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Abstract—Increasing software capabilities and complicated
applications running on smartphones have increased the quality
of life for users. However, the battery lives of smartphones have
stayed limited due to the respectively slower improvements in
battery technology. Users are often required to find a charging
port and connect the phone to the port through a cable. A lot of
times, this process can be irritating or even infeasible. Through
adoption of emerging wireless power transfer technology in these
devices, charging process has transformed into a new dimension.
Moreover, this has brought the opportunity for wireless energy
exchange between mobile devices ubiquitously. In this paper,
we investigate the potential of peer-to-peer energy sharing to
reduce the burden of traditional cord-based charging process.
The devices of users can make use of energy available from
other users’ devices based on their meeting patterns so that
the battery level of their devices could be maintained within
acceptable level without the need of charging it through a cable
frequently. Our specific goal in this study is to find the maximum
number of traditional way of charging times that could be
skipped through utilization of available energy in other users
in the vicinity with wireless energy sharing. To this end, we use
dynamic programming approach to find the optimal skipping
patterns for selfish and cooperative energy exchange cases and
verify the results with brute force.

Index Terms—Mobile social network, wireless energy ex-
change, dynamic programming, charging skip.

I. INTRODUCTION

About 5 billion users are carrying a mobile device with
a service around the globe [1]. The various uses of these
devices and increasing popularity of software applications such
as email, Facebook, and maps have made people highly depen-
dent on mobile devices. This intensive use of mobile devices
has brought a huge load on battery requirements. The hardware
capabilities have significantly improved since the advent of
smartphones but the development of powerful batteries have
not taken the necessary pace, making the batteries the main
bottleneck. As a result, users are required to charge their
devices too often.

The process of charging a mobile device has its own
challenges in its current form today, as most of the users
use cables for charging and they need to find an outlet to
plug these cables, which may not be an easy task when the
user is outside. This irritating and sometimes infeasible way
of charging process has been relieved to some extent through
the usage of wireless charging recently. Several phone man-
ufacturers have released various models (including Apple’s
recently released iPhone X and 8 [2]) with wireless charging

capability as a built-in feature. Users can place their devices
on a charging pad (which could be embedded in other things
such as a desk [3], or cup holder in a car [4]) and start
charging their devices without the hassle of cables. However,
the charging pad or equipment still needs to be plugged
to a power source. Recently, this somewhat limited usage
of wireless charging has further been extended with energy
transfer between mobile devices [5], [6]. Through bidirectional
chargers, mobile devices could exchange energy without the
need of being connected to an outlet. Such a peer-to-peer
(P2P) energy sharing opportunity brings flexibility to users for
finding power ubiquitously and mitigates the risks of facing
an emergency situation with depleted battery [7]-[9].

In this paper, we investigate the benefit of P2P energy
sharing between mobile devices on reducing the burden of
traditional cord-based charging process (simply called wall
charging in the rest of the paper). Depending on the meeting
schedules with other users, a user can make use of excessive'
energy available from other users’ devices to skip some of
the wall chargings while still maintaining the device’s charge
within an acceptable level. Our goal is to maximize the number
of wall chargings that could be skipped through utilization
of energy shared by other users in the vicinity. We aim to
discover the potential benefit of P2P energy sharing on existing
charging habits of users. Hence, we assume that the charging
patterns of user devices and as well as their meeting patterns
with other users (from which shareable energy amounts could
be derived) are given. We exploit dynamic programming
approach to find out the optimal skipping patterns for selfish
and cooperative cases. In the selfish case, we assume that a
user knows the amount of energy that could be received from
other users for each charging cycle without giving energy. In
the cooperative case, we allow both sharing and receiving of
energy between users and study simultaneous optimization of
skipping patterns from each user’s perspective.

The rest of the paper is structured as follows. We discuss
the related work in Section II. In Section III, we define the
problem together with an analysis towards its solution. In
Section IV, we provide the details of dynamic programming
based optimization algorithms. In Section V, we provide and
discuss the results for our problem and finally, we conclude

ICurrent charging habits of users show that they charge their devices more
often than they need [7], yielding opportunity for energy sharing with others.
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the paper and outline future work in Section VI.

II. RELATED WORK

With the recent development in wireless power transfer
technologies, a number of studies have been conducted on how
to utilize this technology to improve the energy management
in mobile networks. Previous work have mainly focused on
applying these technologies to prolong the lifetime of wireless
sensor networks and mobile ad-hoc networks [10], [11] having
low energy requirements.

Recently, a few studies have been done to analyze the impact
of P2P energy exchange on the operation of smartphone based
mobile networks. In [12], [13], authors exploit P2P wireless
energy exchange to balance the energy within a mobile social
network and propose various algorithms to be used in sharing
protocol. In [14], the impact of P2P energy sharing on network
formation and in [15] its benefit on group based charging
has been studied. A more generic work can be found in [9],
in which authors focus on enhancing the energy usage of
wireless networks with wireless energy sharing to minimize
the chances of ending up with insufficient energy for their
consumption. In all these studies, however, the concept is
studied without an integrated analysis of charging habits of
individual user devices and meeting patterns between the users
that can exchange energy. In [7] and [8] users are first ranked
based on their ability to supply energy to one another, then
pairs that would help each other the most are assigned to each
other using stable matching. While these studies provide an
idea on the potential benefit of wireless energy exchange to
users, they do not present the optimal benefit that could be
reached. In this paper, different than previous work, we define
the burden of charging in terms of the number of periods that
the devices stay plugged to the outlet (i.e., wall charging) and
discuss the minimization of these times exploiting the energy
shared by other users without changing the charging habits of
any user.

III. PROBLEM ANALYSIS AND FORMULATION

The main goal of this study is to find the maximum number
of wall chargings that can be skipped by utilizing the energy
available from other users’ devices. In other words, we aim
to see the survivability of mobile users with the minimum
number of wall chargings possible to relieve the users from
the burden of wall charging.

For a given charging pattern of a user device, the time
between the start of one wall charging and the start of next
one represents a charging cycle. The set of all charging and
discharging periods for a user could be defined as:

6. = {0,62,....00}
6¢ = {63.03,...,0} where

6de =041,,Vie{l...n} and
0y =060V, Vie{l1...(n—1)}
Here, each (6%, ') represents a charging cycle with one

charging and one discharging. The attributes [ and [, represent
the starting and ending charge levels for each of these periods.

We consider that when a mobile user meets another mobile
user, they can exchange energy between each other wirelessly.
Moreover, we assume that these meeting periods with energy
sharing opportunity correspond to the times when these de-
vices are both discharging. The amount of energy that could
be exchanged depends on several factors including transfer
speed, efficiency, duration of their meeting and the available
capacity in the receiver.

The optimization problem is studied for two different cases;
(1) selfish, and (ii) cooperative. While the former looks at the
problem from only one user’s perspective by considering the
available energy that could be received from the others, in the
latter, we consider the two way interactions (i.e., receiving and
giving of energy) between the users and aim to optimize the
problem jointly from the perspective of both users. Next, we
discuss the details of the problem within each context.

A. Selfish case

In this case, we study the problem from the perspective of a
single user that is aware of available energy from other users
for each of its charging cycles and aims to skip as many wall
chargings as possible. Note that in this case user is not sharing
energy with others but receiving from others. Fig.1 shows
example charging patterns for two different users for a certain
time period. Depending on the applications that are running on
the device the discharging rate might vary at different times.
Similarly, depending on the equipment used for charging or
due to the active usage while charging, the charging of the
device could happen at different rates.

The problem here is defined as follows. Given the amount
of energy the user could receive from other users during each
charging cycle, what is the maximum number of wall charging
instances that could have been skipped (completely) without
affecting the functionality of the user’s device (i.e., without
changing the charging habits of the user). It is important to
note that, a user may try to skip some of its wall chargings
purely by benefiting from the excessive charging in its own
charging schedule and without using any energy available from
other users.

We formulate the problem using decision points that occur
at the beginning of each charging cycle. Decision points
divide a given user charging pattern into blocks of time
periods known as decision blocks. Each block starts with the
starting of charging for a user and ends with the completion
of discharging period. In this case, since there is a single
user, each decision block corresponds to an individual charg-
ing cycle of the user. For user A’s charging pattern shown
in Fig.1, there are six decision blocks with starting times
D ={0,4,7,10,12,15}. Similarly, for user B, there are five
decision blocks with starting times D = {2,5, 8,10, 13}. For
each decision block Dy, V ¢t € {1...|D|}, the following has
to be maintained:

Disrdy — (Dydy + 6.0t (1 — X;) — 8alt] + R[t]. X)) =0 (1)

where, d.[t], d4[t] and R][t] represent the amount of total wall
charge, total discharge, and total energy that could be received
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Fig. 1: Charging patterns and decision points of two users.

by A during the t*" decision block, and X is the skip decision
variable € {0,1}, with 1 meaning skip.

B. Cooperative case

In this case, users are allowed to both send and receive
energy between each other. Therefore, the optimal skipping
pattern has to be determined considering the amount of
energy that will be exchanged between users. The decision
points (i.e., start of charging cycles) coming from all users
will form decision blocks with partitioned charging cycles
of users. Moreover, some decision points might divide a
charging period of a user into two or more parts. The set
of decision points that come from both users in Fig. 1 is
D ={0,2,4,5,7,8,10,12,13,15}, which is D4 UDp. When
a decision point causes a split in the charging period of a
user, since we base our optimization to the skipping of wall
chargings completely (i.e., no partial skipping allowed), the
skip decision made for a portion of a wall charging inside
a decision block should match with the decision made for
the remaining portion of the same wall charging in the next
decision points. In order to reach the optimal skipping solution
that maintains this, for every such decision point, both results
(skipping or not) have to be stored until the split of a charging
period with decision points is over and only the optimal one
is picked.

In this case, for each decision block Dy, the following
equations have to be maintained:

Dy ds— (DRI A+ [H(1-X,) — 04 [ +SP— S =0 2
DE 1y —(DP 1+ [1)(1-X,) 68 [t]+S —SP) =0 (3)

where, 61[t] (62[t]) and 64 [t] (02 [t]) represent the amount of
total wall charge and discharge for A (B), respectively and
S (SP) shows the energy shared (to B) by A (B) during the
tt" decision block.

IV. ALGORITHM DEVELOPMENT

We use dynamic programming approach to find the optimal
skipping pattern in both cases of the problem. At each decision
point, the algorithm tries to recursively find the best charging
levels that will result in the minimum number of wall charg-
ings for each user. The approach used in the optimization of
both cases is slightly different and discussed in the subsequent
sections. However, the initialization and solution readout part
for both cases are similar. We consider a two dimensional
matrix for the first case and a three dimensional matrix for the

Algorithm 1 SelfishOptimalSkip(d., §4, R)

1: for each decision block D; do

2:  for each charging level 0 to 100 as [ do
3 friend = min(100, I + R[t])-d4[t]

4 wall = min(100, [ + §.[t])-04[t]

5: Update(t, [, friend, 0)

6 Update(t, [, wall, 1)

7 end for

8: end for

Algorithm 2 Update(t, curLevel, newLevel, inc)

1: if newLevel > minLevel then

2 currentState = D[t][curLevel]

3 if currentState + inc < D[t+1][newLevel] then
4: DJ[t+1][newLevel]=currentState+inc

5 T[t+1][newLevel] = curLevel

6 end if
7: end if

second case, where the first dimensions represent the decision
points and the other dimensions represent the individual charge
levels of each user. Note that in the case of multiple users
more than two, the dimension of the matrix can be increased
accordingly together with additional updates in the algorithms,
which will be the subject of our future work.

A. Optimization algorithm for selfish case

There are two important matrices: D matrix and 7" matrix.
D matrix stores the integer value that represents the number of
wall chargings required for each charge level by every decision
block and T matrix stores the index of the D matrix from
which that value is derived. The algorithm takes the list of
wall charging amounts (J.), the list of discharging amounts
(d4) and the list of energy available for each decision block
(R) as a parameter. initLevel is the initial charging level for
the given charging pattern. For example, for A’s pattern in
Fig. 1, initLevel is 20. minLevel is the minimum acceptable
level. Values from D[0][init Level] to D[0][0] are initialized to
0 because we know that we can achieve each of them without
charging from the wall. All other values in D and 7T matrix
are initialized to some higher integer value.

The main body of the algorithm is shown in Algorithm 1
(which uses Algorithm 2). The main principle on which this
algorithm works is, for each charge level i.e., from 0 to 100
and at each decision block (D;), how much energy we can
get either from wall or from a friend and to what charge level
we can get to utilizing the available energy is found and the
path with minimum wall chargings (i.e., maximum skips) is
maintained. The corresponding charge level at (t+1)*" decision
time is updated to the minimum of either the value at ¢ or the
current value at (t+1) if we can get to t+1 by receiving energy
from a friend and to the minimum of either the (value at t) +
1 or the current value at (¢+1) if we can get to (t+1) from wall
charging. We apply the same logic recursively for all charging
cycles and find the optimal skip sequence. The running time



Algorithm 3 SolutionReadout(D, T
index < argmin{D[n — 1][i] V i € [0, 100]}
value = D[n-1][index]
index = T[n-1][index]
for i=n-2; i>0; i—— do
if value = DJi][index] then
skip[i] = 1
else if value - DJi][index] = 1 then
skip[i] = 0
end if
value = DJi][index]
index = T'[i] [index]
end for
: return skip
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of the algorithm is O(|D|100), while brute force solution has
O(2'P1) complexity.

The algorithm to readout the solution is presented in Al-
gorithm 3. We start at the last decision block and get the
index with the minimum number of charges from D matrix.
Each position in D matrix is associated with its previous
cell using 7" matrix. If the value in current index of D
matrix has increased (i.e., wall charging used) compared to
its previous value, then the skip value for that charging cycle
is 0, otherwise it is 1.

B. Optimization algorithm for cooperative case

In this setting, we assume the amount of energy that is avail-
able to each user at a point is not certain. The algorithm needs
to find the maximum energy that needs to be shared/received
for the optimal skip. The energy exchange between users can
potentially happen when they actually meet and both user
devices are discharging. Hence, the amount of energy that
could be shared between these devices will be determined by
the meeting and charging patterns of these devices.

In this case, due to the aggregated definition of the decision
points from both users, we need to keep track of all possible
states when a decision block consists of a partial charging.
Two more matrices need to be defined for such cases: Dy
and D,,q;, which are responsible to store the skip or no skip
decision for a partial block. However, the final decision is
always updated on the D matrix, when the split is over. These
matrices are also initialized to some higher integer value. Other
initializations are similar to that of selfish case. The details
of the dynamic programming based solution are presented in
Algorithms 4 and 5.

For every decision block, we check if the wall charging
of any user is crossed by the decision points. If we find
the crossing, then for the first part of the split, we store
the decision for both values of X; in two different matrices
(i.e., D4y for skipping decision, and D41, for not skipping
decision). In our example, the first split is done for A at
the decision block starting at time 5. When the algorithm
encounters such a decision block, the source matrix (i.e., D
matrix for the first case), is split into (A=1, B=[0,1]), which

Algorithm 4 CooperativeOptimalSkip (52, 57, 67, 67)

c

1: merged < true
2: for each decision block as t do
3:  if (merged) then

4 if A (B) has first half then

5 compute(A(B), B(A), D, Dgiip, D, Dyan)

6: merged <— false

7 else

8 compute(A(B), B(A), D, D, D, D)

9 end if

10:  else

11: if A (or B) has first half then

12: compute(A(B), B(A), Dskip, DskipsDskipDwalt)

13: compute(A(B), B(A), Dyl DSkip’Dwall,Dwall)

14: merged < false

15: else if A (B) has second half and !B (!A) has first
half then

16: compute(A(B), B(A), Dskip, D, Dwaii, D)

17: merged < true

18: end if

19:  end if

20: end for

is the Dgy;p matrix and (A=0, B=[0,1]), which is the D
matrix. If the next decision block contains the second part of
the charging period, the decision from Dy, and D,q is
then merged back to the source matrix (i.e., D matrix). The
matrices maintained during the runtime of the algorithm for
the given example in Fig. 1 is illustrated in Fig. 2.
Algorithm 5 covers all four possible cases and decides the
type of the split operation required. Here, 7" matrix keeps track
of all necessary information including the source matrix and
energy exchanges in every step for reading out the solution.
In case 1 and 2, we track the skipping cases for the user
with split charging period, and in case 3 and 4, we track the
other cases. Thus, the source matrix is written into Dy, in
the first two cases and while it is written into D, in the
last two cases. Per our assumption, meeting times correspond
to the times when user devices are discharging, thus, the
decision for two way energy exchange between users happen
only when both users decide to skip wall charging (case 1).
The implementation of energy exchanges is shown in lines
9-19 of Algorithm 5. The running time of this algorithm is
O(|D|(100)%(E)), where E is the average shareable energy
range. Brute force solution again has O(2!P!) complexity.

V. RESULTS

We have used the charging patterns for two users shown in
Fig. 1. We first run the optimization algorithm for selfish case
for each of the nodes A and B separately. In this case, the
selfish node (e.g., A) knows the amount of energy that could
be shared by the other node for each of its charging cycle and
does not share any energy with the other one. As it can be
seen in Fig. 1, node B can safely share a total of 25% of its
energy with node A in any charging periods of A. As node
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Algorithm 5 compute(u;, us, S1, D1, S2, D2)

1: for each charging Levels 0 to 100 as I{* do
2. for each charging Levels 0 to 100 as [® do
3 wy.skip = [}t - 83 [t]

4: wy.wall = min(100, I + §Y1[t]) - 6" [t]
5: ug.skip = [;'* - §3[t]

6 ug.wall = min(100, [3* + §Y2[t]) - 6,,2[t]
7 Case 1: both users skip

8 Update2(t, uy.skip, us.skip, S1, D1, 0, 0)
9 energyShareable = min(d;*[t], 0;2[t])

if energyShareable > 0 then
11: for all energy from O to energyShareable as e do
12: ug.shared = [;* - e - 0,,2[t]
13: uy.received = [} + e - 67" [t]
14: Update2(t, u;.received, us.shared, Sy, D1, 0, e)
15: wy.shared = [ - e - 0" [t]
16: ug.received = [} + e - 0,,2[t]
17: Update2(t, u;.shared, usy.received, S, D1, 0, e)
18: end for
19: end if
20: Case 2: only u; skips
21: Update2(t, uq.skip ,us.wall , S1, D1, 1, 0)
22: Case 3: both do not skip
23: Update2(t, uy.wall, ug.wall, S, Do, 2, 0)
24: Case 4: only u, skips
25: Update2(t, uy.wall, ug.skip, Sa, D2, 1, 0)
26:  end for
27: end for

Algorithm 6 Update2(t, [ 4, I3, source, dest, inc, energy)

1: if [4 > minLevel and [ > minLevel then

2: m = min{source[t][l4][l g]+inc, dest[t+11[I41[l5]}
3. dest[t+1][l4][lg] = m
Tl+1[Lallls] = @, 15,
5: end if

£

source, energy)

A’s charge level will not hit 100% even it gets all of this 25%
at its first charging cycle, it does not actually matter how this
25% is split into different charging cycles (assuming that they
meet at every charging cycle with sufficiently large duration).
Similarly node A can share 10% of its energy with B safely.

In Table I, we show the optimal skip pattern results for
selfish case in different scenarios. In scenario 0, we did not let
users exchange energy to see how many skips they could have
done by their own charging habits only. In scenario A.1 and

Decision Blocks
(Charging Cycle)

Scenario 1
Energy (B <~ A) 0
0
1

0 A’s skip sequence

B’s skip sequence
Energy (B — A)

=l E=lE=lE=l "]

Ol OO = || ||| S| W
—_

2 4
0 0
0 1
0 1
0 0
Al A’s skip sequence 1 0 1
A2 Energy (B — A) 1010100 0
’ A’s skip sequence 0 0 1 0 1
B Energy (A — B) 10 | O 0 0 N/A
’ B’s skip sequence 1 0 1 1 N/A
B2 Energy (A — B) 0 5 0 5 N/A
’ B’s skip sequence 1 0 1 10| NA

TABLE I: Optimal skipping results for selfish case.

Decision Blocks 1 213|456 |7|8|9]10
Energy (A — B) O JO0OjO]JO|O|5|0]0|0] 4
B’s skip sequence 1 1j1rjoj1r|1{0]|1]0 1
Energy (B — A) 900 [0O[O0O|O0O]O]O]O] O
A’s skip sequence 0 rfojo| 1|10} 1|1 1

TABLE II: Skip sequence in decision blocks in cooperative
case.

A.2, we considered the energy transfer from B to A only (i.e.,
when A is selfish) but with different splits of the maximum
energy B can share to different decision blocks. Similarly, in
scenario B.1 and B.2, we considered B as the selfish node
and split the A’s shareable energy to different decision blocks.
Note that in these scenarios, decision blocks correspond to the
node’s charging cycles. A has six decision blocks while B has
five decision blocks. In scenario O, the results show that node
A could have skipped 4! and 6! charging blocks, while node
B could have skipped its 1% and 4*" blocks (skipping 1°¢ and
374 would also be optimal). This results in a total of 4 skips
for both nodes. In other scenarios, when only one node shares
energy with the other one and do not skip any wall charging,
the other node would increase the skipped charging count to
at most 4, but this does not change the total skipped count
for both nodes (in scenario A.1, A could skip more chargings
compared to A.2 as it is offered B’s all shareable amount in
earlier charging cycles).

The result for cooperative case is presented in Table II.
Out of 10 decision blocks, user A is able to skip 6 of them.
However, not all of these are independent decisions as well as
some of these skip decisions only consist of discharging which
is not an actual skipping. Similarly, for user B, 7 of them
can be skipped. Note that there are multiple energy exchanges
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Charging Cycle 123 |4]5 6
A’s skip sequence | 0 | 0 1
B’s skip sequence | 1 | O | 1 | O | O | N/A

—_
(=]
—

TABLE III: Actual skip sequence of wall chargings in coop-
erative case.

between users in order to get to the optimal point. As the
decision blocks do not correspond to the actual individual
charging cycles of users, the skipping decisions for each
decision block have to be converted to the skipping pattern
for charging cycles. From Fig. 3 and Table II, we can deduce
the original skip sequence for user A and user B which is
shown in Table III. This results in a total of 5 skips for both
nodes, showing the advantage of cooperative P2P sharing over
selfish case. To achieve that both node A and B share energy
between each other and receive energy from each other. Fig. 3
shows the charging patterns after the optimal skips are done?.

VI. CONCLUSION

In this paper, motivated by the recent technologies en-
abling wireless energy sharing between mobile devices, we
investigate to what extent the burden of charging process on
users could be released. We develop a dynamic programming
based optimization model and find out the maximum number
of charging times that could be skipped through utilization
of excessive energy from other users in the vicinity. We
study two cases with selfish and cooperative nodes. The
results show that when nodes cooperate they would skip more
of their wall chargings. In our future work, we will study
cooperation between multiple users and try to apply energy
sharing behavior in a more realistic manner by embedding the
predictions of charging and meeting patterns in mobile social
networks [16]-[18].
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