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Abstract
A new interatomic potential has been developed for the Ni–Cr system in the
angular-dependent potential (ADP) format by fitting the potential parameters
to a set of experimental and first-principles data. The ADP potential repro-
duces a wide range of properties of both elements as well as binary alloys with
reasonable accuracy, including thermal and mechanical properties, defects,
melting points of Ni and Cr, and the Ni–Cr phase diagram. The potential can
be used for atomistic simulations of solidification, mechanical behavior and
microstructure of the Ni-based and Cr-based phases as well as two-phase
alloys.

Keywords: atomistic modeling, interatomic potential, Ni–Cr system, phase
diagram

(Some figures may appear in colour only in the online journal)

1. Introduction

Nickel–chromium alloys present significant interest for automotive, aerospace, nuclear and other
technological applications. For example, Ni and Cr are the basic chemical components of the
industrial Inconel alloys, which additionally contain Fe, Mo, Nb and other alloying elements.
Inconels demonstrate an attractive combination of high-temperature strength and excellent oxi-
dation resistance, which makes them ideal for service in extreme environments. The binary Ni–Cr
system is a convenient model of Inconels suitable for basic studies. The Ni–Cr phase diagram
contains solid solutions based on the face-centered cubic (fcc) Ni and body-centered cubic (bcc)
Cr, which are separated by a miscibility gap and melt by a eutectic reaction [1, 2].

Atomistic computer simulations are capable of providing atomic-level insights and
predicting numerical values of properties that cannot be readily measured experimentally. The
accuracy of the results depends on the accuracy and reliability of the interatomic potentials
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employed in the simulations. While several good-quality potentials have been developed for
Ni [3–5], Cr has received much less attention. Two embedded-atom method (EAM) potentials
[6, 7] and a modified EAM potential [8] for Cr can be found in the literature. These potentials
have not been extensively tested for key properties of Cr, such as the energies of alternate
crystal structures, surface energies, thermal expansion, phonon dispersion relations, melting
temperature, and others that are most important for atomistic simulations. Likewise, the
existing EAM potential for the binary Ni–Cr system only exists as part of a ternary Fe–Ni–Cr
[9] and quaternary Fe–Ni–Cr–Pd [10] potentials. The latter was constructed and tested
focusing on radiation defects and diffusion in the fcc-based solid solution under service
conditions in nuclear reactors.

In this paper we propose a new interatomic potential for the Ni–Cr system. Considering
that Cr is a bcc metal with a partially filled d-band, we choose the angular-dependent potential
(ADP) format [3, 11–14] in order to capture the angular dependence of interatomic forces
arising due to the directional d-bonding. In section 2 we recap the ADP format and describe
the methodology applied in this work for the optimization of the potential parameters. The
properties predicted by the potential and their comparison with experimental data and first-
principles calculations are discussed for the single-component Ni and Cr in section 3 and then
for the binary Ni–Cr alloys in section 4. In the latter case, the emphasis is placed on the ability
of the new potential to reproduce the binary phase diagram. The conclusions are formulated in
section 5.

2. Potential format and fitting procedures

In the ADP method [3, 11–14], the total energy E of a collection of atoms is represented in the
form
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where the indices i and j refer to atoms and the superscripts α, β=1, 2, 3 to Cartesian
directions. Here, F ( )rs s iji j is the pair interaction potential as a function of the scalar distance rij
between atoms i and j and their chemical species si and sj. The function r( ¯ )Fs ii represents the
embedding energy of atom i in the host electron density r̄i induced at site i by all other atoms.
This density is given by

år r=
¹
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where r ( )rs ijj
is the species-dependent electron density function assigned to atom j. The first

two terms in equation (1) constitute the functional form of regular EAM potentials [15, 16]
and have a central-force character. The non-central interactions are captured by the last three
terms in equation (1), which depend on the local dipole vectors
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and νi being the trace of lab
i ,

ån l=
a

aa ( ). 5i i

These equations introduce two additional pairwise functions ( )u rs si j and ( )w rs si j in comparison
with the regular EAM.

The non-central terms in equation (1) penalize the total energy for deviations of the
atomic environments from cubic symmetry. While they vanish in a perfect cubic structure,
they can be important in non-cubic structures and even in cubic structures under non-
hydrostatic strains. They can affect the elastic constants, defect formation energies, the
melting point, and many other material properties.

A complete ADP description of the binary Ni–Cr system requires 13 functions: F ( )rNiNi ,
F ( )rCrCr , F ( )rNiCr , r ( )rNi , r ( )rCr , r( ¯ )FNi , r( ¯ )FCr , ( )u rNiNi , ( )u rCrCr , ( )u rNiCr , ( )w rNiNi ,

( )w rCrCr and ( )w rNiCr . Having ADP potentials for pure Ni and pure Cr, only the cross-
interaction functions ΦNiCr(r), uNiCr(r) and wNiCr(r) are needed to describe the binary system.
All these functions were represented by analytical expressions with adjustable parameters.
Specifically, the electron density functions for Ni and Cr were chosen in the form
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-
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where y=r−r0, rc is the cutoff radius, and B0, C0, r0, ε, γ and h are fitting parameters. The
cutoff function ψ(x) is given by
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if x<0 and ψ(x)≡0 if x�0. The coefficient A0 was adjusted to give a unit host electron
density in the single-component crystal (fcc Ni or bcc Cr) with the equilibrium lattice
parameter. For the Ni and Cr potentials, the pair interaction potentials had the form of the
generalized Lennard-Jones function
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where z=r/r1 and b1, b2, r1, W0, δ, ξ and m are fitting parameters. Mixing the functions ρ(r)
and Φ(r) with an adjustable weight m gives additional flexibility in optimizing the shape of Φ
(r). Note that the cutoff function ψ(x) guarantees that ρ(r), Φ(r) and their derivatives up to the
second one go smoothly to zero at the common cutoff radius rc. For the cross-interaction
potential ΦNiCr(r), a more general Lennard-Jones function was used:
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with the fitting parameters bi and W0.
The embedding energies r( )F of Ni and Cr were obtained by inverting the universal

equation of state postulated in the form
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where x=a/a0−1, a = -( )V B E9 0 0
1 2, E(a) is the energy per atom relative to a set of

isolated atoms, E0 is the equilibrium cohesive energy (minimum of E), a is the cubic lattice
parameter, a0 is the equilibrium value of a, V0 is the equilibrium atomic volume, B is the bulk
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modulus and β is a parameter. The latter controls the high-pressure behavior without
changing the equilibrium lattice constant, cohesive energy or bulk modulus. The universal
equation of state was initially proposed by Rose et al[17]. In this work, the large-separation
region of E(a) was additionally modified to ensure a smooth cutoff at rc. Note that the
inversion based on equation (10) guarantees an exact fit to a0, E0 and B.

Finally, the dipole and quadrupole functions were parameterized in the form
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with the fitting parameters di and qi.
Optimization of the cross-interactions additionally involved transformations of the

potential functions. There are certain transformations that do not affect the energies of pure Ni
and pure Cr but change the energies in the binary system [5, 18–23]. Such transformations
are:
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The transformation coefficients sNi, gNi and gCr were used as additional adjustable parameters.
In this work we utilized a slightly modified version of an existing ADP Ni potential

developed in [3]. It was noted [3] that the contribution of the non-central terms to Ni
properties was relatively small. Furthermore, it was found that the quadrupole term is more
effective in controlling the properties of Ni than the dipole term. Therefore, in the interest of
simplicity we only included the quadrupole term in the ADP Ni potential and turned the
dipole term off by setting di=0. After this modification, the properties predicted by the Ni
potential could slightly change and were thus recomputed in this paper.

For Cr, a new ADP potential was constructed. The fitting database included the exper-
imental values of a0, E0, B, the elastic constants Cij, the vacancy formation energy, and the
density functional theory (DFT) surface energies gs for the (110) and (111) crystallographic
orientations. The (100) surface orientation was fitted to the experimental value of γs. It
additionally included the equilibrium energies of the fcc, hexagonal close packed (HCP),
simple cubic and A15 structures predicted by first-principles DFT calculations. For the Ni–Cr
cross-interaction functions, the database included DFT values of the equilibrium formation
energies of several Ni–Cr compounds with different stoichiometries and crystal structures.
The formation energy is defined as the difference between the cohesive energy of the com-
pound per atom and the average of the cohesive energies of the atoms making up the
compound. Namely, the formation energy of a compound with the NinCrm stoichiometry is
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where ( )E Ni Crn m is the energy of the compound per formula unit with the equilibrium lattice
constant. The following structures were included in the fit: B1, B2, B3, L10 and L11 of NiCr,
and L12, D03 and D022 of NiCr3 and Ni3Cr. All DFT values used in this works were taken
from the literature [25–27].

The fitting parameters were optimized by minimizing the weighted mean-squared
deviation of the computed properties from their target values using the simulated annealing
method. By selecting different sets of weights, several versions of the potential were gen-
erated. Each version was tested against a set of experimental and DFT properties that were not
included in the fitting database. If the tests revealed a significant flaw of the potential, it was
discarded. One of the tests was the ability of the potential to predict the equilibrium lines on
the Ni–Cr phase diagram as discussed below. Based on the test results, the potential showing
the best performance was selected as final. Similar to the Ni case, it was found that the
quadrupole terms describing the Ni–Cr interactions were sufficient and thus the dipole terms
were not included (di=0).

The optimized values of the potential parameters are listed in table 1 for Cr and table 2
for Ni–Cr. The potential functions in the effective pair format are shown in figure 1.

Table 1. Optimized fitting parameters of the ADP Cr potential.

Parameter Value Parameter Value

rc (Å) 5.108 002 ε 0
h (Å) 1.955 716 γ (1/Å) 9.353 082×10−2

W0 (eV) −1.342 760 B0 −6.310 646
r1 (Å) 4.168 364×101 C0 −2.985 208
b1 2.492 344×10−5 r0 (Å) 9.239 768×10−2

b2 4.061 893 β 0
δ (eV) 9.645 520×10−1 q1 ( eV/Å2) 1.580 879×103

m (eV) −6.709 814×10−1 q2 (1/Å) 8.753 905
ξ (eV Å−1) 9.745 548×10−1 q3 ( eV/Å2) −7.143 462×10−2

Table 2. Optimized fitting parameters of the Ni–Cr cross-interaction functions.

Parameter Value Parameter Value

rc (Å) 5.103 329 b8 (Å) −4.15659
h (Å) 6.463 548 b9 (Å) −1.99229
W0 (eV) 7.708 119×10−2 b10 (Å) −3.502 440
b0 −2.376 257 b11 (Å) −3.486 249
b1 (Å) 1.051 441×101 b12 (Å) −3.134 166
b2 (Å) 4.490 321 q1 ( eV/Å2) −2.694 439×102

b3 (Å) −4.793 837 q2 (1/Å2) 3.409 711×102

b4 (Å) −4.647 546 q3 ( eV/Å) −1.075 064
b5 (Å) −5.016 524 sNi 4.867 850×10−1

b6 (Å) 2.986 347 gCr −4.097 726
b7 (Å) 4.023 827 gNi −2.933 057
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3. Testing of the Ni and Cr potentials

Tables 3 and 4 compare predictions of the ADP Ni and Cr potentials with experimental and
DFT data for a set of properties that are most relevant to atomistic simulations. The tables also
include predictions of the EAM Ni [22] and EAM Cr [6, 7] potentials from the literature.
Most of the DFT Ni properties from the literature refer to the ferromagnetic state unless
otherwise is indicated. All defect energies reported in the tables were obtained by static
relaxation at 0 K temperature. The vacancy migration energy Ev

m was computed by the
nudged elastic band method [28, 29]. The energy along the reaction coordinate of the vacancy
jump was found to have a single maximum at the midpoint (1/2)[110] for Ni and (1/2)[111]
for Cr. The interstitial formation energies were computed for several split dumbbell config-
urations with different orientations. The energies of the alternate crystal structures were
minimized with respect to the lattice parameter and reported relative to the ground-state
structure. All calculations utilized the open source molecular dynamics (MD) code
LAMMPS [30].

The ADP Ni potential demonstrates moderate improvements over the EAM version [22]
with respect to the vacancy formation and migration energies, surface energies, and the
energies of the non-centrosymmetric HCP and DC structures (table 3). For Cr, the ADP
potential accurately reproduces the experimental cohesive energy, lattice parameter, elastic
constants of the paramagnetic phase, and the vacancy formation energy Ev

f (table 4). It
slightly underestimates the vacancy migration barrier Ev

m and systematically underestimates
the interstitial formation energies and the surface energies. However, the rankings of the
different interstitial configurations and surface orientations are predicted correctly. During the

Figure 1. ADP potential functions. (a) Pair interaction. (b) Electron density. (c)
Embedding energy. (d) Quadrupole function.
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potential development, some versions of the potential gave higher interstitial and surface
energies, but they tended to overestimate the melting temperature. We thus selected a version
that was considered a reasonable compromise.

Overall, with respect to the properties mentioned above, the ADP Cr potential performs
at about the same level of accuracy as the EAM potential from [7] and both are more accurate
than the EAM potential from [6]. It should be emphasized, however, that by contrast to the
EAM potentials [6, 7], the ADP potential was additionally fitted to three surface energies and
DFT energies of four alternate crystal structures of Cr. This expansion of the fitting database
improved the transferability of the potential to a wider range of configurations. At the same
time, this limited its ability to improve certain properties, such as the interstitial formation
energies. Table 4 shows that the fit to the alternate structural energies is reasonably good,
except for the fcc energy which is too small. We were unable to achieve a better agreement
for the fcc energy without compromising the accuracy of other properties.

The phonon dispersion curves for Ni and Cr were computed by MD simulations at
293 K. The method [31] reconstructs the dynamical matrix of the crystal from correlations

Table 3. Properties of Ni calculated with the ADP (this work) and EAM [22] potentials
in comparison with experimental data and first-principles DFT calculations. The
potential was fitted to the experimental properties marked by an asterisk. The references
to the experimental and some of the DFT data can be found in [3, 22].

Experimenta,b DFT EAMb ADP

a0 (Å)* 3.52 3.52c 3.52 3.52
B (GPa)* 181.0 186c; 185.9d 181.0 181.0
E0 (eV)* −4.45 −4.45 −4.45
C11 (GPa)* 246.5 287c; 276e 241.3 241.3
C12 (GPa)* 147.3 155c; 159e 150.8 150.8
C44 (GPa)* 124.7 150c; 132e 127.3 127.3
Ev
f (eV)* 1.60 1.65f; 1.44d 1.57 1.60

Ev
m (eV)* 1.30 1.09f 1.19 1.33

Melting point (K) 1728 1701 1772
γs (J m−2):
{100} 2.28g 2.21e 1.94 1.96
{110}* 2.28g 2.29e 2.09 2.10
{111} 2.28g 1.92e 1.76 1.76

Alternate crystal structures:
Structure EAMb ADP

HCP (eV/atom)* 0.03a,b; 0.010h 0.02 0.02
bcc (eV/atom)* 0.11a,b ; 0.091h; 0.098e 0.07 0.07
L12 (eV/atom)* 0.66a,b 0.54 0.56
SC (eV/atom)* 1.00a,b; 0.796e 0.72 0.72
DC (eV/atom)* 1.94a,b; 1.197h 1.42 1.56

a [3, 22] and references therein.
b [3, 22] and references therein.
c [47].
d [49].
e Materials project [27] (non-magnetic).
f [48].
g Average crystal orientation.
h [26].

Modelling Simul. Mater. Sci. Eng. 26 (2018) 085008 C A Howells and Y Mishin

7



between atomic displacements during an MD run. Fourier transformation of the dynamical
matrix permits calculations of the phonon frequencies along high-symmetry directions in the
reciprocal space. Figure 2 compares the results predicted by the potentials with experimental
dispersion curves measured by neutron scattering at the same temperature [32, 33]. While
most of the low phonon frequencies are reproduced accurately, the frequencies of zone-
boundary phonons tend to be overestimated (Ni) or underestimated (Cr) by approximately
10%. For Cr, there is also a significant discrepancy along the H-P direction on the zone

Table 4. Properties of Cr calculated with the ADP potential (this work) in comparison
with experimental, DFT and EAM data. Properties included in the fitting of the ADP
potential are marked by an asterisk. ⟨ ⟩E f

100 , ⟨ ⟩E f
110 , ⟨ ⟩E f

111 , EO
f and, ET

f are the interstitial
formation energies for the ⟨ ⟩100 , ⟨ ⟩110 and ⟨ ⟩111 -oriented dumbbell configurations,
and octahedral and tetrahedral configurations, respectively.

Experiment DFT EAMa,b ADP

a0 (Å)* 2.878c; 2.88d 2.834c 2.87d 2.87a; 2.875b 2.88
B (GPa)* 208c 226.20c; 236.80c 148a; 207b 210
E0 (eV)* −4.10c −4.10a; −4.10b −4.10
C11 (GPa)* 410.7c 445.6c; 460.60c 204.7a; 411b 413.81
C12 (GPa)* 106.7c 116.5c; 124.90c 119.7a; 105b 108.09
C44 (GPa)* 105c 101.20c; 103.8c 84.5a; 105b 105.16
Ev
f (eV)* 2.0c 2.59c; 2.64e 1.09a; 2.14b 1.81

Ev
m (eV) 0.95c 0.91e 0.83

⟨ ⟩E f
100 (eV) 6.78c; 6.64e 4.02

⟨ ⟩E f
110 (eV) 5.66c; 5.68e 3.03a; 5.16b 3.99

⟨ ⟩E f
111 (eV) 5.68c; 5.66e 2.84a; 5.78b 3.85

EO
f (eV) 6.72e 4.09

ET
f (eV) 6.19e 4.04

Melting point (K) 2136f 2168
γs (J m−2):
{100}* 2.30d 3.979g; 2.33
{110}* 3.1d; 3.505g 2.20
{111}* 4.123g 2.46

Alternate crystal structures:
Structure DFT EAM ADP

A15 (eV/atom)* 0.065h; 0.066i 0.15
fcc (eV/atom)* 0.389h; 0.383i 0.025b 0.09
HCP (eV/atom)* 0.447h; 0.392i 0.38
SC (eV/atom)* 1.019h 0.81

a [6].
b [7].
c [50, 52].
d [51].
e [54].
f [55].
g [53].
h [24].
i Materials project [27].
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surface. Overall, given that phonon frequencies were not included in the fitting database, we
consider the obtained agreement with experiment quite satisfactory.

Linear thermal expansion of Ni and Cr was evaluated by NPT Monte Carlo simulations
using a cubic periodic block with 2048 atoms for Ni and 2000 atoms for Cr. The results
predicted by the potentials are plotted in figure 3 in comparison with experimental data [34].
The plots show the relative expansion -( ( ) ) ·a T a a 100%RT RT , where aRT is the cubic
lattice parameter at room temperature (293 K). Each curve ends near the experimental melting
point. The agreement with experiment is generally good, especially considering that thermal
expansion was not included in the potential fits. In fact, the agreement remains very good up
to 600 K for Ni and about 1200 K for Cr. At higher temperatures, the potentials under-predict
(Ni) or over-predict (Cr) the experimental data.

The melting temperatures of Ni and Cr were computed by the phase coexistence method
[35, 36]. For each metal, a periodic simulation block was prepared that contained approxi-
mately cubic volumes of the stress-free solid and liquid phases separated by a (100)-oriented
interface. The block contained 24 000 atoms (12.7 nm dimension normal to the interface) for
Ni and 12 240 atoms (respectively, 8.8 nm) for Cr. The initial temperature was chosen to be
close to the expected melting point. The cross-section of the simulation block (parallel to the
interface) was fixed, while the dimension normal to the interface was allowed to vary. Next, a

Figure 2. Phonon dispersion relations of (a) Ni and (b) Cr predicted by the ADP
potentials (solid lines) in comparison with experimental data (points) [32, 33].
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long NPH (constant enthalpy) MD simulation was executed at the pressure of 1 atm applied
normal to the interface. During the simulation, partial melting or solidification of the material
occurred accompanied by a change in temperature. This change eventually stopped when the
conditions of solid–liquid phase equilibrium were met. Accordingly, the temperature reached
a value Tm corresponding to the melting point of the metal at the ambient pressure. The
melting temperatures obtained are listed in tables 3 and 4. For Ni, Tm exceeds the exper-
imental value by 44 K (2.5%), while Tm of Cr underestimates the experiment by 32 K (1.5%).
Given that neither Tm nor any liquid properties were in the fitting database, this agreement is
evidence of good transferability of the potentials to high-temperature properties.

4. Testing of the binary Ni–Cr potential

Table 5 compares the DFT formation energies of several binary Ni–Cr compounds with
formation energies computed with the ADP potential. The DFT energies from the OQMD
database [26] were fitted during the development of the potential while the DFT energies from
the AFLOW database [25] are included for comparison. While the agreement of the DFT
energies with the potential predictions are far from perfect, there is obviously a strong
correlation across a 1.8eV wide energy range as illustrated in figure 4.

As the main test of the Ni–Cr potential we focused on its ability to predict the Ni–Cr
phase diagram. The Ni–Cr phase diagram is eutectic type containing fcc and bcc-based solid
solutions and a liquid phase. The diagram was calculated by a method similar to the one

Figure 3. Linear thermal expansion relative to room temperature (293 K) calculated
with the ADP potentials for (a) Ni and (b) Cr in comparison with experimental
data [34].
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developed previously for the Cu–Ag system [37] with some computational improvements.
The solid–solid equilibrium lines were computed by thermodynamic integration while the
solid–liquid equilibrium lines were obtained by direct phase coexistence simulations.

In the thermodynamic integration method, the first step was to obtain the Gibbs free
energies, g0, of pure Cr and Ni at a reference temperature T0 using the quasi-harmonic

Figure 4. DFT formation energies of Ni–Cr compounds plotted against the formation
energies predicted by the ADP potential. The line of perfect agreement is shown as a
guide to the eye.

Table 5. Formation energies (eV/atom) of different structures of Cr–Ni calculated with
the ADP potential in comparison with DFT data. The DFT energies from the OQMD
database [26] were used in the fitting process while the energies from AFLOW [25, 56]
are included to show the scatter of the DFT calculations.

Structure DFT (NiCr) ADP (NiCr)

B1 0.888 0a; 0.862 2b 0.786 7
B2 0.258 0a; 0.248 0b 0.128 5
B3 1.406 0a; 1.399 8b 1.652 4
L10 0.076 0a; 0.042 2b 0.149 6
L11 0.145 0a; 0.142 6b 0.068 7

Structure DFT (NiCr3) ADP (NiCr3)

L12 0.144 0a; 0.133 2b 0.164 6
D03 0.166 0a; 0.156 4b 0.103 8
D022 0.178 0a; 0.168 3b 0.149 3

Structure DFT (Ni3Cr) ADP (Ni3Cr)

L12 0.124 0a; −0.015 6b 0.061 2
D03 0.129 0a; 0.105 3b 0.034 4
D022 0.020 0a; −0.020 8b 0.021 8

a [26].
b [25, 56].
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approximation as in the previous work [37–41]. In this approximation, the classical harmonic
free energy is added to the potential energy of the system and the total free energy is
minimized at the chosen reference temperature. The same reference temperature T0=293 K
was chosen for both Cr and Ni. Next, NPT Monte Carlo simulations at zero pressure were
executed for each metal for a set of temperatures T ranging from T0 to temperatures above the
expected eutectic point. At each temperature, the average potential energy per atom was
computed and the total energy per atom was obtained by adding the classical kinetic energy
k T3 2B , kB being the Boltzmann factor. Because the pressure was zero, this total energy
could be equated to the enthalpy per atom h(T). The latter was approximated by a quadratic
function

= + +( ) ( )h t h AT BT , 190
2

with fitting parameters h0, A and B. The Gibbs free energy of the metal, g(T), was then
determined by integrating the Gibbs–Helmholtz equation ¶ ¶ = -( )g T T h T 2 between the
reference temperature T0 and a chosen temperature T>T0, giving the analytical expression

= + - - - -
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )g T g

T
T

h
T
T

BT T T AT
T
T

1 ln . 200
0

0
0

0
0

This calculation resulted in free energy functions ( )g TNi and gCr(T).
Next, the semi-grand canonical Monte Carlo method was applied, in which the total

number of atoms in the simulation block and the chemical potential difference,
m m mD = -Cr Ni, were fixed, while the chemical species of the atoms were allowed to switch

randomly between Ni and Cr. In addition, individual atoms were subject to small random
displacements and all three dimensions of the simulation block were allowed to fluctuate to
ensure the zero-pressure condition along each Cartesian direction. The computations
employed a cubic periodic supercell containing N=4000 atoms, with the initial state being
elemental fcc Ni or elemental bcc Cr. For each temperature and Δμvalue, the system was
equilibrated by 70 000 Monte Carlo steps (each step being a cycle of N attempted moves),
after which the equilibrium alloy composition was obtained by averaging over 40 000
additional Monte Carlo steps. The alloy composition c was defined as the fraction of Cr
atoms. Te simulations utilized the parallel Monte Carlo code ParaGrandMC [42]. As a result,
Δμ(c, T) functions were obtained for a set of temperatures for the fcc and bcc-based solid
solutions. At each temperature, these functions were fitted by the analytical expression

m a b gD = - - - - -
-

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )c T g T g T c c k T

c
c

, ln
1Ni Cr

2
B

with the fitting parameters α, β and γ. Knowing these parameters, the Gibbs free energy
function

a
b g

= + - + + +

+ + - -

( ) ( ) ( )( )
[ ( ) ( ) ( )] ( )

g c T g T c g T c c c c

k T c c c c

, 1
2 3

ln 1 ln 1 21

Cr Ni
2 3

B

was reconstructed for each solid solution, see example in figure 5. Finally, the equilibrium
compositions of the phases were computed by constructing a common tangent to the free
energy functions by a numerical procedure (figure 6). Repeating this calculation for several
temperatures, the solvus lines bounding the miscibility gap on the phase diagram were
obtained.

To compute the solidus and liquidus lines, the same solid–liquid simulation block was
utilized as for the melting point calculations in pure Ni and Cr (section 3). Instead of MD,

Modelling Simul. Mater. Sci. Eng. 26 (2018) 085008 C A Howells and Y Mishin

12



semi-grand canonical Monte Carlo simulations were implemented in the composition-con-
trolled mode using the same methodology as described above. At each temperature, the
imposed average chemical composition of the system was adjusted so that equilibrium would
be reached with about half of the block being liquid and the other half solid. After equili-
bration, the chemical compositions of the phases were computed by averaging over 80 000
Monte Carlo steps using bulk regions unaffected by the solid–liquid interface.

Figure 7 compares the phase diagram predicted by the ADP potential with the exper-
imental phase diagram known from the literature [43]. The computed phase diagram is
topologically correct and even predicts the eutectic temperature in agreement with experi-
ment, although the eutectic composition is somewhat shifted towards the Ni side. Overall, the
agreement with the experimental phase diagram is good.

For a more detailed comparison with experiment, the lattice parameters of the phases
were computed for several alloy composition by semi-grand canonical NPT simulations at
several temperatures and the results were plotted together with the respective experimental
x-ray diffraction measurements. Examples are shown in figure 8. For the Cr-based solution,
the measurements were made at high temperatures to keep the samples in the single-phase

Figure 5. Example of the chemical potential difference versus alloy composition at
T=1325 K. The left and right branches represent the Ni-based and Cr-based solid
solutions, respectively.

Figure 6. Common tangent construction (dashed line) for computing the equilibrium
phase compositions at T=1325 K. The left (red) and right (red) curves represent the
Ni-based and Cr-based solid solutions, respectively. Their equilibrium chemical
compositions are marked by the arrows labeled fcc and bcc.
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state (seethe phase diagram in figure 7). By contrast, the Ni-based solution has a wider
homogeneity range and the measurements could be made at lower temperatures. In both
cases, the ADP potential performs quite well. There is a slight shift in the absolute values of
the lattice parameter, but the slope of the temperature dependence is reproduced accurately
without fitting.

Figure 9 shows the ADP formation enthalpy of the Ni-based solid solutions as a function
of chemical composition at the temperature of 1550 K. Zero-pressure Monte Carlo simula-
tions were applied using a cubic periodic block containing 4000 atoms. The methodology was
similar to the one applied for phase diagram calculations (section 4) with the energy averaged
over 65 000 Monte Carlo steps after equilibration. The formation enthalpy Hf of a CrxNi1−x

solid solution was defined as

= - - -( ) ( )H H xH x H1 , 22f Cr Ni

where x is the fractional composition of Cr, HCr and HNi are the enthalpies of pure bcc Cr and
fcc Ni, respectively, and H is the enthalpy of the binary solution. The plot displays a local
minimum at about 20%Cr with a negative formation enthalpy, indicating an ordering
tendency. For comparison, figure 9 includes two sets of experimental data [2, 44] measured
by calorimetry. The experiment also shows a local minimum, although it is shallower and
shifted to about 10%Cr. Despite this discrepancy, the ADP potential does capture the essential
trend.

Finally, figure 10 shows a similar comparison for the Gibbs formation energy defined by
a formula similar to equation (22). The experimental measurements [2] were made at 1550 K

Figure 7. Ni–Cr phase diagram predicted by the ADP potential (a) in comparison with
experiment [43] (b).
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(just below the eutectic) and cover the composition domains of both phases at this temper-
ature. Since the ADP-predicted eutectic temperature is somewhat lower, the temperature of
1500 K was chosen for the calculations. The Gibbs energies of the phases were computed as
part of the phase diagram calculations discussed in section 4. The ADP predictions slightly
over-bind both phases, but otherwise the comparison is quite favorable, especially

Figure 8. (a) Lattice constant as a function of temperature for two Ni-based fcc alloys in
comparison with experiment [57]. (b) Same for Cr-30%Ni alloy in comparison with
experiment [58].

Figure 9. ADP formation enthalpy of the fcc-based Cr–Ni phase as a function of
chemical composition at the temperature of 1550 K. Experimental measurements at
1550 K [2] and 1538 K [44] are shown for comparison.
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considering that high-temperature properties of the phases were not part of the potential
development.

5. Conclusions and outlook

The ADP Ni–Cr potential developed in this work demonstrates a reasonable agreement with
the available DFT and experimental data for a large set of properties of both elements as well
as their alloys. Given that Cr is a bcc transition metal, the ADP format chosen in this paper
appears to be more appropriate than the regular EAM format used for the Ni–Cr system in the
previous work [9].

The fact that the potential reproduces the experimental Ni–Cr phase diagram without a
direct fit points to its good transferability to high-temperature properties over the entire
compositional range. Since the potential correctly predicts the solidus and liquidus lines on
the phase diagram, it might be suitable for simulations of the melting and solidification
processes. In particular, the free energies and mobilities of the solid–liquid interfaces could be
computed and utilized as input material parameters needed for continuum modeling of such
processes. This type of modeling is especially relevant to the additive manufacturing of
Inconel alloys [45] using Ni–Cr as a simple prototype.

Moreover, since the potential predicts the solvus lines in agreement with experiment, it can
be suitable for simulations involving thermodynamic coexistence of the Ni-based and Cr-based
phases of this system. For example, this opens an opportunity to study the structure and
properties of fcc–bcc interfaces as a function of temperature (and thus the bulk phase com-
positions) and bicrystallography. In particular, dislocation transmission through such interfaces
could be investigated in the context of precipitation hardening and creep deformation.

Finally, the development of the Ni–Cr potential in this work could be considered as the
first step towards ternary Fe–Ni–Cr and Ni–Al–Cr systems as models of austenitic steels and
Ni-based superalloys, respectively. These systems, in turn, could serve as starting points for
the modeling of multicomponent concentrated solid solution alloys, where Cr can play a
particularly important role, see for example [46].

Figure 10. Gibbs formation energy of the Ni-based and Cr-based phases as a function
of chemical composition. The ADP predictions at 1500 K are compared with
experimental measurements [2] at 1550 K.
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