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Abstract: In this paper, an online distributed optimal adaptive algorithm is introduced for continuous-time nonlinear differential
graphical games under unknown systems subject to external disturbances. The proposed algorithm learns online the approximate
solution to the coupled Hamilton-Jacobi-Isaacs (HJI) equations. Each of the players in the game uses an actor-critic-disturbance
network structure, and an intelligent identifier to find the unknown parameters of the systems. We use recorded past observations
concurrently with current data to speed up convergence by exploring the state space. The closed-loop stability and the conver-
gence of the policies to a Nash equilibrium are ensured by using Lyapunov stability theory. Finally, a simulation example shows

the efficiency of the proposed algorithm.

1 Introduction

Distributed control of multi-agent systems (MASs) on communica-
tion graphs has attracted great attention, motivated by its possible
applications in many engineering systems that involve networks.
Considerable literature has been developed on distributed control
methods to solve consensus problem [1-6]. This problem is mainly
separated into two categories: leaderless consensus problem and
leader-follower problem. In the second one, which is the problem
of interest in this paper, the objective is to design a local control
protocol for each agent, which depends only on local information,
to ensure that all agents follow the trajectory of an agent called as
leader.

It has been recognized in the literature [7-12] that game theory
provides a proper framework to study multi-agent problems. Based
on differential game theory, the differential graphical game concept
is introduced in [7] to provide a framework to solve leader-follower
problem in an optimal manner where the tracking error dynamics,
actions, and performance index of each follower agent depend on
local neighbor information.

The solution of differential graphical games considering the
existence of unknown external disturbances is an important issue.
However, unknown external disturbances exist in many practical
MASSs, which are inevitable, and can be a principal cause of poor
performance or even worse instability. It is known that solving diffe-
rential graphical game with external disturbances for the nonlinear
systems relies on finding the Nash equilibrium solutions to cou-
pled Hamilton-Jacobi-Isaacs (HJI) equations. However, coupled HJI
equations are nonlinear partial differential equations (PDEs) and are
difficult or impossible to solve, and may not have global analytical
solutions even in simple cases. Therefore, numerical methods are
required in order to approximately solve them.

Reinforcement learning (RL) techniques [13] have been
employed to solve optimal control problem problems with and wit-
hout disturbances and modeling uncertainties [14-16]. These techni-
ques have also emerged as an efficient tool to approximately solve
the coupled HJI equations online [9,17,18]. In [9], a policy itera-
tion (PI) algorithm is provided to find the solution of coupled HJI
equations, but it is limited to linear systems and closed-loop system
stability of the equilibrium point is not provided. In [17,18], the
authors presented an RL method to design robust adaptive tracking
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control laws for multi-wheeled mobile robots. But they rely on either
complete knowledge of the systems dynamics [9], or at least par-
tial knowledge of the systems dynamics [17,18]. However, most of
the practical systems are difficult to model exactly. Furthermore, it
is well known that nonlinearities commonly exist in physical sys-
tems, and many of physical systems possess higher-order dynamics.
Therefore, finding the solution of the coupled HJI equations of non-
linear systems with higher-order unknown dynamics is an important
issue from practical point of view, and is also challenging due to the
dependency of coupled HJI equations on the communication graphs.

To the best of our knowledge, there has not been any results on
differential graphical games of nonlinear systems with higher-order
dynamics in the presence of disturbance and completely unknown
dynamics. This motivates our research.

Contributions: The contributions of the present paper are three-
fold. We formulate the problem of nonlinear leader-follower con-
sensus in the presence of disturbances as multi-agent zero-sum
differential graphical games under completely unknown nonlinear
dynamics. An optimal distributed learning algorithm is proposed
to approximately solve the problem of multi-agent zero-sum dif-
ferential graphical games of general affine nonlinear systems in
the presence of external disturbances under unknown dynamics. To
this end, the completely unknown nonlinear dynamics are identified
online through learning-based identifiers while also using an expe-
rience replay technique. Finally, rigorous proofs provide guarantees
for convergence of the policies to the approximate Nash equilibrium
while guaranteeing closed-loop stability.

Background on graphs: The communication network is described
by a graph Gr = (V,X), where V' = {1,2,--- , N} is the set of ver-
tices representing N agents and 3 < V' x V is the set of edges of the
graph. (4, j) € 3, shows that there is an edge from node 7 to node j.
An adjacency matrix I = [eij] e RVXN s often used to represent
the graph topology where e;; = 1 if (i,5) € X and e;; = 0 other-
wise. The set of neighbors of a node 7 is N; = {j : (j,4) € X} and
iy, = {j : (1,7) € X} indicates the set of nodes which node 1 is in
their neighborhood. d; = ] e;; is the weighted in-degree of node

jEN;
i. The leader is representg:d by 0 and information is sent from the
leader to the agents for which the leader is in their neighborhood.

Structure: The paper is organized as follows. The problem for-
mulation is explained in Section 2 and coupled HIJI equations are



derived in Section 3. Section 4 explains the MAS approximation-
based identifiers. The proposed distributed optimal adaptive learning
algorithm in the presence of disturbance and unknown dynamics
is introduced in Section 5. The simulation results are discussed in
Section 6 and the conclusions are drawn in Section 7.

2 Problem Formulation

Consider the dynamics of each agent, as physical components in
a directed strongly connected communication graph (cyber compo-
nent) to be,

&y = fi(x) + gi(wi)uwg + ki(zg)ws, Vie {l,--- ,N}, (D)

where z; (t) € R™ is the measurable state vector, u; (t) € R"™ is
the control input, w;(t) € RY is the external disturbance input,
filx;) e R, gi(x;) € R and ki(z;) € R4 j=1,---,N
are respectively the drift, the input and the disturbance dynamics
that will be considered unknown in our developments. It is assumed
that the closed-loop system f;(x;) + g;(x;)u; + ki(z;)w;, i =
1,---, N is locally Lipschitz (a classical assumption to have a
unique solution for any initial condition z;(0)). Consider the uncon-
trolled leader dynamics that generate the target state as,

&g = fo(zo)- ©)

The local neighborhood tracking error for every agent can be
defined as,

0 = Z eij(r; — ;) + ejo(w; — o), 3)
JEN;

where the pinning gain e;q is nonzero for at least one agent which
communicates directly with the leader agent and e;o = 0 otherwise.
The time derivative of (3) is given by,

0 = Y eij(filzi) = fi(x5)) + eio(fi(zi) — folo))
JEN;

> €ijgi(@s)u;

JEN;

Z ei]'kj(l'j)w]'. (4)

JEN;

+ (d;i + ei0)gi(wi)u; —

+ (d; + eqo)ki(vi)w; —

In order to achieve synchronization, a distributed control shall
be designed which can keep the tracking error (3) Lo-bounded for
w;(t) # 0, under the unknown dynamics of the MAS.

Bounded L»-gain synchronization problem. Consider
system (4) with measured outputs y; = C;6; (where C; is
left 1nvert1ble and 0; can be dlrect%y measured), disturban-

ces with w!Vi(t) = [WZT(t) wn, T (t)

puts 25(1) = [67(1), us" (1), un, (1)
wy; = {wj|j € N;}. It is desired to design control u;(t) to solve
the synchronization problem when w; (¢) = 0 and also to satisfy the
following bounded L2-gain condition (disturbance attenuation level)
for a given v > v* when w; (t) # 0 for all agents,

and performance out-

with uy, = {uJL] € Ni},

T T
2 T T
J [ 2 (¢)]|”dt =J Qi(8;) +u; Riju; + Z uj Rijuj |dt
0 0 JEN;
T 2
o [l o
0

T
2 T T
=7 f w; Tiiw; + Z wj Tijo.)j dt
0 JEN;

dt + B8(6;(0))

+B(6:(0))

for a bounded function /3 such that 3(0) = 0 [19], with Q;(d;) >
and the weighting matrices R;; > 0, R;; > 0, T > 0 and T5; > 0
are symmetric and constant. Let v* be the minimum value of + for
which the above disturbance attenuation condition is satisfied.

The local performance index for every agent ¢ is defined as,

Ji (85(t), ug, upn, ,wi, wN,) =

1 @

2 T
- Wi

) + u; R”ul-i- Z U RUuJ
JEN;

Tiiwi — ’)/2 Z w]'TTZ‘jUJj)dT. (5)
JEN;

It is shown in [9] that the solution of bounded Lo-gain syn-
chronization problem is equivalent to the solution of the following
multi-player zero-sum differential graphical game,

V¥ (8;(1)) = n}}.n max Ji(éi(t),ui,u}'\/i,w,;,w?\/i)

where the control and disturbance players try to minimize and max-
imize the value respectively. The game has a unique saddle point
solution (u;*, w;™) for every agent if [20],

V¥ (6:() = n}}n max Ji(6:(t), ui, un, , wi, Wi,
= max min J; (0;(t), u;, u}(\fi,wi,w]*\]i).

The associated value V;* is the value of the game. This is
equivalent to the following Nash equilibrium condition,

J(ulqu7w17wN)< (UZ,'U/N,LUZ70JN)
*

< Jilug, uly,, wiwi, ), Vi, w;.

Therefore, given (4) the value function for every node i is given
Vt as,

Vit (8:(t))

Ui Wi

*T *
+ Z Uj Rijuj
JEN;

— 2 Z wj

JeN;

1 0
=3 min maxj (Qi(0;) + uiTR“-ui
t
— 7Pw; T T
T;jwy)d (6)

Remark 1. The inclusion of a game-theoretic control framework
to the learning setting guarantees a high degree of robustness
which is required to maintain a sufficient stability margin of the
closed-loop system in terms of parametric uncertainties and output
disturbances. O

3 Coupled HJI Equations

The value function (6) can be equivalently described by the follo-
wing Lyapunov equation in terms of the Hamiltonian function,

1

H’L(627 V‘/Za uwuN,’w’uwN,) = in((sl) + v‘/ZTX
[ D] eij(fi(@i) = fi(x5)) + eio(fi(wi) — fo(wo))
JEN;
+ (di + €i0)(gi(w3)wi + ki(wi)w;)
— Z eijgj(xj)uj — Z eijkj(:rj)wj]

JeEN; JEN;

1
-i-§uiTR“uz + - Z U R”uj

j€N

1

7572%11 Wi — = 2 Z wj Tijw; =0, (N
JEN;
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where VV; = ‘Z,‘é/z’ € R™ and V;(0) = 0.
After employing the stationarity conditions in the Hamiltonians,
one has,

0H;
a Z = 0 - ul = _(d + elO)Rzz gl (Il)v‘/’Lv (8)
Uj
0H; 1 _
(7wz =0->w; = ?(dl + eiO)Tii 1k‘ZT(.I’Z)VVZ )

Substituting (8) and (9), in (7), yields the following coupled HJI
equations,

VI Y e (filwi) = £i(x))

JEN;
+eio(fi(xi) — fo(wo)) — ei’gi(wi) Ry gi " (2:)VV;

—1 T
+ X eijeigi (@) Ry x gj (@)VV;
jeN

- = Z eijeiki ()T ks (x)VV;
7EN
1 - -1, T 1
+ ’77267; ki(x) Ty ki (2) V] + 5@2‘(52‘)
Z ;*VV; g;(x)) R R Ry g " () VV;
JEN

T

-5z Z i * VIV ke ()T Ty Ty oy ™ () VY
JEN;

1

~ 5t 2OV ki) Ty k™ () VY

+ eV i) R 0T (2) VY = 0, (10)
where ¢; := d; + e;0, and with a boundary condition V;(0) =
0. For a given solution V; to (10), after defining wu;* =
u; (V;), w;* = wi(V;) in terms of V;, we can rewrite (10) as
H;(8;, VVi,ul,uy,,wi,wy,) =0, V;(0) = 0. The coupled HJI
equations (10) are highly nonlinear partial differential equations
and require the complete knowledge of the dynamics which make
these equations difficult to solve. For that reason we will use
approximation-based techniques.

Remark 2. In system (4) with the corresponding value function (6),
the optimal control policy and the worst case disturbance, minimize
and maximize respectively the cost function (6). Therefore, the opti-
mal control policy and the worst-case disturbance can be obtained
by employing the stationarity conditions (8) and (9) respectively. For
every agent ¢, as it is shown in (8) and (9) the optimal control policy
u;* and the worst case disturbance w;* are both functions of the
local tracking error §; for the agent ¢ (due to the term VV; =
Hence u;* and w;* are both distributed optimal control, and worst
case disturbance policies. O

4  Approximation-Based System Identification

Before we proceed, the following definition and assumptions are
needed.

Definition 1 (Persistence of Excitation (PE)) The bounded
vector signal ©;(t), ¢ = 1,---, N is PE over the interval [¢, t + T;]
if there exists T; > 0, v; > 0 and ;4 n > 0 such that for all ¢,

t+T; _
vil < j @Z(T)G) (M)dr < vienI;i=1,...,N.
t

O

Assumption 1. Given admissible feedback control policies, then
the nonlinear Lyapunov equations (7) have locally smooth solutions
Vit (6). a
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Remark 3. Assumption 1 is widely used, since optimal control pro-
blems do not necessarily have smooth or even continuous value
functions [17]. In this paper all derivations are performed under
the assumption of smooth solutions to (7) and (10) (see [7,8,11]).
This will allow us to use the Weierstrass high-order approximation

theorem [22]. O
Assumption 2. For a given compactset Q2 ¢ R" and7 = 1,..., N,
the reconstruction errors, the approximator basis functions, and the
gradients of both are bounded. O

Remark 4. Assumption 2 is standard in the literature [7,8] accor-
ding to Weierstrass high-order approximation theorem. Note further
that, the approximators used are the so-called functional link neural
networks (see [21] for more details), for which the activation functi-
ons g; fori = 1,--- | N can be some squashing functions, such as
the standard sigmoid, Gaussian, and hyperbolic tangent functions.
Furthermore, the bounds mentioned above are only used for the sta-
bility analysis, and they are actually not used in the controller design.

|

Motivated by [23], in order to identify the unknown dynamics
of every agent ¢, ¢ =1,---, N in a compact set {2, we will use
identifiers as follows,

filzi) = 0;7& (i) + e,
gilm;) = ¥i"si (i) + egi, 11

*
ki(xi) = Bi"0i(xi) + ex,,
where 0] € §R"Xk9 Py € R ku, B e R"*k8: are unknown
weights, & € RF0i g; e §Rk% MY, e §Rk3 X4 are basis functions,
€f;» €g; and gy, are the reconstructlon errors. By using (11), the
system (1) can be re-written as

. * )

@ = 5 2(2i, ui, w;) + €4, Vi, (12)
where z(z;,ui,wi) = [67, witet, wi ;1|7 is the regres-
sor vector, @f = [07,¢;7,57] and &; = e, + 4, + €),. Using
Assumption 1 we have |g;| < &;, where g =&y, +&4 + &, and

les.]| < &5, legi |l < &g
The dynamics (12) can be wrltten as

;= —Azi + @i 2(wi, ui, wi) + Az + e

where A = alpxn, a >0, i=1,---,N. The following lemma
adopted from [23] provides a filtered regressor for (12).

Lemma 1. The solution of (12) can be expressed as

= @;" hi(z;) + ali(z;) + ez, (13)

hl(arz) = —ahi(z;) + z(z;, ui, w;); (14)
li(z;) = —Ali(z;) +
where h;(z;)

pers = S(t) e_a(t—r)z(zi(T), ui(T),wi(T))a’T, hz(xz) c
R0 Py B

i is the filtered regressor version of z(xi,u;,u;),
Ex; = e_Ata:i(O) + S(t) e_A(t_T)sidT, li(x;) = SS e_A(t_T>fEi(T)
dr, and x;(0) is the initial state of (12).

Each side of (13) is divided with a normalizing signal ns, = 1 +
hiThi + liTli to obtain,

RO TR e (15)



Based on Lemma 1 and equation (15), we consider the ith

identifier weights estimator to be of the form,
T = @ihi(x;) +ali(z), i=1,--- N,

where ¢; = [éz, b, BZ] e R*(hoy +hu; +h5,) s the estimated
value of weights matrix ;* at time ¢, for agent 7. We shall define
the state estimation error of agent 4, 7 = 1,--- , N as

ei(t) =z, — & = @i (t)hi(z; () — &z,
Zi(t) = i) — 07 (1), (16)

‘where @;(t) = [0; ,v;, ] is the parameter estimation error and
0; = 0; — 0%, Y; =y — ", Bi = Bi — B;". We shall use the
idea of experience replay [23] which employs recorded observati-
ons along with current data to obtain the tuning law of the identifier
weights.

Define the recorded past data that is collected and stored in the
history stack of each agent4, ¢ = 1,--- , N attimes t1,--- ,tp, as,

= [hi(zi(t1)), -+, halwi(tp,)]-

Consider now p; as the number of data points stored in the history
stack of agent 4 as Z; which must contain as many linearly indepen-
dent elements as the dimension of the basis of the uncertainty h;(z;)
in (13) (Z; rank condition) in order to satisfy the PE condition.

The tuning algorithm for the ith agent identifier weights is given
as,

Gilt) = —Tihi(wi(t))e; " (t)

=Ty i hi(wi(te))ei " (tg),i =1,-++ N, {an
k=1

where I'; > 0, ¢ =1,---, N indicates a positive definite learning
rate matrix which affects the speed of learning.

Theorem 1. Consider the system given by (12). Let the online ith
identifier tuning law be given by the update law of (17) with a filtered
regressor given by (14). Then, given that the recorded data points
vector Z; has full rank condition, for a bounded model approxi-
mation error, the identifier weights estimation errors are uniformly
ultimately bounded (UUB), i.e., there exists a bound By, and time
T(B@T ,$:(0)) = Tz, such that [@s] < Bg, forallt =ty + T, .

Proof: The proof is an extension of the proof in [23]. It can be

shown that given that the rank condition is satisfied, the identifier
approximation error ¢; is bounded outside €25, area,

. er,(pi +1) }
Q5. =43 1 |@il < Ba,, Bs, = —t— 2 (18)
oo = {15101 < Bpy By, - TR
where oy,iy, stands for the smallest singular value,

DPi
Hy, = ns, (hi(6:(1) "hi(8;(t)) Z (6 (tie))T

er, = ), eijlef, —

—efy) + (di + eqo)egiu;
JEN;

— Z eijeg;uj + (di + ejo)eg,w; — Z €ijEk; Wy
JEN; jJEN;

Z €ij
x (Ef, +&1,) +eio(Ey, +€f0) + (d 7 610)89, [l | + Z eij

N;

hi(8i(ty))),

ef;) +eioles;
and finally we have [er, | <

X EgJ Hu] H + dz + ezO)Eki HWZ” + 2 ezggkj Hw] H u
JEN:

Remark 5. In order to minimize Bz, a and p; must be cho-
sen appropriately. One can decrease By, by choosing a large
de%lgn parameter a and the number of recorded data points p; shall
maximize o,y (Hg,) to reduce the error bound. O

Now, (4) can be written in a compact form as,

¢ *
0 = @5, zi(xi, wj,ui, uN, , Wi, WN,) + €T, (19)

where fori =1,--- | N, j e N;,

T T T
2i(Tiy Tj, Uiy UN, Wiy WN,) = [Zey 6,0 22eys¢;0 €080

T T T
(di +eio)(Siti) s 22¢, 65u;0 (di + €io) (Fiw;)

T T
7Z—e¢j19jwj]
Zeij€ = {eij§i|j € Ni} yE—eii& = {_eij§j|j € Ni}v
= {—eijqusli € Ni},
Z_e9,w; = {—€ijUjwjli € Ni},
gogi* = [01* . 01-*]7 (pgj* = [Oj* . Oj*],
=" 97,08, = 167 8571,

907;* = [<P01v*7 906]-*797;*790*71;01'*7 9011;]-*752'*»90,@*]7
Card(pg,”) = Card(gpg,”) = Card(py,”) = Ni,

T
—ei0é0 ",

)

Z—eijsjug

where Card( . ) is the cardinality measure.
Therefore the local error dynamics (4) is approximated as

6 = 6 ZZ(SUZ,(E],MHUN y Wiy, WN, ) +5Ti7 (20)

where @5, = [@a,, 0,01, 00, is Gy, Bis pg,] € R, are

the estimated values of ¢;* with @g, = [0;,--- ,0;], bo; =
{0517 € Nefo oy, = {d5l5 € Ni} 05, = (Bl < Ni}.

It is worth noting that @5, () = s, (t) —

©s,*(t) is UUB based
on Theorem 1 (i.e. Hga(; H < bg,).

Remark 6. In RL, there exist some methods which are model-free,
and system identification is not required. However, due to the cou-
pling terms in the coupled HJI equations (10) and their dependence
on graph topology and unknown dynamics, the model-free solution
in [24] cannot be straightforwardly extended to solve the existing
coupled HJT equations. To overcome the difficulty of solving the cou-
pled HJI equations for MASs under unknown dynamics, this paper
proposes to use a simple system identifier along with a learning
algorithm for every agent to approximately solve the coupled HIJI
equation and identify the unknown dynamics simultaneously. O

5 Learning Algorithm

We will now use, actor, critic and worst-case disturbance approx-
imators to solve the coupled HJI equations (10). The critic will
approximate the cost of each agent, and two actors will be used to
approximate the optimal control and the worst-case disturbance.

5.1  Critic Approximators

According to the Weierstrass higher-order approximation theorem
[22], there exist independent basis sets o (5;) : © — R such that
0;(0) =0, Val(O) = 0 and constant approximator welghts W, €
%Kﬂ 2 =1,---, N such that the solutions V; and VV, = ﬁél are
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uniformly approximated on a compact set €2 as follows,

Vi = W;Toi(6;) + vi(8;), i=1,---,N, @1
VV, =Vo; " W; +Vuv;, i=1,--,N, (22)

where o;(0;) € R are the activation function vectors, K;,i =
1,---, N is the number of basis functions and v;(d;) are the
residuals.

Remark 7. The approximators (11) and (21) are functional link
approximators in a Fourier series form which can approximate every
function and its derivative. O

The approximation errors v; — 0 and Vv; — 0 uniformly, as
K; — 0. Note that according to Assumption 1, we also have |v;| <
bu,, |V < b, |03l < bo; and [Voi| < by, , Vi. By using
critic approximators (21), and fixed feedback policies u; and uy;,
the Hamiltonians (7) can be approximated as follows,

H;(6;, Wiyui, un,, wi, Wy, ) =
T
W, Vo, (s, 2i(8i, 05, us, un, , wi, wi;) + €13 |

1 1 T 1 7
+ EQZ((SZ) + 3 Z Uj Rijuj + §ul Rjiu;
JEN;

1o T 19 T
—57 w; Tiiwi—?y Z wj Tijw; = ep,.

JEN;
Note that ep, = —(Vv;) T [gs,*2i (2, xj, ui, un, , wi, W, ) +
er,] and according to Assumption 1, Supgeq |ep,| <&, i =

1,---, N on the compact set ).

Assumption 3. For a given compactset 2 < R andi =1,..., N
we assume that: (i) | f;(z;)| < by [l (i) gi(x;) and k;(z;) are
bounded by constants |g;(z;)| < by, and |[k;(z;)| < by, respecti-
vely; and (iii) the critic approximators weights are bounded by
known constants |W;|| < W; max- O

Remark 8. Assumption 3 is a standard assumption in neuro-adaptive
control literature [8], [21], [23]. Although Assumption 3 restricts
the considered class of nonlinear systems, many practical systems
(e.g., robotic systems [24] and aircraft systems [25]) satisfy such a
property. [

The critic approximators output ‘72(5,) and the approximate
Bellman equations can respectively be written as,

Vi = Wi ai(8:), (23)

o . T
€H;, = F/z Vgi@éﬁ[zirgxi,mjyuialuNlaWiv;)Nl)]
+§Qi(6i) + 5u; R;iu; + 5 Z Uj Rij“j
JEN; (24)
1.2, T 1.2 T
—57 wi Rijjw; — 577 2 wj Tijwj
JEN;

where @5, and Wl e RE are the current estimated values of go(;i*
and W; € R respectively. It is desired to pick W; to minimize the
squared residual error, F; = %e H; Te H, - Hence, the gradient based
tuning law for the critic weights of each player is selected as follows,

2 0E; 66H1 Bz
Wi = Q== —QEe[, ~ = —Qy
ow; ow; ms;

[BIWi

1 1 1
+ 5@1(52) + iuiTRiiui + B} Z UjTRijUj (25)
JEN;

1o 7 19 T
— s7wi Tywi — 5797 ) w' Tyjw;),
2 25
JEN;
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where B; = Vo;(@s, [2i(@i, 5, w5, up,, wi, wn;)]), ms; =1+
ATH B _ B

B; B, B; BB,
that determines the speed of convergence.

.a; >0, 2=1,---, N is the learning rate

Lemma 2. Consider (u;,un,,w;,wn;), ¢ =1,--- ,N be a set
containing given admissible feedback control policies and distur-
bances, let (25) be the tuning of the critic approximators weights,
along with (17) for tuning the identifiers weights and assume that

B . .

By = —=t=— 4i=1,--- N is PE. Then for bounded recon-
7 (1+BZ-B'L) ) bl ) f

struction errors, the critic weights estimation errors converge expo-

nentially to the residual set

— (677
miye "2t ﬁbv«z Wil x

Sillig

(

2i (04, 0, i, uj, wi, w5) s, H bs, +&1,)

€, i=1,---,N

Ms;Mi,
for some 1;, ,m;, > 0.

Proof: From the coupled HJI equations we have,

T
—W;" Vo [es,” 2(6:, 65, wisun, , wi,wn,) + €1, | + e, =
1 1 T 1 T
+ 5Q1(52) + 3 Z Usj Riju]‘ + 511,1 R;iu;
JEN;
1 2 T 12 T o 26
- 5'7 Wy LWy — E'Y Z wy Lijws. (26)
JEN;

Now, substituting (26) in (24) and doing some simple algebraic
manipulations, we obtain

T ~
em, =Wi Voi(Ps, zi(xi, 5, ui, un, , wi, wN,) + €1;)

<7 N
— W, Voi(@s,zi(xi, x5, ui, un,, wi, wn,)) + e, (27)

Substituting (27) in (25), yields,

Wi = 7(X7BZB;FWZ + «; Tfl (W,;TVUiX

Si

(955127;(:62'7xjvuiquivwiawNV,‘,) +ET¢) +€BL) (28)

Assuming that, (28) is a linear time-varying system with
an input given by WiTVUi(aﬁgizi(:ci,xj,ui,uNi,wi,wNi) +
er,) +ep,, i =1,---, N then, the closed-form solution V~Vi, i =
1,---, N is given as

= = ! Bi T
Wi(t) =i(t, to) Wi(0) + L qsi(r,to)m—s_(wi (T)Vo; x

(Ps, zi(Ts, zj,ui, uN, , Wi, WN,) + €T7,)
+ep,)dr 29)

where the state transition matrix can be found from,

d¢i(t, to 5 =T
% = —;BiBi ¢i(t;to),  ¢ilto,to) = 1. (30)
The state transition matrix ¢;, ¢ = 1,---, N has an exponentially

stable equilibrium point provided that B; , i = 1,--- , N is PE [27].
Using Assumption 1 and the fact that B; , ¢« = 1,--- , N is PE and



HBzH <1,i=1,---,N we obtain

e Miat 4

bvo, Wil x

sillia

(

2i (@i, T4, U, U, Wi, Wj)
o

Ms;MNi,

e, 1=1,---,N 31

for some 7;,,1;, >0,i=1,---, N which is the desired result.
This completes the proof. ]

5.2 Actor Approximators for Optimal Control and
Worst-Case Disturbance

Based on (8) and (9), the estimates of control and worst-case
disturbance policies can be approximated as follows,

W) Vo " Wi, (32)

1 .
wi= 3 5 (di + €i0) Ty (Bi03) Vo " Witan,  (33)

U = —(d;i + ejo) Ry

where WH_ N eRE Z+2 ~ € RE denote the current estimated
values of the 1deql welghAt W; € R by the actor approxima-
tors respectively. 1); and (; are the estimated values of the ideal
weights ¢;* and §;*,i =1,---, N respectively. Define the cri-
tic, and the actors weight estimation errors, W;, W, N, Wiian, Vi
respectively as,

Wi = W; — Wi,
Wisn = Wi — Wign,
Wison = Wi — Wijan. (34)

In order to ensure closed-loop system stability and that the poli-
cies form a Nash equilibrium, the tuning laws for the two actors are
selected as,

Witn = —ai N{(S; Wz+N FiW;)
BT .
_D W1+N e+l W; (35)

2me, +N

- Z EWZ+N2m W}

JEIN

Wison = _az+2N{(S W1+N EW;)

+ HWz+2N2m W (36)
T
Z G WL+2N 2m W}
JE’LN

where

ajyN >0, ajpon >0,

Ej = ¢;*Vo; () Ri; " RijRj; " (i) Vo™,
Di = ¢;*Voi(disi) R~ " (i) Vi

H; = ¢;*Voi(Bi0:) T~ " (B9:) " Vai ",

Gj =¢ V"J(ﬁj 5) ]]_TTZJTJJ_I(IBJ ) VUJ )

Bivn = Voi(@i [zi(xi, xj, 4, G, @i ON,) )

AT A . .
Ms; n =1+ BignBign,in, = {j: (i,5) € X},

_ B .
Bi+N $7 ci:(di+€i0)7l:17"'7N'

1+B1+NBi+N

S; € %K’XK’“, F; e %KlXKl, Sz € ?RKlXKl, Fl € %K’XKl are
diagonal positive definite tuning matrices.

V=W o)

1 N 7 T - 2 ¥
# 2QE R+ 3Rt~ 0 Ty =7 3 0 Tym)
Disturbance
o,

o,jeN, T
f
]
L i 5= X ) %)
- - - i JeN,
M}
Aetor
N1
N
Y. ‘?)& .
% sytemidentifir [ = @

Fig. 1: Optimal distributed disturbance rejection algorithm for every
agent ¢, under unknown dynamics.

Finally the proposed method can be summarized in the following
algorithm.

Algorithm 1: Disturbance Rejection Algorithm in Nonlinear Net-
worked Games with Unknown Dynamics

1) Initialize control u;° by the initial actor weight% W iy N - dis-
turbance w;° by the initial disturbance weights WP iron and value

function V;° by the initial critic Welghts Wl0 and initialize the
parameters of unknown dynamics 9061 ,Vi=1,---,N.

ForVk =0,1,---

2) Update the identified parameters of the unknown dynamics @’gi
using (17).

3) Update the critic value function approximation weights va
through the gradient-based tuning law (25).

4) Updatethecontrolﬂ = —(d; + ej0)Ri; L (F! )TVO'ZT kN

and disturbance wf (d + eio) ,fl(ﬁl 19k) Vo, T W+2N

policies through the actors weights W
from (35) and (36) respectively.
5) Go to step 3 until convergence.
End for

 and Wk i o tuning laws

The block diagram of the proposed distributed learning algorithm
for every agent is depicted in Fig. 1 where the solid lines show the
associated signals and the dashed lines shows approximators weights
tunings.

5.3 Stability and Convergence Analysis

The main theorem which provides, closed-loop system stability and
convergence of the policies to a Nash equilibrium is now presented.

Theorem 2. Consider the dynamical system (19) with 0;*, 7,
léﬂjeNi» By, and 5]*'\jeNi,i =1,---, N unknown. Assume that
B; 1 N is PE and that Assumptions 1-3 hold. Let the approximator
identifiers weights be updated by (17), the value function, cont-
rol and worst-case disturbance of each agent be respectively given
by (23), (32) and (33) and that the tuning laws of agent i cri-
tic, the optimal control actor and the worst-case disturbance actor,
are respectively given by (25), (35) and (36). Then the closed-
loop system states 0;(t), the critic approximators errors W;, the
actor approximator errors W N and the disturbance approxima-
tor errors Wiian are UUB, for a sufficiently large number of
approximators basis.

Proof: See the Appendix. O
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Corollary 1. Let the assumptions and statements of Theorem 2 hold.
Then the solution provided by the critic, and the two actor approx-
imators provides a solution to the coupled HJI equations (10). The
inputs U;,w;, % = 1,--- , N form a Nash equilibrium solution of the
zero-sum game.

Proof: The proof is a direct consequence of Theorem 2. u

6 Simulations

Consider a network of 3 single-link manipulators with revolute joints
actuated by a DC motor (as shown in Figure 2). Every single-link
manipulator states are motor position and velocity, and the link posi-
tion and velocity [28,29].The pinning gain and the edge weights are
chosen as 1. In the graph structure of Figure 2, the manipulators’
dynamics for ¢ = 1, 2, 3 are as follows,

p1T42 0
& = P21 + P3Ti2 + PATi3 DPou;
P5Ti4 P1ow;
pewi1 + prwiz + ps Sin ;3 0
Ti1 DP1T02
| ®i2 . P2x01 + P3x02 + P4T03
:rz - T 7‘T0 -
i3 D5T04
Ti4 P6T01 + P7To3 + ps Sin zo3

It is assumed that all the agents structures are known and that
the MAS parameters vector P = [p1,p2, - ,p10] is unknown.
The unknown identifier weights are considered to be P =
[1,-48.6,—1.25,48.6,1,19.5,—19.5, —3.33,21.6, 1]. As pointed
out in Remark 5, in order to reduce the system identification error
bound in (18), we pick a = 40, p; = 1000, I'; = 100,7 = 1,2, 3.
The sample rate constant is chosen as 0.001 second in order to
satisfy the rank condition and limit the identification error bound
(18) for every agent. We pick Q;(4;) = 6iTQii6i, Qii =1, R;; =
10, R'L] =1,T; = 10, Tij =1, (¢#7j, j€ N;)and~y = 5, for
i = 1,2, 3. In order to guarantee that inequality (43) holds the design
parameters are selected as S; = F; = S; = F; = 1001. Since the
critic approximators are needed to be faster than the actors to gua-
rantee closed-loop stability, we pick o;; = 10, oij 4 v = aj1on = 1.
The critic and the actor approximators activation functions are cho-
senas ; = [0;12, 010:2, 0710;3, 01854, 0122, i20;3, 0i20a,
8ia2, 8i30:4,044%],7 = 1,2,3. The PE is guaranteed by adding a
small exponentially decreasing probing noise to the control inputs.
Figure 3 shows that the unknown parameters of the agents’ dynamics
converge to their true values. The evolution of the critic weights is
shown in Figure 4. Figure 5 shows the local tracking errors and their
convergence to a neighborhood of zero.

Since the motor and the link positions and velocities are limi-
ted, the state vector x;(t) is limited to a compact set ; (z; € ;)
and hence it can be inferred that Assumptions 1-3 are satisfied. As
shown in Figure 3, the unknown parameters uniformly converge
to their true values and considering the chosen o; and consequent
Vo, it is evident that Assumption 2 is satisfied. Also the obtained
V; = WXo,(6;) is alocal smooth solution which indicates the satis-
faction of Assumption 1. Assumption 3 is also satisfied since in every
compact set ;, Vi, || fi ()|, | gi(zi)| and ||k;(z;)| are all bounded
and as it is depicted in Figure 5, there is a constant matrix W; max
so that |[W; | < Wi max-

7 Conclusion

An online distributed learning control algorithm based on RL techni-
ques is presented to solve the continuous-time unknown multi-player
nonlinear graphical games in the presence of disturbances. The
distributed learning algorithm is implemented in the form of actor-
critic-disturbance structures to approximate the optimal policies of
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Fig. 2: A MAS of 3 single-link manipulators.
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Fig. 3: The evolution of the unknown parameters of the manipula-
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Fig. 4: The evolution and convergence of the critic weights.

the players. In order to identify the unknown dynamics, we use
identifiers in conjunction with the actor-critic-disturbance networks.
The coupled HJI equations of the agents are approximately solved.
The boundedness of the closed-loop signals are proved according
to Lyapunov stability and it is ensured that the policies form a
Nash equilibrium. Future research efforts will focus on extending
the model-based technique to a model-free approach.
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Fig. 5: The evolution of the manipulators’ tracking errors.
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10 Appendix

N
T T . .
Proof of Theorem 2 Vo Witan)}H + Z vi0, (39
The following fact will be used in the proof.
Fact 1. For any two vectors x and y and any £ > 0, it holds that
2Ty < 6\IﬂCH + HUH 0
‘We consider the following Lyapunov function,
where,
Li(t) Liyn(t)
al 1 -7 ~ 1 -7 -
L(t) = > {Vi(t) + Wi a; Wi + §Wi+N0‘i+N_1Wi+N
i=1
B 00; . _
Litan(t) Ly, = = W;" S22 [~ (di + €j0) (Wi + eg))Rii ™ x
+ 96;
1 - 1~ T T
+ §W£2Nai+2N "Wiian}. (37) (¥i*si +€g;) Voi Wi + Z eij(dj + ejo)x
JEN;
The time derivative of Lyapunov function is given by (¥;"sj + eg;) R (1/)1 Gj +eg;) VajTWj]
_ - 5((11 +ei0) Wi Vo (1hi"s; + eg, ) Rig '
N Li(t) Liyn(t) - T 1 )
. . - 1 - . Wi*s +eg,) Vo, Wy — = d; +eip)° %
Lty = Y AVit) =W oy~ "W =W oy n ™ Wign Wi +eq.) Voi Wi QjEZNi( i o)
i=1
T . -T —1
Livan(®) Wi Vaj(s'sj +eg)Rjj " RijRj; " x
-4 — 15 .* . T T .
~Wihonaivan Witan). (38) (¥;7<j +eg;) Vo W +ep,,

The first term in (38), using (16), (20), (32)-(34) and doing some
simple algebra, can be written as

N
)= X (VY0 - S i,

‘MZ

i=1 i=1
1 T 2 * N N
— =Qi(0;) — Wi Voi{ci”(¥i s + eg;) %
2 2o = 3 VUl X exgfilen) = fii) + eiolfe)
Ry ((werwz*)gz) Vo, W; i=1 i=1 JEN;
— (it + eg)Rii (i + i )si) T x — fo(zo)) — CiQQi(l’i)R"71("/’i§i)TVUz’TWi+N
VUiTWi+N+ Z 61']'(0]‘(1/)]'*@ +€gj)Rjj_1>< + Z eijcjgj(xj)R]J (wﬁg) VJ] ]+N
JEN; JEN;
1 1
((% +w] ) ) VU] W' +?Ci2ki(mz) i (ﬁzﬂ) Vaz 7+2N_?><
- 7 * T
75 0 )Ry (0 49,705 > eijeik ()T (B0 ) Vo Wi an ]}
- 1 . 3
Vo " Wiin) - ?CiQ(/Bi 0i + e, )Ty~ ' x JEN:

- . 1
((Bi + B:")9:) Vo, "W, + ?CZQX
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For the second term in (38), Li(t), from (20), (25) and (34), we
have

. - s - B,
Li=—Wa "W = W ——H
(1 + BirlerBiwLN)
(W, 'Voi(@izi(zi, xj, 0, 0n,))
— Win) " Di(W;

. -1 -
BE AW + 5 (Wi — Wiyn)x

. R . 1
+5 Z (W = Wian) B (W = Wiin) — 52 %

(Wi = Wigon) T Hy(Wi — Wisan) — 52

~ T A ~
(W = Wigan) G5(Wj — Wigan) — Wi Vo x
JEN;

(ci(wi™si) (ui — 05) — > i (1)) (uy — itj)

JEN;

- %Ci(ﬂi*"gi)(wi — @) + 712 D7 e (B 9) (wj — @)

JEN;

— WZ-TVO'Z'EE +ep, + eB;}, (40)

where

1
er, = — g(di +€i0)° Wi Vo (i + eg,) ¥
R; 7T(¢'i*§i +eg,) Vo, W,

-5 Z (dj + €j0)°W; Vo (%) + eg,) %
JEN;

Rjj_TRinjj_l(’lﬁj*Cj + €g; )TVO'jTW

Using (25), (34) and Fact 1, (40) is written as,

T
Li(t) < L_i+ Wi NDiWipn s W + Y Wy
Si+N JEN;

L Bl n - 1 . BFY v -
. W, — — W HW, it .

i ]+N2mSl+N T 72 1+2N 11y z+2N2mSi+N 7

BT

- = Z ranG W]+2N2 W, (41

jEN Msiy N

10

where

z+N

Ms;y N

L_i=—riW By nBENW; + HW (ai, +k1,)

e 1. kN By kn,
+ *aigéi 0; — 7W WH—N W — 7WH—N><

2 Ms; N

T

w; B7,+N £ B; i+N

ko,
W; — Z ]+N

Msii N jeN; Msit N

Wi

_ Z vy W BIT‘FN
JHENTI
JEN; Si+ N
BT kp Bl n
N 4 o s Wian Wi+ Y] Qﬂ

Ms;y N Si+N jEN;

- kp o -
Wi + WWiWi_{_QN X

- Bt - 78]
WjTWj+2Nmz+N Wi + Z e §W+2NW X
Si+ N JEN;

T

B; -
N W; + C,L*2
Ms;y N

T 7 — * T T
Wit Vo (i) Ry, (Vi) Vo
BY . - BY . .
N W - Wi Dws — N,
Ms; N Ms;y N
T 1% Blin T
+ W; DiWirn W; +W,; Vo, Z cjeij X

Si+N JEN;
T
Biin

Msiyn

(Wisn —W5)

(D) Ry} (Wie;) Vo, T (W — Wiin) W;

+W¢TVUZ' Z Cjeij(1Z}]'§j)Rj_jl(1/~)j§j)TVO'jT><
JEN;

y BT _
(W) — Wiy n)— W, — 76, WitV oy (Bi9i) Ty

Msii N
BL v - 1 _
(62"9) VUZ ( ivaN — W) N Wi+7WZTHiX
Msitn Y
Bl n Bl oy -
Wi N g - LTy Wi
m9L+N '7 Ms; 4N
3 - To T
*ﬁWz‘ Voi 3 cjeii(Bidy) Ty (8795) Vo x
JEN;
- Bl -
(Wj—Wj+2N)mz+ W;
Si+ N
1 ~ _
,—2WiTVJi Z Cjeij(ﬁjq?j)Tjjl
7 ieN;
1T 5 9T Blin
— g Wi Voi(B;9;) Vo (W) = Wiyan) Wi
v Si+N
BT
+ (e, +ep, — Wit Voer,) ”NW W, TV, x
Si+ N

(i sici(—ciRi ™ (i) T Voi " Wi — ciRii " (g.) " x
Voi WileiTi ™ (B:9:) Vo " Wi + Ty~
Tii ™ (i + B;7)0:)" Vo Wi
((ﬁri—ﬁz )9:) Vo Wisan) Vo, W
— ey ((Bi + Bi)0s) VUz‘TW‘ +eiTyi ' x

((51 + Bi*)'&i)TVUz z+2N Z €ij X
jEN

1 T
(ek;) " x
VU@ —c; Ty

+ ¢ Ty
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(6j*’l9' + 6k.)(CjTjjil(ﬁj*ﬂj)TVJjTW
+CJ jj (6k) VUJ'TW]'

— ¢ Ty (B + B")9;) Vo "
T

_ By -
+¢; T} ((ﬂ] + ﬁj )79 ) VU] j+2N)] mz+ N Wi,
it
w
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kp, and kQ are constant scalars Using (39),41), (16) and (34), (38)
becomes
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where,

N
Z LWi+N =
i=1

Wit i, LYW

i=1gjein

N N
. L .
Z Wiinaiyn Wien + Z WiinD;x
i=1 i=1
BT
J+N 1z
- Wj),

E W,
+N J+N 2mSj 7

BT
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Z WL+N 2 E WH-N 27n Wj
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J

N 5T
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Using Ly, ,  and Ly, ,, then Wiy n(t) and W on (t) are
obtained as defined in (35) and (36) respectively. Replacing (35) and
(36), then W; , i (t) and Wi+2N(t) are given,

Wil N SiWi = Wi N SiWig

— Wi NEiWi + W n FW; (43)
T T .

Wiy nSiWi = Wii nSiWip N

— WENEW; + Wi N FiW;. (44)

Since Q;(d;) > 0, i =1,---, N, there exists ¢; > 0, Vi such
that —8; T q;0; > —08; " Q;6;. Now L can be reformed as

N
L(t)= > {Cii— ZIM; Zi + DiiZ; },

L B . _ T
= [5i7Wi’Wi+N7Wj+N»Wi+2N7Wj+2N] , (45)

where Cii < Cimaxs Dii < Djmax. Let the parameters S;, S;, F;
and Fj; be chosen such that the squared matrix M is positive definite.
Finally (42) becomes

2 _
i Umin(Mi) + Z;

Di max

+ Ci max } (46)

. N
L<>{
i=1
The Lyapunov derivative is negative as long as

12

Zi| + Cimax (47

O'min(Mi) ’

D 4 max + D i max2 ‘
2O'min(]‘li) 4Umin2(Mi)

According to [31] we can show that if (47) exceeds a certain bound,

then L is negative and the closed-loop signals are UUB. n
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