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Abstract— This paper presents a ()-learning based dynamic
intermittent mechanism to control linear systems evolving
in continuous time. In contrast to existing event-triggered
mechanisms, where complete knowledge of the system dynamics
is required, the proposed dynamic intermittent control obviates
this requirement while providing a quantified level of perfor-
mance. An internal dynamical system will be introduced to
generate the triggering condition. Then, a dynamic intermittent
(Q-learning is developed to learn the optimal value function and
the hybrid controller. A qualitative performance analysis of the
dynamic event-triggered control is given in comparison to the
continuous-triggered control law to show the degree of sub-
optimality. The combined closed-loop system is written as an
impulsive system, and it is proved to have an asymptotically
stable equilibrium point without any Zeno behavior. A numer-
ical simulation of an unknown unstable system is presented to
show the efficacy of the proposed approach.

Index Terms— Intermittent Q-learning,
triggered control, suboptimal performance.

dynamic event-

I. INTRODUCTION

Feedback is the main principle of control that guarantees
several properties of a dynamical plant, including asymp-
totic stability of equilibrium, optimality and/or disturbance
rejection. Recently, several approaches have been formu-
lated, wherein the control is carried out in an open-loop
manner between consecutive event instants. Such approaches
are classified in event-triggered control [1]-[3] and self-
triggered control [4], [5]. Event-triggered control consists of
a feedback controller that computes the control input and
a triggering mechanism that determines when the control
input has to be updated again. Emulation-based approaches
have been used to synthesize the intermittent controller by
first developing a feedback controller to stabilize the plant
without constraints of communication, then subsequently
determining the appropriate event-triggering condition to
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reduce the communication bandwidth, while still ensuring
stability [6], [7].

Related Work

In order to relax the above requirements, several papers
have focused on the co-design problem, where the design of
the controller and the event-triggering condition are carried
out simultaneously [8]-[10]. However, these methods are
model-based and they require full knowledge of the system
dynamics, which can be vulnerable to exhaustive modeling
and malicious attacks.

Adaptive dynamic programming (ADP) is a recently de-
veloped technique that adopts the idea from reinforcement
learning (RL) to approximate the optimal controller for
general nonlinear dynamical systems [11]. In contrast to
traditional optimal control theory [12], ADP solves the
Riccati or Hamilton-Jacobi-Bellman equation in an online
manner [13]. Recently, event-triggering is combined with
online ADP to develop intermittent control laws [14], [15].
However, complete or partial knowledge of system dynamics
is required, which might not be available in many applica-
tions. Off-policy RL algorithm [16]-[18] is employed in [19]
to obtain the optimal feedback for the event-triggered control
in a model-free manner, but the learning process of optimal
feedback gain and the event design are separated. Another
model-free RL approach, the @Q-learning algorithm [20], is
adopted in [21] to co-design the optimal feedback gain and
the event-triggering condition simultaneously. In this paper,
dynamic intermittent feedback proposed in [22] is extended
to combine with the (@-learning algorithm to develop a
model-free intermittent control to reduce the communication
burden even more.

Contributions

The contributions of this paper are threefold. First, an
intermittent (-learning algorithm is combined with an actor-
critic structure implemented with a zero-order hold (ZOH)
to learn the parameters of optimal @)-function in an online
and model-free manner. Specifically, in contrast to existing
model-based event-triggered designs, this paper presents a
model-free solution to the co-design of both the transmission
instants and the control policy in the context of intermittent
control. Moreover, an internal dynamical system 1is intro-
duced to generate the dynamic triggering condition in order
to reduce the communication and computation burden even
more. The combined closed-loop system is analyzed within
the framework of impulsive system approach, and it is proved
to have an asymptotically stable equilibrium point without



any Zeno behavior. Finally, the performance of the dynamic
event-triggered control is compared to the time-triggered
control case to show the degree of sub-optimality.

Structure

The remainder of the paper is structured as follows. The
optimal stabilization problem of continuous-time linear dy-
namical systems is formulated in Section II, where both time-
and event-triggered control designs are discussed. Section
IIT reviews the static intermittent feedback designs for the
cases of model-based and model-free. In Section IV, a novel
dynamic intermittent ()-learning-based co-design of event-
triggering condition and feedback controller is presented and
it is shown that the equilibrium of the closed-loop system is
globally asymptotically stable with Zeno-free triggering. A
simulation is presented in Section V to verify the proposed
algorithm and the conclusions are given in Section VI.

Preliminaries
The notations used in this paper is standard.
ON 2 the right-limit operator, p* = lim p (s).
s—t
Rt 2 the set of positive real numbers.
ti 2 the k-th consecutive sampling instant
o0 A . . .
{te}r o = a sequence of monotonically increasing
sampling instants satisfying klim t, = 0.
—00
M; ; 2 (i,7)-th entry of matrix M.
A (M) 2 the maximum eigenvalue of matrix M.
A(M) 2 the minimum eigenvalue of matrix M.
| M|z 2 tr (M M™) (matrix Frobenius norm).
A
vech (M) = [ Ml,l Ml,n M272 Mg,n
T
: Mn—l,n—l Mn—l,n Mn,n ] s
VM e R™*™ |

Definition 1. (Persistent Excitation) A vector signal y(t) €
R? is exciting over the interval [¢,¢ + T with T € RT if
there exists 51 € R™ and 35 € R* such that for V¢,

BIIpo < J

t
II. PROBLEM STATEMENT

t+T
y (1) y" (1) dr < Balpry 0

A. Time-Triggered Optimal Control
In this paper, the following continuous-time linear dynam-
ical system is considered

z (t) = Az(t) + Bu(t), z (to) = o, (D

where 2(t) € R™ is the state vector, u(t) € R™ is the control
input, zq is the initial state at time ¢5 > 0, and A € R"*",
B e R™™ are the state and the input matrices.

Let the optimal value function be defined as

V* (2) = min j r (e (1) u (1)) dt, @

with

1
r(z,u) = 5 (xTHx +u” Ru), 3)
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where H > 0 and R > 0. For a linear system of the form
of (1) we can represent the value function as

1
V*(z) = ixTPx,
Assumption 1. The pair (A, B) is stabilizable and (A, VH )
is detectable. O

Under Assumption 1, P € R™*" is the unique positive
definite matrix that solves

A"P+PA—-PBR'B"P+H =0. 4)

Define the Hamiltonian functional as

H (u(-);x, aV;;”) - <W;x($),¢> +r (2, u)
- <W(;(x) Ax + Bu> + % (z"Hz + u" Ru) 6)

Then, based on the Hamiltonian, the optimal control u* can
be obtained as

*
u* (z) = argmin H <u ();z, v (x))
u(”) ox

- —-R'B

TV (x)
ox
Note that in order to solve Eq. (4), complete knowledge
of the model of the system is needed, which might not
be available in many applications. Also, the optimal con-
trol w*(t) requires continuous update of the control signal,
which might be computationally inefficient and increase the
communication between controller and sensors/actuators.
In this paper, u* (¢) is referred to as time-triggered optimal
control, as opposed to the event-triggered control introduced
as follows.

= —R'BTPz (6

B. Intermittent Feedback Control

In order to increase the computational efficiency and
reduce the communication burden, event-triggered controller
is obtained by introducing an aperiodic sampling mechanism.
Consider the aperiodic state sampling

x (tg), Vte [tg,t

(thy1), t=tr

The gap between the current state 2:(¢) and the sampled state
Z (t) is denoted as

e(t) =a(t) -z () ®)

In the sequel, an intermittent control law with aperiodic
sampling is introduced based on the time-triggered optimal
control (6) as

u (z) = u* (2) = ~R'B"Pi. )

With the above intermittent control law, the continuous

dynamics of closed-loop system (1) can be written as
@(t) = Az(t) — BR™'BT Pi(t) (10)

For the event-triggered control policy (9), the following
lemma holds.



Lemma 1. [21] Consider the event-triggered control policy
(9). Then, the following facts are true.

1) There exists a positive constant L € Rt such that
[u* (2 (1)) —ue (z ()| < Lle(@®)] (A1)

2) The intermittent Hamiltonian from the event-triggered

control (9), H (ue ();z, av;(m)) satisfies
% 2
(w05 ) < B )

O

Lemma 2. [I4] Under Assumption I, the relationship
between the intermittent Hamiltonian and the continuous-
triggered Hamiltonian is

H <ue;x, e (m)) —H (u*;x, v (x))
ox ox
= (ue — u*)TR (e —u™). (13)
O

Remark 1. Note that (9) is a general form of ARE-based
event-triggered control policy. Different types of intermittent
mechanisms differ in how the state sampling instant sequence
{tk}zc;o in (7) is determined. As will be shown later, the
static event-triggered control ug (-) and the dynamic event-
triggered control ug4 (-) have the same form as (9) but the
corresponding event-triggering condition is different. O

In the following, it is assumed that finite-time stabilization
is not achieved, i.e. z(t;) # 0, Vk € N*.
III. STATIC INTERMITTENT FEEDBACK DESIGN

In this section, static intermittent feedback in both model-
based and model-free fashion are briefly reviewed.

A. Static Model-Based Event-Triggered Control

Lemma 3. [/4] (Static Model-Based Event-triggered
Mechanism) Under Assumptions 1, suppose that the event-
triggered controller u(x) = u.(x) is applied to system (1)
with the event-triggering condition

(1-5*)A(H)
L2)\ (R)

A(R)
L2)\ (R)

lel* < J]* + lus|® (14
where 8 € (0,1) is a user-defined parameter. Then, the
closed-loop system of (1) has an asymptotically stable equi-
librium point. Moreover, Zeno behavior is guaranteed to be

excluded for the event-triggered control us. ]

According to the event-triggering condition (14) in Lemma
3, the sampling instants can be expressed as

tO = 07
tk+1 = inf {t>tk Ap<0}. (15)
teR+

where

B%) AH)[[* + A(R) [us|* = L*A(R)[e]*. (16)

(1-
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Note that the parameters of the event-triggering condition
(14) are time-invariant and p > 0 has to be always satisfied.
Therefore, in this paper, the triggering condition (14) is
named as static triggering condition, in contrast to the
dynamic triggering condition discussed next.

B. Static Model-Free Event-triggered Mechanism

1) Action-Dependent Value Function: In order to develop
an algorithm to learn the optimal feedback gain K™* in
a model-free manner, the function of a state-action pair,
named as action-dependent value function or @-function, is

introduced as
oV* (x)

—H * (. T, 17

(v e ) )
This function can be equivalently rewritten in a compact form
as

oV* (x)
ox

Q(,u0) 2 V* (2) + H (u O)se,

O (r,ue) = 577 Q. (18)
with T = x]me:[gm g“]meQm=

H+ P+ PA+ATP, Quy = PB, Qu, = BTP, and
Quu = IR

Based on the Q-function in (18), the optimal feedback
gain K* can be equivalently expressed as

K* = *Q;;qu

Then, the event-triggered control (9) can be rewritten as

Ue = _Q;}Qumi‘

In the following, a model-free algorithm is presented to
learn the parameters of the Q-function Q (z,u.) in (18) and
the event-triggered controller u.(-) in (9) or (20).

2) Actor-Critic Representation: In this subsection, actor-
critic structure is employed to parametrize the approximator
of the Q-function and the event-triggered controller, i.c., a
critic approximator learns Q (x,u.) in (18) and an actor ap-
proximator with a ZOH learns the event-triggered controller
ue(+) in (9) or (20).

First, the @Q-function in (18) can be expressed as

(19)

(20)

Q(r,u) = 5#7Qe = Whip, @D

(n+m)(nt+m+1)
2

where W¥ = fvech (Q) € R
weight vector with

is the ideal critic

vech (Quy) = W
vech (Quy) = W
vech (Quqy) = Wk

C
and . = T ® T is the critic basis. In order to learn the ideal
critic, the following approximator is established

. n(n+1
| ; nlot)

*

n(n;—l) +1: n(n2+1) +mn

n(n+1)

—5— +mn+1: 7("+m)(;+m“))

Q (xv ue) = <W0a <PC> )



where W, is approximator of T},
Similarly, the event-triggered controller u.(-) in (9) can
be equivalently expressed as

1 ~ T
Ue = _QuuQuwm = (Wajk) Pa
where W* € R™ ™ is the ideal actor weight and ¢, = &
is the actor basis. Then, in order to approximate the event-

triggered controller u., the following actor approximator is
used

(22)

e = (Wa)" ¢a (23)

where W, are the approximated weights of W*.
According to linear quadratic optimal control theory [12],
the HIB equation can be written as

u ox
An equivalent formulation of the above HJB equation, named
as integral Bellman equation [23], can be written in terms of
the value function V*(z) as
VE(z(t=T)) = V*(x(1))
= SE_T 1 (a:THx + (u*)TRu*> dr
By using the action-dependent formulation of Q)-function in

Section III-B.1, the above integral Bellman equation in terms
of the Q(z, u.) can be written as

Qx(t),ug (1) = Qz(t =T),ug (t =T))

— SI_T % (;UTH:E + (uj)TRu:) dr

*
min{av(x) (Az + Bu) + % (z"Hx +uTRu)} =0

Define the following critic error e. € R that we would like
to eventually drive to zero by picking appropriately W,

ec=0Q(x(t),ie(t) = Qx(t—T), it (t = T))
50 p % (o7 Ha + (a)" Ra ) dr
= WcTsoc(t)_WgSOc(t_T)
+ SLT 2 (xTHx + (ﬁe)TR@e) dr
Similarly, the actor error e, can be defined as
€q = U (-i) - (_Q;i@uxjj)
= (Wg + Q;&Qum) x (tr), YVt € [tr, try1)
where QM and Quu are extracted from the critic weight W_.

The squared-norm of these approximation errors, e. and e,,
can be expressed as

1 1
E.= §Hecu2aEa = iHeaH2 (24)

Based on the above formulations, after applying a gradient
descent in (24), the update rule for critic and actor can be
determined respectively as

1 0F, p

Wc = Qe o = Qe o T 25
A TR W T (L ) =)

Wa = Oa Vit e [tk7tk+1)
Wi =W, e (26)

— Qq 1+zTx oW,
T

T
:Wa_aame t:tk

a?

where p (t) = . (t) — ¢ (t = T).

3) Impulsive System Formulation: Define the error for
actor and critic weight as

W, = W* —W,,
W, = W* —W,,

27)
(28)

In this subsection, impulsive system formulation [24] of
augmented system of z, Z, W, and W, is employed for
analysis. Considering the actor-critic parametrization in the
previous subsection, then the closed systems dynamics in
(10) can be rewritten as

#(t) = Az(t) + B (—Q;}QW - VT/aT) () ¥t e RS (29)

Combining the dynamics in (25), (26) and (29), one
can obtain the augmented system with state y =
. ~ = T .
[ 27 27 wI WI ] with the flow (¢t € [t tps1))
and jump (¢ = ¢j,1) dynamics respectively as in (30), which
is shown on top of next page.
4) Static Intermittent (Q-Learning: The static intermittent
(Q-learning design developed in [21] can be summarized as
follows.

Lemma 4. [2]] (Static Intermittent ()-Learning) Consider
the system dynamics given by (29), the Q-function critic
approximator given by (21) and the actor approximator given
by (22). The tuning laws for the weights of the critic and
the actor are given by (25) and (26), respectively. Then, the
origin of the closed-loop impulsive system with state x for
all initial conditions X is globally asymptotically stable as
long as the sampling instants is determined by

to = 07
tgy1 = Inf {t >t A ¢ <0}. 3D
teR+
with the event-triggering condition
q<0 (32)
q:= (1= B°) A(H) |z]* + A (R) |uc]”
~4(L* + LY) X (R) |e]® (33)

where L1 is a positive constant of unity order, and the
following inequalities hold:

AH) _ 2L%
B (34)
8A(R) — 4
Qe > Oéa,o < Qg < m (35)
O

According to Lemma 4, the parameters of the event-
triggering condition (31) are time-invariant, and ¢ > 0 has
to be always satisfied. Therefore, in this paper, the triggering
condition (31) is named as static intermittent ()-learning, in
contrast to the dynamic intermittent ()-learning discussed in
the next section.
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Az + B (~QuiQus = W)
0

T ~
—q.—PP
Qe iy prpp Ve

0

On
€
(30)

0 (ntm)(ntmt1)
2

T _= T
Tz T -1
vec (—aainTm Wo — aq 1+szQa:uQuu>

IV. DYNAMIC INTERMITTENT Q-LEARNING

In this section, dynamic intermittent ()-learning algorithm
is developed. It is shown that the presented dynamic inter-
mittent ()-learning is Zeno-free and has larger inter-event
interval compared to the static one. Moreover, the degree
of sub-optimality of the dynamic intermittent (Q-learning
algorithm is discussed.

To formulate the dynamic intermittent feedback control,
the following internal dynamical system is required [22]

(36)

$=-7+q <(t) =<, teR]
where ¢ is defined in (33) and v € R is a design parameter.
The dynamic intermittent ()-learning, triggers an event when

the following condition is satisfied

where ¢ € R is a parameter to be designed later. The event-
triggering instants sequence can be determined by (37) as

(37

to = 0,

thi1 = tl%ﬁ {E>te) A(s(t)+0g(t) <0)}. (38)

Comparing between (32) and (37), we note that the condition,
q = 0, in the static model-free intermittent control can be re-
laxed to be ¢+7q = 0 in the dynamic model-free intermittent
control. Consequently, the dynamic event-triggered control
can be determined as u4() = u.(-) with the event-triggered
condition (37) and the event-triggering instants expressed as
(38). The property of the dynamic event-triggered condition
(37) can be presented in the following lemma.

Lemma 5. Let v be a positive constant, 5o, ¢ € RS, and q
defined as in (33). Then the following conclusions holds.
1) <(t)+¢q(t) =0, Vte Ry,
2) ¢=0,Vte RS,

Proof. The proof follows from that of [22, Lemma 2.2].

O
U

To this end, the dynamic model-free event-triggered co-
design based on intermittent ()-learning can be formulated
in the next theorem.

Theorem 1. (Dynamic Intermittent ()-Learning) Consider
the system dynamics given by (30), the Q-function critic
approximator given by (21) and the actor approximator
given by (22). Suppose that the signal T’;Tp is persistently
excited. The tuning laws for the weights of the critic and
the actor are given by (25) and (26), respectively, along
with the dynamic event-triggering condition selected as in
(37). Then, the origin of the closed-loop system is globally

asymptotically stable. O

928

Proof. In order to show the asymptotic stability, the aug-
mented system of (36) and impulsive system (30) and (30)
is considered.

Consider the Lyapunov candidate W (y,s) = V (x) + .
where ¢ satisfies (36) and V () is defined as

Ve (2 1, /g
V() = VF @)+ V@) + 5o+ S (WIW) . 39)
—_— —\— 2 2
: &~ 7
Vl(a:) VQ(LE)

Vs (We) Va(Wa)

According to the flow dynamics (30), one can obtain that &
and W, are only updated at the event-triggering instants and
remain constant during the flows. Therefore, Vo = V; = 0.
Then, the time derivative of V () is

V(x) =W+ Vs
* ~ T N
= VD) ot Big) — aaWT—PO
ox 1+ p"p)
= %(u*)TRu* (z) — %xTHx - (u*)TvaLd
14
~ T ~
—a W W, (40)
(L+pTp)
Vi
where (u*)” Ru* (z) — (u*)” Riy in above satisfies
1
i(u*)TRu* () — (u*)" Ry
= S ) R(u* — ) — 0] Ri
13 T | 1 2
< A | Wz —Wle|” = SA(R) il
— _ 1 R
<2(L* + L) A(R) |ef® + LIN(R) |z|* — 52 (R) Jal®
(4D

where the second inequality results from the facts in (11) and
(28). Since TFZT{) is persistently excited, then, there exist a
positive constant 7}, such that

J e p(n)p" (1)
i [T (e ()]

where ¢ € R™ is a positive constant. Suppose also that that
there exists M € R™ such that

r>cl, 42)

max {|M], 81|} < B ve > ¢ 43)
where M = ﬁ. Then, one can obtain
Vs < —ach (MM") [W|*. (44)



Considering (41), then, Based on the above analysis, the asymptotic stability of
the impulsive augmented system can be guaranteed. This

. 1 N
Vi <2 (L2 + L) X(R) el + X (R) |2l — 5A(R) Jal® completes the proof. 0
1 2
N §A (H) =] Corollary 1. Let {t;};” | and {td }koozl be the triggering time
1 9< 5 B2 sequences determined by the static and dynamic intermittent
- 51 + LIA(R) []” — ?A (H) |z Q-learning as designed in Lemma 4 and Theorem 1, respec-
- B2 5 tively. Assume also that t] = td = t and after writing
S [Ll/\ (R) — 7>‘( >] =] 45 the next triggering instants by the static and the dynamic
. intermittent Q-learning as ., and t, respectively, one
where ¢ is defined in (33). Based on the fact in (34), V1 <0  has tﬁﬂ >t n
can be guaranteed. Therefore, for the flow dynamics of (30), o o
the derivative of W (¢) satisfies Pdroof. This will be shown by contradiction. Aszume that
] ) ’ U1 < tiyq- Then, based on (38), one has that ¢ (tk+1) > 0,
W=V+g ie.,
= Lo+ R el - DA 1+ La s : Ve e (g
2 — 2 —Z (1-8 )(H{HT/ ()| + (QR) Jw* (t0) |
Vi - >4 (L + L) X(R) |le (t{41)] (52)
- T 2 2y (py_ P 2
S —aeh (MM ) [Wel™ + (Ll)\ (R) 2 AH) [l ) = Based on (38) and Lemma 5, one has ¢ (tkH)JrHH ( k+1) <
<0 (46) 0, i.e.,
Next, consider the jump dynamics given in (30). The ¢ 4 [ 1— B2) A (H) +d 2
difference of the common Lyapunov function (39) can be 7( kH) ¢ ( b )7 Hx( kH)”
expressed as + AR o <tk+1>n S A e ()]
AVO) = V(@) = V@) +VE E) - VEE0) s [(- ) A ) e () P+ AR o (1)
AV, AVy 2
N - _— - —4(L*+ LQ) R e ()]
Vs (W) = Vs (We ) +Va (W) = va (W (1)
= ¢q (ths1) - (53)
AVy AV,

(47)  Note that ¢ € (0, %] is a positive constant, and therefore,

- . d < . . .
Note that time evolution of x and W, are both continuous (53) yields ¢ (t’““) < 0, which contradicts the assumption

with no jumps at event-triggering instants, it is evident that that ¢ (¢,.,) > 0. Therefore, #f., > tj,. U
AV; = AV3 = 0. Based on the fact that 2+ = 2 (fr41),

there exists a class & function  (-) such that' Remark 2. From Corollary 1, it is shown that the next

execution time given by a dynamic event-triggering mech-

AV = V¥ (& (tir1)) = V* (2 () anism is larger than the execution time for static event-

K (Hg} (thy1) — & (tk)H) (48)  triggering mechanism, when starting from the same initial

state. Then, Zeno-free property of the dynamic model-free
event-triggered co-design by Theorem 1 can be guaranteed.
This is because it is shown in Lemma 4 that the static event-
triggering mechanism excludes Zeno-behavior. O

holds uniformly for V¢;. Therefore, one can conclude that
|Z (tr)] — O, i.e.,  (tx) converges to the origin asymptot-
ically. Note that AVy in (47) satisfies (49) by using using
Youngs inequality, Cauchy-Schwarz inequality and the fact
in (50) (see top of next page). Therefore, it can be shown
that AV, < 0 when W lies outside the set QW , which is

given in (51) with the actor learning rate «, satisfying (34). Corollary 2. Consider the dynamic model-free event-

From (49), the set Qy;, is forward-invariant. That is, when  yyjooered co-design in Theorem 1. Then, the cost of ug (+)
W, enters the set QW , it would stay inside QW thereafter.  jg
Because the signals in (51) are asymptotically stable, then,

The the degree of sub-optimality about the dynamic event-
triggered (Q-learning algorithm is discussed as follows.

the set Qwa vanishes and becomes a single point [25]. Also, J (ug () ;20) = J (u* (*) ;20)

for the jump dynamics of the augmented system, note that 0

the variable ¢ is continuously time-varying, then, the time + f |ug (z (1)) — u® (z (T))HRdT (54

difference equation of < (¢) is zero. Hence AW (t) = AV () fo

will converge to the origin asymptotically. O
IReaders are refereed to [25] for details on class K functions. Proof. Applying now the intermittent control policy us (-) to
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AV, =V, (W;) -V (Wa (tk:))

- 2;atr — aWT%Wal + Qiatr l_a“WTmQMQ"“]
* 2;” 7 e %Wl " itr laivﬁ 1 iizg%)@k) 1 TZES%)(;)W“]
+ 2;atr _aEWaT . i(:g:;;t;)(;) . ii’g;:;g;)(;)éxﬂ;ﬁ] 2; tr l—aaQ MIM]
* 2;” | Qi i(ﬂfk)(tk)(;) 1 ii’{ik?gi)(;)m]
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the system (1), then (2) yields,

T (wa(i0) = |

’ [2" (t) Hx (t) + uj (t) Rug ()] dt

0

= V* (x0) + J [z (t) Hx (t) + uj (t) Rug (t)] dt
to
“love@)] f(3
Using now Lemma 2 the proof completes. O

V. SIMULATION STUDY

In this section, the example in [1] is employed to show the
effectiveness of the proposed model-free dynamic intermit-
tent control policy. Consider the linear system & = Az + Bu,

where A = 0 1 and B =

0

-2 3 1
trices to the designer. The parameters for the utility function
in (3) are selected as H = 0.01/; and R = 0.01. Both the

static and dynamic model-free co-design approach in this

are unknown ma-
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Fig. 1.  The evolution of the state for continuous, static and dynamic
intermittent feedback. The i-th component of state for continuous, static
and dynamic cases are denoted as z;, x;s and x;4, for ¢ = 1,2.

paper are used to develop the event-triggering condition and
optimal feedback gain simultaneously. The static model-free
triggering parameter in (33) is selected as 5 = 0.5, L = 17
and Ly = 2.7. The length of interval for integral (-learning
algorithm is selected as 7' = 0.05. The learning rate for the
critic and actor is a. = 10 and o, = 0.001, respectively.
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Fig. 2. The evolution of the control input. The control input for static and
dynamic intermittent Q-learning are denoted as us and uq, respectively.
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Fig. 3. Number of state samples used in static and dynamic intermittent
Q-learning.

For the dynamic model-free triggering parameters, vy in (36)
is selected as v = 1 and ¢ = 0.1. The results of continuous-
triggered control, static and dynamic model-free triggered
control are shown in Figures 1 — 3. From Figure 3, one can
observe that the dynamic triggering approach can further
decrease the number of triggering instants. Therefore, the
dynamic intermittent (-learning outperforms the static one
in terms of communication bandwidth.

VI. CONCLUSIONS

This paper presents a (-learning based dynamic intermit-
tent feedback for continuous-time linear systems. In con-
trast to existing event-triggered designs, where complete
knowledge of the system dynamics is required, the proposed
method is able to obviate this requirement by using the inter-
mittent (Q-learning algorithm. The actor-critic approximator
structure is employed to co-design the event-triggering con-
dition and controller. The combined closed-loop system can
be written as an impulsive system, which is proved to have
an asymptotically stable equilibrium point without any Zeno
behavior. A qualitative performance analysis of the dynamic
(Q-learning is given in comparison to the continuous optimal
feedback and the degree of sub-optimality is established.
A numerical simulation of an unknown unstable system is
presented to show the efficacy of the proposed approach.
Future work will be focused on extending the proposed
dynamic intermittent Q-learning algorithm to a distributed
synchronization problem of model-free multi-agent systems.
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