, synthetic chemists are well equipped to 

overcome some of these common obstacles. When designing new heterobimetallic 

catalysts, there are now many known structural motifs to model after. The best design 

will depend on catalyst criteria such as M–M′ bond distance, structural flexibility, 

coordinative unsaturation, and thermal stability. In our experience, the most effective 

method to prepare heterobimetallic complexes is to metallate dinucleating ligands in a 

stepwise fashion (adding M first followed by M′ or vise versa) rather than in a one-pot 

reaction (adding both M and M′ at the same time). It is important to use a combination 

of physical characterization methods to verify the identity of the heterobimetallic 

complex in both the solid state and solution. As we had demonstrated in our studies of 
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the nickel carboxamidatetriazole complexes described above,[70,71] understanding 

catalyst speciation in operando is critical to the catalyst design process.  

To study mechanism, a variety of modern spectroscopic tools are available. For 

some catalysts, it might be possible to generate reaction intermediates at low 

temperature[82] or trap them by rapid freeze quench techniques for further 

characterization.[83] In addition to using conventional methods (e.g. NMR spectroscopy) 

to probe these intermediates, synchrotron-based techniques (e.g. X-ray absorption 

spectroscopy, nuclear resonance vibrational spectroscopy, etc.) could offer 

complementary information.[84,85] To answer mechanistic questions that might not be 

accessible experimentally, computational studies could also be very powerful.[86,87] As 

indicated by our survey of recent literature, interest in heterobimetallic systems is 

growing in the catalysis community. We anticipate that further research in this area will 

lead to new conceptual breakthroughs in polymerization catalysis and provide access to 

novel and sustainable materials that could enhance the quality of everyday life.  
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