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Abstract—Increasing software capabilities and complicated
applications running on smartphones have increased the quality
of life for users. However, the battery lives of smartphones have
stayed limited due to the respectively slower improvements in
battery technology. Users are often required to find a charging
port and connect the phone to the port through a cable. A lot of
times, this process can be irritating or even infeasible. Through
adoption of emerging wireless power transfer technology in these
devices, charging process has transformed into a new dimension.
Moreover, this has brought the opportunity for wireless energy
exchange between mobile devices ubiquitously. In this paper,
we investigate the potential of peer-to-peer energy sharing to
reduce the burden of traditional cord-based charging process.
The devices of users can make use of energy available from
other users’ devices based on their meeting patterns so that
the battery level of their devices could be maintained within
acceptable level without the need of charging it through a cable
frequently. Our specific goal in this study is to find the maximum
number of traditional way of charging times that could be
skipped through utilization of available energy in other users
in the vicinity with wireless energy sharing. To this end, we use
dynamic programming approach to find the optimal skipping
patterns for selfish and cooperative energy exchange cases and
verify the results with brute force.

Index Terms—Mobile social network, wireless energy ex-
change, dynamic programming, charging skip.

I. INTRODUCTION

About 5 billion users are carrying a mobile device with

a service around the globe [1]. The various uses of these

devices and increasing popularity of software applications such

as email, Facebook, and maps have made people highly depen-

dent on mobile devices. This intensive use of mobile devices

has brought a huge load on battery requirements. The hardware

capabilities have significantly improved since the advent of

smartphones but the development of powerful batteries have

not taken the necessary pace, making the batteries the main

bottleneck. As a result, users are required to charge their

devices too often.

The process of charging a mobile device has its own

challenges in its current form today, as most of the users

use cables for charging and they need to find an outlet to

plug these cables, which may not be an easy task when the

user is outside. This irritating and sometimes infeasible way

of charging process has been relieved to some extent through

the usage of wireless charging recently. Several phone man-

ufacturers have released various models (including Apple’s

recently released iPhone X and 8 [2]) with wireless charging

capability as a built-in feature. Users can place their devices

on a charging pad (which could be embedded in other things

such as a desk [3], or cup holder in a car [4]) and start

charging their devices without the hassle of cables. However,

the charging pad or equipment still needs to be plugged

to a power source. Recently, this somewhat limited usage

of wireless charging has further been extended with energy

transfer between mobile devices [5], [6]. Through bidirectional

chargers, mobile devices could exchange energy without the

need of being connected to an outlet. Such a peer-to-peer

(P2P) energy sharing opportunity brings flexibility to users for

finding power ubiquitously and mitigates the risks of facing

an emergency situation with depleted battery [7]–[9].

In this paper, we investigate the benefit of P2P energy

sharing between mobile devices on reducing the burden of

traditional cord-based charging process (simply called wall

charging in the rest of the paper). Depending on the meeting

schedules with other users, a user can make use of excessive1

energy available from other users’ devices to skip some of

the wall chargings while still maintaining the device’s charge

within an acceptable level. Our goal is to maximize the number

of wall chargings that could be skipped through utilization

of energy shared by other users in the vicinity. We aim to

discover the potential benefit of P2P energy sharing on existing

charging habits of users. Hence, we assume that the charging

patterns of user devices and as well as their meeting patterns

with other users (from which shareable energy amounts could

be derived) are given. We exploit dynamic programming

approach to find out the optimal skipping patterns for selfish

and cooperative cases. In the selfish case, we assume that a

user knows the amount of energy that could be received from

other users for each charging cycle without giving energy. In

the cooperative case, we allow both sharing and receiving of

energy between users and study simultaneous optimization of

skipping patterns from each user’s perspective.

The rest of the paper is structured as follows. We discuss

the related work in Section II. In Section III, we define the

problem together with an analysis towards its solution. In

Section IV, we provide the details of dynamic programming

based optimization algorithms. In Section V, we provide and

discuss the results for our problem and finally, we conclude

1Current charging habits of users show that they charge their devices more
often than they need [7], yielding opportunity for energy sharing with others.
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the paper and outline future work in Section VI.

II. RELATED WORK

With the recent development in wireless power transfer

technologies, a number of studies have been conducted on how

to utilize this technology to improve the energy management

in mobile networks. Previous work have mainly focused on

applying these technologies to prolong the lifetime of wireless

sensor networks and mobile ad-hoc networks [10], [11] having

low energy requirements.

Recently, a few studies have been done to analyze the impact

of P2P energy exchange on the operation of smartphone based

mobile networks. In [12], [13], authors exploit P2P wireless

energy exchange to balance the energy within a mobile social

network and propose various algorithms to be used in sharing

protocol. In [14], the impact of P2P energy sharing on network

formation and in [15] its benefit on group based charging

has been studied. A more generic work can be found in [9],

in which authors focus on enhancing the energy usage of

wireless networks with wireless energy sharing to minimize

the chances of ending up with insufficient energy for their

consumption. In all these studies, however, the concept is

studied without an integrated analysis of charging habits of

individual user devices and meeting patterns between the users

that can exchange energy. In [7] and [8] users are first ranked

based on their ability to supply energy to one another, then

pairs that would help each other the most are assigned to each

other using stable matching. While these studies provide an

idea on the potential benefit of wireless energy exchange to

users, they do not present the optimal benefit that could be

reached. In this paper, different than previous work, we define

the burden of charging in terms of the number of periods that

the devices stay plugged to the outlet (i.e., wall charging) and

discuss the minimization of these times exploiting the energy

shared by other users without changing the charging habits of

any user.

III. PROBLEM ANALYSIS AND FORMULATION

The main goal of this study is to find the maximum number

of wall chargings that can be skipped by utilizing the energy

available from other users’ devices. In other words, we aim

to see the survivability of mobile users with the minimum

number of wall chargings possible to relieve the users from

the burden of wall charging.

For a given charging pattern of a user device, the time

between the start of one wall charging and the start of next

one represents a charging cycle. The set of all charging and

discharging periods for a user could be defined as:

𝛿𝑐 =
{

𝛿1𝑐 , 𝛿
2
𝑐 , . . . , 𝛿

𝑛
𝑐

}

𝛿𝑑 =
{

𝛿1𝑑, 𝛿
2
𝑑, . . . , 𝛿

𝑛
𝑑

}

where

𝛿𝑖𝑐.𝑙𝑒 = 𝛿1𝑑.𝑙𝑠, ∀𝑖 ∈ {1 . . . 𝑛} and

𝛿𝑖𝑑.𝑙𝑒 = 𝛿(𝑖+1)
𝑐 .𝑙𝑠, ∀𝑖 ∈ {1 . . . (𝑛− 1)}

Here, each (𝛿𝑖𝑐, 𝛿𝑖𝑑) represents a charging cycle with one

charging and one discharging. The attributes 𝑙𝑠 and 𝑙𝑒 represent

the starting and ending charge levels for each of these periods.

We consider that when a mobile user meets another mobile

user, they can exchange energy between each other wirelessly.

Moreover, we assume that these meeting periods with energy

sharing opportunity correspond to the times when these de-

vices are both discharging. The amount of energy that could

be exchanged depends on several factors including transfer

speed, efficiency, duration of their meeting and the available

capacity in the receiver.

The optimization problem is studied for two different cases;

(i) selfish, and (ii) cooperative. While the former looks at the

problem from only one user’s perspective by considering the

available energy that could be received from the others, in the

latter, we consider the two way interactions (i.e., receiving and

giving of energy) between the users and aim to optimize the

problem jointly from the perspective of both users. Next, we

discuss the details of the problem within each context.

A. Selfish case

In this case, we study the problem from the perspective of a

single user that is aware of available energy from other users

for each of its charging cycles and aims to skip as many wall

chargings as possible. Note that in this case user is not sharing

energy with others but receiving from others. Fig.1 shows

example charging patterns for two different users for a certain

time period. Depending on the applications that are running on

the device the discharging rate might vary at different times.

Similarly, depending on the equipment used for charging or

due to the active usage while charging, the charging of the

device could happen at different rates.

The problem here is defined as follows. Given the amount

of energy the user could receive from other users during each

charging cycle, what is the maximum number of wall charging

instances that could have been skipped (completely) without

affecting the functionality of the user’s device (i.e., without

changing the charging habits of the user). It is important to

note that, a user may try to skip some of its wall chargings

purely by benefiting from the excessive charging in its own

charging schedule and without using any energy available from

other users.

We formulate the problem using decision points that occur

at the beginning of each charging cycle. Decision points

divide a given user charging pattern into blocks of time

periods known as decision blocks. Each block starts with the

starting of charging for a user and ends with the completion

of discharging period. In this case, since there is a single

user, each decision block corresponds to an individual charg-

ing cycle of the user. For user A’s charging pattern shown

in Fig.1, there are six decision blocks with starting times

𝐷 = {0, 4, 7, 10, 12, 15}. Similarly, for user B, there are five

decision blocks with starting times 𝐷 = {2, 5, 8, 10, 13}. For

each decision block 𝐷𝑡, ∀ 𝑡 ∈ {1 . . . ∣𝐷∣}, the following has

to be maintained:

𝐷𝑡+1.𝑙𝑠 − (𝐷𝑡.𝑙𝑠 + 𝛿𝑐[𝑡](1−𝑋𝑡)− 𝛿𝑑[𝑡] +𝑅[𝑡].𝑋𝑡) = 0 (1)

where, 𝛿𝑐[𝑡], 𝛿𝑑[𝑡] and 𝑅[𝑡] represent the amount of total wall

charge, total discharge, and total energy that could be received
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Fig. 1: Charging patterns and decision points of two users.

by 𝐴 during the 𝑡𝑡ℎ decision block, and 𝑋𝑡 is the skip decision

variable ∈ {0,1}, with 1 meaning skip.

B. Cooperative case

In this case, users are allowed to both send and receive

energy between each other. Therefore, the optimal skipping

pattern has to be determined considering the amount of

energy that will be exchanged between users. The decision

points (i.e., start of charging cycles) coming from all users

will form decision blocks with partitioned charging cycles

of users. Moreover, some decision points might divide a

charging period of a user into two or more parts. The set

of decision points that come from both users in Fig. 1 is

𝐷 = {0, 2, 4, 5, 7, 8, 10, 12, 13, 15}, which is 𝐷𝐴∪𝐷𝐵 . When

a decision point causes a split in the charging period of a

user, since we base our optimization to the skipping of wall

chargings completely (i.e., no partial skipping allowed), the

skip decision made for a portion of a wall charging inside

a decision block should match with the decision made for

the remaining portion of the same wall charging in the next

decision points. In order to reach the optimal skipping solution

that maintains this, for every such decision point, both results

(skipping or not) have to be stored until the split of a charging

period with decision points is over and only the optimal one

is picked.

In this case, for each decision block 𝐷𝑡, the following

equations have to be maintained:

𝐷𝐴
𝑡+1.𝑙𝑠−(𝐷𝐴

𝑡 .𝑙𝑠+𝛿𝐴𝑐 [𝑡](1−𝑋𝑡)−𝛿𝐴𝑑 [𝑡]+𝑆𝐵
𝑡 −𝑆𝐴

𝑡 ) = 0 (2)

𝐷𝐵
𝑡+1.𝑙𝑠−(𝐷𝐵

𝑡 .𝑙𝑠+𝛿𝐵𝑐 [𝑡](1−𝑋𝑡)−𝛿𝐵𝑑 [𝑡]+𝑆𝐴
𝑡 −𝑆𝐵

𝑡 ) = 0 (3)

where, 𝛿𝐴𝑐 [𝑡] (𝛿𝐵𝑐 [𝑡]) and 𝛿𝐴𝑑 [𝑡] (𝛿𝐵𝑑 [𝑡]) represent the amount of

total wall charge and discharge for 𝐴 (𝐵), respectively and

𝑆𝐴
𝑡 (𝑆𝐵

𝑡 ) shows the energy shared (to 𝐵) by 𝐴 (𝐵) during the

𝑡𝑡ℎ decision block.

IV. ALGORITHM DEVELOPMENT

We use dynamic programming approach to find the optimal

skipping pattern in both cases of the problem. At each decision

point, the algorithm tries to recursively find the best charging

levels that will result in the minimum number of wall charg-

ings for each user. The approach used in the optimization of

both cases is slightly different and discussed in the subsequent

sections. However, the initialization and solution readout part

for both cases are similar. We consider a two dimensional

matrix for the first case and a three dimensional matrix for the

Algorithm 1 SelfishOptimalSkip(𝛿𝑐, 𝛿𝑑, 𝑅)

1: for each decision block 𝐷𝑡 do

2: for each charging level 0 to 100 as 𝑙 do

3: friend = min(100, 𝑙 + 𝑅[𝑡])-𝛿𝑑[t]

4: wall = min(100, 𝑙 + 𝛿𝑐[t])-𝛿𝑑[t]

5: Update(t, 𝑙, friend, 0)

6: Update(t, 𝑙, wall, 1)

7: end for

8: end for

Algorithm 2 Update(t, curLevel, newLevel, inc)

1: if newLevel ≥ minLevel then

2: currentState = D[t][curLevel]

3: if currentState + inc ≤ D[t+1][newLevel] then

4: D[t+1][newLevel]=currentState+inc

5: T[t+1][newLevel] = curLevel

6: end if

7: end if

second case, where the first dimensions represent the decision

points and the other dimensions represent the individual charge

levels of each user. Note that in the case of multiple users

more than two, the dimension of the matrix can be increased

accordingly together with additional updates in the algorithms,

which will be the subject of our future work.

A. Optimization algorithm for selfish case

There are two important matrices: 𝐷 matrix and 𝑇 matrix.

𝐷 matrix stores the integer value that represents the number of

wall chargings required for each charge level by every decision

block and 𝑇 matrix stores the index of the 𝐷 matrix from

which that value is derived. The algorithm takes the list of

wall charging amounts (𝛿𝑐), the list of discharging amounts

(𝛿𝑑) and the list of energy available for each decision block

(𝑅) as a parameter. 𝑖𝑛𝑖𝑡𝐿𝑒𝑣𝑒𝑙 is the initial charging level for

the given charging pattern. For example, for A’s pattern in

Fig. 1, 𝑖𝑛𝑖𝑡𝐿𝑒𝑣𝑒𝑙 is 20. 𝑚𝑖𝑛𝐿𝑒𝑣𝑒𝑙 is the minimum acceptable

level. Values from 𝐷[0][𝑖𝑛𝑖𝑡𝐿𝑒𝑣𝑒𝑙] to 𝐷[0][0] are initialized to

0 because we know that we can achieve each of them without

charging from the wall. All other values in 𝐷 and 𝑇 matrix

are initialized to some higher integer value.

The main body of the algorithm is shown in Algorithm 1

(which uses Algorithm 2). The main principle on which this

algorithm works is, for each charge level i.e., from 0 to 100

and at each decision block (𝐷𝑡), how much energy we can

get either from wall or from a friend and to what charge level

we can get to utilizing the available energy is found and the

path with minimum wall chargings (i.e., maximum skips) is

maintained. The corresponding charge level at (𝑡+1)𝑡ℎ decision

time is updated to the minimum of either the value at 𝑡 or the

current value at (𝑡+1) if we can get to 𝑡+1 by receiving energy

from a friend and to the minimum of either the (value at 𝑡) +

1 or the current value at (𝑡+1) if we can get to (𝑡+1) from wall

charging. We apply the same logic recursively for all charging

cycles and find the optimal skip sequence. The running time



Algorithm 3 SolutionReadout(𝐷, 𝑇 )

1: index ← argmin{𝐷[𝑛− 1][𝑖] ∀ 𝑖 ∈ [0, 100]}
2: value = D[n-1][index]

3: index = T[n-1][index]

4: for i=n-2; i≥0; i−− do

5: if value = 𝐷[i][index] then

6: skip[i] = 1

7: else if value - 𝐷[i][index] = 1 then

8: skip[i] = 0

9: end if

10: value = 𝐷[i][index]

11: index = 𝑇 [i] [index]

12: end for

13: return skip

of the algorithm is 𝑂(∣𝐷∣100), while brute force solution has

𝑂(2∣𝐷∣) complexity.

The algorithm to readout the solution is presented in Al-

gorithm 3. We start at the last decision block and get the

index with the minimum number of charges from 𝐷 matrix.

Each position in 𝐷 matrix is associated with its previous

cell using 𝑇 matrix. If the value in current index of 𝐷

matrix has increased (i.e., wall charging used) compared to

its previous value, then the skip value for that charging cycle

is 0, otherwise it is 1.

B. Optimization algorithm for cooperative case

In this setting, we assume the amount of energy that is avail-

able to each user at a point is not certain. The algorithm needs

to find the maximum energy that needs to be shared/received

for the optimal skip. The energy exchange between users can

potentially happen when they actually meet and both user

devices are discharging. Hence, the amount of energy that

could be shared between these devices will be determined by

the meeting and charging patterns of these devices.

In this case, due to the aggregated definition of the decision

points from both users, we need to keep track of all possible

states when a decision block consists of a partial charging.

Two more matrices need to be defined for such cases: 𝐷𝑠𝑘𝑖𝑝

and 𝐷𝑤𝑎𝑙𝑙, which are responsible to store the skip or no skip

decision for a partial block. However, the final decision is

always updated on the 𝐷 matrix, when the split is over. These

matrices are also initialized to some higher integer value. Other

initializations are similar to that of selfish case. The details

of the dynamic programming based solution are presented in

Algorithms 4 and 5.

For every decision block, we check if the wall charging

of any user is crossed by the decision points. If we find

the crossing, then for the first part of the split, we store

the decision for both values of 𝑋𝑡 in two different matrices

(i.e., 𝐷𝑠𝑘𝑖𝑝 for skipping decision, and 𝐷𝑤𝑎𝑙𝑙, for not skipping

decision). In our example, the first split is done for 𝐴 at

the decision block starting at time 5. When the algorithm

encounters such a decision block, the source matrix (i.e., 𝐷

matrix for the first case), is split into (A=1, B=[0,1]), which

Algorithm 4 CooperativeOptimalSkip (𝛿𝐴𝑐 , 𝛿𝐵𝑐 , 𝛿𝐴𝑑 , 𝛿𝐵𝑑 )

1: merged ← true

2: for each decision block as t do

3: if (merged) then

4: if 𝐴 (𝐵) has first half then

5: compute(𝐴(𝐵), 𝐵(𝐴), 𝐷, 𝐷𝑠𝑘𝑖𝑝, 𝐷, 𝐷𝑤𝑎𝑙𝑙)

6: merged ← false

7: else

8: compute(𝐴(𝐵), 𝐵(𝐴), 𝐷, 𝐷, 𝐷, 𝐷)

9: end if

10: else

11: if 𝐴 (or 𝐵) has first half then

12: compute(𝐴(𝐵), 𝐵(𝐴), 𝐷𝑠𝑘𝑖𝑝, 𝐷𝑠𝑘𝑖𝑝,𝐷𝑠𝑘𝑖𝑝,𝐷𝑤𝑎𝑙𝑙)

13: compute(𝐴(𝐵), 𝐵(𝐴), 𝐷𝑤𝑎𝑙𝑙, 𝐷𝑆𝑘𝑖𝑝,𝐷𝑤𝑎𝑙𝑙,𝐷𝑤𝑎𝑙𝑙)

14: merged ← false

15: else if 𝐴 (𝐵) has second half and !𝐵 (!𝐴) has first

half then

16: compute(𝐴(𝐵), 𝐵(𝐴), 𝐷𝑠𝑘𝑖𝑝, 𝐷, 𝐷𝑤𝑎𝑙𝑙, 𝐷)

17: merged ← true

18: end if

19: end if

20: end for

is the 𝐷𝑠𝑘𝑖𝑝 matrix and (A=0, B=[0,1]), which is the 𝐷𝑤𝑎𝑙𝑙

matrix. If the next decision block contains the second part of

the charging period, the decision from 𝐷𝑠𝑘𝑖𝑝 and 𝐷𝑤𝑎𝑙𝑙 is

then merged back to the source matrix (i.e., 𝐷 matrix). The

matrices maintained during the runtime of the algorithm for

the given example in Fig. 1 is illustrated in Fig. 2.

Algorithm 5 covers all four possible cases and decides the

type of the split operation required. Here, 𝑇 matrix keeps track

of all necessary information including the source matrix and

energy exchanges in every step for reading out the solution.

In case 1 and 2, we track the skipping cases for the user

with split charging period, and in case 3 and 4, we track the

other cases. Thus, the source matrix is written into 𝐷𝑠𝑘𝑖𝑝 in

the first two cases and while it is written into 𝐷𝑤𝑎𝑙𝑙 in the

last two cases. Per our assumption, meeting times correspond

to the times when user devices are discharging, thus, the

decision for two way energy exchange between users happen

only when both users decide to skip wall charging (case 1).

The implementation of energy exchanges is shown in lines

9-19 of Algorithm 5. The running time of this algorithm is

𝑂(∣𝐷∣(100)2(𝐸)), where 𝐸 is the average shareable energy

range. Brute force solution again has 𝑂(2∣𝐷∣) complexity.

V. RESULTS

We have used the charging patterns for two users shown in

Fig. 1. We first run the optimization algorithm for selfish case

for each of the nodes A and B separately. In this case, the

selfish node (e.g., A) knows the amount of energy that could

be shared by the other node for each of its charging cycle and

does not share any energy with the other one. As it can be

seen in Fig. 1, node B can safely share a total of 25% of its

energy with node A in any charging periods of A. As node



A=0,1

B=0,1
A=0,1

B=0,1

A=1

B=0,1
A=1

B=0,1

A=0

B=0,1

A=0

B=0,1

A=0,1

B=0,1
A=0,1

B=0,1

A=0,1

B=0,1

Merge
Split

Update
A=0,1

B=0,1

A=0,1

B=0,1

Fig. 2: Matrices maintained during runtime of the optimization algorithm for cooperative case.

Algorithm 5 compute(𝑢1, 𝑢2, 𝑆1, 𝐷1, 𝑆2, 𝐷2)

1: for each charging Levels 0 to 100 as 𝑙𝐴𝑖 do

2: for each charging Levels 0 to 100 as 𝑙𝐵𝑖 do

3: 𝑢1.skip = 𝑙𝑢1

𝑖 - 𝛿𝑢1

𝑑 [t]

4: 𝑢1.wall = min(100, 𝑙𝑢1

𝑖 + 𝛿𝑢1

𝑐 [t]) - 𝛿𝑢1

𝑑 [t]

5: 𝑢2.skip = 𝑙𝑢2

𝑖 - 𝛿𝑢2

𝑑 [t]

6: 𝑢2.wall = min(100, 𝑙𝑢2

𝑖 + 𝛿𝑢2

𝑐 [t]) - 𝛿𝑢2

𝑑 [t]

7: Case 1: both users skip

8: Update2(t, 𝑢1.skip, 𝑢2.skip, 𝑆1, 𝐷1, 0, 0)

9: energyShareable = min(𝛿𝑢1

𝑑 [t], 𝛿𝑢2

𝑑 [t])

10: if energyShareable ≥ 0 then

11: for all energy from 0 to energyShareable as e do

12: 𝑢2.shared = 𝑙𝑢2

𝑖 - e - 𝛿𝑢2

𝑑 [t]

13: 𝑢1.received = 𝑙𝑢1

𝑖 + e - 𝛿𝑢1

𝑑 [t]

14: Update2(t, 𝑢1.received, 𝑢2.shared, 𝑆1, 𝐷1, 0, e)

15: 𝑢1.shared = 𝑙𝑢1

𝑖 - e - 𝛿𝑢1

𝑑 [t]

16: 𝑢2.received = 𝑙𝑢2

𝑖 + e - 𝛿𝑢2

𝑑 [t]

17: Update2(t, 𝑢1.shared, 𝑢2.received, 𝑆1, 𝐷1, 0, e)

18: end for

19: end if

20: Case 2: only 𝑢1 skips

21: Update2(t, 𝑢1.skip ,𝑢2.wall , 𝑆1, 𝐷1, 1, 0)

22: Case 3: both do not skip

23: Update2(t, 𝑢1.wall, 𝑢2.wall, 𝑆2, 𝐷2, 2, 0)

24: Case 4: only 𝑢2 skips

25: Update2(t, 𝑢1.wall, 𝑢2.skip, 𝑆2, 𝐷2, 1, 0)

26: end for

27: end for

Algorithm 6 Update2(t, 𝑙𝐴, 𝑙𝐵 , source, dest, inc, energy)

1: if 𝑙𝐴 ≥ minLevel and 𝑙𝐵 ≥ minLevel then

2: m = min{source[t][𝑙𝐴][𝑙𝐵]+inc, dest[t+1][𝑙𝐴][𝑙𝐵]}
3: dest[t+1][𝑙𝐴][𝑙𝐵] = m

4: T[t+1][𝑙𝐴][𝑙𝐵] = (𝑙𝐴𝑖 , 𝑙𝐵𝑖 , source, energy)

5: end if

A’s charge level will not hit 100% even it gets all of this 25%

at its first charging cycle, it does not actually matter how this

25% is split into different charging cycles (assuming that they

meet at every charging cycle with sufficiently large duration).

Similarly node A can share 10% of its energy with B safely.

In Table I, we show the optimal skip pattern results for

selfish case in different scenarios. In scenario 0, we did not let

users exchange energy to see how many skips they could have

done by their own charging habits only. In scenario A.1 and

Scenario
Decision Blocks

(Charging Cycle)
1 2 3 4 5 6

0
Energy (B ↔ A) 0 0 0 0 0 0

A’s skip sequence 0 0 0 1 0 1

B’s skip sequence 1 0 0 1 0 N/A

A.1
Energy (B → A) 25 0 0 0 0 0

A’s skip sequence 1 0 1 1 0 1

A.2
Energy (B → A) 10 0 10 0 5 0

A’s skip sequence 0 0 1 0 1 1

B.1
Energy (A → B) 10 0 0 0 0 N/A

B’s skip sequence 1 0 1 1 0 N/A

B.2
Energy (A → B) 0 5 0 5 0 N/A

B’s skip sequence 1 0 1 1 0 N/A

TABLE I: Optimal skipping results for selfish case.

Decision Blocks 1 2 3 4 5 6 7 8 9 10

Energy (A → B) 0 0 0 0 0 5 0 0 0 4

B’s skip sequence 1 1 1 0 1 1 0 1 0 1

Energy (B → A) 19 0 0 0 0 0 0 0 0 0

A’s skip sequence 0 1 0 0 1 1 0 1 1 1

TABLE II: Skip sequence in decision blocks in cooperative

case.

A.2, we considered the energy transfer from B to A only (i.e.,

when A is selfish) but with different splits of the maximum

energy B can share to different decision blocks. Similarly, in

scenario B.1 and B.2, we considered B as the selfish node

and split the A’s shareable energy to different decision blocks.

Note that in these scenarios, decision blocks correspond to the

node’s charging cycles. A has six decision blocks while B has

five decision blocks. In scenario 0, the results show that node

A could have skipped 4𝑡ℎ and 6𝑡ℎ charging blocks, while node

B could have skipped its 1𝑠𝑡 and 4𝑡ℎ blocks (skipping 1𝑠𝑡 and

3𝑟𝑑 would also be optimal). This results in a total of 4 skips

for both nodes. In other scenarios, when only one node shares

energy with the other one and do not skip any wall charging,

the other node would increase the skipped charging count to

at most 4, but this does not change the total skipped count

for both nodes (in scenario A.1, A could skip more chargings

compared to A.2 as it is offered B’s all shareable amount in

earlier charging cycles).

The result for cooperative case is presented in Table II.

Out of 10 decision blocks, user A is able to skip 6 of them.

However, not all of these are independent decisions as well as

some of these skip decisions only consist of discharging which

is not an actual skipping. Similarly, for user B, 7 of them

can be skipped. Note that there are multiple energy exchanges
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Fig. 3: Charging patterns and skips after cooperative energy exchange.

Charging Cycle 1 2 3 4 5 6

A’s skip sequence 0 0 1 0 1 1

B’s skip sequence 1 0 1 0 0 N/A

TABLE III: Actual skip sequence of wall chargings in coop-

erative case.

between users in order to get to the optimal point. As the

decision blocks do not correspond to the actual individual

charging cycles of users, the skipping decisions for each

decision block have to be converted to the skipping pattern

for charging cycles. From Fig. 3 and Table II, we can deduce

the original skip sequence for user A and user B which is

shown in Table III. This results in a total of 5 skips for both

nodes, showing the advantage of cooperative P2P sharing over

selfish case. To achieve that both node A and B share energy

between each other and receive energy from each other. Fig. 3

shows the charging patterns after the optimal skips are done2.

VI. CONCLUSION

In this paper, motivated by the recent technologies en-

abling wireless energy sharing between mobile devices, we

investigate to what extent the burden of charging process on

users could be released. We develop a dynamic programming

based optimization model and find out the maximum number

of charging times that could be skipped through utilization

of excessive energy from other users in the vicinity. We

study two cases with selfish and cooperative nodes. The

results show that when nodes cooperate they would skip more

of their wall chargings. In our future work, we will study

cooperation between multiple users and try to apply energy

sharing behavior in a more realistic manner by embedding the

predictions of charging and meeting patterns in mobile social

networks [16]–[18].
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