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Abstract A likely important feature of the poorly understood aerosol-cloud interactions over the Southern
Ocean (SO) is the dominant role of sea spray aerosol, versus terrestrial aerosol. Ice nucleating particles (INPs),
or particles required for heterogeneous ice nucleation, present over the SO have not been studied in
several decades. In this study, boundary layer aerosol properties and immersion freezing INP number
concentrations (nps) were measured during a ship campaign that occurred south of Australia (down to 53°S)
in March—April 2016. Ocean surface chlorophyll a concentrations ranged from 0.11 to 1.77 mg/m?, and
Ninps Were a factor of 100 lower than historical surveys, ranging from 0.38 to 4.6 m > at —20 °C. The INP
population included organic heat-stable material, with contributions from heat-labile material. Lower INP
source potentials of SO seawater samples compared to Arctic seawater were consistent with lower ice
nucleating site densities in this study compared to north Atlantic air masses.

Plain Language Summary The Southern Ocean is known for a prevalence of clouds that contain
both liquid and ice, which are one of the most poorly understood cloud regimes in the climate system. A
large gap in understanding important processes in these clouds is a lack of knowledge regarding particles
(e.g., sea spray) required for forming ice crystals, termed ice nucleating particles. In a ship-based monthlong
field study, several instruments were deployed in efforts to characterize the ice nucleating particles
present over the Southern Ocean for the first time in over four decades. Abundances of ice nucleating
particles throughout the voyage were extremely low compared to other ocean regions, and concentrations
were 2 orders of magnitude lower than the most recent survey conducted in the 1970s. We report

that the ocean-derived ice nucleating particles observed in this study were organic in nature, supporting a
hypothesized link between ice nucleating particles and organic particles associated with phytoplankton
blooms. The data from this study provide a desperately needed benchmark for constraining the

number of ice crystals that may form in the remote and poorly understood clouds occurring over the
Southern Ocean.

1. Introduction

Southern Ocean (SO) cloud phase partitioning likely contributes to large shortwave radiative biases that
impact climate sensitivity estimates in global climate models. (Tan et al, 2016). With a high prevalence of
supercooled liquid clouds (Huang et al, 2015) and a lack of terrestrial aerosol sources, aerosol-cloud
interactions are likely unique over the SO. Ice nucleating particles {INPs), particles required for heterogeneous
ice formation, are a likely important and uncertain component for estimating cloud phase, lifetime, and
radiative properties (Vergara-Temprado et al., 2018). Here the immersion freezing mode of ice nucleation is
considered unless otherwise stated. Modeled estimates indicate that the organic component, associated with
ocean biological activity, of sea spray aerosol (SSA) produced at the ocean surface via bubble bursting
dominate the INP population over the SO (Burrows et al., 2013; Vergara-Temprado et al., 2017). This study
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advances recent research regarding marine INPs by providing the first reported observations of INP
composition and abundance over the 50 in over four decades.

Bigg (1973, hereafter B73) reported a 3-year survey of SO INPs (20-75°S and 60-40°W) and found annual aver-
age number concentrations of INPs {nyps) active at —15 °C ranging over 3 orders of magnitude (3 to
250 m—?). B73 speculated that aerosol transported from distant continents contributed to nps variability,
but source regions were never identified. Subsequently, Schnell and Vali {1976) showed that higher myp,
reported by B73 were colocated with ocean regions preferential to enhanced biological activity {i.e, phyto-
plankton blooms) and reported higher ice nucleation activity in phytoplankton-rich seawater compared to
seawater containing low phytoplankton concentrations, ultimately hypothesizing that biogenic INPs are
emitted from biclogically active ocean waters. Additional SO nps measurements by Bigg (1990) revealed
lower average ne; (0.20 + 0.02 m™3, 60-65°5) compared to the B73 survey, and Bigg (1990) suggested that
SO nyps were decreasing, potentially due to changes in climate, weather systems, and transport. SO biclogy
is diverse, and long-term changes are unknown due to limited historical chlorophyll a concentration {Chl a)
data. Satellite observations since 1997 indicate that phytoplankton blooms start between October and
February with annual mean Chl @ up to 1 mg/m® (Ardyna et al,, 2017). While dust concentrations are low over
the SO {Jickells et al., 2005), the ice nucleation site density of mineral dust is several orders of magnitude
greater than pristine marine aerosol (Niemand et al,, 2012, McCluskey, Ovadnevaite, et al, 2018) and thus
minimal amounts of transported dust may influence the INP population in this region. Modeling studies
informed by historical measurements found that marine organic aerosol was likely the dominant INP source
over the SO (e.g., Burrows et al., 2013). However, Burrows et al. (2013) also discussed uncertainties associated
with the membrane filter INP measurement technique used in B73 and Bigg (1990) and the lack of modern
knowledge regarding their abundance in the region, constituting a major limitation for evaluating the role of
INPs (and their variability) in SO clouds.

Marine INPs linked to biclogical activity have been observed in laboratory and field measurements of
SSA-impacted air masses {e.g, DeMott et al, 2016} and the sea surface microlayer (SML; Irish et al., 2017;
Wilson et al.,, 2015). Rosinski et al. (1987} suggested that marine INPs were smaller than 0.5 pm and were
not proteins or bacteria, while Schnell and Vali {1976) found marine INPs to be approximately 1 pm and from
microbial source. Both the cell surface (Knopf et al, 2011) and exudates {(Wilson et al, 2015) of a marine
diatom species, Thalassiosira pseudonana, have been shown to be ice nucleation active. Wilson et al. (2015)
also reported that ice nucleating entities {INEs, Vali et al, 2015) in North Atlantic and Arctic SML samples were
smaller than 0.2 um and positively correlated with total organic carbon. Irish et al. {2017) found that INEs in
Canadian Arctic SML samples were smaller than 0.2 um and heat labile. From laboratory mesocosm
experiments, McCluskey, Hill et al. (2018) proposed that marine INPs comprised two types: (1) particulate
organic carbon INPs (POC INPs) that are heat labile and larger than 0.2 pm and {2) dissolved organic carbon
INPs (DOC INPs) that are refractory (i.e., heat stable) and smaller than 0.2 um. Our understanding of the
biological processes that control the production of INEs in seawater and the physicochemical processes that
govern their release in SSA remains extremely limited. Applying marine INP parameterizations developed
from specific ocean basins and seasons {(McCluskey, Ovadnevaite et al, 2018Wilson et al.,, 2015) to global
marine INP emissions remains a necessary, but uncertain, assumption due to a lack of direct observations,
particularly over the SO. In this study, INP observations made over the SO, south of Australia, will be used
to (1) provide observational constraints for numerical predictions of mpps and (2) investigate the compaosition
of marine INPs in the SO region.

2. Methods
2.1. Project Overview

The Clouds, Aerosols, Precipitation, Radiation, and atmospherlc Composition Over the southeRN ocean
{CAPRICORN) campaign was conducted from 13 March to 15 April in 2016 onboard the RV Investigator
{voyage IN2016_V02), an Australian Government research platform operated by the Commonwealth
Science and Industrial Research Organisation. The research voyage occurred south of Australia during the late
Austral summer and early autumn seasons, shown in Figure 1. Chl a ranged from .11 to 1.77 mg/m® during
CAPRICORN {Figure 1), representative of this region (Ardyna et al,, 2017).
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Figure 1. Map of the RV Investigator track south of Tasmania, Australia, dur-
ing Clouds, Aerosols, Precipitation, Radiation, and atmospherlc Composition
Over the southeRN ocean (CAPRICORN). Colors represent aerosol filter col-

145°E Longitude 150°E

eration of exhaust influences are discussed in section 2.5. Blank filters were
0.1 collected throughout the voyage and processed to account for instrument
background. Sample collection periods ranged from 21 to 63 hr,
corresponding to 19 to 55 m® {mean of 33 m?, Table S1 in the supporting
155°E information) of sampled air. Samples were frozen (—20 °C) and kept frozen
during shipping and before measurement at CSU. Impacts of prefreezing
on marine samples have not been extensively studied, but previous
studies have indicated limited effect of prefreezing samples (Hill et al.,

lection periods. Also shown are the location of Continuous Flow Diffusion 2014; Polen et al, 2016). Following the methods of McCluskey et al.
Chamber (CFDC) measurements (filled circles) seawater collections from the  (2017), njyps were determined as a function of temperature based on Vali
nascent warm-core eddy (WC, upright triangles) and cold-core eddy (CC, {(1971). IS measurements uncertainties were described by binomial

upside down triangles). Contoured colors show the average ocean surface
chlorophyll a concentrations from 13 March to 13 April 2016 (Moderate
Resolution Imaging Spectroradiomete, https://oceandata.sci.gsfc.nasa.gov/

MODIS-Aqua).

sampling confidence intervals (95%), according to Agresti and Coull
(1998, formula 2). More details on IS measurements are provided in Text S1.
Ice nucleation site density {n) was calculated using aerosol surface area
estimated from a nephelometer (see Text S4 and Figure S3).

In situ INP measurements under conditions emphasizing immersion freezing were made using the CSU
Continuous Flow Diffusion Chamber (CFDC), an online thermal diffusion chamber technique. During
CAPRICORN, the CFDC operation conditions were such that the supersaturation with respect to water was
3-7.5% and temperature was <—25 °Cin the sample lamina, calculated using the analytical equations given
in Rogers (1988). Before entering the CFDC, sampled aerosol was dried using silica gel diffusion driers, and
particles larger than 1.5 pm were removed via impaction, similar to McCluskey et al. (2017). Details regarding
the design of the CFDC can be found in previous publications (Rogers, 1988; Schill et al., 2016). The njyps were
determined following recent studies (Schill et al., 2016), and details are provided in Text S2. Briefly, instrument
background (frost) was monitored regularly and subtracted from nyps measurements of sample air.
Measurement standard deviations were calculated according to Poisson counting statistics (Taylor, 1997),
and sample and background errors were propagated in quadrature. Data were considered statistically signif-
icant if nyps was greater than 1.64 times their error (i.e., Z statistic at 95% confidence interval for one-tailed
distribution). An aerosol concentrator (MSP Corporation, Model 4240, Romay et al., 2002) was used upstream
of the CFDC, as described by Tobo et al. (2013) and McCluskey et al. (2017), to increase the detection limit of
the CFDC by enhancing concentrations of larger particles (those larger than 0.5 pm). Details regarding the
aerosol concentrator, including the corrections and assumption involved, are provided in Text S2.

During CAPRICORN, CFDC measurements were made from the RV [nvestigator's custom-designed air
sampling inlet and a dedicated sampling line for the aerosol concentrator (both located approximately
18.4 m above sea level at the front of the ship). Details of the sampling inlets are provided in Text S2. We note
here that particle transmission efficiencies associated with the sampling manifolds, and the dependences on
wind conditions and ship motion, have not yet been fully characterized (Texts ST and S2). Regardless, offline
INP methods (IS) indicate agreement with CFDC data during CAPRICORN (Figure 2a), consistent with previous
SSA measurements (DeMott et al.,, 2016).

2.3. INP Source Strength of SO

Conductivity temperature depth profiles were used to collect seawater (SW) samples for analyses; near-
surface SW samples (collection depths of <15 m) were used for detection of INEs and Chl a. INEs were
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Figure 2. a) Ice nucleating particle (INP) temperature spectra from the Continuous Flow Diffusion Chamber (CFDC; crosses)
and the ice spectrometer (IS) (circles) during CAPRICORN and from observations attributed to sea spray aerosol by
DeMott et al. (2016; gray shaded area). (b) Ice nucleation site densities (n,) for IS measurements during CAPRICORN (circles)
and a parameterization for pristine North Atlantic air masses (dashed line; McCluskey, Ovadnevaite, et al., 2018).
CAPRICORN = Clouds, Aerosols, Precipitation, Radiation, and atmospherlc Composition Over the southeRN ocean.

determined using immersion freezing of aliquots of SW samples (stored frozen) and the IS. Chl a were
measured using standard techniques (filtering and acetone extraction, Holm-Hansen et al,, 1965; Lorenzen,
1966) with a Turner Trilogy fluorometer (Moreau et al, 2017). Satellite-derived ocean color (Moderate
Resolution Imaging Spectroradiomete, https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua) was used to
estimate ocean surface Chl a during CAPRICORN.

2.4. Offline Treatments of Aerosol and Seawater Ice Nucleating Material

Following the methodology from McCluskey, Ovadnevaite, et al. (2018) and McCluskey, Hill, et al, (2018), INP
and INE identities were characterized by applying offline treatments to aerosol and SW samples. Heating
(95 °C for 20 min) was used to determine contributions from heat-labile material. Contributions of organic
INPs or INEs were determined using a hydrogen peroxide digestion (see McCluskey, Ovadnevaite, et al,
2018; McCluskey, Hill, et al,, 2018). Finally, the sizes of INEs were investigated by filtering seawater with syr-
inge filters (pore size 0.2 pm). These processed samples were reanalyzed in the IS to determine the difference
in nyps OF Niyes due to the treatments, revealing size and composition information. More details can be found
in Text S3.

2.5. Accounting for Ship Exhaust and Terrestrial Influences

Diesel-electric engines provided power and propulsion to the ship, and waste was incinerated while at sea.
These activities emitted combustion products, including black carbon and other POC. While the IS pump
was powered using a sector sampling strategy based on wind direction (section 2.2), ship exhaust was also
characterized based on atmospheric composition measurements. Aerosol number concentrations (CN, con-
densation particle counter, CPC Model 3776, TSI), and mass concentrations of black carbon (BC, Multiangle
Absorption Photometer, MAAP Model 5012, Thermo Fisher Scientific) were used to estimate possible con-
tamination from ship exhaust.

Atmospheric radon ???Rn) concentrations were measured using a 700-L dual flow loop two-filter detector
(Chambers et al.,, 2014; Griffiths et al, 2016), built by the Australian Nuclear Science and Technology
Organization and installed as part of the permanent suite of atmospheric instrumentation onboard the RV
Investigator. With its predominately terrestrial source, unreactive nature, and 3.82-day radioactive half-life,
radon is used as an unambiguous tracer of terrestrial influences on sampled air masses. For IS filter measure-
ments, the contribution from exhaust and terrestrial sources was estimated by determining the average CN,
BC, and **2Rn concentration measured during the IS sampling periods.
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3. Results and Discussions
3.1. INPs Measured During CAPRICORN

Temperature spectra from CFDC and IS measurements during CAPRICORN are shown in Figure 2a. The njps
ranged from 0.38 to 4.6 m ™ for INPs active at —20 °C, with an average concentration of 1.5 = 1.4 m > The ice
nucleation activity of combustion particles is an active area of research {e.g., Schill et al., 2016; Thomson et al,,
2018), and it is possible that these particles influenced measurements in this remote region (i.e,, extremely
low nyyps)- Thus, linear regression analyses between nyp, and sample-averaged BC and CN concentrations
{Figures §5 and 56) were conducted to investigate the influence of ship exhaust on measured nyps. While
sample number is limited, the statistically insignificant relationship between nyps and BC and CN suggests
that there was no influence of exhaust in these measurements. Observed nyyp. varied by over a factor of
10 across all temperatures, with a maximum observed variability at —23 °C (Figure 2a). As best could be dis-
cerned considering the modest overlap of sampling temperatures, nyps measured by the CFDC and IS were
in good agreement, similar to previous studies (e.g., McCluskey et al., 2017). This agreement suggests that the
aerosol sizes containing the majority of INPs were successfully transferred to the CFDC via the sampling inlet
and concentrator inlet.

The CAPRICORN nynps are at the lower range of nyyps reported for several Northern Hemisphere ocean regions
during summertime (Chl @ ranging from 0.1 te 3 mg/m>; DeMott et al, 2016), also shown in Figure 2a.
However, observed mnpps from CAPRICORN were a factor of 100 lower (maximum mnes = 4.6 m > at
—20 °C) than those reported by B73 (> 200 m > at —20 °C for —40°S to —55°S) and reasons for this discre-
pancy are discussed here. First, we note that the ability to detect extremely low levels of nps is a result of
an advanced understanding of materials that nucleate ice and advances in making artifact-free measure-
ments of low concentrations of INPs. However, an assessment of contamination in the B73 survey was con-
ducted (Text 55} and, while it is a possible contributor to the discrepancies between these studies, its
influence appears to be modest. B73 reported gridded annual means of nnps based on 3 years of data,
and thus, it is possible that a seasonal maximum may be missing from data reported here. In fact, B73
observed a maximum in nyps during Austral winter months; by contrast, modeling studies indicate a seasonal
maximum of dust transport over the SO during Austral summer (Ito & Kok, 2017). Finally, barring any influ-
ences of the above-mentioned concerns regarding possible measurement artifacts, data from this study
are consistent with a long-term decadal decline in nnps. proposed by Bigg {1990). Changes occurring in
the SO have been explored from the point of view of oceanographers, revealing a statistically significant
10% decrease in iron (i.e, dust) deposition and a corresponding reduction in ocean biological activity
between years 1997-2002 and 1979-1986 (Gregg et al., 2003), which may also induce a perturbation to
INP sources. Dust INPs (e.g., Niemand et al,, 2012} are 3-4 orders of magnitude more ice nucleation active
than pristine marine aerosol (McCluskey, Ovadnevaite, et al, 2018), and, thus a 10% decrease in dust trans-
port may be significant for SO INP populations. Additionally, INPs associated with organic aerosol arising from
phytoplankton blooms {e.g., DeMott et al., 2016) may be lower in recent decades due to reduced iron fertili-
zation. Regardless, evidence for such a decline in INPs is limited.

Normalizing the data by aerosol surface area to obtain the ice nucleation active site densities (n,} indicates
that n,; observed during CAPRICORN were similar to the n; measured in Northeast Atlantic pristine marine
air masses (Mace Head Research Station, MHD, McCluskey, Ovadnevaite, et al, 2018}, shown in Figure 2b.
Lower n, observed during CAPRICORN compared to MHD may be due to persistently higher wind speeds
present over the SO. While maximum annual wind speeds are similar over high latitudes in both hemispheres
{~15 m/s in winter), the seasonal variability in the Northern Hemisphere high latitudes is much greater
compared to the Southern Hemisphere high latitudes (summer minimum of 10 and 7.9 m/s in Southern
Hemisphere and Northern Hemisphere, respectively, Young, 1999). Lower organic mass fractions (Gantt
et al, 2011) and coarse mode S5A {Lewis & Schwartz, 2004) have been observed in association with higher
wind speeds, suggesting an increase in the total aerosol surface area without increasing the organic
component of SSA (i.e., ice nucleating material), resulting in a lower n,. Laboratory and field measurements
also indicate that INP production changes depending on biological state. The time of year and the small
change in Chl a over during CAPRICORN (Figure 57) suggest that the phytoplankton community was in a
plateau-like period after a bloom. The compaosition of the community was likely shifting from larger to smaller
phytoplankton species, while bacteria and virus numbers may have been higher, as typically observed during
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Figure 3. Ice nucleating particle (INP) spectra for untreated (black), heated (red), and H,O,-treated (gold) samples and from
observations attributed to sea spray aerosol by DeMott et al. (2016; gray shaded area). Results from the H,0, treatment on
CAP18 resulted in values below detection limit. H,O, treatment was not performed on CAP7. Treated values that are sta-
tistically significantly different (p < 0.05) from untreated values are indicated by filled circles. Vertical bars are the 95%

confidence intervals.

that phase of the biological succession (e.g., Moreau et al., 2014). Differences in the biological state of the
ocean during this campaign and that during the MHD measurement add complexity to a comparison of ns.

3.2. Characteristics of INPs Observed During CAPRICORN

The contribution of terrestrial masses to the INPs observed during CAPRICORN was evaluated using ambient
radon (**Rn) concentrations, shown in Figure S8. Chambers et al. (2014) reported average **>Rn concentra-
tions up to 150 mBg/m? in Antarctica and found that high 2*’Rn events (greater than 400 mBg/m?) originated
from distant landmasses (South America). Linear regression analyses of nps and 222pn for a range of tem-
peratures (Figure S9) revealed no statistically significant correlation. However, the warmest temperature with
measurable IN activity (—12 °C) corresponded to a sample with highest >*?Rn concentrations (150 mBg/m?)
that was collected near land (CAP5, Figure 1), suggesting a possible influence of terrestrial aerosol (Figure S10)
in this sample. For all other samples, 2*2Rn concentrations less than 100 mBg/m® were observed. We
conclude that the measured aerosol and nyps reported here are representative of oceanic sources.

Offline treatments for testing heat lability and organic composition were performed on four SSA samples,
shown in Figure 3. The nyp.s detected during CAP3 were some of the lowest observed during CAPRICORN,
over a region with moderate Chl a (0.34 to 0.61 mg/m3, Figure S11); INPs detected on CAP3 were heat stable
and not organic (on the basis of H,0, digestion). In contrast, CAP18 was collected over a region with similar
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Chl a (0.20 to 0.38 mg/m>) and, while INPs were heat stable, they were comprised entirely of organic material
{no freezing detected for H,0, treated sample). CAP16 was collected over the nascent warm-core eddy
region (section 3.3} with Chl @ of 0.19 to 0.35 mg/m°. As with CAP18, INPs were heat stable and largely
comprised of organic material, although some IN activity remained following carbon digestion, similar to
levels of myps observed from CAP3. Finally, CAP7 was collected over ocean regions with higher Chl a (0.42
to 1.32 mg/m? and INPs appear to be largely comprised of heat-labile INPs at —22 °C and warmer {the
contribution from organic matter was not tested for CAP7). These treatments collectively reveal wide
variability in the contributions of organic matter and heat-labile material to the INP population measured
during CAPRICORN.

3.3. SO INP Source Potential

Number concentrations of INEs {mng) in seawater samples collected during CAPRICORN were used to char-
acterize the INP source potential, or the number of INEs in seawater that potentially contribute to the INP
population via bubble bursting. Specifically, seawater samples were collected in mesoscale oceanic eddies,
which are ocean dynamical features analogous to atmospheric low and high pressure systems and have large
spatial {100 km) and time {weeks to months) scales (McGillicuddy, 2016). Oceanic eddies are ubiquitous fea-
tures in the SO {Frenger et al,, 2015) that impact biological productivity by advecting phyteplankton patches
or by enhancing or prohibiting upwelling of deep ocean waters containing high nutrients {Gaube et al,, 2013).
As described by Moreau et al. (2017}, the cold-core eddy sampled during CAPRICORN developed from the
Sub-Antarctic Front and was identified based on negative sea surface height anomalies, with an eddy dia-
meter of approximately 190 km. This cold-core eddy contained low surface Chl a in the eddy center
(0.33 mg/m?) with higher surface Chl a at the eddy peripherals {0.74 mg/m® Moreau et al., 2017). SW samples
were also collected in a nascent warm-core eddy forming from a southward meandering of the Antarctic
Circumpolar Current, with positive sea surface height anomalies and fairly homogeneous surface Chl a
(0.54 t0 0.71 mg/m>). Six conductivity temperature depth profiles were deployed from edge to center in both
features, enabling characterization of horizontal changes in nues through biclogically varying productive
water (Figure 1).

During CAPRICORN, mnes at —20 *Cwere less than 3 ml™’, corresponding to the baseline of nyg. reported for
Arctic {Irish et al., 2017} and Atlantic (Schnell, 1977) seawater. While Chl @ were lowest at the cold-core eddy
center, no clear difference was chserved between nues measured at the core compared to the eddy edge
{Figure 512}. This was also true for the SW collected in the nascent warm-core region. Laboratory studies have
suggested that SW INEs are generated during the phytoplankton bloom decay phase (McCluskey et al., 2017).
Thus, we expect that the lack of observed changes in njges found in these SW samples may be due to the
bloom phase that was prevalent at the time of sampling. Offline heat and 0.2-um filtering treatments, shown
in Figure S13, suggest that the majority of SW INEs measured in the cold-core core eddy were smaller than
0.2 um, similar to recent findings (Irish et al., 2017, Wilson et al, 2015}, and heat stable, consistent with the
DOC INP type (McCluskey, Hill, et al, 2018)}. Seawater from the nascent warm-core eddy region contained
INEs that were removed larger than 0.2 pum and heat labile, similar to the POC INP type (McCluskey, Hill, et al,,
2018), but INEs that were smaller than 0.2 pm and heat stable remained after treatments. These results sug-
gest that the INEs observed during CAPRICORN were dominated by the DOC INP type.

4, Conclusions

Measurements made during the monthlong CAPRICORN study provide the first systematic evaluation of INPs
inthe SO region in over four decades. No correlation was observed between nnps and radon, a tracer for ter-
restrial air masses, and thus, we conclude that ambient myps originated from local oceanic sources. Observed
Mnps Were lower than npype, observed in the marine boundary layer over other oceans (DeMott et al, 2016)
and were over two orders of magnitude lowerthan annual averaged nyps reported from an extensive 3-year
survey by Bigg (1973) for the same region. Reasons for this large discrepancy may include differences in mea-
surement techniques, seasonal variability that was inaccessible in this monthlong campaign, or a decadal
decreasing trend in mnps over the SO (Bigg, 1990). Offline treatments of sampled aerosol and seawater
revealed organic heat-stable material was a common contributor to the observed INP populations. Heat-
labile INPs were also ohserved during this study. The INP source strengths of SO seawater from this study

MCCLUSKEY ET AL

11,995



AGU
100

Geophysical Research Letters 10.1029/2018GL079981

Adknowledgments

This research was supported by the
National Science Foundation {AGS-
1450760 and AGS-1660486). S. Moreau
and P. Strutton were supported by the
Australian Research Council’s Special
Research Initiative for Antarctic
Gateway Partnership (Project ID
SR140300001) and the Discovery
Program and Centres of Excellence
program, respectively. The Authors wish
to thank the CSIRO Marine National
Facility {MNF) for its support in the form
of sea time on RV investigator, support
personnel, scientific equipment, and
data management. All data and samples
acquired on the voyage are made
publicly available in accordance with
MNF policy. The MNF ship underway
data (e.g., ship navigation, wind, and
sector pump switch) are available for
download from the RV Investigator
Voyage IN2016_V02 Underway Data
metadata record at httpy/www.rnarlin,
csiroau/geonetwork/srv/eng/searchi!
2¢f375671-1¢43-0d22-e053-
08114f8c7cd2. All remaining data are
listed in the references, tables, and
supporting information and are
archived in a digital repository at
Colorado State University (https://hdl.
handle.net/10217/192127).

were at the baseline of values reported for Arctic {Irish et al,, 2017) and Atlantic (Schnell, 1977) regions. This
difference was also reflected in the S5A, where nyp. were lower than those observed in North Atlantic air
masses (McCluskey, Ovadnevaite et al, 2018). These observations update the scientific knowledge regarding
the number and composition of INPs present over the SO, revealing an incredibly pristine marine boundary
layer with extremely low njp,, consistent with a hypothesis that these low concentrations of INPs that feed
ice formation account for the anomalously persistent supercooled liquid clouds found over the SO.
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