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Enforcing Signal Temporal Logic Specifications in Multi-Agent
Adversarial Environments: A Deep Q-Learning Approach

Devaprakash Muniraj, Kyriakos G. Vamvoudakis, and Mazen Farhood

Abstract— This work addresses the problem of learning opti-
mal control policies for a multi-agent system in an adversarial
environment. Specifically, we focus on multi-agent systems
where the mission objectives are expressed as signal temporal
logic (STL) specifications. The agents are classified as either
defensive or adversarial. The defensive agents are maximizers,
namely, they maximize an objective function that enforces the
STL specification; the adversarial agents, on the other hand,
are minimizers. The interaction among the agents is modeled as
a finite-state team stochastic game with an unknown transition
probability function. The synthesis objective is to determine
optimal control policies for the defensive agents that imple-
ment the STL specification against the best responses of the
adversarial agents. A multi-agent deep Q-learning algorithm,
which is an extension of the minimax Q-learning algorithm, is
then proposed to learn the optimal policies. The effectiveness
of the proposed approach is illustrated through a simulation
case study.

Index Terms— multi-agent system, signal temporal logic, deep
Q-learning.

I. INTRODUCTION

Safety-critical autonomous systems typically operate in
uncertain, dynamic, and adversarial environments. Addition-
ally, many autonomous vehicle applications involve exe-
cuting time-constrained tasks such as reaching a particular
region within a specified time or visiting a particular region
every few minutes. The problem setup considered in this
work is that of a group of autonomous agents with unknown
stochastic dynamics tasked to perform a time-constrained
mission, which is expressed as a temporal logic specification,
in an uncertain, adversarial environment. The agents in the
multi-agent system are classified as either defensive agents
or adversarial agents. The objective of the defensive agents
is to complete the specified mission, while the objective of
the adversarial agents is to act in a manner so as to prevent
the defensive agents from achieving the mission.

The interaction among the agents of the multi-agent sys-
tem is modeled as a team stochastic game, which is an
extension of one-shot matrix games to environments modeled
as Markov decision processes [1]. Temporal logic enables
one to specify the mission objectives without any ambiguity
(see [2] and the references therein). Signal temporal logic
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(STL) [3], which can be used to specify temporal properties
of real-valued signals over finite time intervals, is used
as the temporal logic framework to specify the mission
objective. The STL specification is enforced by maximizing
the expected robustness degree, which is a real number that
denotes how well a given signal satisfies or violates the
STL specification. The control synthesis objective for the
defensive agents is to find optimal policies that maximize the
expected robustness degree of the STL specification against
the best responses of the adversarial agents.

In this work, a model-free reinforcement learning (RL)
approach is adopted to learn the optimal policies of the
defensive agents. The objective function that enforces the
STL specification is not in the form of a sum of discounted
rewards, and therefore RL methods are not directly appli-
cable. Following an approach similar to [4], the objective
function is approximated using an extended state space and
is written as a sum of discounted rewards. Since the number
of states of the team stochastic game grows exponentially
with the number of agents and the horizon length of the
STL formula, conventional multi-agent RL methods [5]-[7]
lose their viability as they use a tabular representation to
store data pertaining to the action-value function. Recent
advances in deep reinforcement learning reported in [8], [9]
overcome many limitations of conventional RL algorithms
by representing the action-value function as a deep neural
network. In this work, we propose a minimax deep Q-
learning algorithm that combines ideas from deep Q-learning
[9] and minimax Q-learning [5] to learn the optimal policies.
Related work: The problem of finding optimal policies for
multi-agent systems with mission objectives specified as
temporal logic specifications has been studied in [10]-[12].
Most of the existing approaches require precise knowledge of
the system dynamics. In our proposed approach, the system
model and the environment are assumed to be unknown and
the agents learn the optimal policies by interacting with the
environment through a sequence of observations, actions, and
rewards. Minimax Q-learning is a model-free RL technique
proposed in [5] to learn the optimal policies for two-player
zero-sum stochastic games. In this work, an extension of the
minimax Q-learning algorithm is proposed, wherein the Q-
function is represented using a convolutional neural network.
Although extensions of deep RL algorithms to multi-agent
systems have been proposed in [13]-[15], to the best of the
authors’ knowledge, the problem of finding optimal control
policies that enforce an STL specification in an adversarial
environment has not been studied before.

Structure: The remainder of the paper is structured as fol-
lows. A brief overview of STL and stochastic games is

4141



provided in Section II. In Section III, the control synthesis
problem is stated and then reformulated as a multi-agent
RL problem. In Section IV, the proposed minimax deep
Q-learning algorithm is presented. Section V presents a
simulation case study that illustrates the effectiveness of
the proposed approach. Finally, conclusions are presented in
Section VI.

II. PRELIMINARIES
A. Signal Temporal Logic

In this work, the mission objective is formally specified
in STL [3], which is an extension of linear temporal logic
(LTL) [16] to real-valued signals. STL formulas are defined
using the following syntax:

e:=X"| X" —elenelovel Fane | Gl
where X" is an atomic predicate whose truth value depends
on the value of the function n : R™—R, and ¢ is an STL
formula. In this work, 7 is assumed to be a function of the
form 7 := d — f(x), where x : Ry —R™ denotes the signal
and d is a real-valued constant. The Boolean operators —,
v, A have their usual meanings, and a, b are non-negative
scalars used to denote time bounds. The operators F' and G
are analogous to the LTL operators () (Eventually) and
o (Always), respectively.

The signal x here is a continuous-time signal, however,
in practical applications, measurements of the signal might
be available only at discrete time instances. In this work,
we assume that it is always possible to obtain a continuous-
time signal from discrete measurements. For instance, given
a sequence of discrete measurements zj; of the signal x
that correspond to time instances tj, where k takes values
in the set of natural numbers, a possible reconstruction of
the continuous-time signal x is x(t)=xy, if t € [tg, tk+1)-
(x,t) denotes the trace of the signal starting at time ¢ and
going forward. For given STL formulas ¢ and 1, the Boolean
semantics of STL are defined as follows:

(xt) X" enlz) =0,
(xt) Edvy < (xt)FE¢or(xt) =1,
(xt) ¢y @(X t) | ¢ and (x,1) = 9,
(x,1) = Glap ¢ < (x,1) |= ¢ Vi€ [t+at+b], and
(x,1) |5 Flap¢ < Jt € [t+at+b] st (x,1) = ¢
In addition to the Boolean semantics, STL formulas can
also be interpreted using quantitative semantics, which are
defined using the robustness degree. For a given signal x
and an STL specification ¢, the robustness degree denoted
by p?(x,t) 1s defined as follows
PN (x,t) = m(ae), p7X (1) = —n(zy),
PPV (x,t) = max (p°(x,1), ¥ (x, 1)),
PP (x,t) = min (p%(x,1), p”(x,1)),

pG[a,b]¢(X,t) = min (X,f) and

t"e[t+a,t+b]

pF[a,,h]¢(X7t) = max p¢(X7 tA)
te[t+a,t+b]

The signal x satisfies the STL formula ¢ at time ¢ if and only
if p?(x,t)=0. The robustness degree provides a quantitative
measure of the extent to which a signal trace satisfies an STL

specification. Another definition which will be used in the
sequel is the horizon length of an STL formula ¢, denoted
by H(¢), which is the duration of time required to verify
whether a signal satisfies the formula ¢. For instance, the
horizon length of the STL formula G5 51¢ is 5. The horizon
length of any other STL formula is computed as in [17].

B. Stochastic Games

Stochastic games, also known as Markov games, are an ex-
tension of Markov decision processes to multiple agents [1].
An n-player discounted stochastic game is defined by the tu-
ple G=(S, Ay,..., A, P,Ry, ..., R,,7), where S is the set
of states of the multi-agent system and A; is the finite set of
actions available to agent 7. P: Sx Ay x --- x A, xS—[0,1]
is the transition probability function that gives a probability
distribution for the next state of the system given the cur-
rent state and the joint action of the agents. For instance,
P(s,a1,as,s") is the probability of ending in state s’, given
that the agents start in state s and each agent ¢ € {1, 2} takes
action a; € A;. R;: SxA;x -+ xA,x5 — R is the reward
function of agent i, and 0<<y<1 is the discount factor.

A (stationary) control policy 7; for agent ¢ is a mapping
;0 S—PD(A;) from the set of states to the set of discrete
probability distributions over the set of control actions of
agent i. As in [6], given the joint policy 7=(m1,...,7,), the
action-value function Q7 (s, ay,...,ay) can be defined as

Q7 (s,a1,...,a,) = Z P(s,a1,...,
s’'eS
[Ri(s,a1,...,an,s") + V7 (s)].
V.7 (-) in the above equation is the state-value function under
7 and is defined as

- e

where E™(-) is the expectation operator over m. The Q-
functions are used to relate the equilibrium in stage games to
the equilibrium of a stochastic game [18], [19]. Specifically,
if the Q-function at each state is considered as the payoff
function for the stage game, then the stage policies are in
equilibrium if and only if the multistage policies are in
equilibrium.

Definition 1: (Nash equilibrium) A Nash equilibrium
(NE) in a stochastic game G is an n- tuple of strategies
(7§, ..., m¥) such that VseS and i€{1, ..., n}, the following
inequalities hold:

k)

V(ﬂ'ik ..... ‘”1* ..... [ (8) > V.(TFT7...,TK'¢7...,7T:!:)(S)

? K2

ap,s')x

(85,01, .+, Gn,Sj41))s

V’/Ti € Hi,
where II; is the set of strategies available to player <.

If the reward functions of the agents are in conflict with
each other, then a special case of NE called the adversarial
equilibrium can be defined.

Definition 2: (Adversarial equilibrium) An adversarial
equilibrium in a stochastic game G is an n-tuple of strategies
(m¥,...,7¥) such that Vs€S and i€{1, ..., n}, the following
are true:

- % * * : *
i(ﬂl ey T ""’W")(S) > Vi(ﬂl mu,m,m,ﬂn)(s) and

(w¥, . w¥ ) (71 0
y ) () < e e () g ey,

K2
If an agent unilaterally deviates from the adversarial equi-
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librium, it not only decreases its expected payoff, but also
increases the expected payoffs of the other agents. If a
stochastic game has only two players and their reward
functions are such that Ry (s, a1,as,s’) = —Ra(s,a1,a9,s)
VseS, s'€S, a1€A1, and as€As, then the stochastic game is
called a zero-sum stochastic game. All Nash equilibria in a
zero-sum stochastic game are adversarial equilibria [20]. The
concepts of Nash equilibrium and adversarial equilibrium are
important in multi-agent reinforcement learning, as they are
used as learning goals by most of the RL algorithms.

III. PROBLEM FORMULATION
A. System Model and Control Objective

The multi-agent system that we consider in this work
consists of two teams of agents, namely the team of defensive
agents and the team of adversarial agents. The interaction
among the agents is modeled as a team stochastic game,
which is an n-player stochastic game consisting of a team of
p maximizers and (n — p) minimizers [21]. During the game,
the defensive agents (maximizers) and the adversarial agents
(minimizers) choose actions that respectively maximize and
minimize their expected discounted return.

Let the team stochastic game be denoted by the tu-
ple G=(S, A1, Az, P,R,~), where Aj=A;x---xA, and
AQ:APH x -+« x A, are the joint action sets of the defensive
agents and the adversarial agents, respectively. The state
space S is composed of discrete partitions of the continuous
state space. For example, if the continuous state space is
a two-dimensional grid, then s; € R2" and is of the
form sg=(x1,y1,--.,%n,Yn)’, where (z;,7;) denotes the
centroid of the cell that contains the i*" agent. All the agents
share the same reward function R. A state trajectory of the
system is of the form (sps1...sn), where s; corresponds
to the state of the system at time ¢, and for k =1,... N,
tr—tr—1=At with At being the time step. The state trajec-
tory of the system during the time interval [0, 7] is denoted
by so.r and is given by (sgs1 ...sn), where T = NAt.

In this work, it is assumed that the defensive agents and the
adversarial agents are fully cooperative among themselves,
by which we mean that the agents within a team either max-
imize or minimize the reward function together. Therefore,
the agents within a team also share the same Q-function. We
do not make any assumptions on the transition probability
function P, instead, it is considered as an unknown. Thus,
the proposed approach obviates the need for a system model.

As mentioned earlier, the mission objective is specified as
an STL formula and is denoted as ®. The control synthesis
problem is then to find the optimal policies for the defensive
agents such that the STL specification ¢ is enforced by
maximizing the expected robustness degree against the best
responses of the adversarial agents. Since a team stochastic
game can be considered as a two-player zero-sum stochastic
game, therefore, without any loss of generality, we assume
that p=1 and n=2 and model the interaction between the
agents as a two-player zero-sum stochastic game. The control
objective for the case of two agents is now formally stated.
Control objective: Given an STL specification ® with
H(®)=T, a zero-sum stochastic game denoted by the tuple
G=(S, A1, Ay, P,R,v) with unknown P, and an initial

partial state trajectory S5g.p for some 0<t'<T, the control
objective is to find a control policy 7§ such that
rf = arg max min BT [0 (s0.0)], (1)
m1elly maelly
where II; and IIs denote the set of policies available to the
maximizing agent and the minimizing agent, respectively.
so.r denotes a state trajectory of the system during the
interval [0,7] with sg.r=580.c. E™7™2)[p®(s0.7)] is the
expected robustness degree of so.r with respect to ® under
the policies 7 and mo. In order to ensure that the minimum is
achieved in (1), we assume that the policy of the adversarial
agent, o, is deterministic [6].

B. Reformulation of the Control Synthesis Problem

The objective function in the control synthesis problem
posed in the previous subsection is not in the form of a sum
of discounted rewards, and so RL methods are not directly
applicable. Moreover, if the STL specification ® contains a
nested operator such as ® = Fjg ,1G|o,5)¢, the control policy
of the agent should take into account not only the current
state of the system but also a sufficient length of the state
history. To overcome these two issues, we adopt an approach
similar to the one proposed in [4] to redefine the state space
based on ®. We assume that the STL specification ® is of
the form ® = G 719 or ® = Fjo 1)¢, where ¢ is any STL
formula as defined in Section II. Let 7 be a non-negative
integer defined as 7 = [H(¢)/At] + 1, where [-] is the
ceiling function and At is the time step. The state space
of the zero-sum stochastic game is redefined as S™ and an
extended zero-sum stochastic game is formed.

Definition 3: (Extended zero-sum stochastic game) Given
a zero-sum stochastic game denoted by the tuple
G=(S, A1, As, P,R,~v) and a non-negative integer 7, an
extended zero-sum stochastic game is defined as the tuple
G™=(S87, Ay, As, P",R",~), where

— each state s € S7 corresponds to a state trajectory with
7 samples; in the case that the length of the trajectory
k is less than 7, then s” is formed by appending the
empty string € to the trajectory 7 — k times;

- Pt STxA;xA3xST—[0,1] is the transition
probability function and is related to P as
follows: given s7=s5,5...5. and s7=s4...5;5g,
PT(SZ,al,ag,s;—)>O if and only if P(s¢,a1,a2,54) €
[0,1] and s4...87 = Sp ... Sc;

— A; is the finite set of actions for agent 7; and

— R7: S"xA;xA3x ST — R is the reward function.

The optimal policy of the extended stochastic game is given
by the map ¥ : ST — PD(A;). Given a state trajectory
so.T, the corresponding trajectory in the extended state space
can be written as s(__jya,.p = S7_1--- Sy, Where T=NAt
and s = S(4_ri1)aukae for (7 — 1)<E<N. Using this
relation and the quantitative semantics of the robustness
degree provided in Section II, the robustness degree of sg.1
with respect to @ can be written as

PP (s0r) = F(p™ (571, P (5T)), ©)
where the function f(-) depends on the temporal operator

used in the STL specification ®. If & = Fjo 119, then
f(-) is the maximum function, and if ® = Gjo ¢, f(-)
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is the minimum function. The maximum function can be
approximated by the log-sum-exp function as

)~ Slog Y P, 3)
5H

where (3 is a positive constant. Using equations (2) and (3),
the objective function in (1) can be written as

1 N DT
Z log Z &P (Sk):|’ )
B k=7—1

for ® = Fjo,r1¢. Similarly, for ® = G| T]¢ we can write

— log Ze )]. (®)]

k=1—-1
The objective function in the control synthesis problem can
now be interpreted as a sum of rewards, where the agents
receive an immediate reward at every time instant t; after
both agents take their corresponding actions. Using the
approximations given in (4) and (5), the control synthesis
problem given in (1) is reformulated as follows.

max(z1, ..., 2n

B ()] > |

B (sor)] < B |

Approximated control synthesis problem: Given an
STL specification ® with H(®)=T, where T=NAt
for some positive integer N, and a zero-sum stochas-
tic game denoted by the tuple G=(S, Ay, As, P,R,7),
let G"=(S7, A1, Ay, P, R",~) be the extended zero-sum
stochastic game defined as in Definition 3. For a given initial
partial state trajectory sT_;=sg.(r—1)a¢ and 8 > 0, the con-
trol objective is to find a control policy 7} : ST—PD(A;)
such that

N
7} = arg max min E(“’“"’)[ Z

ell D
st 1 mo€ll; ber—1

r(sz,cm], ©)

where 7(sy, ) = {_eﬁp“”(SZ)

and I12 denotes the set of deterministic policies of the
adversarial agent.

The control synthesis problem is in the standard form
for multi-agent reinforcement learning where the agents
receive an immediate reward during each state transition. The
optimal control policy 7§ maximizes the expected robustness
degree with respect to the STL specification ® against the
best response of the adversarial agent.

IV. LEARNING THE OPTIMAL POLICIES
A. Learning Control Policies Using Minimax Q-Learning

Minimax Q-learning, which was first proposed in [5],
is a model-free reinforcement learning method for learning
optimal control policies in two-player zero-sum stochastic
games. The learning objective in minimax Q-learning is to
learn the control policy that ensures that the agents are in
adversarial equilibrium provided the adversarial agent plays
its optimal policy. In minimax Q-learning, the state-value
function of the learning agent (agent 1) is given by

Vl(S) = Z Ql(saalaaa)ﬂ-?l (8)7
ai1€A;
where 77" (s) is the probability with which action a; is
chosen at state s under the policy m;. The learning agent

max min
m1(s)€ll; az€A2

learns its optimal policy by solving the stage game at each
state with the Q-values Q1(s,-,-) as the immediate payoffs.
The minimax Q-learning algorithm for learning the optimal
policy for the approximated control synthesis problem in (6)
is presented in Algorithm 1.

In Algorithm 1, «; € (0,1) is the learning rate, v < 1
is the discount factor from the definition of the zero-sum
stochastic game, [V,, denotes the number of episodes, and
T = H(®) = NAt. The minimax Q-learning player always
plays a safe strategy and therefore does not adapt to the oppo-
nent’s change in strategies. The following theorem provides
conditions for convergence to an adversarial equilibrium for
the approximated control synthesis problem defined in (6)
under Algorithm 1.

Algorithm 1: Minimax Q-learning algorithm

1: Initialize Q1(s", a1,az2), Vi(s™), and m1(s7)
2: procedure
3: for j =1: N, do

4: Initialize the state s, _;
5: for k=7—1:N do
6: Select an action a; based on policy m; with proba-
bility € or a random action from A; with probability 1 — €
7: At the new state sj,,, observe reward 1 and
opponent’s action ag
8: Update Q1 (s}, a1,a2) using the following rule
Q1(sk, a1, a2)—(1—0;)Q1(sk, a1, az) + o (r1 +7Vi(si41))
9: Update the policy by solving a linear program
m1(sg) < arg max min Z Q1 (sp, ay,az)m (s7,)
wl(s;) ag€Aq ared;
10: Vi(sr) = min Z Q1 Sk,a1,a2)71'1 (sk)
ag€Ag _
ajeA;
11: Sk < Shi1

Theorem 1: Given an STL specification ® with H(®)=T
and a zero-sum stochastic game denoted by the tuple
=<S, Al, AQ, F)7 R, ")/>, let C;’T=<ST7 Al, AQ, F)T7 RT7 ’y> be
the extended zero-sum stochastic game. Suppose that the
optimal Q-function and the optimal policy are denoted by
Q¥(s7,a1,a2) and 7§ (s7), respectively, and that the follow-
ing assumptions hold:
i) Every state s and action a; € A;, for i = 1, 2, are visited
infinitely often and
ii) The learning rate o satisfies the conditions Y j=0 O =0
and Zj o(ay)?<c0.
Then, Algorithm 1 with the update rules
Q{+1(Szvalva2) = (1 - aj)Qj (Szaal’a2)+
Qo (7“1 +’y max

Sk+1

1. S = arg max mln
J+l( k}) g 1 (5T)QQEA2

(1_1:1 (57];+1))7
ZQ Sk> ar, a2>771 (Sk)

a1€A1

Bo® (sEen)
where n= _e—,(i‘p(b(s',ngl)

if & = Flo.z10
if ® =G’
for some 3 > 0, ensures convergence of QJ (-, -,-) and 71, ()

to QF(-,-,-) and 7¥(-), respectively, with probability 1 as
j — o0.

Proof. The proof is a generalization of Theorem 3.1 in [22]
and is omitted here due to paucity of space. [
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B. Learning Control Policies Via Minimax Deep Q-Learning

One of the major shortcomings of Algorithm 1, or Q-
learning in general, is scalability as the size of the state
space increases exponentially with 7 and the number of
partitions of the continuous state space. The deep Q-learning
algorithm proposed in [9] overcomes the issue of scalability
by representing the Q-function as a deep neural network,
where the network weights are learned during the train-
ing process. Inspired by deep Q-learning, we propose an
algorithm called the minimax deep Q-learning algorithm,
which is an extension of the minimax Q-learning algorithm
presented in Algorithm 1, to learn the optimal policies.
Similar to the input of the Q-function in [9], the input of
the Q-function in Algorithm 1 can be thought of as a series
of image frames of length 7 + 2, where the first 7 image
frames correspond to s7 ,, and the last two frames encode the
actions of the agents. This will enable us to use convolutional
neural networks to approximate the Q-function; such neural
networks have been found to provide promising results for
applications that involve recognizing patterns in data [8], [9].

Algorithm 2: Minimax deep Q-learning algorithm
1: Initialize the replay buffer D of length M initialize the Q-
network )1 with random weights 0; initialize the target network
@1 with weights 6=0; initialize 71(s")
: procedure
for k=1: N, do
Initialize the state s7_;
fort=7—1: N do
Select an action a! based on policy 71 with proba-
bility € or a random action from A; with probability 1 — €
7: At new state s;, 1, observe reward r; and opponent’s
action ab; store transition (s7,a%,ab,si;1,7¢) in D
8: ~ Sample random  minibatch of transitions
(s},al,a},sji1,r5) from D; set the target y; as r; if
episode terminates at j+1, or else set y; as
Yj <= 7j + max = min Z Q1(sj11, a1, a2;0)my" (sj41)
T (s;+1) aQEAgaleAl

ARSIl

9: Perform a  gradient  descent step  on
(y]'_QlT(S;, al,al;0))? w.ith respect toTG o
10: mi(s) < arg max min > Qi(s7,ar,az: 0)me* (s7)
T <5t ) aQEAzaleAl
11: s; < siy1; every C' steps, reset Q1=Q1

It is known that using a nonlinear function approximator
such as a neural network to represent the Q-function might
result in instability during the learning process [23]. The
deep Q-learning algorithm proposed in [9] makes use of two
heuristics to overcome the issue of instability. In the proposed
minimax deep Q-learning algorithm presented in Algorithm
2, we take advantage of these heuristics in order to stabilize
the learning process. The first heuristic involves storing the
experiences of the learning agent at each time step in a replay
buffer D={e1, ..., e}, where e;=(s], a1, az, s7,71). During
the Q-learning update, the algorithm randomly samples the
experience from the replay buffer and uses it to update the
parameters of the network. The second heuristic makes use
of a separate target Q-network for generating the targets y;
during the Q-learning update. The target network stabilizes
the learning process by ensuring that the Q-function to be
learned is not continuously changing.

V. SIMULATION CASE STUDY

In this section, Algorithms 1 and 2 are applied to a
simulation case study. The case study involves an agent
moving in a 4x4 spatial grid and tasked to reach a goal
and stay within it for a stipulated number of time steps in
the presence of an adversary. The agents are allowed to take
a step in either the north (N), the east (E), the west (W),
the south (S), the north-east (NE), the north-west (NW),
the south-east (SE), or the south-west (SW) direction. The
uncertainty in the dynamics is modeled as follows: if an
agent selects an action a, then the agent executes the selected
action with probability 0.95 or executes a randomly selected
action from the set {a_,a,} with probability 0.05. If one
visualizes the agents’ possible actions to be rays emanating
from the center of a circle, a_ and a, are actions that are
immediately to the left and the right of a, respectively. For
instance, if the selected action is IV, then a_ and a, are the
actions NW and N F, respectively. When an agent in state
s takes an action that drives it outside the boundary of the
grid, the agent remains in the same state s after executing
the action. If the actions of the agents in state s are such that
they move into the same grid, then both agents remain in s
after the transition.

The objective of agent 1 is eventually to reach the region
shown in Figure 1 with a green outline within 5 time steps
and stay within that region for at least 2 consecutive time
steps. The task objective is formally specified using the
following STL specification:

® = Fjo,51Go,1)(region A A —region B), @)
where region A represents (1 > 0 Az < 2 Ay >
2 A y1 < 4) and region B represents (1 > 1 A a1 <
2 A1y > 2 Ay < 3). The specification results in 7=2
with a state space of dimension |S?| = 7056. We use
Algorithms 1 and 2 presented in Section IV to learn the
optimal policies that enforce the STL formula ® given in (7).
During the implementation of Algorithm 2, a convolutional
neural network (CNN) is used to represent the Q-function.
The input to the CNN consists of 7 + 2 frames, where the
first 7 frames represent the state of the system and the last
two frames encode the actions taken by each of the agents.
The frames that correspond to the states take values in the
set {—1,0,1}, where a value of 1 at a cell corresponds to
the presence of the agent and a value of —1 corresponds to
the presence of the adversary. A value of O indicates that
the cell is empty. The frames that encode the agents’ actions
take values in the set {1,...,8}. The output of the network
is the value of the Q-function corresponding to the state of
the system and the actions executed by the two agents. The
CNN used to represent the Q-function is composed of two
convolution layers having 15 filters each and a stride of 1,
with the second convolution layer followed by a hyperbolic
tangent nonlinearity and two fully connected layers. The
parameters used in the implementation of Algorithms 1 and 2
are M=1000, C=70, v=0.9999, a=0.99x 10(10(0-01)/Np)
€=0.9, 3=7, and N,=50000. The size of the minibatch used
in Algorithm 2 is 25.

In this case study, two types of adversaries were con-
sidered, namely the random adversary (RA) that plays a
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Algorithm 1 Algorithm 2
S
RA 0.812 0846 0938 0919
OA 0271 0394 0353 0.481

TABLE I: Pr[s[o.¢] = ®] computed from 1000 simulations.
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Fig. 1: Sample trajectories using the optimal strategy 73 learned
using Algorithm 2; the trajectories of the defensive agent and
the adversarial agent are shown in blue and red, respectively; the
adversary is playing its optimal strategy; the figure on the left shows
a simulation where the defensive agent successfully satisfies the
specification, whereas in the figure on the right, the agent fails to
satisty the specification.

stationary random strategy, and the optimal adversary (OA)
that plays the optimal strategy. Let 7% and 7% denote the
optimal policies of the agent learned against RA and OA,
respectively. The optimal strategy of the adversary is first
learned against a deterministic hand-built strategy of the
agent. The performance measure used to evaluate the learned
optimal policies is the ratio of the number of trajectories that
satisfy the specification ® to the total number of simulated
trajectories, and is denoted by Pr[s[p.7] |= ®]. The results
are summarized in Table I. It is observed that the optimal
policies learned using Algorithm 2 outperform the optimal
policies learned using Algorithm 1. The reason for the
improvement in performance when applying Algorithm 2
is the use of a convolution network to represent the Q-
function. In Algorithm 1, the Q-function is updated only for
the state-action combinations that the agents visit. However,
in Algorithm 2, the Q-network that represents the Q-function
is updated at all state-action combinations and therefore
provides a better representation of the Q-values for the state-
action combinations that are not often visited. It is noted
that in an ideal case when both the agent and the adversary
are playing their optimal policies, the performance measure
should be close to 0.5 since the agent and the adversary
are in an adversarial equilibrium. However, in this case
study, the optimal policy used by the adversary is learned
against a hand-built policy of the agent and therefore might
not have converged to the adversarial equilibrium, thereby
explaining the performance values shown in the second row
of Table I. Results from two representative simulations where
the agent plays the optimal policy 73, which is learned using
Algorithm 2, against the optimal adversary are shown in
Figure 1.

VI. CONCLUSIONS

This work addressed the problem of learning optimal
control policies for a multi-agent system in an adversarial
environment where the mission objective is expressed as

an STL specification. The control synthesis problem was
formulated as a zero-sum discounted stochastic game. It was
shown that the control synthesis problem is very similar to
the deep Q-learning problem where the inputs are in the
form of a sequence of image frames. A multi-agent deep
Q-learning algorithm was proposed to learn the optimal
policies. The effectiveness of the proposed approach was
illustrated using a simulation case study.
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