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Abstract: In this paper, an online distributed optimal adaptive algorithm is introduced for continuous-time nonlinear differential

graphical games under unknown systems subject to external disturbances. The proposed algorithm learns online the approximate

solution to the coupled Hamilton-Jacobi-Isaacs (HJI) equations. Each of the players in the game uses an actor-critic-disturbance

network structure, and an intelligent identifier to find the unknown parameters of the systems. We use recorded past observations

concurrently with current data to speed up convergence by exploring the state space. The closed-loop stability and the conver-

gence of the policies to a Nash equilibrium are ensured by using Lyapunov stability theory. Finally, a simulation example shows

the efficiency of the proposed algorithm.

1 Introduction

Distributed control of multi-agent systems (MASs) on communica-
tion graphs has attracted great attention, motivated by its possible
applications in many engineering systems that involve networks.
Considerable literature has been developed on distributed control
methods to solve consensus problem [1-6]. This problem is mainly
separated into two categories: leaderless consensus problem and
leader-follower problem. In the second one, which is the problem
of interest in this paper, the objective is to design a local control
protocol for each agent, which depends only on local information,
to ensure that all agents follow the trajectory of an agent called as
leader.

It has been recognized in the literature [7-12] that game theory
provides a proper framework to study multi-agent problems. Based
on differential game theory, the differential graphical game concept
is introduced in [7] to provide a framework to solve leader-follower
problem in an optimal manner where the tracking error dynamics,
actions, and performance index of each follower agent depend on
local neighbor information.

The solution of differential graphical games considering the
existence of unknown external disturbances is an important issue.
However, unknown external disturbances exist in many practical
MASs, which are inevitable, and can be a principal cause of poor
performance or even worse instability. It is known that solving diffe-
rential graphical game with external disturbances for the nonlinear
systems relies on finding the Nash equilibrium solutions to cou-
pled Hamilton-Jacobi-Isaacs (HJI) equations. However, coupled HJI
equations are nonlinear partial differential equations (PDEs) and are
difficult or impossible to solve, and may not have global analytical
solutions even in simple cases. Therefore, numerical methods are
required in order to approximately solve them.

Reinforcement learning (RL) techniques [13] have been
employed to solve optimal control problem problems with and wit-
hout disturbances and modeling uncertainties [14-16]. These techni-
ques have also emerged as an efficient tool to approximately solve
the coupled HJI equations online [9,17,18]. In [9], a policy itera-
tion (PI) algorithm is provided to find the solution of coupled HJI
equations, but it is limited to linear systems and closed-loop system
stability of the equilibrium point is not provided. In [17,18], the
authors presented an RL method to design robust adaptive tracking

control laws for multi-wheeled mobile robots. But they rely on either
complete knowledge of the systems dynamics [9], or at least par-
tial knowledge of the systems dynamics [17,18]. However, most of
the practical systems are difficult to model exactly. Furthermore, it
is well known that nonlinearities commonly exist in physical sys-
tems, and many of physical systems possess higher-order dynamics.
Therefore, finding the solution of the coupled HJI equations of non-
linear systems with higher-order unknown dynamics is an important
issue from practical point of view, and is also challenging due to the
dependency of coupled HJI equations on the communication graphs.

To the best of our knowledge, there has not been any results on
differential graphical games of nonlinear systems with higher-order
dynamics in the presence of disturbance and completely unknown
dynamics. This motivates our research.

Contributions: The contributions of the present paper are three-
fold. We formulate the problem of nonlinear leader-follower con-
sensus in the presence of disturbances as multi-agent zero-sum
differential graphical games under completely unknown nonlinear
dynamics. An optimal distributed learning algorithm is proposed
to approximately solve the problem of multi-agent zero-sum dif-
ferential graphical games of general affine nonlinear systems in
the presence of external disturbances under unknown dynamics. To
this end, the completely unknown nonlinear dynamics are identified
online through learning-based identifiers while also using an expe-
rience replay technique. Finally, rigorous proofs provide guarantees
for convergence of the policies to the approximate Nash equilibrium
while guaranteeing closed-loop stability.

Background on graphs: The communication network is described
by a graph Gr “ pV,Σq, where V “ t1, 2, ¨ ¨ ¨ , Nu is the set of ver-
tices representingN agents and Σ Ă V ˆ V is the set of edges of the
graph. pi, jq P Σ, shows that there is an edge from node i to node j.

An adjacency matrix E “
“

eij
‰

P ℜ
NˆN is often used to represent

the graph topology where eij “ 1 if pi, jq P Σ and eij “ 0 other-
wise. The set of neighbors of a node i is Ni “ tj : pj, iq P Σu and
iNi “ tj : pi, jq P Σu indicates the set of nodes which node i is in
their neighborhood. di “

ř

jPNi

eij is the weighted in-degree of node

i. The leader is represented by 0 and information is sent from the
leader to the agents for which the leader is in their neighborhood.

Structure: The paper is organized as follows. The problem for-
mulation is explained in Section 2 and coupled HJI equations are
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derived in Section 3. Section 4 explains the MAS approximation-
based identifiers. The proposed distributed optimal adaptive learning
algorithm in the presence of disturbance and unknown dynamics
is introduced in Section 5. The simulation results are discussed in
Section 6 and the conclusions are drawn in Section 7.

2 Problem Formulation

Consider the dynamics of each agent, as physical components in
a directed strongly connected communication graph (cyber compo-
nent) to be,

9xi “ fipxiq ` gipxiqui ` kipxiqωi, @i P t1, ¨ ¨ ¨ , Nu, (1)

where xi ptq P ℜ
n is the measurable state vector, ui ptq P ℜ

m is
the control input, ωiptq P ℜ

q is the external disturbance input,

fipxiq P ℜ
n, gipxiq P ℜ

nˆm and kipxiq P ℜ
nˆq, i “ 1, ¨ ¨ ¨ , N

are respectively the drift, the input and the disturbance dynamics
that will be considered unknown in our developments. It is assumed
that the closed-loop system fipxiq ` gipxiqui ` kipxiqωi, i “
1, ¨ ¨ ¨ , N is locally Lipschitz (a classical assumption to have a
unique solution for any initial condition xip0q). Consider the uncon-
trolled leader dynamics that generate the target state as,

9x0 “ f0px0q. (2)

The local neighborhood tracking error for every agent can be
defined as,

δi “
ÿ

jPNi

eijpxi ´ xjq ` ei0pxi ´ x0q, (3)

where the pinning gain ei0 is nonzero for at least one agent which
communicates directly with the leader agent and ei0 “ 0 otherwise.
The time derivative of (3) is given by,

9δi “
ÿ

jPNi

eijpfipxiq ´ fjpxjqq ` ei0pfipxiq ´ f0px0qq

` pdi ` ei0qgipxiqui ´
ÿ

jPNi

eijgjpxjquj

` pdi ` ei0qkipxiqωi ´
ÿ

jPNi

eijkjpxjqωj . (4)

In order to achieve synchronization, a distributed control shall
be designed which can keep the tracking error (3) L2-bounded for
ωiptq ‰ 0, under the unknown dynamics of the MAS.

Bounded L2-gain synchronization problem. Consider
system (4) with measured outputs yi “ Ciδi (where Ci is
left invertible and δi can be directly measured), disturban-

ces with ωNii ptq “
”

ωi
Tptq, ωNi

Tptq
ıT

and performance out-

puts ziptq “
”

δi
Tptq, ui

Tptq, uNi
Tptq

ıT
with uNi “ tuj |j P Niu,

ωNi “
 

ωj | j P Ni
(

. It is desired to design control uiptq to solve
the synchronization problem when ωiptq “ 0 and also to satisfy the
following boundedL2-gain condition (disturbance attenuation level)
for a given γ ą γ‹ when ωiptq ‰ 0 for all agents,

ż T

0

}ziptq}2dt “

ż T

0

¨

˝Qipδiq ` ui
T
Riiui `

ÿ

jPNi

uj
T
Rijuj

˛

‚dt

ďγ2
ż T

0

›

›

›
ω
Ni
i

›

›

›

2

dt` βpδip0qq

“γ2
ż T

0

¨

˝ωi
T
Tiiωi `

ÿ

jPNi

ωj
T
Tijωj

˛

‚dt

` βpδip0qq

for a bounded function β such that βp0q “ 0 [19], with Qipδiq ľ 0,
and the weighting matrices Rii ą 0, Rij ą 0, Tii ą 0 and Tij ą 0
are symmetric and constant. Let γ‹ be the minimum value of γ for
which the above disturbance attenuation condition is satisfied.

The local performance index for every agent i is defined as,

Ji pδiptq, ui, uNi , ωi, ωNiq “

1

2

ż 8

t

pQipδiq ` ui
T
Riiui `

ÿ

jPNi

uj
T
Rijuj

´ γ
2
ωi

T
Tiiωi ´ γ

2
ÿ

jPNi

ωj
T
Tijωjqdτ. (5)

It is shown in [9] that the solution of bounded L2-gain syn-
chronization problem is equivalent to the solution of the following
multi-player zero-sum differential graphical game,

Vi
‹ pδiptqq “ min

ui
max
ωi

Jipδiptq, ui, u
‹
Ni , ωi, ω

‹
Niq

where the control and disturbance players try to minimize and max-
imize the value respectively. The game has a unique saddle point
solution pui

‹, ωi
‹q for every agent if [20],

Vi
‹ pδiptqq “ min

ui
max
ωi

Jipδiptq, ui, u
‹
Ni , ωi, ω

‹
Niq

“ max
ωi

min
ui

Jipδiptq, ui, u
‹
Ni , ωi, ω

‹
Niq.

The associated value V ‹
i is the value of the game. This is

equivalent to the following Nash equilibrium condition,

Jipu
‹
i , u

‹
Ni , ωi, ω

‹
Niq ď Jipu

‹
i , u

‹
Ni , ω

‹
i , ω

‹
Niq

ď Jipui, u
‹
Ni , ω

‹
i , ω

‹
Niq,@ui, ωi.

Therefore, given (4) the value function for every node i is given
@t as,

Vi
‹ pδiptqq “

1

2
min
ui

max
ωi

ż 8

t

pQipδiq ` ui
T
Riiui

`
ÿ

jPNi

u
‹
j
T
Riju

‹
j ´ γ

2
ωi

T
Tiiωi

´ γ
2

ÿ

jPNi

ω
‹
j
T
Tijω

‹
j qdτ. (6)

Remark 1. The inclusion of a game-theoretic control framework
to the learning setting guarantees a high degree of robustness
which is required to maintain a sufficient stability margin of the
closed-loop system in terms of parametric uncertainties and output
disturbances. l

3 Coupled HJI Equations

The value function (6) can be equivalently described by the follo-
wing Lyapunov equation in terms of the Hamiltonian function,

Hipδi,∇Vi, ui, uNi , ωi, ωNiq ”
1

2
Qipδiq ` ∇Vi

Tˆ

r
ÿ

jPNi

eijpfipxiq ´ fjpxjqq ` ei0pfipxiq ´ f0px0qq

` pdi ` ei0qpgipxiqui ` kipxiqωiq

´
ÿ

jPNi

eijgjpxjquj ´
ÿ

jPNi

eijkjpxjqωjs

`
1

2
ui

T
Riiui `

1

2

ÿ

jPNi

uj
T
Rijuj

´
1

2
γ
2
ωi

T
Tiiωi ´

1

2
γ
2

ÿ

jPNi

ωj
T
Tijωj “ 0, (7)
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where ∇Vi “ BVi
Bδi

P ℜ
n and Vip0q “ 0.

After employing the stationarity conditions in the Hamiltonians,
one has,

BHi
Bui

“ 0 Ñ ui
‹ “ ´pdi ` ei0qR´1

ii gi
Tpxiq∇Vi, (8)

BHi
Bωi

“ 0 Ñ ωi
‹ “

1

γ2
pdi ` ei0qT´1

ii ki
Tpxiq∇Vi. (9)

Substituting (8) and (9), in (7), yields the following coupled HJI
equations,

∇Vi
Tr

ÿ

jPNi

eijpfipxiq ´ fjpxjqq

` ei0pfipxiq ´ f0px0qq ´ ci
2
gipxiqR

´1
ii gi

Tpxiq∇Vi

`
ÿ

jPNi

eijcjgjpxjqR´1
jj ˆ gj

Tpxjq∇Vj

´
1

γ2

ÿ

jPNi

eijcjkjpxjqT´1
jj kj

Tpxjq∇Vj

`
1

γ2
ci

2
kipxiqT

´1
ii ki

Tpxiq∇Vis `
1

2
Qipδiq

`
1

2

ÿ

jPNi

cj
2
∇Vj

T
gjpxjqR´1

jj RijR
´1
jj gj

Tpxjq∇Vj

´
1

2γ2

ÿ

jPNi

cj
2
∇Vj

T
kjpxjqT´1

jj TijT
´1
jj kj

Tpxjq∇Vj

´
1

2γ2
ci

2
∇Vi

T
kipxiqT

´1
ii ki

Tpxiq∇Vi

`
1

2
ci

2
∇Vi

T
gipxiqR

´1
ii gi

Tpxiq∇Vi “ 0, (10)

where ci :“ di ` ei0, and with a boundary condition Vip0q “
0. For a given solution Vi to (10), after defining ui

‹ “
uipViq, ωi

‹ “ ωipViq in terms of Vi, we can rewrite (10) as
Hipδi,∇Vi, u

‹
i , u

‹
Ni
, ω‹
i , ω

‹
Ni

q “ 0, Vip0q “ 0. The coupled HJI
equations (10) are highly nonlinear partial differential equations
and require the complete knowledge of the dynamics which make
these equations difficult to solve. For that reason we will use
approximation-based techniques.

Remark 2. In system (4) with the corresponding value function (6),
the optimal control policy and the worst case disturbance, minimize
and maximize respectively the cost function (6). Therefore, the opti-
mal control policy and the worst-case disturbance can be obtained
by employing the stationarity conditions (8) and (9) respectively. For
every agent i, as it is shown in (8) and (9), the optimal control policy
ui

‹ and the worst case disturbance ωi
‹ are both functions of the

local tracking error δi for the agent i (due to the term ∇Vi “ BVi
Bδi

).

Hence ui
‹ and ωi

‹ are both distributed optimal control, and worst
case disturbance policies. l

4 Approximation-Based System Identification

Before we proceed, the following definition and assumptions are
needed.

Definition 1 (Persistence of Excitation (PE)) The bounded
vector signal Θ̄iptq, i “ 1, ¨ ¨ ¨ , N is PE over the interval rt, t` Tis
if there exists Ti ą 0 , γi ą 0 and γi`N ą 0 such that for all t,

γiI ď

ż t`Ti

t

Θ̄ipτqΘ̄T
i pτqdτ ď γi`N I ; i “ 1, . . . , N.

l

Assumption 1. Given admissible feedback control policies, then
the nonlinear Lyapunov equations (7) have locally smooth solutions
V ‹
i pδiq. l

Remark 3. Assumption 1 is widely used, since optimal control pro-
blems do not necessarily have smooth or even continuous value
functions [17]. In this paper all derivations are performed under
the assumption of smooth solutions to (7) and (10) (see [7,8,11]).
This will allow us to use the Weierstrass high-order approximation
theorem [22]. l

Assumption 2. For a given compact set Ω Ă ℜ
n and i “ 1, . . . , N ,

the reconstruction errors, the approximator basis functions, and the
gradients of both are bounded. l

Remark 4. Assumption 2 is standard in the literature [7,8] accor-
ding to Weierstrass high-order approximation theorem. Note further
that, the approximators used are the so-called functional link neural
networks (see [21] for more details), for which the activation functi-
ons σi for i “ 1, ¨ ¨ ¨ , N can be some squashing functions, such as
the standard sigmoid, Gaussian, and hyperbolic tangent functions.
Furthermore, the bounds mentioned above are only used for the sta-
bility analysis, and they are actually not used in the controller design.

l

Motivated by [23], in order to identify the unknown dynamics
of every agent i , i “ 1, ¨ ¨ ¨ , N in a compact set Ω, we will use
identifiers as follows,

fipxiq “ θi
‹
ξipxiq ` εfi ,

gipxiq “ ψi
‹
ςipxiq ` εgi , (11)

kipxiq “ βi
‹
ϑipxiq ` εki ,

where θ‹
i P ℜ

nˆkθi , ψ‹
i P ℜ

nˆkψi , β‹
i P ℜ

nˆkβi are unknown

weights, ξi P ℜ
kθi ,ςi P ℜ

kψiˆm, ϑi P ℜ
kβiˆq are basis functions,

εfi , εgi and εki are the reconstruction errors. By using (11), the
system (1) can be re-written as

9xi “ ϕ
‹
i zpxi, ui, ωiq ` εi, @i, (12)

where zpxi, ui, ωiq “ rξi
T, ui

Tςi
T, ωi

Tϑi
TsT is the regres-

sor vector, ϕ‹
i “ rθ‹

i , ψ
‹
i , β

‹
i s and εi “ εfi ` εgi ` εki . Using

Assumption 1 we have }εi} ď ε̄i, where ε̄i “ ε̄fi ` ε̄gi ` ε̄ki and
›

›εfi
›

› ď ε̄fi , }εgi} ď ε̄gi ,
›

›εki
›

› ď ε̄ki .
The dynamics (12) can be written as,

9xi “ ´Axi ` ϕ
‹
i zpxi, ui, ωiq `Axi ` εi

where A “ aInˆn, a ą 0, i “ 1, ¨ ¨ ¨ , N . The following lemma
adopted from [23] provides a filtered regressor for (12).

Lemma 1. The solution of (12) can be expressed as

xi “ ϕi
‹
hipxiq ` alipxiq ` εxi , (13)

9hipxiq “ ´ahipxiq ` zpxi, ui, ωiq;
9lipxiq “ ´Alipxiq ` xi

(14)

where hipxiq “
şt

0
e´apt´τqzpxipτq, uipτq, ωipτqqdτ, hipxiq P

ℜ
kθi`kψi`kβi is the filtered regressor version of zpxi, ui, uiq,

εxi “ e´Atxip0q `
şt

0
e´Apt´τqεidτ , lipxiq “

şt

0
e´Apt´τqxipτq

dτ , and xip0q is the initial state of (12).

Each side of (13) is divided with a normalizing signal nsi “ 1 `
hi

Thi ` li
Tli to obtain,

x̄i “ ϕi
‹ h̄ipxiq ` al̄ipxiq ` ε̄xi ,

x̄i “ xi
nsi

, h̄i “ hi
nsi

, l̄i “ li
nsi

, ε̄xi “
εxi
nsi

.
(15)
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Based on Lemma 1 and equation (15), we consider the ith

identifier weights estimator to be of the form,

ˆ̄xi “ ϕ̂i h̄ipxiq ` al̄ipxiq, i “ 1, ¨ ¨ ¨ , N,

where ϕ̂i “ r θ̂i, ψ̂i, β̂is P ℜ
nˆpkθi`kψi`kβi q is the estimated

value of weights matrix ϕi
‹ at time t, for agent i. We shall define

the state estimation error of agent i, i “ 1, ¨ ¨ ¨ , N as

eiptq “ ˆ̄xi ´ x̄i “ ϕ̃iptqh̄ipxiptqq ´ ε̄xi ,
ϕ̃iptq “ ϕ̂iptq ´ ϕi

‹ptq,
(16)

where ϕ̃iptq “ rθ̃i , ψ̃i, β̃is is the parameter estimation error and

θ̃i “ θ̂i ´ θi
‹, ψ̃i “ ψ̂i ´ ψi

‹, β̃i “ β̂i ´ βi
‹. We shall use the

idea of experience replay [23] which employs recorded observati-
ons along with current data to obtain the tuning law of the identifier
weights.

Define the recorded past data that is collected and stored in the
history stack of each agent i, i “ 1, ¨ ¨ ¨ , N at times t1, ¨ ¨ ¨ , tpi as,

Zi “ rh̄ipxipt1qq, ¨ ¨ ¨ , h̄ipxiptpiqqs.

Consider now pi as the number of data points stored in the history
stack of agent i as Zi which must contain as many linearly indepen-
dent elements as the dimension of the basis of the uncertainty hipxiq
in (13) (Zi rank condition) in order to satisfy the PE condition.

The tuning algorithm for the ith agent identifier weights is given
as,

9̂ϕiptq “ ´Γih̄ipxiptqqei
Tptq

´Γi

pi
ř

k“1

h̄ipxiptkqqei
Tptkq, i “ 1, ¨ ¨ ¨ , N,

(17)

where Γi ą 0, i “ 1, ¨ ¨ ¨ , N indicates a positive definite learning
rate matrix which affects the speed of learning.

Theorem 1. Consider the system given by (12). Let the online ith

identifier tuning law be given by the update law of (17) with a filtered
regressor given by (14). Then, given that the recorded data points
vector Zi has full rank condition, for a bounded model approxi-
mation error, the identifier weights estimation errors are uniformly
ultimately bounded (UUB), i.e., there exists a bound Bϕ̃i and time
T pBϕ̃i , ϕ̃ip0qq “ Tϕ̃i such that }ϕ̃i} ď Bϕ̃i for all t ě t0 ` Tϕ̃i .

Proof: The proof is an extension of the proof in [23]. It can be
shown that given that the rank condition is satisfied, the identifier
approximation error ϕ̃i is bounded outside Ωϕ̃i area,

Ωϕ̃i “

"

ϕ̃i : }ϕ̃i} ď Bϕ̃i , Bϕ̃i “
ε̄Tippi ` 1q

a σminpHϕ̃iq

*

(18)

where σmin stands for the smallest singular value,

Hϕ̃i “ nsiph̄ipδiptqqT
h̄ipδiptqq `

pi
ÿ

k“1

h̄ipδiptkqqT
h̄ipδiptkqqq,

εTi “
ÿ

jPNi

eijpεfi ´ εfj q ` ei0pεfi ´ εf0q ` pdi ` ei0qεgiui

´
ÿ

jPNi

eijεgjuj ` pdi ` ei0qεkiωi ´
ÿ

jPNi

eijεkjωj ,

and finally we have }εTi} ď ε̄Ti , ε̄Ti “
ř

jPNi

eij

ˆ pε̄fi ` ε̄fj q ` ei0pε̄fi ` ε̄f0q ` pdi ` ei0qε̄gi }ui} `
ř

jPNi

eij

ˆ ε̄gj
›

›uj
›

› ` pdi ` ei0qε̄ki }ωi} `
ř

jPNi

eij ε̄kj
›

›ωj
›

›.

Remark 5. In order to minimize Bϕ̃i , a and pi must be cho-
sen appropriately. One can decrease Bϕ̃i by choosing a large
design parameter a and the number of recorded data points pi shall
maximize σminpHϕ̃iq to reduce the error bound. l

Now, (4) can be written in a compact form as,

9δi “ ϕδi
‹
zipxi, xj , ui, uNi , ωi, ωNiq ` εTi , (19)

where for i “ 1, ¨ ¨ ¨ , N, j P Ni,

zipxi, xj , ui, uNi , ωi, ωNiq “ rzTeijξi , z
T
´eijξj , ei0ξi

T
,

´ ei0ξ0
T
, pdi ` ei0qpςiuiq

T
, z

T
´eijξjuj , pdi ` ei0qpϑiωiq

T

, z
T
´eijϑjωj sT,

zeijξi “
 

eijξi|j P Ni
(

, z´eijξj “
 

´eijξj |j P Ni
(

,

z´eijςjuj “
 

´eijςjuj |j P Ni
(

,

z´eijϑjωj “
 

´eijϑjωj |j P Ni
(

,

ϕθi
‹ “ rθi

‹ ¨ ¨ ¨ θi
‹s, ϕθj

‹ “ rθj
‹ ¨ ¨ ¨ θj

‹s,

ϕψj
‹ “ rψj

‹ ¨ ¨ ¨ψj
‹s, ϕβj

‹ “ rβj
‹ ¨ ¨ ¨βj

‹s,

ϕi
‹ “ rϕθi

‹
, ϕθj

‹
, θi

‹
, θ0

‹
, ψi

‹
, ϕψj

‹
, βi

‹
, ϕβj

‹s,

Cardpϕθi
‹q “ Cardpϕθj

‹q “ Cardpϕψj
‹q “ Ni,

where Card
`

¨
˘

is the cardinality measure.
Therefore the local error dynamics (4) is approximated as

9δi “ ϕ̂δizipxi, xj , ui, uNi , ωi, ωNiq ` εTi , (20)

where ϕ̂δi “ rϕ̂θi , ϕ̂θj , θ̂i, θ̂0, ψ̂i, ϕ̂ψj , β̂i, ϕ̂βj s P ℜ
nˆdi , are

the estimated values of ϕi
‹ with ϕ̂θi “ rθ̂i, ¨ ¨ ¨ , θ̂is, ϕ̂θj “

!

θ̂j | j P Ni

)

, ϕ̂ψj “
!

ψ̂j | j P Ni

)

, ϕ̂βj “
!

β̂j |j P Ni

)

.

It is worth noting that ϕ̃δiptq “ ϕ̂δiptq ´ ϕδi
‹ptq is UUB based

on Theorem 1 (i.e.
›

›ϕ̃δi
›

› ď bϕ̃i ).

Remark 6. In RL, there exist some methods which are model-free,
and system identification is not required. However, due to the cou-
pling terms in the coupled HJI equations (10) and their dependence
on graph topology and unknown dynamics, the model-free solution
in [24] cannot be straightforwardly extended to solve the existing
coupled HJI equations. To overcome the difficulty of solving the cou-
pled HJI equations for MASs under unknown dynamics, this paper
proposes to use a simple system identifier along with a learning
algorithm for every agent to approximately solve the coupled HJI
equation and identify the unknown dynamics simultaneously. l

5 Learning Algorithm

We will now use, actor, critic and worst-case disturbance approx-
imators to solve the coupled HJI equations (10). The critic will
approximate the cost of each agent, and two actors will be used to
approximate the optimal control and the worst-case disturbance.

5.1 Critic Approximators

According to the Weierstrass higher-order approximation theorem

[22], there exist independent basis sets σipδiq : Ω Ñ ℜ
Ki such that

σip0q “ 0, ∇σip0q “ 0 and constant approximator weights Wi P
ℜ
Ki , i “ 1, ¨ ¨ ¨ , N such that the solutions Vi and ∇Vi “ BVi

Bδi
are
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uniformly approximated on a compact set Ω as follows,

Vi “ Wi
T
σipδiq ` vipδiq, i “ 1, ¨ ¨ ¨ , N, (21)

∇Vi “ ∇σi
T
Wi ` ∇vi, i “ 1, ¨ ¨ ¨ , N, (22)

where σipδiq P ℜ
Ki are the activation function vectors, Ki, i “

1, ¨ ¨ ¨ , N is the number of basis functions and vipδiq are the
residuals.

Remark 7. The approximators (11) and (21) are functional link
approximators in a Fourier series form which can approximate every
function and its derivative. l

The approximation errors vi Ñ 0 and ∇vi Ñ 0 uniformly, as
Ki Ñ 8. Note that according to Assumption 1, we also have }vi} ď
bvi , }∇vi} ď b∇vi , }σi} ď bσi and }∇σi} ď b∇σi , @i. By using
critic approximators (21), and fixed feedback policies ui and uNi
the Hamiltonians (7) can be approximated as follows,

Hipδi,Wi,ui, uNi , ωi, ωNiq “

Wi
T
∇σi

“

ϕδi
‹
zipδi, δj , ui, uNi , ωi, ωNiq ` εTi

‰

`
1

2
Qipδiq `

1

2

ÿ

jPNi

uj
T
Rijuj `

1

2
ui

T
Riiui

´
1

2
γ
2
ωi

T
Tiiωi ´

1

2
γ
2

ÿ

jPNi

ωj
T
Tijωj “ eBi .

Note that eBi “ ´p∇viq
Trϕδi

‹zipxi, xj , ui, uNi , ωi, ωNiq `
εTi s and according to Assumption 1, SupxPΩ }eBi} ď ēi , i “
1, ¨ ¨ ¨ , N on the compact set Ω.

Assumption 3. For a given compact set Ω Ă ℜ
n and i “ 1, . . . , N

we assume that: (i) }fipxiq} ď bf }xi}; (ii) gipxiq and kipxiq are
bounded by constants }gipxiq} ď bgi and }kipxiq} ď bki respecti-
vely; and (iii) the critic approximators weights are bounded by
known constants }Wi} ă Wimax. l

Remark 8. Assumption 3 is a standard assumption in neuro-adaptive
control literature [8], [21], [23]. Although Assumption 3 restricts
the considered class of nonlinear systems, many practical systems
(e.g., robotic systems [24] and aircraft systems [25]) satisfy such a
property. l

The critic approximators output V̂ipδiq and the approximate
Bellman equations can respectively be written as,

V̂i “ Ŵ
T
i σipδiq, (23)

eHi “ ŴT
i ∇σiϕ̂δi

“

zipxi, xj , ui, uNi , ωi, ωNiq
‰T

` 1
2Qipδiq ` 1

2ui
TRiiui ` 1

2

ř

jPNi

uj
TRijuj

´ 1
2γ

2ωi
TRiiωi ´ 1

2γ
2 ř

jPNi

ωj
TTijωj

(24)

where ϕ̂δi and Ŵi P ℜ
Ki are the current estimated values of ϕδi

‹

and Wi P ℜ
Ki respectively. It is desired to pick Ŵi to minimize the

squared residual error, Ei “ 1
2eHi

TeHi . Hence, the gradient based
tuning law for the critic weights of each player is selected as follows,

9̂
W i “ ´ αi

BEi

BŴi

“ ´αieHi
BeHi
BŴi

“ ´αi
B̄i
msi

rB̂T
i Ŵi

`
1

2
Qipδiq `

1

2
ui

T
Riiui `

1

2

ÿ

jPNi

uj
T
Rijuj (25)

´
1

2
γ
2
ωi

T
Tiiωi ´

1

2
γ
2

ÿ

jPNi

ω
T
Tijωjs,

where B̂i “ ∇σipϕ̂δi
“

zipxi, xj , ui, uNi , ωi, ωNiq
‰

q, msi “ 1 `

B̂T
i B̂i, B̄i “ B̂i

1`B̂T

i
B̂i

. αi ą 0, i “ 1, ¨ ¨ ¨ , N is the learning rate

that determines the speed of convergence.

Lemma 2. Consider pui, uNi , ωi, ωNiq, i “ 1, ¨ ¨ ¨ , N be a set
containing given admissible feedback control policies and distur-
bances, let (25) be the tuning of the critic approximators weights,
along with (17) for tuning the identifiers weights and assume that

B̄i “ B̂i
p1`B̂T

i
B̂iq

, i “ 1, ¨ ¨ ¨ , N is PE. Then for bounded recon-

struction errors, the critic weights estimation errors converge expo-
nentially to the residual set

ηi1e
´ηi2 t `

αi
msiηi2

b∇σi }Wi} ˆ

p
›

›

›
zipδi, δj , ui, uj , ωi, ωjq

jPNi

›

›

›
bϕ̃i ` ε̄Tiq

`
αi

msiηi2
ēi, i “ 1, ¨ ¨ ¨ , N

for some ηi1 , ηi2 ą 0.

Proof: From the coupled HJI equations we have,

´Wi
T
∇σi

“

ϕδi
‹
zipδi, δj , ui, uNi , ωi, ωNiq ` εTi

‰

` eBi “

`
1

2
Qipδiq `

1

2

ÿ

jPNi

uj
T
Rijuj `

1

2
ui

T
Riiui

´
1

2
γ
2
ωi

T
Tiiωi ´

1

2
γ
2

ÿ

jPNi

ωj
T
Tijωj . (26)

Now, substituting (26) in (24) and doing some simple algebraic
manipulations, we obtain

eHi “Wi
T
∇σipϕ̃δizipxi, xj , ui, uNi , ωi, ωNiq ` εTiq

´ W̃
T
i ∇σipϕ̂δizipxi, xj , ui, uNi , ωi, ωNiqq ` eBi (27)

Substituting (27) in (25), yields,

9̃
Wi “ ´αiB̄iB̄

T
i W̃i ` αi

B̄i
msi

pWi
T
∇σiˆ

pϕ̃δizipxi, xj , ui, uNi , ωi, ωNiq ` εTiq ` eBiq (28)

Assuming that, (28) is a linear time-varying system with

an input given by Wi
T
∇σipϕ̃δizipxi, xj , ui, uNi , ωi, ωNiq `

εTiq ` eBi , i “ 1, ¨ ¨ ¨ , N ,then, the closed-form solution W̃i, i “
1, ¨ ¨ ¨ , N is given as

W̃iptq “φipt, t0q W̃ip0q ` αi

ż T

t0

φipτ, t0q
B̄i
msi

pWi
Tpτq∇σiˆ

pϕ̃δizipxi, xj , ui, uNi , ωi, ωNiq ` εTiq

` eBiq dτ (29)

where the state transition matrix can be found from,

Bφipt, t0q

Bt
“ ´αiB̄iB̄

T
i φipt, t0q , φipt0, t0q “ I. (30)

The state transition matrix φi, i “ 1, ¨ ¨ ¨ , N has an exponentially
stable equilibrium point provided that B̄i , i “ 1, ¨ ¨ ¨ , N is PE [27].
Using Assumption 1 and the fact that B̄i , i “ 1, ¨ ¨ ¨ , N is PE and
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›

›B̄i
›

› ď 1, i “ 1, ¨ ¨ ¨ , N we obtain

›

›

›
W̃i

›

›

›
ďηi1e

´ηi2 t `
αi

msiηi2
b∇σi }Wi} ˆ

p
›

›

›
zipxi, xj , ui, uj , ωi, ωjq

jPNi

›

›

›

›

›ϕ̃δi
›

› ` }εTi}q

`
αi

msiηi2
ēi, i “ 1, ¨ ¨ ¨ , N (31)

for some ηi1 , ηi2 ą 0, i “ 1, ¨ ¨ ¨ , N which is the desired result.
This completes the proof.

5.2 Actor Approximators for Optimal Control and
Worst-Case Disturbance

Based on (8) and (9), the estimates of control and worst-case
disturbance policies can be approximated as follows,

ûi “ ´pdi ` ei0qRii
´1pψ̂iςiq

T
∇σi

T
Ŵi`N , (32)

ω̂i “
1

γ2
pdi ` ei0qTii

´1pβ̂iϑiq
T
∇σi

T
Ŵi`2N , (33)

where Ŵi`N P ℜ
Ki , Ŵi`2N P ℜ

Ki denote the current estimated

values of the ideal weight Wi P ℜ
Ki by the actor approxima-

tors respectively. ψ̂i and β̂i are the estimated values of the ideal
weights ψi

‹ and βi
‹, i “ 1, ¨ ¨ ¨ , N respectively. Define the cri-

tic, and the actors weight estimation errors, W̃i, W̃i`N , W̃i`2N ,@i
respectively as,

W̃i “ Wi ´ Ŵi ,

W̃i`N “ Wi ´ Ŵi`N ,

W̃i`2N “ Wi ´ Ŵi`2N . (34)

In order to ensure closed-loop system stability and that the poli-
cies form a Nash equilibrium, the tuning laws for the two actors are
selected as,

9̂
W i`N “ ´αi`N tpSiŴi`N ´ FiŴiq

´D̂iŴi`N
B̄T

i`N

2msi`N
Ŵi

´
ř

jPiN

ÊjŴi`N
B̄T

j`N

2msj
Ŵju,

(35)

9̂
Wi`2N “ ´αi`2N tpS̄iŴi`N ´ F̄iŴiq

` 1
γ2 ĤiŴi`2N

B̄T

i`N

2msi`N
Ŵi

` 1
γ2

ř

jPiN

ĜjŴi`2N
B̄T

j`N

2msj
Ŵju

(36)

where

αi`N ą 0, αi`2N ą 0,

Êj “ cj
2
∇σjpψ̂jςjqRjj

´T
RijRjj

´1pψ̂jςjqT∇σj
T
,

D̂i “ ci
2
∇σipψ̂iςiqRii

´T pψ̂iςiq
T
∇σi

T
,

Ĥi “ ci
2
∇σipβ̂iϑiqTii

´T pβ̂iϑiq
T
∇σi

T
,

Ĝj “ cj
2
∇σjpβ̂jϑjqTjj

´T
TijTjj

´1pβ̂jϑjqT∇σj
T
,

B̂i`N “ ∇σipϕ̂i
“

zipxi, xj , ûi, ûNi , ω̂i, ω̂Niq
‰

q,

msi`N “ 1 ` B̂
T
i`N B̂i`N , iNi “ tj : pi, jq P Σu ,

B̄i`N “
B̂i`N

1 ` B̂T
i`N B̂i`N

, ci “ pdi ` ei0q, i “ 1, ¨ ¨ ¨ , N.

Si P ℜ
KiˆKi , Fi P ℜ

KiˆKi , S̄i P ℜ
KiˆKi , F̄i P ℜ

KiˆKi are
diagonal positive definite tuning matrices.

Fig. 1: Optimal distributed disturbance rejection algorithm for every
agent i, under unknown dynamics.

Finally the proposed method can be summarized in the following
algorithm.

Algorithm 1: Disturbance Rejection Algorithm in Nonlinear Net-
worked Games with Unknown Dynamics

1) Initialize control ui
0 by the initial actor weights Ŵ 0

i`N , dis-

turbance ωi
0 by the initial disturbance weights Ŵ 0

i`2N and value

function Vi
0 by the initial critic weights Ŵ 0

i and initialize the

parameters of unknown dynamics ϕ̂0
δi

, @i “ 1, ¨ ¨ ¨ , N.
For @k “ 0, 1, ¨ ¨ ¨
2) Update the identified parameters of the unknown dynamics ϕ̂kδi

using (17).

3) Update the critic value function approximation weights Ŵ k
i

through the gradient-based tuning law (25).

4) Update the control ûki “ ´pdi ` ei0qRii
´1pψ̂ki ς

k
i qT∇σi

TŴ k
i`N

and disturbance ω̂ki “ 1
γ2 pdi ` ei0qTii

´1pβ̂ki ϑ
k
i qT∇σi

TŴ k
i`2N

policies through the actors weights Ŵ k
i`N and Ŵ k

i`2N tuning laws
from (35) and (36) respectively.

5) Go to step 3 until convergence.
End for

The block diagram of the proposed distributed learning algorithm
for every agent is depicted in Fig. 1 where the solid lines show the
associated signals and the dashed lines shows approximators weights
tunings.

5.3 Stability and Convergence Analysis

The main theorem which provides, closed-loop system stability and
convergence of the policies to a Nash equilibrium is now presented.

Theorem 2. Consider the dynamical system (19) with θi
‹, ψ‹

i ,
ψ‹
j |jPNi , β

‹
i , and β‹

j |jPNi , i “ 1, ¨ ¨ ¨ , N unknown. Assume that

B̄i`N is PE and that Assumptions 1-3 hold. Let the approximator
identifiers weights be updated by (17), the value function, cont-
rol and worst-case disturbance of each agent be respectively given
by (23), (32) and (33) and that the tuning laws of agent i cri-
tic, the optimal control actor and the worst-case disturbance actor,
are respectively given by (25), (35) and (36). Then the closed-

loop system states δiptq, the critic approximators errors W̃i, the

actor approximator errors W̃i`N and the disturbance approxima-

tor errors W̃i`2N are UUB, for a sufficiently large number of
approximators basis.

Proof: See the Appendix. l
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Corollary 1. Let the assumptions and statements of Theorem 2 hold.
Then the solution provided by the critic, and the two actor approx-
imators provides a solution to the coupled HJI equations (10). The
inputs ûi, ω̂i, i “ 1, ¨ ¨ ¨ , N form a Nash equilibrium solution of the
zero-sum game.

Proof: The proof is a direct consequence of Theorem 2.

6 Simulations

Consider a network of 3 single-link manipulators with revolute joints
actuated by a DC motor (as shown in Figure 2). Every single-link
manipulator states are motor position and velocity, and the link posi-
tion and velocity [28,29].The pinning gain and the edge weights are
chosen as 1. In the graph structure of Figure 2, the manipulators’
dynamics for i “ 1, 2, 3 are as follows,

9xi “

¨

˚

˝

p1xi2
p2xi1 ` p3xi2 ` p4xi3

p5xi4
p6xi1 ` p7xi3 ` p8 sinxi3

˛

‹

‚
`

»

—

–

0
p9ui
p10ωi
0

fi

ffi

fl
,

xi “

»

—

–

xi1
xi2
xi3
xi4

fi

ffi

fl
, 9x0 “

¨

˚

˝

p1x02
p2x01 ` p3x02 ` p4x03

p5x04
p6x01 ` p7x03 ` p8 sinx03

˛

‹

‚
.

It is assumed that all the agents structures are known and that
the MAS parameters vector P “ rp1, p2, ¨ ¨ ¨ , p10s is unknown.
The unknown identifier weights are considered to be P “
r1,´48.6,´1.25, 48.6, 1, 19.5,´19.5,´3.33, 21.6, 1s. As pointed
out in Remark 5, in order to reduce the system identification error
bound in (18), we pick a “ 40, pi “ 1000, Γi “ 100, i “ 1, 2, 3.
The sample rate constant is chosen as 0.001 second in order to
satisfy the rank condition and limit the identification error bound

(18) for every agent. We pickQipδiq “ δi
TQiiδi, Qii “ I ,Rii “

10, Rij “ 1 , Tii “ 10, Tij “ 1, pi ‰ j, j P Niq and γ “ 5, for
i “ 1, 2, 3. In order to guarantee that inequality (43) holds the design
parameters are selected as Si “ Fi “ S̄i “ F̄i “ 100I . Since the
critic approximators are needed to be faster than the actors to gua-
rantee closed-loop stability, we pickαi “ 10, αi`N “ αi`2N “ 1.
The critic and the actor approximators activation functions are cho-

sen as σi “ rδi1
2, δi1δi2, δi1δi3, δi1δi4, δi2

2, δi2δi3, δi2δi4,

δi3
2, δi3δi4, δi4

2s, i “ 1, 2, 3. The PE is guaranteed by adding a
small exponentially decreasing probing noise to the control inputs.
Figure 3 shows that the unknown parameters of the agents’ dynamics
converge to their true values. The evolution of the critic weights is
shown in Figure 4. Figure 5 shows the local tracking errors and their
convergence to a neighborhood of zero.

Since the motor and the link positions and velocities are limi-
ted, the state vector xiptq is limited to a compact set Ωi (xi P Ωi)
and hence it can be inferred that Assumptions 1-3 are satisfied. As
shown in Figure 3, the unknown parameters uniformly converge
to their true values and considering the chosen σi and consequent
∇σi, it is evident that Assumption 2 is satisfied. Also the obtained

V̂i “ Ŵ T
i σipδiq is a local smooth solution which indicates the satis-

faction of Assumption 1. Assumption 3 is also satisfied since in every
compact set Ωi,@i, }fipxiq}, }gipxiq} and }kipxiq} are all bounded
and as it is depicted in Figure 5, there is a constant matrix Wi max

so that }Wi } ă Wi max.

7 Conclusion

An online distributed learning control algorithm based on RL techni-
ques is presented to solve the continuous-time unknown multi-player
nonlinear graphical games in the presence of disturbances. The
distributed learning algorithm is implemented in the form of actor-
critic-disturbance structures to approximate the optimal policies of

Fig. 2: A MAS of 3 single-link manipulators.
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Fig. 3: The evolution of the unknown parameters of the manipula-
tors.
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Fig. 4: The evolution and convergence of the critic weights.

the players. In order to identify the unknown dynamics, we use
identifiers in conjunction with the actor-critic-disturbance networks.
The coupled HJI equations of the agents are approximately solved.
The boundedness of the closed-loop signals are proved according
to Lyapunov stability and it is ensured that the policies form a
Nash equilibrium. Future research efforts will focus on extending
the model-based technique to a model-free approach.
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Fig. 5: The evolution of the manipulators’ tracking errors.
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10 Appendix

Proof of Theorem 2

The following fact will be used in the proof.

Fact 1. For any two vectors x and y and any ε ą 0, it holds that

xTy ď ε
}x}2

2 `
}y}2

2ε . l

We consider the following Lyapunov function,

Lptq “
N
ÿ

i“1

tViptq `

Liptq
hkkkkkkkikkkkkkkj

1

2
W̃

T
i αi

´1
W̃i `

Li`N ptq
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

1

2
W̃

T
i`Nαi`N

´1
W̃i`N

`

Li`2N ptq
hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj

1

2
W̃

T
i`2Nαi`2N

´1
W̃i`2N u. (37)

The time derivative of Lyapunov function is given by

9Lptq “
N
ÿ

i“1

t 9Viptq

9Liptq
hkkkkkkkikkkkkkkj

´W̃ T
i αi

´19̂W i

9Li`N ptq
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

´W̃ T
i`Nαi`N

´19̂W i`N

9Li`2N ptq
hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj

´W̃ T
i`2Nαi`2N

´19̂W i`2N u. (38)

The first term in (38), using (16), (20), (32)-(34) and doing some
simple algebra, can be written as

N
ÿ

i“1

9Viptq “
N
ÿ

i“1

t∇Vip 9δiptqqu “
N
ÿ

i“1

t 9̄LVi

´
1

2
Qipδiq ´Wi

T
∇σitci

2pψi
‹
ςi ` εgiqˆ

Rii
´1ppψ̃i ` ψi

‹qςiq
T
∇σi

T
Wi

´ ci
2pψi

‹
ςi ` εgiqRii

´1ppψ̃i ` ψi
‹qςiq

Tˆ

∇σi
T
W̃i`N `

ÿ

jPNi

eijpcjpψj
‹
ςj ` εgj qRjj

´1ˆ

ppψ̃j ` ψj
‹qςjqT∇σj

T
Wj

´ cjpψj
‹
ςj ` εgj qRjj

´1ppψ̃j ` ψj
‹qςjqTˆ

∇σj
T
W̃j`N q ´

1

γ2
ci

2pβi
‹
ϑi ` εkiqTii

´1ˆ

ppβ̃i ` βi
‹qϑiq

T
∇σi

T
Wi `

1

γ2
ci

2ˆ

pβi
‹
ϑi ` εkiqTii

´1ppβ̃i ` βi
‹qϑiq

T
∇σi

Tˆ

W̃i`2N ´
1

γ2

ÿ

jPNi

eijpcjpβj
‹
ϑj ` εkj qTjj

´1ˆ

ppβ̃j ` βj
‹qϑjqT∇σj

T
Wj `

1

γ2
cjˆ

pβj
‹
ϑj ` εkj qTjj

´1ppβ̃j ` βj
‹qϑjqTˆ

∇σj
T
W̃j`2N quu `

N
ÿ

i“1

vi0, (39)

where,

9̄LVi “ ´Wi
T Bσi

Bδi
r´pdi ` ei0q2pψi

‹
ςi ` εgiqRii

´1ˆ

pψi
‹
ςi ` εgiq

T
∇σi

T
Wi `

ÿ

jPNi

eijpdj ` ej0qˆ

pψj
‹
ςj ` εgj qRii

´1pψj
‹
ςj ` εgj qT

∇σj
T
Wjs

´
1

2
pdi ` ei0q2Wi

T
∇σipψi

‹
ςi ` εgiqRii

´Tˆ

pψi
‹
ςi ` εgiq

T
∇σi

T
Wi ´

1

2

ÿ

jPNi

pdj ` ej0q2ˆ

Wj
T
∇σjpψj

‹
ςj ` εgj qRjj

´T
RijRjj

´1ˆ

pψj
‹
ςj ` εgj qT

∇σj
T
Wj ` eBi ,

N
ÿ

i“1

vi0 “
N
ÿ

i“1

t∇vir
ÿ

jPNi

eijpfipxiq ´ fjpxjqq ` ei0pfipxiq

´ f0px0qq ´ ci
2
gipxiqRii

´1pψ̂iςiq
T
∇σi

T
Ŵi`N

`
ÿ

jPNi

eijcjgjpxjqRjj
´1pψ̂jςjqT∇σj

T
Ŵj`N

`
1

γ2
ci

2
kipxiqTii

´1pβ̂iϑiq
T
∇σi

T
Ŵi`2N ´

1

γ2
ˆ

ÿ

jPNi

eijcjkjpxjqTjj
´1pβ̂jϑjqT∇σj

T
Ŵj`2N su.
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For the second term in (38), 9Liptq, from (20), (25) and (34), we

have

9Li “ ´ W̃
T
i αi

´1 9̂
W i “ W̃

T
i

B̂i`N

p1 ` B̂T
i`N B̂i`N q

2
ˆ

tWi
T
∇σipϕ̃izipxi, xj , ûi, ûNiqq

´ B̂
T
i`NW̃i `

1

2
pWi ´ W̃i`N qTD̂ipWi ´ W̃i`N qˆ

`
1

2

ÿ

jPNi

pWj ´ W̃j`N qTÊjpWj ´ W̃j`N q ´
1

2γ2
ˆ

pWi ´ W̃i`2N qTĤipWi ´ W̃i`2N q ´
1

2γ2
ˆ

ÿ

jPNi

pWj ´ W̃j`2N q
T
ĜjpWj ´ W̃j`2N q ´Wi

T
∇σiˆ

pcipψi
‹
ςiqpui ´ ûiq ´

ÿ

jPNi

eijpψj
‹
ςjqpuj ´ ûjq

´
1

γ2
cipβi

‹
ϑiqpωi ´ ω̂iq `

1

γ2

ÿ

jPNi

eijpβj
‹
ϑjqpωj ´ ω̂jqq

´Wi
T
∇σiεTi ` εLi ` eBiu , (40)

where

εLi “ ´
1

2
pdi ` ei0q2Wi

T
∇σipψi

‹
ςi ` εgiqˆ

Rii
´T pψi

‹
ςi ` εgiq

T
∇σi

T
Wi

´
1

2

ÿ

jPNi

pdj ` ej0q2Wj
T
∇σjpψj

‹
ςj ` εgj qˆ

Rjj
´T

RijRjj
´1pψj

‹
ςj ` εgj qT

∇σj
T
Wj .

Using (25), (34) and Fact 1, (40) is written as,

9Liptq ď 9L_i` W̃
T
i`N D̂iW̃i`N

B̄T
i`N

2msi`N
W̃i `

ÿ

jPNi

W̃
T
j`Nˆ

ÊjW̃j`N
B̄T
i`N

2msi`N
W̃i ´

1

γ2
W̃

T
i`2N ĤiW̃i`2N

B̄T
i`N

2msi`N
W̃i

´
1

γ2

ÿ

jPNi

W̃
T
j`2N ĜjW̃j`2N

B̄T
i`N

2msi`N
W̃i, (41)

where

9L_i “ ´riW̃
T
i B̄i`N B̄

T
i`NW̃i `

›

›

›

›

W̃
T
i
B̄i`N
msi`N

›

›

›

›

pai1 ` kTiq

`
ε

2
ai2δi

T
δi ´

kNi
2
WiW̃i`N

B̄T
i`N

msi`N
W̃i ´

kNi
4
W̃i`Nˆ

Wi

B̄T
i`N

msi`N
W̃i ´

ÿ

jPNi

kOj

4
ˆWj

T
W̃j`N

B̄T
i`N

msi`N
W̃i

´
ÿ

jPNi

kOj

4
W̃

T
j`NWj

B̄T
i`N

msi`N
W̃i `

kPi
2γ2

WiW̃i`2Nˆ

B̄T
i`N

msi`N
W̃i `

kPi
4γ2

W̃i`2NWi

B̄T
i`N

msi`N
W̃i `

ÿ

jPNi

kQj

4γ2
ˆ

Wj
T
W̃j`2N

B̄T
i`N

msi`N
W̃i `

ÿ

jPNi

kQj

4γ2
W̃

T
j`2NWjˆ

B̄T
i`N

msi`N
W̃i ` ci

2
Wi

T
∇σipψ̃iςiqR

´1
ii pψ‹

i ςiq
T
∇σi

Tˆ

pW̃i`N ´Wiq
B̄T
i`N

msi`N
W̃i ´W

T
i D̃iWi

B̄T
i`N

msi`N
W̃i

`W
T
i D̃iW̃i`N

B̄T
i`N

msi`N
W̃i `Wi

T
∇σi

ÿ

jPNi

cjeijˆ

pψ̃jςjqR´1
jj pψ‹

j ςjqT∇σj
TpWj ´ W̃j`N q

B̄T
i`N

msi`N
W̃i

`Wi
T
∇σi

ÿ

jPNi

cjeijpψ̃jςjqR´1
jj pψ̃jςjqT∇σj

Tˆ

pWj ´ W̃j`N q
B̄T
i`N

msi`N
W̃i ´

1

γ2
ci

2
Wi

T
∇σipβ̃iϑiqT

´1
ii ˆ

pβ‹
i ϑiq

T
∇σi

TpW̃i`2N ´Wiq
B̄T
i`N

msi`N
W̃i `

1

γ2
W

T
i H̃iˆ

Wi

B̄T
i`N

msi`N
W̃i ´

1

γ2
W

T
i H̃iW̃i`2N

B̄T
i`N

msi`N
W̃i

´
1

γ2
Wi

T
∇σi

ÿ

jPNi

cjeijpβ̃jϑjqT´1
jj pβ‹

j ϑjqT∇σj
Tˆ

pWj ´ W̃j`2N q
B̄T
i`N

msi`N
W̃i

´
1

γ2
Wi

T
∇σi

ÿ

jPNi

cjeijpβ̃jϑjqT´1
jj

´
1

γ2
Wi

T
∇σipβ̃jϑjqT∇σj

TpWj ´ W̃j`2N q
B̄T
i`N

msi`N
W̃i

` peBi ` εLi ´Wi
T
∇σiεTiq

B̄T
i`N

msi`N
W̃i ´Wi

T
∇σiˆ

rψi
‹
ςicip´ciRii

´1pψi
‹
ςiq

T
∇σi

T
Wi ´ ciRii

´1pεgiq
Tˆ

∇σi
T
WipciTii

´1pβi
‹
ϑiq

T
∇σi

T
Wi ` ciTii

´1pεkiq
Tˆ

∇σi
T
Wi ´ ciTii

´1ppβ̃i ` βi
‹qϑiq

T
∇σi

T
Wi

` ciTii
´1ppβ̃i ` βi

‹qϑiq
T
∇σi

T
W̃i`2N q∇σi

T
Wi

´ ciTii
´1ppβ̃i ` βi

‹qϑiq
T
∇σi

T
Wi ` ciTii

´1ˆ

ppβ̃i ` βi
‹qϑiq

T
∇σi

T
W̃i`2N q `

1

γ2

ÿ

jPNi

eijˆ
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pβj
‹
ϑj ` εkj qpcjTjj

´1pβj
‹
ϑjqT∇σj

T
Wj

` cjTjj
´1pεkj qT∇σj

T
Wj

´ cjTjj
´1ppβ̃j ` βj

‹qϑjqT∇σj
T
Wj

` cjTjj
´1ppβ̃j ` βj

‹qϑjqT∇σj
T
W̃j`2N qs

B̄T
i`N

msi`N
W̃i,

ri “ 1 ´
ai2

2εmsi`N
, ci “ pdi ` ei0q, cj “ pdj ` ej0q,

›

›

›

›

›

›

Wi
T
∇σip

ÿ

jPNi

eijpθ̃iξi ´ θ̃jξjq ` ei0pθ̃iξi ´ θ̃0ξ0qq

›

›

›

›

›

›

ď

ai1 ` ai2 }δi} , kTi “ k
D̂i

`
ÿ

jPNi

k
Êj

` k
Ĥi

`
ÿ

jPNi

k
Ĝj
,

›

›

›

›

1

2
Wi

T
DiWi

›

›

›

›

ď kDi ,

›

›

›

›

1

2
Wi

T
D̂iWi

›

›

›

›

ď k
D̂i
,

›

›

›

›

1

2
Wj

T
EjWj

›

›

›

›

ď kEj ,

›

›

›

›

1

2
Wj

T
ÊjWj

›

›

›

›

ď k
Êj
,

›

›

›

›

1

2
Wi

T
HiWi

›

›

›

›

ď kHi ,

›

›

›

›

1

2
Wi

T
ĤiWi

›

›

›

›

ď k
Ĥi
,

›

›

›

›

1

2
Wj

T
GjWj

›

›

›

›

ď kGj ,

›

›

›

›

1

2
Wj

T
ĜjWj

›

›

›

›

ď k
Ĝj
,

›

›

›
D̂i

›

›

›
ď kNi ,

›

›

›
Êj

›

›

›
ď kOj ,

›

›

›
Ĥi

›

›

›
ď kPi ,

›

›

›
Ĝj

›

›

›
ď kQj .

Note that kDi , kD̂i
, kEj , kÊj

, kHi , kĤi
, kGj , kĜj

, kNi , kOj ,

kPi and kQj are constant scalars. Using (39),(41),(16) and (34), (38)

becomes

9Lptq ď
N
ÿ

i“1

!

9L_i ` 9̄LVi ` W̃
T
i`N D̂iW̃i`N

B̄T
i`N

2msi`N
Wi

´ W̃
T
i`N D̂iWi

B̄T
i`N

2msi`N
Wi ` W̃

T
i`N D̂iWiˆ

B̄T
i`N

2msi`N
W̃i `

ÿ

jPNi

W̃
T
j`N ÊjW̃j`N

B̄T
i`N

2msi`N
Wi

´
ÿ

jPNi

W̃
T
j`N ÊjWj

B̄T
i`N

2msi`N
Wi `

ÿ

jPNi

W̃
T
j`N Êjˆ

Wj

B̄T
i`N

2msi`N
W̃i ´

1

γ2
W̃

T
i`2N ĤiW̃i`2N

B̄T
i`N

2msi`N
Wi

`
1

γ2
W̃

T
i`2N ĤiWi

B̄T
i`N

2msi`N
Wi ´

1

γ2
W̃

T
i`2N Ĥiˆ

Wi

B̄T
i`N

2msi`N
W̃i ´

1

γ2

ÿ

jPNi

W̃
T
j`2N ĜjW̃j`2N

B̄T
i`N

2msi`N
Wi

`
1

γ2

ÿ

jPNi

W̃
T
j`2N ĜjWj

B̄T
i`N

2msi`N
Wi

´
1

γ2

ÿ

jPNi

W̃
T
j`2N ĜjWj

B̄T
i`N

2msi`N
W̃i u

`
N
ÿ

i“1

LWi`N
`

N
ÿ

i“1

LWi`2N
, (42)

where,

N
ÿ

i“1

LWi`N
“ ´

N
ÿ

i“1

W̃
T
i`Nαi`N

´19̂W i`N `
N
ÿ

i“1

W̃
T
i`N D̂iˆ

Ŵi`N
B̄T
i`N

2msi`N
Ŵi `

N
ÿ

i“1

ÿ

jPiN

W̃
T
j`N ÊjŴj`N

B̄T
j`N

2msj
Ŵj

loooooooooooooooooooooomoooooooooooooooooooooon

N
ř

i“1

W̃T

i`N

ř

jPiNi

ÊjŴi`N

B̄T

j`N
2msj

Ŵj

q,

N
ÿ

i“1

LWi`2N
“

1

γ2

N
ÿ

i“1

W̃
T
i`2Nαi`2N

´1 9̂
Wi`2N

´
1

γ2

N
ÿ

i“1

W̃
T
i`2N ĤiŴi`2N

B̄T
i`N

2msi`N
Ŵi

´
1

γ2

N
ÿ

i“1

ÿ

jPiN

W̃
T
j`2N ĜjŴj`2N

B̄T
j`N

2msj
Ŵj

loooooooooooooooooooooooomoooooooooooooooooooooooon

N
ř

i“1

W̃T

i`2N

ř

jPiNi

ĜjŴi`2N

B̄T

j`N
2msj

Ŵj

q.

Using LWi`N
and LWi`2N

, then
9̂
Wi`N ptq and

9̂
Wi`2N ptq are

obtained as defined in (35) and (36) respectively. Replacing (35) and

(36), then
9̂
Wi`N ptq and

9̂
Wi`2N ptq are given,

W̃
T
i`NSiWi ´ W̃

T
i`NSiW̃i`N

´ W̃
T
i`NFiWi ` W̃

T
i`NFiW̃i (43)

W̃
T
i`NSiWi ´ W̃

T
i`NSiW̃i`N

´ W̃
T
i`NFiWi ` W̃

T
i`NFiW̃i. (44)

Since Qipδiq ą 0, i “ 1, ¨ ¨ ¨ , N , there exists qi ą 0, @i such

that ´δi
Tqiδi ą ´δi

TQiδi. Now 9L can be reformed as

9Lptq “
N
ÿ

i“1

tCii ´ Z̃
T
i Mi Z̃i ` DiiZ̃i u,

Z̃i “
”

δi, W̃i, W̃i`N , W̃j`N , W̃i`2N , W̃j`2N

ıT

, (45)

whereCii ď Cimax, Dii ď Dimax. Let the parameters Si, S̄i, Fi
and F̄i be chosen such that the squared matrixMi is positive definite.

Finally p42q becomes

9L ă
N
ÿ

i“1

t ´
›

›

›
Z̃i

›

›

›

2

σminpMiq `Dimax

›

›

›
Z̃i

›

›

›
` Cimax u. (46)

The Lyapunov derivative is negative as long as

›

›

›
Z̃i

›

›

›
ą

Dimax

2σminpMiq
`

d

Dimax
2

4σmin
2pMiq

›

›

›
Z̃i

›

›

›
`

Cimax

σminpMiq
. (47)

According to [31] we can show that if p47q exceeds a certain bound,

then 9L is negative and the closed-loop signals are UUB.
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