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Abstract— This paper presents a Q-learning based dynamic
intermittent mechanism to control linear systems evolving
in continuous time. In contrast to existing event-triggered
mechanisms, where complete knowledge of the system dynamics
is required, the proposed dynamic intermittent control obviates
this requirement while providing a quantified level of perfor-
mance. An internal dynamical system will be introduced to
generate the triggering condition. Then, a dynamic intermittent
Q-learning is developed to learn the optimal value function and
the hybrid controller. A qualitative performance analysis of the
dynamic event-triggered control is given in comparison to the
continuous-triggered control law to show the degree of sub-
optimality. The combined closed-loop system is written as an
impulsive system, and it is proved to have an asymptotically
stable equilibrium point without any Zeno behavior. A numer-
ical simulation of an unknown unstable system is presented to
show the efficacy of the proposed approach.

Index Terms— Intermittent Q-learning, dynamic event-
triggered control, suboptimal performance.

I. INTRODUCTION

Feedback is the main principle of control that guarantees

several properties of a dynamical plant, including asymp-

totic stability of equilibrium, optimality and/or disturbance

rejection. Recently, several approaches have been formu-

lated, wherein the control is carried out in an open-loop

manner between consecutive event instants. Such approaches

are classified in event-triggered control [1]–[3] and self-

triggered control [4], [5]. Event-triggered control consists of

a feedback controller that computes the control input and

a triggering mechanism that determines when the control

input has to be updated again. Emulation-based approaches

have been used to synthesize the intermittent controller by

first developing a feedback controller to stabilize the plant

without constraints of communication, then subsequently

determining the appropriate event-triggering condition to
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reduce the communication bandwidth, while still ensuring

stability [6], [7].

Related Work

In order to relax the above requirements, several papers

have focused on the co-design problem, where the design of

the controller and the event-triggering condition are carried

out simultaneously [8]–[10]. However, these methods are

model-based and they require full knowledge of the system

dynamics, which can be vulnerable to exhaustive modeling

and malicious attacks.

Adaptive dynamic programming (ADP) is a recently de-

veloped technique that adopts the idea from reinforcement

learning (RL) to approximate the optimal controller for

general nonlinear dynamical systems [11]. In contrast to

traditional optimal control theory [12], ADP solves the

Riccati or Hamilton-Jacobi-Bellman equation in an online

manner [13]. Recently, event-triggering is combined with

online ADP to develop intermittent control laws [14], [15].

However, complete or partial knowledge of system dynamics

is required, which might not be available in many applica-

tions. Off-policy RL algorithm [16]–[18] is employed in [19]

to obtain the optimal feedback for the event-triggered control

in a model-free manner, but the learning process of optimal

feedback gain and the event design are separated. Another

model-free RL approach, the Q-learning algorithm [20], is

adopted in [21] to co-design the optimal feedback gain and

the event-triggering condition simultaneously. In this paper,

dynamic intermittent feedback proposed in [22] is extended

to combine with the Q-learning algorithm to develop a

model-free intermittent control to reduce the communication

burden even more.

Contributions

The contributions of this paper are threefold. First, an

intermittent Q-learning algorithm is combined with an actor-

critic structure implemented with a zero-order hold (ZOH)

to learn the parameters of optimal Q-function in an online

and model-free manner. Specifically, in contrast to existing

model-based event-triggered designs, this paper presents a

model-free solution to the co-design of both the transmission

instants and the control policy in the context of intermittent

control. Moreover, an internal dynamical system is intro-

duced to generate the dynamic triggering condition in order

to reduce the communication and computation burden even

more. The combined closed-loop system is analyzed within

the framework of impulsive system approach, and it is proved

to have an asymptotically stable equilibrium point without
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any Zeno behavior. Finally, the performance of the dynamic

event-triggered control is compared to the time-triggered

control case to show the degree of sub-optimality.

Structure

The remainder of the paper is structured as follows. The

optimal stabilization problem of continuous-time linear dy-

namical systems is formulated in Section II, where both time-

and event-triggered control designs are discussed. Section

III reviews the static intermittent feedback designs for the

cases of model-based and model-free. In Section IV, a novel

dynamic intermittent Q-learning-based co-design of event-

triggering condition and feedback controller is presented and

it is shown that the equilibrium of the closed-loop system is

globally asymptotically stable with Zeno-free triggering. A

simulation is presented in Section V to verify the proposed

algorithm and the conclusions are given in Section VI.

Preliminaries

The notations used in this paper is standard.

p¨q` ∆“ the right-limit operator, p` “ lim
sÑt`

p psq.

R
` ∆“ the set of positive real numbers.

tk
∆“ the k-th consecutive sampling instant

ttku8
k“0

∆“ a sequence of monotonically increasing

sampling instants satisfying lim
kÑ8

tk “ 8.

Mi,j
∆“ pi, jq-th entry of matrix M .

λ̄ pMq ∆“ the maximum eigenvalue of matrix M .

λ pMq ∆“ the minimum eigenvalue of matrix M .

}M}F
∆“

a

tr pMMHq (matrix Frobenius norm).

vech pMq ∆“
“

M1,1 ¨ ¨ ¨ M1,n M2,2 ¨ ¨ ¨ M2,n

¨ ¨ ¨ Mn´1,n´1 Mn´1,n Mn,n

‰T
,

@M P R
nˆn .

Definition 1. (Persistent Excitation) A vector signal yptq P
R

p is exciting over the interval rt, t ` T s with T P R
` if

there exists β1 P R
` and β2 P R

` such that for @t,

β1Ipˆp ď
ż t`T

t

y pτq yT pτq dτ ď β2Ipˆp l

II. PROBLEM STATEMENT

A. Time-Triggered Optimal Control

In this paper, the following continuous-time linear dynam-

ical system is considered

9x ptq “ Axptq ` Buptq, x pt0q “ x0, (1)

where xptq P R
n is the state vector, uptq P R

m is the control

input, x0 is the initial state at time t0 ě 0, and A P R
nˆn,

B P R
nˆm are the state and the input matrices.

Let the optimal value function be defined as

V ˚ pxq – min
uptq

ż 8

t0

r px ptq , u ptqq dt, (2)

with

r px, uq “ 1

2

`

xTHx ` uTRu
˘

, (3)

where H ľ 0 and R ą 0. For a linear system of the form

of (1) we can represent the value function as

V ˚pxq “ 1

2
xTPx,

Assumption 1. The pair pA,Bq is stabilizable and
`

A,
?
H
˘

is detectable. l

Under Assumption 1, P P R
nˆn is the unique positive

definite matrix that solves

ATP ` PA ´ PBR´1BTP ` H “ 0. (4)

Define the Hamiltonian functional as

H

ˆ

u p¨q ;x, BV ˚ pxq
Bx

˙

“
BBV ˚ pxq

Bx , 9x

F

` r px, uq

“
BBV ˚ pxq

Bx ,Ax ` Bu

F

` 1

2

`

xTHx ` uTRu
˘

(5)

Then, based on the Hamiltonian, the optimal control u˚ can

be obtained as

u˚ pxq – argmin
up¨q

H

ˆ

u p¨q ;x, BV ˚ pxq
Bx

˙

“ ´R´1BT BV ˚ pxq
Bx “ ´R´1BTPx (6)

Note that in order to solve Eq. (4), complete knowledge

of the model of the system is needed, which might not

be available in many applications. Also, the optimal con-

trol u˚ptq requires continuous update of the control signal,

which might be computationally inefficient and increase the

communication between controller and sensors/actuators.

In this paper, u˚ ptq is referred to as time-triggered optimal

control, as opposed to the event-triggered control introduced

as follows.

B. Intermittent Feedback Control

In order to increase the computational efficiency and

reduce the communication burden, event-triggered controller

is obtained by introducing an aperiodic sampling mechanism.

Consider the aperiodic state sampling

x̂ ptq –

#

x ptkq , @t P rtk, tk`1q
xptk`1q, t “ tk`1

(7)

The gap between the current state xptq and the sampled state

x̂ ptq is denoted as

e ptq – x̂ ptq ´ x ptq (8)

In the sequel, an intermittent control law with aperiodic

sampling is introduced based on the time-triggered optimal

control (6) as

ue pxq – u˚ px̂q “ ´R´1BTPx̂. (9)

With the above intermittent control law, the continuous

dynamics of closed-loop system (1) can be written as

9xptq “ Axptq ´ BR´1BTPx̂ptq (10)

For the event-triggered control policy (9), the following

lemma holds.

925



Lemma 1. [21] Consider the event-triggered control policy

(9). Then, the following facts are true.

1) There exists a positive constant L P R
` such that

}u˚ px ptqq ´ ue px ptqq} ď L }e ptq} (11)

2) The intermittent Hamiltonian from the event-triggered

control (9), H
´

ue p¨q ;x, BV ˚pxq
Bx

¯

, satisfies

H

ˆ

ue p¨q ;x, BV ˚ pxq
Bx

˙

ď L2λ̄ pRq
2

}e}2 (12)

l

Lemma 2. [14] Under Assumption 1, the relationship

between the intermittent Hamiltonian and the continuous-

triggered Hamiltonian is

H

ˆ

ue;x,
BV ˚ pxq

Bx

˙

´ H

ˆ

u˚;x,
BV ˚ pxq

Bx

˙

“ pue ´ u˚qTR pue ´ u˚q . (13)

l

Remark 1. Note that (9) is a general form of ARE-based

event-triggered control policy. Different types of intermittent

mechanisms differ in how the state sampling instant sequence

ttku8
k“0

in (7) is determined. As will be shown later, the

static event-triggered control us p¨q and the dynamic event-

triggered control ud p¨q have the same form as (9) but the

corresponding event-triggering condition is different. l

In the following, it is assumed that finite-time stabilization

is not achieved, i.e. xptkq ‰ 0, @k P N
`.

III. STATIC INTERMITTENT FEEDBACK DESIGN

In this section, static intermittent feedback in both model-

based and model-free fashion are briefly reviewed.

A. Static Model-Based Event-Triggered Control

Lemma 3. [14] (Static Model-Based Event-triggered

Mechanism) Under Assumptions 1, suppose that the event-

triggered controller uspxq – uepxq is applied to system (1)

with the event-triggering condition

}e}2 ď
`

1 ´ β2
˘

λ pHq
L2λ̄ pRq }x}2 ` λ pRq

L2λ̄ pRq}us}2 (14)

where β P p0, 1q is a user-defined parameter. Then, the

closed-loop system of (1) has an asymptotically stable equi-

librium point. Moreover, Zeno behavior is guaranteed to be

excluded for the event-triggered control us. l

According to the event-triggering condition (14) in Lemma

3, the sampling instants can be expressed as

t0 “ 0,

tk`1 “ inf
tPR`

tt ą tk ^ p ď 0u . (15)

where

p :“
`

1 ´ β2
˘

λpHq}x}2 ` λpRq}us}2 ´ L2λ̄pRq}e}2. (16)

Note that the parameters of the event-triggering condition

(14) are time-invariant and p ě 0 has to be always satisfied.

Therefore, in this paper, the triggering condition (14) is

named as static triggering condition, in contrast to the

dynamic triggering condition discussed next.

B. Static Model-Free Event-triggered Mechanism

1) Action-Dependent Value Function: In order to develop

an algorithm to learn the optimal feedback gain K˚ in

a model-free manner, the function of a state-action pair,

named as action-dependent value function or Q-function, is

introduced as

Q px, ueq ∆“ V ˚ pxq ` H

ˆ

ue p¨q ;x, BV ˚ pxq
Bx

˙

´ H

ˆ

u˚ p¨q ;x, BV ˚ pxq
Bx

˙

(17)

This function can be equivalently rewritten in a compact form

as

Q px, ueq “ 1

2
x̄TQx̄, (18)

with x̄ –

„

x

ue



and Q –

„

Qxx Qxu

Qux Quu



where Qxx –

H ` P ` PA ` ATP, Qxu – PB, Qux – BTP, and

Quu – R.

Based on the Q-function in (18), the optimal feedback

gain K˚ can be equivalently expressed as

K˚ “ ´Q´1

uuQux (19)

Then, the event-triggered control (9) can be rewritten as

ue “ ´Q´1

uuQuxx̂ (20)

In the following, a model-free algorithm is presented to

learn the parameters of the Q-function Q px, ueq in (18) and

the event-triggered controller uep¨q in (9) or (20).

2) Actor-Critic Representation: In this subsection, actor-

critic structure is employed to parametrize the approximator

of the Q-function and the event-triggered controller, i.e., a

critic approximator learns Q px, ueq in (18) and an actor ap-

proximator with a ZOH learns the event-triggered controller

uep¨q in (9) or (20).

First, the Q-function in (18) can be expressed as

Q px, ueq “ 1

2
x̄TQx̄ “ xW˚

c , ϕcy , (21)

where W˚
c “ 1

2
vech pQq P R

pn`mqpn`m`1q
2 is the ideal critic

weight vector with

vech pQxxq “ W˚
c

´

1 :
npn`1q

2

¯

vech pQxuq “ W˚
c

´

npn`1q
2

` 1 :
npn`1q

2
` mn

¯

vech pQuuq “ W˚
c

´

npn`1q
2

` mn ` 1 :
pn`mqpn`m`1q

2

¯

and ϕc – x̄ b x̄ is the critic basis. In order to learn the ideal

critic, the following approximator is established

Q̂ px, ueq “ xWc, ϕcy ,
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where Wc is approximator of W˚
c .

Similarly, the event-triggered controller uep¨q in (9) can

be equivalently expressed as

ue “ ´Q´1

uuQuxx̂ “ pW˚
a qT ϕa (22)

where W˚
a P R

nˆm is the ideal actor weight and ϕa – x̂

is the actor basis. Then, in order to approximate the event-

triggered controller ue, the following actor approximator is

used

ûe “ pWaqT ϕa (23)

where Ŵa are the approximated weights of W˚
a .

According to linear quadratic optimal control theory [12],

the HJB equation can be written as

min
u

"BV ˚ pxq
Bx pAx ` Buq ` 1

2

`

xTHx ` uTRu
˘

*

“ 0

An equivalent formulation of the above HJB equation, named

as integral Bellman equation [23], can be written in terms of

the value function V ˚pxq as

V ˚ px pt ´ T qq ´ V ˚ px ptqq
“

şt

t´T
1

2

´

xTHx ` pu˚qTRu˚
¯

dτ

By using the action-dependent formulation of Q-function in

Section III-B.1, the above integral Bellman equation in terms

of the Qpx, ueq can be written as

Q px ptq , u˚
e ptqq “ Q px pt ´ T q , u˚

e pt ´ T qq
´

şt

t´T
1

2

´

xTHx ` pu˚
e qTRu˚

e

¯

dτ

Define the following critic error ec P R that we would like

to eventually drive to zero by picking appropriately Wc,

ec – Q̂ px ptq , ûe ptqq ´ Q̂ px pt ´ T q , ûe pt ´ T qq
`

şt

t´T
1

2

´

xTHx ` pûeqTRûe

¯

dτ

“ WT
c ϕc ptq ´ WT

c ϕc pt ´ T q
`

şt

t´T
1

2

´

xTHx ` pûeqTRûe

¯

dτ

Similarly, the actor error ea can be defined as

ea :“ ûe px̂q ´
´

´Q̂´1
uuQ̂uxx̂

¯

“
´

WT
a ` Q̂´1

uuQ̂ux

¯

x ptkq ,@t P rtk, tk`1q

where Q̂ux and Q̂uu are extracted from the critic weight Wc.

The squared-norm of these approximation errors, ec and ea,

can be expressed as

Ec “ 1

2
}ec}2, Ea “ 1

2
}ea}2 (24)

Based on the above formulations, after applying a gradient

descent in (24), the update rule for critic and actor can be

determined respectively as

9Wc “ ´αc

1

p1 ` ρT ρq2
BEc

BWc

“ ´αc

ρ

p1 ` ρT ρq2
eTc (25)

$

&

%

9Wa “ 0, @t P rtk, tk`1q
W`

a “ Wa ´ αa
1

1`xT x
BEa

BWa

“ Wa ´ αa
x

1`xT x
eTa , t “ tk

(26)

where ρ ptq – ϕc ptq ´ ϕc pt ´ T q.

3) Impulsive System Formulation: Define the error for

actor and critic weight as

W̃c – W˚
c ´ Wc, (27)

W̃a – W˚
a ´ Wa, (28)

In this subsection, impulsive system formulation [24] of

augmented system of x, x̂, W̃c and W̃a is employed for

analysis. Considering the actor-critic parametrization in the

previous subsection, then the closed systems dynamics in

(10) can be rewritten as

9xptq “ Axptq ` B
´

´Q´1

uuQux ´ W̃T
a

¯

x̂ptq @t P R
`
0

(29)

Combining the dynamics in (25), (26) and (29), one

can obtain the augmented system with state χ –
“

xT x̂T W̃T
c W̃T

a

‰T
with the flow (t P rtk, tk`1q)

and jump (t “ tk`1q dynamics respectively as in (30), which

is shown on top of next page.

4) Static Intermittent Q-Learning: The static intermittent

Q-learning design developed in [21] can be summarized as

follows.

Lemma 4. [21] (Static Intermittent Q-Learning) Consider

the system dynamics given by (29), the Q-function critic

approximator given by (21) and the actor approximator given

by (22). The tuning laws for the weights of the critic and

the actor are given by (25) and (26), respectively. Then, the

origin of the closed-loop impulsive system with state χ for

all initial conditions χ0 is globally asymptotically stable as

long as the sampling instants is determined by

t0 “ 0,

tk`1 “ inf
tPR`

tt ą tk ^ q ď 0u . (31)

with the event-triggering condition

q ď 0 (32)

q :“
`

1 ´ β2
˘

λ pHq }x}2 ` λ pRq }ue}2

´4
`

L2 ` L2

1

˘

λ̄ pRq }e}2 (33)

where L1 is a positive constant of unity order, and the

following inequalities hold:

λ pHq
λ̄ pRq ą 2L2

1

β2
(34)

αc " αa, 0 ă αa ă 8λ pRq ´ 4

λ pRq ` 2
(35)

l

According to Lemma 4, the parameters of the event-

triggering condition (31) are time-invariant, and q ě 0 has

to be always satisfied. Therefore, in this paper, the triggering

condition (31) is named as static intermittent Q-learning, in

contrast to the dynamic intermittent Q-learning discussed in

the next section.
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9χ “

»

—

—

—

–

Ax ` B
´

´Q´1
uuQux ´ W̃T

a

¯

x̂

0

´αc
ρρT

p1`ρT ρq2
W̃c

0

fi

ffi

ffi

ffi

fl

, χ` “ χ `

»

—

—

—

–

0n
e

0 pn`mqpn`m`1q
2

vec
´

´αa
xxT

1`xT x
W̃a ´ αa

xxT

1`xT x
Q̃xuQ

´1
uu

¯

fi

ffi

ffi

ffi

fl

. (30)

IV. DYNAMIC INTERMITTENT Q-LEARNING

In this section, dynamic intermittent Q-learning algorithm

is developed. It is shown that the presented dynamic inter-

mittent Q-learning is Zeno-free and has larger inter-event

interval compared to the static one. Moreover, the degree

of sub-optimality of the dynamic intermittent Q-learning

algorithm is discussed.

To formulate the dynamic intermittent feedback control,

the following internal dynamical system is required [22]

9ς “ ´γς ` q, ς pt0q “ ς0, t P R`
0

(36)

where q is defined in (33) and γ P R
` is a design parameter.

The dynamic intermittent Q-learning, triggers an event when

the following condition is satisfied

ς ptq ` φq ptq ď 0, (37)

where φ P R
` is a parameter to be designed later. The event-

triggering instants sequence can be determined by (37) as

t0 “ 0,

tk`1 “ inf
tPR`

tpt ą tkq ^ pς ptq ` φq ptq ď 0qu . (38)

Comparing between (32) and (37), we note that the condition,

q ě 0, in the static model-free intermittent control can be re-

laxed to be ς`γq ě 0 in the dynamic model-free intermittent

control. Consequently, the dynamic event-triggered control

can be determined as udp¨q – uep¨q with the event-triggered

condition (37) and the event-triggering instants expressed as

(38). The property of the dynamic event-triggered condition

(37) can be presented in the following lemma.

Lemma 5. Let γ be a positive constant, ς0, φ P R
`
0

, and q

defined as in (33). Then the following conclusions holds.

1) ς ptq ` φq ptq ě 0, @t P R`
0

;

2) ς ě 0, @t P R`
0

. l

Proof. The proof follows from that of [22, Lemma 2.2]. l

To this end, the dynamic model-free event-triggered co-

design based on intermittent Q-learning can be formulated

in the next theorem.

Theorem 1. (Dynamic Intermittent Q-Learning) Consider

the system dynamics given by (30), the Q-function critic

approximator given by (21) and the actor approximator

given by (22). Suppose that the signal
ρ

1`ρT ρ
is persistently

excited. The tuning laws for the weights of the critic and

the actor are given by (25) and (26), respectively, along

with the dynamic event-triggering condition selected as in

(37). Then, the origin of the closed-loop system is globally

asymptotically stable. l

Proof. In order to show the asymptotic stability, the aug-

mented system of (36) and impulsive system (30) and (30)

is considered.

Consider the Lyapunov candidate W pχ, ςq “ V pχq ` ς .

where ς satisfies (36) and V pχq is defined as

V pχq “ V ˚ pxq
loomoon

V1pxq

`V ˚ px̂q
loomoon

V2px̂q

` 1

2

›

›

›
W̃c

›

›

›

2

looomooon

V3pW̃cq

` 1

2
tr

´

W̃T
a W̃a

¯

looooooomooooooon

V4pW̃aq

. (39)

According to the flow dynamics (30), one can obtain that x̂

and W̃a are only updated at the event-triggering instants and

remain constant during the flows. Therefore, 9V2 “ 9V4 “ 0.

Then, the time derivative of V pχq is

9V pχq “ 9V1 ` 9V3

“ BV ˚ pxq
Bx pAx ` Bûdq ´ αcW̃

T
c

ρρT

p1 ` ρT ρq2
W̃c

“ 1

2
pu˚qTRu˚ pxq ´ 1

2
xTHx ´ pu˚qTRûd

looooooooooooooooooooooooomooooooooooooooooooooooooon

9V1

´αcW̃
T
c

ρρT

p1 ` ρT ρq2
W̃c

looooooooooooomooooooooooooon

9V3

(40)

where pu˚qTRu˚ pxq ´ pu˚qTRûd in above satisfies

1

2
pu˚qTRu˚ pxq ´ pu˚qTRûd

“ 1

2
pu˚ ´ ûdqTR pu˚ ´ ûdq ´ 1

2
ûT
d Rûd

ď 1

2
λ̄ pRq

›

›

›
W̃T

a x ´ WT
a e

›

›

›

2

´ 1

2
λ pRq }ûd}2

ď 2
`

L2 ` L2

1

˘

λ̄ pRq }e}2 ` L2

1λ̄ pRq }x}2 ´ 1

2
λ pRq }ûd}2

(41)

where the second inequality results from the facts in (11) and

(28). Since ρ
1`ρT ρ

is persistently excited, then, there exist a

positive constant Tpe such that

ż t`Tpe

t

ρ pτq ρT pτq
r1 ` ρT pτq ρ pτqs2

dτ ě cI, (42)

where c P R
` is a positive constant. Suppose also that that

there exists M̄ P R
` such that

max
!

|M | ,
ˇ

ˇ

ˇ

9M
ˇ

ˇ

ˇ

)

ď M̄,@t ě t0 (43)

where M “ ρ
1`ρT ρ

. Then, one can obtain

9V3 ď ´αcλ
`

MMT
˘

}Wc}2. (44)
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Considering (41), then,

9V1 ď 2
`

L2 ` L2

1

˘

λ̄ pRq }e}2 ` L2

1λ̄ pRq }x}2 ´ 1

2
λ pRq }ûd}2

´ 1

2
λ pHq }x}2

“ ´1

2
q ` L2

1λ̄ pRq }x}2 ´ β2

2
λ pHq }x}2

ď
„

L2

1λ̄ pRq ´ β2

2
λ pHq



}x}2 (45)

where q is defined in (33). Based on the fact in (34), 9V1 ă 0

can be guaranteed. Therefore, for the flow dynamics of (30),

the derivative of W ptq satisfies

9W “ 9V ` 9ς

“ ´1

2
q ` L2

1λ̄ pRq }x}2 ´ β2

2
λ pHq }x}2

looooooooooooooooooooooomooooooooooooooooooooooon

9V1

´γς ` 1

2
q

loooomoooon

9ς

` 9V3

ď ´αcλ
`

MMT
˘

}Wc}2 `
ˆ

L2

1λ̄ pRq ´ β2

2
λ pHq }x}2

˙

´ γς

ă 0 (46)

Next, consider the jump dynamics given in (30). The

difference of the common Lyapunov function (39) can be

expressed as

∆V pχq “ V ˚
`

x`
˘

´ V ˚ px ptkqq
looooooooooooomooooooooooooon

∆V1

`V ˚
`

x̂`
˘

´ V ˚ px̂ ptkqq
looooooooooooomooooooooooooon

∆V2

`V3

´

W̃`
c

¯

´ V3

´

W̃c ptkq
¯

looooooooooooooomooooooooooooooon

∆V3

`V4

´

W̃`
a

¯

´ V4

´

W̃a ptkq
¯

looooooooooooooomooooooooooooooon

∆V4

(47)

Note that time evolution of x and W̃c are both continuous

with no jumps at event-triggering instants, it is evident that

∆V1 “ ∆V3 “ 0. Based on the fact that x̂` “ x̂ ptk`1q,

there exists a class K function κ p¨q such that1

∆V2 “ V ˚ px̂ ptk`1qq ´ V ˚ px̂ ptkqq
ď κ p}x̂ ptk`1q ´ x̂ ptkq}q (48)

holds uniformly for @tk. Therefore, one can conclude that

}x̂ ptkq} Ñ 0, i.e., x̂ ptkq converges to the origin asymptot-

ically. Note that ∆V4 in (47) satisfies (49) by using using

Youngs inequality, Cauchy-Schwarz inequality and the fact

in (50) (see top of next page). Therefore, it can be shown

that ∆V4 ă 0 when W̃a lies outside the set ΩW̃a
, which is

given in (51) with the actor learning rate αa satisfying (34).

From (49), the set ΩW̃a
is forward-invariant. That is, when

W̃a enters the set ΩW̃a
, it would stay inside ΩW̃a

thereafter.

Because the signals in (51) are asymptotically stable, then,

the set ΩW̃a
vanishes and becomes a single point [25]. Also,

for the jump dynamics of the augmented system, note that

the variable ς is continuously time-varying, then, the time

difference equation of ς ptq is zero. Hence ∆W ptq “ ∆V ptq
will converge to the origin asymptotically.

1Readers are refereed to [25] for details on class K functions.

Based on the above analysis, the asymptotic stability of

the impulsive augmented system can be guaranteed. This

completes the proof. l

Corollary 1. Let ttsku8
k“1

and
'

tdk
(8

k“1
be the triggering time

sequences determined by the static and dynamic intermittent

Q-learning as designed in Lemma 4 and Theorem 1, respec-

tively. Assume also that tsk “ tdk “ tk and after writing

the next triggering instants by the static and the dynamic

intermittent Q-learning as tsk`1
and tdk`1

respectively, one

has tdk`1
ě tsk`1

. l

Proof. This will be shown by contradiction. Assume that

tdk`1
ă tsk`1

. Then, based on (38), one has that q
`

tdk`1

˘

ą 0,

i.e.,

`

1 ´ β2
˘

pHq
›

›x
`

tdk`1

˘›

›

2 ` pRq
›

›u˚
`

tdk`1

˘›

›

2

ą 4
`

L2 ` L2

1

˘

λ̄ pRq
›

›e
`

tdk`1

˘›

›

2

. (52)

Based on (38) and Lemma 5, one has ς
`

tdk`1

˘

`θH
`

tdk`1

˘

ď
0, i.e.,

0 ě γ
`

tdk`1

˘

` φ
”

`

1 ´ β2
˘

λ pHq
›

›x
`

tdk`1

˘›

›

2

` λ pRq
›

›u˚
`

tdk`1

˘›

›

2´4
`

L2 ` L2

1

˘

λ̄ pRq
›

›e
`

tdk`1

˘›

›

2
ı

ě φ
”

`

1 ´ β2
˘

λ pHq
›

›x
`

tdk`1

˘›

›

2 ` λ pRq
›

›u˚
`

tdk`1

˘›

›

2

´ 4
`

L2 ` L2

1

˘

λ̄ pRq
›

›e
`

tdk`1

˘›

›

2
ı

“ φq
`

tdk`1

˘

. (53)

Note that φ P
`

0, 1

s

‰

is a positive constant, and therefore,

(53) yields q
`

tdk`1

˘

ď 0, which contradicts the assumption

that q
`

tdk`1

˘

ą 0. Therefore, tdk`1
ě tsk`1

. l

Remark 2. From Corollary 1, it is shown that the next

execution time given by a dynamic event-triggering mech-

anism is larger than the execution time for static event-

triggering mechanism, when starting from the same initial

state. Then, Zeno-free property of the dynamic model-free

event-triggered co-design by Theorem 1 can be guaranteed.

This is because it is shown in Lemma 4 that the static event-

triggering mechanism excludes Zeno-behavior. l

The the degree of sub-optimality about the dynamic event-

triggered Q-learning algorithm is discussed as follows.

Corollary 2. Consider the dynamic model-free event-

triggered co-design in Theorem 1. Then, the cost of ud p¨q
is

J pud p¨q ;x0q “ J pu˚ p¨q ;x0q

`
ż 8

t0

}ud px pτqq ´ u˚ px pτqq}Rdτ. (54)

l

Proof. Applying now the intermittent control policy us p¨q to
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∆V4 “ V4

´

W̃`
a

¯

´ V4

´

W̃a ptkq
¯

“ 1

2αa

tr

«

´αaW̃
T
a

x ptkqxptkqT

1 ` xptkqTx ptkq
W̃a

ff

` 1

2αa

tr

«

´αaW̃
T
a

x ptkqxptkqT

1 ` xptkqTx ptkq
Q̃xuQ

´1

uu

ff

` 1

2αa

tr

«

´αaW̃
T
a

x ptkqxptkqT

1 ` xptkqTx ptkq
W̃a

ff

` 1

2αa

tr

«

α2

aW̃
T
a

x ptkqxptkqT

1 ` xptkqTx ptkq
x ptkqxptkqT

1 ` xptkqTx ptkq
W̃a

ff

` 1

2αa

tr

«

α2

aW̃
T
a

x ptkqxptkqT

1 ` xptkqTx ptkq
x ptkqxptkqT

1 ` xptkqTx ptkq
Q̃xuQ

´1

uu

ff

` 1

2αa

tr

«

´αaQ
´1

uuQ̃
T
xu

x ptkqxptkqT

1 ` xptkqTx ptkq
W̃a

ff

` 1

2αa

tr

«

α2

aQ
´1

uuQ̃
T
xu

x ptkqxptkqT

1 ` xptkqTx ptkq
x ptkqxptkqT

1 ` xptkqTx ptkq
W̃a

ff

` 1

2αa

tr

«

α2

aQ
´1

uuQ̃
T
xu

x ptkqxptkqT

1 ` xptkqTx ptkq
x ptkqxptkqT

1 ` xptkqTx ptkq
Q̃xuQ

´1

uu

ff

ď ´
›

›

›
W̃T

a x ptkq
›

›

›

2

` λ̄
`

Q´1

uu

˘

›

›

›
W̃T

a x ptkq
›

›

›

›

›

›

›

›

x ptkq
1 ` xptkqTx ptkq

›

›

›

›

›

›

›

›
Q̃xu

›

›

›
` αa

2

›

›

›
W̃T

a x ptkq
›

›

›

2

›

›

›

›

›

›

›

x ptkqxptkqT
”

1 ` xptkqTx ptkq
ı2

›

›

›

›

›

›

›

` αaλ̄
`

Q´1

uu

˘

›

›

›
W̃T

a x ptkq
›

›

›

›

›

›

›

›

x ptkq
1 ` xptkqTx ptkq

›

›

›

›

›

›

›

›

›

›

›

›

x ptkqxptkqT
”

1 ` xptkqTx ptkq
ı2

›

›

›

›

›

›

›

›

›

›
Q̃xu

›

›

›
` αaλ̄

`

Q´1
uu

˘

2

›

›

›
Q̃xu

›

›

›

2

›

›

›

›

›

›

›

x ptkqxptkqT
”

1 ` xptkqTx ptkq
ı2

›

›

›

›

›

›

›

2

ď
›

›

›
W̃T

a x ptkq
›

›

›

2

˜

1 ´ λ̄
`

Q´1
uu

˘

4
´ αa

8
´ αaλ̄

`

Q´1
uu

˘

4

¸

` λ̄
`

Q´1
uu

˘

4

›

›

›
Q̃xu

›

›

›

2

` αaλ̄
`

Q´1
uu

˘

4

›

›

›
Q̃xu

›

›

›

2

` αa

“

λ̄
`

Q´1
uu

˘‰2

2
. (49)

›

›

›

›

›

1

1 ` xptkqTx ptkq

›

›

›

›

›

ď 1,

›

›

›

›

›

x ptkqxptkqT

1 ` xptkqTx ptkq

›

›

›

›

›

ď 1,

›

›

›

›

›

x ptkq
1 ` xptkqTx ptkq

›

›

›

›

›

ď 1

2
,

›

›

›

›

›

›

›

x ptkqxptkqT
”

1 ` xptkqTx ptkq
ı2

›

›

›

›

›

›

›

ď 1

4
. (50)

ΩW̃a
“

$

’

&

’

%

W̃a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

›

›

›
W̃a

›

›

›
ď

g

f

f

f

e

λ̄pQ´1

uuq
4

2

` αaλ̄pQ´1

uuq
4

` αarλ̄pQ´1

uuqs2
2

1 ´ λ̄pQ´1

uuq
4

´ αa

8
´ αaλ̄pQ´1

uuq
4

›

›

›
Q̃´1

xu

›

›

›

,

/

.

/

-

. (51)

the system (1), then (2) yields,

J pud p¨q ;x0q “
ż 8

t0

“

xT ptqHx ptq ` uT
d ptqRud ptq

‰

dt

“ V ˚ px0q `
ż 8

t0

“

xT ptqHx ptq ` uT
d ptqRud ptq

‰

dt

`
ż 8

t0

„BV ˚ px ptqq
Bx ptq

T

rAx ` Bu˚px̂qs dt. (55)

Using now Lemma 2 the proof completes. l

V. SIMULATION STUDY

In this section, the example in [1] is employed to show the

effectiveness of the proposed model-free dynamic intermit-

tent control policy. Consider the linear system 9x “ Ax`Bu,

where A “
„

0 1

´2 3



and B “
„

0

1



are unknown ma-

trices to the designer. The parameters for the utility function

in (3) are selected as H “ 0.01I2 and R “ 0.01. Both the

static and dynamic model-free co-design approach in this
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Fig. 1. The evolution of the state for continuous, static and dynamic
intermittent feedback. The i-th component of state for continuous, static
and dynamic cases are denoted as xi, xis and xid, for i “ 1, 2.

paper are used to develop the event-triggering condition and

optimal feedback gain simultaneously. The static model-free

triggering parameter in (33) is selected as β “ 0.5, L “ 17

and L1 “ 2.7. The length of interval for integral Q-learning

algorithm is selected as T “ 0.05. The learning rate for the

critic and actor is αc “ 10 and αa “ 0.001, respectively.
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Fig. 3. Number of state samples used in static and dynamic intermittent
Q-learning.

For the dynamic model-free triggering parameters, γ in (36)

is selected as γ “ 1 and φ “ 0.1. The results of continuous-

triggered control, static and dynamic model-free triggered

control are shown in Figures 1 – 3. From Figure 3, one can

observe that the dynamic triggering approach can further

decrease the number of triggering instants. Therefore, the

dynamic intermittent Q-learning outperforms the static one

in terms of communication bandwidth.

VI. CONCLUSIONS

This paper presents a Q-learning based dynamic intermit-

tent feedback for continuous-time linear systems. In con-

trast to existing event-triggered designs, where complete

knowledge of the system dynamics is required, the proposed

method is able to obviate this requirement by using the inter-

mittent Q-learning algorithm. The actor-critic approximator

structure is employed to co-design the event-triggering con-

dition and controller. The combined closed-loop system can

be written as an impulsive system, which is proved to have

an asymptotically stable equilibrium point without any Zeno

behavior. A qualitative performance analysis of the dynamic

Q-learning is given in comparison to the continuous optimal

feedback and the degree of sub-optimality is established.

A numerical simulation of an unknown unstable system is

presented to show the efficacy of the proposed approach.

Future work will be focused on extending the proposed

dynamic intermittent Q-learning algorithm to a distributed

synchronization problem of model-free multi-agent systems.
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