
On Fair Division for Indivisible Items

Bhaskar Ray Chaudhury
MPI for Informatics, Saarland Informatics Campus, Germany
s8bhrayc@stud.uni-saarland.de

Yun Kuen Cheung1

Singapore University of Technology and Design, Singapore
yunkuen_cheung@sutd.edu.sg

Jugal Garg2

Department of Industrial and Enterprise Systems Engineering
University of Illinois at Urbana-Champaign, USA
jugal@illinois.edu

Naveen Garg
Department of Computer Science, IIT Delhi, India
naveen@cse.iitd.ac.in

Martin Hoefer
Institut für Informatik, Goethe-Universität Frankfurt am Main, Germany
mhoefer@cs.uni-frankfurt.de

Kurt Mehlhorn
MPI for Informatics, Saarland Informatics Campus, Germany
mehlhorn@mpi-inf.mpg.de

Abstract
We consider the task of assigning indivisible goods to a set of agents in a fair manner. Our notion
of fairness is Nash social welfare, i.e., the goal is to maximize the geometric mean of the utilities
of the agents. Each good comes in multiple items or copies, and the utility of an agent diminishes
as it receives more items of the same good. The utility of a bundle of items for an agent is the
sum of the utilities of the items in the bundle. Each agent has a utility cap beyond which he does
not value additional items. We give a polynomial time approximation algorithm that maximizes
Nash social welfare up to a factor of e1/e ≈ 1.445. The computed allocation is Pareto-optimal
and approximates envy-freeness up to one item up to a factor of 2 + ε.

2012 ACM Subject Classification Theory of computation→ Approximation algorithms analysis

Keywords and phrases Fair Division, Indivisible Goods, Envy-Free

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.25

Acknowledgements We want to thank Hannaneh Akrami for a careful reading of the paper.

1 Most work done while the author was at MPI for Informatics, Saarland Informatics Campus. The
author would like to acknowledge NRF 2018 Fellowship NRF-NRFF2018-07.

2 Supported by NSF CRII Award 1755619.

© Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and Kurt
Mehlhorn;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s8bhrayc@stud.uni-saarland.de
mailto:yunkuen_cheung@sutd.edu.sg
mailto:jugal@illinois.edu
mailto:naveen@cse.iitd.ac.in
mailto:mhoefer@cs.uni-frankfurt.de
mailto:mehlhorn@mpi-inf.mpg.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 On Fair Division for Indivisible Items

1 Introduction

We consider the task of dividing indivisible goods among a set of n agents in a fair manner.
More precisely, we consider the following scenario. We have m distinct goods. Goods are
available in several copies or items; there are kj items of good j. The agents have decreasing
utilities for the different items of a good, i.e., for all i and j

ui,j,1 ≥ ui,j,2 ≥ . . . ≥ ui,j,kj .

An allocation assigns the items to the agents. For an allocation x, xi denotes the multi-set
of items assigned to agent i, and m(j, xi) denotes the multiplicity of good j in xi. Of course,∑
im(j, xi) = kj for all j. The total utility of bundle xi for agent i is given by

ui(xi) =
∑
j

∑
1≤`≤m(j,xi)

ui,j,`.

Each agent has a utility cap ci. The capped utility of bundle xi for agent i is defined as

ūi(xi) = min(ci, ui(xi)).

Our notion of fairness is Nash social welfare (NSW) [13], i.e., the goal is to maximize the
geometric mean

NSW(x) =

 ∏
1≤i≤n

ūi(xi)

1/n

of the capped utilities. All utilities and caps are assumed to be integers. We give a polynomial-
time approximation algorithm with approximation guarantee e1/e + ε ≈ 1.445 + ε for any
positive ε.

The problem has a long history. For divisible goods, maximizing Nash Social Welfare
(NSW) for any set of valuation functions can be expressed via an Eisenberg-Gale program [8].
Notably, for additive valuations (ci =∞ for each agent i and kj = 1 for each good j) this
is equivalent to a Fisher market with identical budgets. In this way, maximizing NSW is
achieved via the well-known fairness notion of competitive equilibrium with equal incomes
(CEEI) [12].

For indivisible goods, the problem is NP-complete [14] and APX-hard [10]. Several
constant-factor approximation algorithms are known for the case of additive valuations. They
use different approaches.

The first one was pioneered by Cole and Gkatzelis [6] and uses spending-restricted Fisher
markets. Each agent comes with one unit of money to the market. Spending is restricted in
the sense that no seller wants to earn more than one unit of money. If the price p of a good
is higher than one in equilibrium, only a fraction 1/p of the good is sold. Cole and Gkatzelis
showed how to compute a spending restricted equilibrium in polynomial time and how to
round its allocation to an integral allocation with good NSW. In the original paper they
obtained an approximation ratio of 2e1/e ≈ 2.889. Subsequent work [5] improved the ratio
to 2.

The second approach is via stable polynomials. Anari et al. [1] obtained an approximation
factor of e.

The third approach is via integral allocations that are Pareto-optimal and envy-free up
to one good. It was introduced by Barman et al. [3]. An allocation is envy-free up to one
good if for any two agents i and k there is a good j such that ui(xk − j) ≤ ui(xi), i.e., after

B.R. Chaudhury, Y. K. Cheung, J. Garg, N. Garg, M. Hoefer, and K. Mehlhorn 25:3

removal of one good from k’s bundle its utility for i is no larger than the utility of i’s bundle
for i. Caragiannis et al. [4] have shown that an allocation maximizing NSW is Pareto-optimal
and envy-free up to one good. For a price vector p for the goods, the price P (xi) of a bundle
is the sum of the prices of the goods in the bundle. An allocation is almost price-envy-free
up to one good (ε-p-EF1) if P (xk − j) ≤ (1 + ε)P (xi) for all agents i and k and some good
j, where ε is an approximation parameter. An allocation is MBB (maximum bang per buck)
if j ∈ xi implies uij/pj = max` ui`/p` for all j and i. Barman et al. [3] studied allocations
that are Pareto-optimal, almost price-envy-free up to one good, and MBB. They showed that
such allocations are almost envy-free up to one good3 and approximate NSW up to a factor
e1/e + ε ≈ 1.445 + ε. They also showed how to compute such an allocation in polynomial
time.

There are also constant-factor approximation algorithms beyond additive utilities.
Garg et al. [9] studied budget-additive utilities (kj = 1 for all goods j and arbitrary ci).

They showed how to generalize the Fisher market approach and obtained an 2e1/2e ≈ 2.404-
approximation.

Anari et al. [2] investigated multi-item concave utilities (ci =∞ for all i and kj arbitrary).
They generalized the Fisher market and the stable polynomial approach and obtained
approximation factors of 2 and e2, respectively.

We show that the price-envy-free allocation approach can handle both generalizations
combined. We obtain an approximation ratio of e1/e+ε ≈ 1.445+ε. The allocation computed
by our algorithm is Pareto-optimal and guarantees ui(xk − j) ≤ (2 + ε)ui(xi) for any two
agents i and k, i.e., it approximates envy-freeness up to one item up to a factor of essentially
two. The approach via price-envy-freeness does not only yield better approximation ratios,
it is, in our opinion, also simpler to state and simpler to analyze.

The paper is structured as follows. In Section 2 we give the algorithm and analyze its
approximation ratio (Section 2.3), guarantee to individual agents (Section 2.4), and running
time (Section 2.5). In Section 3 we show that the analysis is essential tight by establishing a
lower bound of 1.44 on the approximation ratio of the algorithm, in Section 4 we discuss
certification of the approximation ratio, and in Section 5 we show that for the multi-copy
case and the capped case optimal allocations are not necessarily envy-free up to one good.

2 Algorithm and Analysis

Let us recall the setting. Items are indivisible. There are n agents and m goods. There are
kj items or copies of good j. Let M =

∑
j kj be the total number of items. The agents have

decreasing utilities for the different items of a good, i.e., for all i and j

ui,j,1 ≥ ui,j,2 ≥ . . . ≥ ui,j,kj .

For an allocation x, xi denotes the multi-set of items assigned to agent i, and m(j, xi) denotes
the multiplicity of good j in xi. The total utility of bundle xi for agent i is given by

ui(xi) =
∑
j

∑
1≤`≤m(j,xi)

ui,j,`.

3 Consider two bundles xk and xi and assume P (xk − j) ≤ (1 + ε)P (xi) for some j ∈ xk. Let
αi = max` ui`/p`. Then ui(xk − j) =

∑
`∈xk−j

ui` ≤ αi

∑
`∈xk−j

p` ≤ (1 + ε)αi

∑
`∈xi

p` =
(1 + ε)

∑
`∈xi

ui`.

FSTTCS 2018

25:4 On Fair Division for Indivisible Items

Each agent has a utility cap ci. The capped utility of bundle xi for agent i is defined as

ūi(xi) = min(ci, ui(xi)).

Following [9], we assume w.l.o.g. ui,j,` ≤ ci for all i, j, and `. In the algorithm, we ensure this
assumption by capping every ui,∗,∗ at ci. All utilities and caps are assumed to be integers.

2.1 A Reduction to Rounded Utilities and Caps
Let r ∈ (1, 3/2]. For every non-zero utility ui,j,` let vi,j,` be the next larger power of r.
For zero utilities v and u agree. Similarly, for ci let di be the next larger power of r. It
is well-known that it suffices to solve the rounded problem with a good approximation
guarantee.

I Lemma 1. Let x approximate the NSW for the rounded problem up to a factor of γ. Then
x approximates the NSW for the original problem up to a factor γr.

Proof. Let x∗ be an optimal allocation for the original problem. Let us write NSW(x∗, u, c)
for the Nash social welfare of the allocation x∗ with respect to the utilities u and caps
c. Define NSW(x, u, c), NSW(x∗, v, d), and NSW(x, v, d) analogously. We need to upper
bound NSW(x∗, u, c)/NSW(x, u, c). Since u ≤ v and c ≤ d componentwise, NSW(x∗, u, c) ≤
NSW(x∗, v, d). Since x approximates the NSW for the rounded problem up to a factor γ,
NSW(x∗, v, d) ≤ γNSW(x, v, d). Since v ≤ ru and d ≤ rc componentwise, NSW(x, v, d) ≤
rNSW(x, u, c). Thus

NSW(x∗, u, c)
NSW(x, u, c) ≤

γNSW(x, v, d)
NSW(x, v, d)/r = γr. J

2.2 The Algorithm
Barman et al. [3] gave a highly elegant approximation algorithm for the case of a single
copy per good and no utility caps. We generalize their approach. The algorithm uses an
approximation parameter ε ∈ (0, 1/4]. Let r = 1 + ε. The nonzero utilities are assumed to
be powers of r.

The algorithm maintains an integral assignment x, a price pj for each good, and an MBB-
ratio4 αi for each agent. Of course,

∑
im(j, xi) = kj for each good j. The prices, MBB-ratios,

and multiplicity of goods in bundles are related through the following inequalities:

ui,j,m(j,xi)+1

pj
≤ αi ≤

ui,j,m(j,xi)

pj
, (1)

i.e., if ui,j,`/pj > αi, then at least ` copies of j are allocated to agent i and if ui,j,`/pj < αi,
then less than ` copies of j are allocated to agent i. If no copy of good j is assigned to i,
the upper bound for αi is infinity. If all copies of good j are assigned to i, the lower bound
for αi is zero. Note that if αi is equal to its upper bound in (1), we may take one copy of
j away from i without violating the inequality as the upper bound becomes the new lower
bound. Similarly, if αi is equal to its lower bound in (1), we may assign an additional copy
of j to i without violating the inequality as the lower bound becomes the new upper bound.

4 In the case of one copy per good, αi = ui,j/pj whenever (the single copy of) good j is assigned to i and
αi ≥ ui,`/p` for all goods `. Thus αi is the maximum utility per unit of money (maximum bang per
buck (MBB)) that agent i can get.

B.R. Chaudhury, Y. K. Cheung, J. Garg, N. Garg, M. Hoefer, and K. Mehlhorn 25:5

Since (1) must hold for every good j, αi must lie in the intersection of the intervals for the
different goods j, i.e.,

max
j

ui,j,m(j,xi)+1

pj
≤ αi ≤ min

j

ui,j,m(j,xi)

pj
.

The value of bundle xi for i is given by5

Pi(xi) = ui(xi)
αi

= 1
αi

∑
j

∑
1≤`≤m(j,xi)

ui,j,`. (2)

Definitions (1) and (2) are inspired by Anari et al [2]. We say that αi is equal to the upper
bound for the pair (i, j) if αi is equal to its upper bound in (1) and that αi is equal to the
lower bound for the pair (i, j) if αi is equal to its lower bound in (1).

An agent i is capped if ui(xi) ≥ ci and is uncapped otherwise.
The algorithm starts with a greedy assignment. For each good j, it assigns each copy to

the agent that values it most. The price of each good is set to the utility of the assignment
of its last copy and all MBB-values are set to one. Note that this setting guarantees (1) for
every pair (i, j). Also, all initial prices and MBB-values are powers of r. It is an invariant of
the algorithm that prices are powers of r. Only the final price increase in the main-loop may
destroy this invariant.

After initialization, the algorithm enters a loop. We need some more definitions. An
agent i is a least spending uncapped agent if it is uncapped and Pi(xi) ≤ Pk(xk) for every
other uncapped agent k. An agent i ε-p-envies agent k up to one item if Pk(xk − j) >
(1 + ε) · Pi(xi) for every good j ∈ xk. Recall that xk is a multi-set. In the multi-set
xk − j, the number of copies of good j is reduced by one, i.e., m(j, xk − j) = m(j, xk)− 1.
Therefore Pk(xk − j) = Pk(xk) − uk,j,m(j,xk)/αk. An allocation is ε-p-envy free up to one
item (ε-p-EF1) if for every uncapped agent i and every other agent k there is a good j such
that Pk(xk − j) ≤ (1 + ε)Pi(xi).

We also need the notion of the tight graph. It is a directed bipartite graph with the agents
on one side and the goods on the other side. We have a directed edge (i, j) from agent i to
good j if αi = uijm(j,xi)+1/pj , i.e., αi is at its lower bound for the pair (i, j). We have a
directed edge (j, i) from good j to agent i if αi = uijm(j,xi)/pj , i.e., αi is at its upper bound
for the pair (i, j). Note that necessarily m(j, xi) ≥ 1 in the latter case, since otherwise good
j does not impose an upper bound for αi.

An improving path starting at an agent i is a simple path P = (i = a0, g1, a1, . . . , gh, ah)
in the tight graph starting at i and ending at another agent ah such that Pah(xah − gh) >
(1 + ε)Pi(xi) and Pa`(xa` − g`) ≤ (1 + ε)Pi(xi) for 1 ≤ ` < h.

Let i be the least spending uncapped agent. We perform a breadth-first search in the
tight graph starting at i. If the BFS discovers an improving path starting at i, we use the
shortest such path to improve the allocation. Note that if i ε-p-envies some node that is
reachable from i in the tight graph then the BFS will discover an improving path.

In the main loop, we distinguish cases according to whether BFS discovers an improving
path starting at i or not.

Assume first that BFS discovers the improving path P = (i = a0, g1, a1, . . . , gh, ah). We
take gh away from ah and assign it to ah−1. If we now have Pah−1(xah−1 + gh − gh−1) ≤

5 In the case of one copy per good, Pi(xi) = ui(xi)/αi =
∑

j∈xi
pj is the total price of the goods in the

bundle. We reuse the letter P for the value of a bundle, although Pi(xi) = 1/αi ·
∑

j

∑
1≤`≤m(j,xi)

ui,j,`

is no longer the total price of the goods in the bundle.

FSTTCS 2018

25:6 On Fair Division for Indivisible Items

Algorithm 1: Approximate Nash Social Welfare for Multi Item Concave Utilities
with Caps.

Input : Fair Division Problem given by utilities uij`, i ≤ n, j ≤ m, ` ≤ kj , utility caps ci,
and approximation parameter ε ∈ (0, 1/4]. Let r = 1 + ε. Nonzero uij ’s and ci’s
are powers of r.

Output : Price vector p and 4ε-p-EF1 integral allocation x

1 for i, j, ` do
2 ui,j,` ← min(ci, ui,j,`)
3 for j ∈ G do
4 for ` ∈ [kj] in increasing order do
5 assign the `-th copy of j to i0 = argmaxi uij,m(j,xi)+1;
6 Set pj ← ui0,j,m(j,xi0), where i0 is the agent to which the kj-th copy of j was assigned

7 for i ∈ A do
8 αi = 1
9 while true do

10 if allocation x is ε-p-EF1 then
11 break from the loop and terminate
12 Let i be a least spending uncapped agent
13 Perform a BFS in the tight graph starting at i
14 if the BFS-search discovers an improving path starting in i, let

P = (i = a0, g1, a1, . . . , gh, ah) be a shortest such path then
15 Set `← h

16 while ` > 0 and Pa`(xa` − g`) > (1 + ε)Pi(xi) do
17 remove g` from xa` and assign it to a`−1; `← `− 1

18 else
19 Let S be the set of goods and agents that can be reached from i in the tight graph
20 β1 ← mink∈S; j 6∈S αk/(uk,j,m(j,xk)+1/pj) (add a good to S)
21 β2 ← mink 6∈S; j∈S (uk,j,m(j,xk)/pj)/αk (add an agent to S)
22 β3 ← 1

r2Pi(xi)
maxk 6∈S minj∈xk Pk(xk − j) (i is happy)

23 β4 ← rs, where s is the smallest integer such that rs−1 ≤ Ph(xh)/Pi(xi) < rs and h

is the least spending uncapped agent outside S (new least spender)
24 β ← min(β1, β2,max(1, β3), β4)
25 multiply all prices of goods in S by β and divide all MBB-values of agents in S by β
26 if β3 ≤ min(β1, β2, β4) then
27 break from the while-loop

(1 + ε)Pi(xi) we stop. Otherwise, we take gh−1 away from ah−1 and assign it to ah−2. If we
now have Pah−2(xah−2 + gh−1 − gh−2) ≤ (1 + ε)Pi(xi) we stop. Otherwise, We continue
in this way until we stop or assign g1 to a0. In other words, let h′ < h be maximum such
that Pah′ (xah′ + gh′+1 − gh′) ≤ (1 + ε)Pi(xi). If h′ exists, then we take a copy of g` away
from a` and assign it to a`−1 for h′ < ` ≤ h. If h′ does not exist, we do so for 1 ≤ ` ≤ h. Let
us call the above a sequence of swaps.

I Lemma 2. Consider an execution of lines (15) to (17) and let h′ be the final value of
` (this agrees with the definition of h′ in the preceding paragraph). Let x′ be the resulting
allocation. Then x′` = x` for 0 ≤ ` < h′, x′h′ = xh′+gh′+1, x′` = x`+g`+1−g` for h′ < ` < h,
and x′h = xh − gh. Also,

Pah(xah) ≥ Pah(x′ah) > (1 + ε)Pi(xi),

B.R. Chaudhury, Y. K. Cheung, J. Garg, N. Garg, M. Hoefer, and K. Mehlhorn 25:7

i j1 i1 j2 jh ih

= good

= agent = at lower bound

= at upper bound

Figure 1 An improving path. Agents and goods alternate on the path and the path starts and
ends with an agent. For the solid edges (j, i), αi is at its upper bound for the pair (i, j) and for the
dashed edges (i, j), αi is at its lower bound for the pair (i, j).

Pah′ (x
′
ah′
− gh′) = Pah′ (xah′ + gh′+1 − gh′) ≤ (1 + ε)Pi(xi) if h′ ≥ 1

Pa0(x′a0
− g1) = Pa0(xa0) ≤ (1 + ε)Pi(xi) if h′ = 0.

Pa`(x′a`) = Pa`(xa` + g`+1 − g`) > (1 + ε)Pi(xi) and Pa`(x′a` − g`+1) = Pa`(xa` − g`) ≤
(1 + ε)Pi(xi) for h′ < ` < h.
Pa`(x′a` − g`) = Pa`(xa` − g`) ≤ (1 + ε)Pi(xi) for 0 ≤ ` < h′.

Proof. Immediate from the above. J

If i is still the least spending uncapped agent after an execution of lines (15) to (17), we
search for another improving path starting from i. We will show below that i can stay the
least spending agent for at most n2M iterations. Intuitively this holds because for any agent
(factor n) and any fixed length shortest improving path (factor n), we can have at most M
iterations for which the shortest improving path ends in this particular agent.

We come to the else-case, i.e., BFS does not discover an improving path starting at i.
This implies that i does not ε-p-envy any agent that it can reach in the tight graph. We
then increase some prices and decrease some MBB-values. Let S be the set of agents and
goods that can be reached from i in the tight graph.

I Lemma 3. If a good j belongs to S and αk is at its upper bound for the pair (k, j), then k
belongs to S. If an agent k belongs to S and αk is at its lower bound for the pair (k, j), then
j belongs to S.

Proof. Consider any good j ∈ S. Since j belongs to S, there is an alternating path starting
in i and ending in j. If the path contains k, k belongs to S. If the path does not contain k,
we can extend the path by k. In either case, k belongs to S.

Consider any agent k ∈ S. Since k belongs to S, there is an alternating path starting in i
and ending in k. If the path contains j, j belongs to S. If the path does not contain j, we
can extend the path by j. In either case, j belongs to S. J

We multiply all prices of goods in S and divide all MBB-values of agents in S by a
common factor t ≥ 1. What is the effect?

Let uk,j,(j,xk)+1/pj ≤ αk ≤ uk,j,m(j,xk)/pj be the inequality (1) for the pair (k, j). The
endpoints do not move if j 6∈ S and are divided by t for j ∈ S. Similarly, αk does not
move if k 6∈ S and are divided by t if k ∈ S. So in order to preserve the inequality, we
must have: If αk is equal to the upper endpoint and pj moves, i.e., j ∈ S, then αk must
also move. If αk is equal to the lower endpoint and αk moves then pj must also move.
Both conditions are guaranteed by Lemma 3.
If k and j are both in S, then αk and the endpoints of the interval for (k, j) move in sync.
So agents and goods reachable from i in the tight graph, stay reachable.
If k 6∈ S, there might be a j ∈ S such that αk becomes equal to the right endpoint of the
interval for (k, j). Then k is added to S.

FSTTCS 2018

25:8 On Fair Division for Indivisible Items

If k ∈ S, there might be a j 6∈ S such that αk becomes equal to the left endpoint of the
interval for (k, j). Then j is added to S.
For agents in S, Pk(xk) is multiplied by t. For agents outside S, Pk(xk) stays unchanged.

How is the common factor t chosen? There are four limiting events. Either S grows and
this may happen by the addition of a good (factor β1) or an agent (factor β2); or Pi(xi)
comes close to the largest value of minj∈xk Pk(xk − j) for any other agent (factor β3), or
Pi(xi) becomes larger than Ph(xh) for some uncapped agent h outside S (factor β4). Since
we want prices to stay powers of r, β4 is chosen as a power of r. The factor β3 might be
smaller than one. Since we never want to decrease prices, we take the maximum of 1 and β3.

I Lemma 4. Prices and MBB-values are powers of r, except maybe at termination.

Proof. This is true initially, since prices are utility values and utility values are assumed to
be powers of r and since MBB-values are equal to one. If prices and MBB-values are powers
of r before a price update, β1, β2, and β4 are powers of r. Thus prices and MBB-values are
after the price update, except maybe when the algorithm terminates. J

We next show that the algorithm terminates with an allocation that is almost price-envy-
free up to one item.

I Lemma 5. Assume ε ≤ 1/4. When the algorithm terminates, x is a 4ε-p-EF1 allocation.

Proof. Let q be the price vector after the price increase and let h be the least spending
uncapped agent after the increase; h = i is possible. We first show that that Qi(xi) ≤ rQh(xh).
This is certainly true if h = i. If h 6∈ S, since the price increase is limited by β4, we have

Qi(xi) = βPi(xi) ≤ β4Pi(xi) = r · rs−1 · Pi(xi) ≤ rPh(xh) = rQh(xh).

So in either case, we have Qi(xi) ≤ rQh(xh). Moreover, Qh(xh) ≤ Qi(xi) because h is a
least spending uncapped agent after the price increase.

If the algorithm terminates, we have β3 ≤ β4. Consider any agent k. Then, for k ∈ S,

Qk(xk − jk) ≤ (1 + ε)Qi(xi) ≤ (1 + ε) · r ·Qh(xh)

and, for k 6∈ S,

Qk(xk − jk) = Pk(xk − jk) ≤ β3(1 + ε)rPi(xi) = (1 + ε)rQi(xi) ≤ (1 + ε) · r2 ·Qh(xh).

Thus we are returning an allocation that is ((1 + ε)r2 − 1)-q-EF1. Finally, note that
(1 + ε)r2 = (1 + ε)3 ≤ (1 + 4ε) for ε ≤ 1/4. J

I Remark. We want to point out the differences to the algorithm by Barman et al. Our
definition of alternating path is more general than theirs since it needs to take into account
that the number of items of a particular good assigned to an agent may change. For this
reason, we need to maintain the MBB-ratio explicitly. In the algorithm by Barman et al. the
MBB ratio of agent i is equal to the maximum utility to price ratio maxj uij/pj and only
MBB goods can be assigned to an agent. As a consequence, if a good belongs to S, the
agent owning it also belongs to S. In price changes, there is no need for the quantity β2. In
the definition of β3, we added an additional factor r2 in the denominator. We cannot prove
polynomial running time without this factor. Finally, we start the search for an improving
path from the least uncapped agent and not from the least agent.

B.R. Chaudhury, Y. K. Cheung, J. Garg, N. Garg, M. Hoefer, and K. Mehlhorn 25:9

2.3 Analysis of the Approximation Factor
The analysis refines the analysis given by Barman et al. Let (xalg, p, α) denote the allocation
and price and MBB vector returned by the algorithm. Recall that xalg is γ-p-EF1 with
γ = 4ε with respect to p and (1) holds for every i. We scale all the utilities of agent i and
its utility cap by αi, i.e., we replace ui,j,` by ui,j,`/αi and ci by ci/αi and use ui,j,` and ci
also for the scaled utilities and scaled utility cap. The scaling does not change the integral
allocation maximizing Nash Social Welfare. Inequality (1) becomes

ui,j,m(j,xalg
i

)+1

pj
≤ 1 ≤

ui,j,m(j,xalg
i

)

pj
, (3)

i.e., the items allocated to i have a utility to price ratio of one or more and the items that
are not allocated to i have a ratio of one or less. Also, the value of bundle xi for i is now
equal to its utility for i and is given by

Pi(xalg
i) = ui(xalg

i) =
∑
j

∑
1≤`≤m(j,xalg

i
)

ui,j,`. (4)

All ui,∗,∗ are at most ci.
Let Ac and Au be the set of capped and uncapped agents in xalg, let c = |Ac| and

n− c = |Au| be their cardinalities. We number the uncapped agents such that u1(xalg
1) ≥

u2(xalg
2) ≥ . . . ≥ un−c(xalg

n−c). Let ` = un−c(xalg
n−c) be the minimum utility of a bundle

assigned to an uncapped agent. The capped agents are numbered n− c+ 1 to n. Let x∗ be
an integral allocation maximizing Nash social welfare.

We define an auxiliary problem with
∑
j kj goods and one copy of each good. The goods

are denoted by triples (i, j, `), where 1 ≤ ` ≤ m(j, xalg
i). The utility of good (i, j, `) is uniform

for all agents and is equal to ui,j,`. Formally,

v∗,(i,j,`) = ui,j,`, (5)

where v is the utility function for the auxiliary problem. The cap of agent i is ci. Since
v is uniform, we can write v(xi) instead of vi(xi). The capped utility of xi for agent i is
v̄i(xi) = min(ci, v(xi)). Note that v is uniform, but v̄ is not. Let xoptaux be an optimal
allocation for the auxiliary problem.

I Lemma 6. We have:
(a)

∑
i ui(x∗i) ≤

∑
i ui(x

alg
i) =

∑
i,j,1≤`≤m(j,xalg

i
) v∗,(i,j,`).

(b) NSW(x∗) = (
∏
i ūi(x∗i))

1/n ≤
(∏

i v̄i(x
optaux
i)

)1/n
= NSW(xoptaux).

(c) xalg is Pareto-optimal.

Proof. We can obtain x∗ from xalg by moving copies of goods.
Set x← xalg. Consider any good j. As long as the multiplicities of j in the bundles of x

and x∗ are not the same, identify two agents i and k, where xi contains more copies of j
than x∗i and xk contains fewer copies of j than x∗k, and move a copy of j from i to k. Each
copy taken away has a utility of at least pj , each copy assigned additionally has a utility of
at most pj . Thus the total utility cannot go up by reassigning. This proves (a).

For part (b), we interpret xalg as an allocation for the auxiliary problem; goods (i, j, `)
with 1 ≤ ` ≤ m(j, xalg

i) are allocated to agent i. We then move goods exactly as in (a). We
obtain an allocation x̂ for the auxiliary problem with ui(x∗i) ≤ v(x̂i) for all i.

FSTTCS 2018

25:10 On Fair Division for Indivisible Items

For part (c), assume that xalg is not Pareto-optimal. Then there is an integral allocation
y with ui(yi) ≥ ui(xalg

i) for all i and at least one strict inequality. These inequalities are not
affected by our scaling of the utilties. However, the reasoning of part (a) applied to y and
xalg shows

∑
i ui(yi) ≤

∑
i ui(x

alg
i) for all i for the scaled utilities. J

We stress that Lemma 6 refers to the scaled utilities. For the scaled utilities xalg maximizes
social welfare. It does not do so for the unscaled utilities.

For any agent i, let bi ∈ xalg
i be such that ui(xalg

i −bi) ≤ (1+γ)`. Note that ui(xalg
i −bi) =

ui(xalg
i)−ui,bi,m(bi,xalg

i
). Let B = { (i, bi,m(bi, xalg

i)) ; 1 ≤ i ≤ n } be the goods in the auxiliary
problem corresponding to the bi’s. We now consider allocations for the auxiliary problem
that are allowed to be partially fractional. We require that the goods in B are allocated
integrally and allow all other goods to be assigned fractionally. For convenience of notation,
let gi = (i, bi,m(bi, xalg

i)). The following lemma is crucial for the analysis.

I Lemma 7. There is an optimal allocation for the relaxed auxiliary problem in which good
gi is allocated to agent i.

Proof. Assume otherwise. Among the allocations maximizing Nash social welfare for the
relaxed auxiliary problem, let xoptrel be the one that maximizes the number of agents i that
are allocated their own good gi.

Assume first that there is an agent i to which no good in B is allocated. Then gi is
allocated to some agent k different from i. Since bi ∈ xalg

i , v(gi) = ui,bi,m(bi,xalg
i

) ≤ ci. The
inequality holds since utilities ui,∗,∗ are capped at ci during initialization. We move gi from k

to i and min(v(gi), v(xoptrel
i)) value from i to k. This is possible since only divisible goods are

allocated to i. If we move v(gi) from i to k, the NSW does not change. If v(gi) > v(xoptrel
i)

and hence ci ≥ v(gi) > v(xoptrel
i), the product v̄i(xi) · v̄k(xk) changes from

min(ci, v(xoptrel
i))·min(ck, v(xoptrel

k − gi + gi)) =

min(ckv(xoptrel
i), v(xoptrel

k − gi)v(xoptrel
i) + v(gi)v(xoptrel

i))

to

min(ci, v(gi))·min(ck, v(xoptrel
k − gi + xoptrel

i)) =

min(ckv(gi), v(xoptrel
k − v(gi))v(gi) + v(xoptrel

i)v(gi)).

The arguments of the min in the lower line are componentwise larger than those of the min
in the upper line. We have now modified xoptrel such that the NSW did not decrease and
the number of agents owning their own good increased. The above applies as long as there is
an agent owning no good in B.

So assume every agent i owns a good in B, but not necessarily gi. Let i be such that v(gi)
is largest among all goods gi that are not allocated to their i. Then gi is allocated to some
agent k different from i. The value of the good g` allocated to i is at most v(gi) since ` 6= i

and by the choice of i. We move gi from k to i and min(v(gi), v(xoptrel
i)) value from i to k.

This is possible since v(g`) ≤ v(gi) and all other goods assigned to i are divisible. We have
now modified xoptrel such that the NSW did not decrease and the number of agents owning
their own good increased. We continue in this way until gi is allocated to i for every i. J

Let xoptrel be an optimal allocation for the relaxed auxiliary problem in which good gi is
contained in the bundle xoptrel

i for every i. Let α be such that

α` = min{ v(xoptrel
i) ; v(xoptrel

i) < ci }

B.R. Chaudhury, Y. K. Cheung, J. Garg, N. Garg, M. Hoefer, and K. Mehlhorn 25:11

is the minimum value of any agent that is uncapped in xoptrel . Let α =∞, if every agent
is capped in xoptrel . Let Aoptrel

c and Aoptrel
u be the set of capped and uncapped agents in

xoptrel . Let h be such that uh(xalg
h) > α` ≥ uh+1(xalg

h+1).

I Lemma 8. For i ≤ h, v(xoptrel
i) ≤ ui(xalg

i). For all i, ui(xalg
i) ≤ v(xoptrel

i) + (1 + γ)`. For
i ∈ Au ∩Aoptrel

c , ci ≤ α` and i 6∈ [h].

Proof. Consider any i ≤ h. v(xoptrel
i) ≤ ui(xalg

i) is obvious, if v(xoptrel
i) ≤ α`. If v(xoptrel

i) >
α`, then α < ∞ and hence Aoptrel

u is non-empty. We claim that xoptrel
i = {gi}, i.e., xoptrel

i

is a singleton consisting only of gi. Assume otherwise, then also some divisible goods are
assigned to i. We can move some of them to an agent that is uncapped in xoptrel and has
value α`. This increases the NSW, a contradiction.

For the upper bound, we observe that gi ∈ xoptrel
i and ui(xalg

i − bi) ≤ (1 + γ)`.
Consider next any i ∈ Au ∩ Aoptrel

c . Assume ci > α`. If xoptrel assigns divisible goods
to i, we can move some of them to an agent that is uncapped in xoptrel and has value α`.
This increases the NSW. Thus xoptrel

i consists only of gi. But then v(gi) ≤ ui(xalg
i) < ci

and i does not belong to Aoptrel
c . This shows ci ≤ α`. Then also i 6∈ [h] because otherwise

ci < ui(xalg
i) and hence i would be capped in xalg. J

I Lemma 9.

NSW(x∗) ≤ NSW(xoptrel) ≤

(α`)n−c−h−|Au∩A
optrel
c | ·

∏
i∈Ac∪(Au∩Aoptrel

c)

ci ·
∏

1≤i≤h
ui(xalg

i)

 1
n

.

Moreover, ci ≤ α` for any i ∈ Au ∩Aoptrel
c .

Proof. If v(xoptrel
i) 6= α` then either i ∈ Ac or i ∈ Au∩Aoptrel

c or i ∈ Au \Aoptrel
c . In the first

case, v(xoptrel
i) ≤ ci. In the second case, v(xoptrel

i) = ci ≤ α` and i 6∈ [h] by Lemma 8. In the
third case, v(xoptrel

i) ≤ ui(xalg
i) for i ≤ h. So assume i > h. Then v(gi) ≤ ui(xalg

i) ≤ α` and
hence all value in v(xoptrel

i) above α` would be by fractional goods. They could be reassigned
for an increase in NSW. We conclude that for the agents i ∈ Au \Aoptrel

c with i > h, we have
v(xoptrel

i) = α`. J

We next bound NSW(xalg) from below. We consider assignments x for the auxiliary
problem that agree with xalg for the agents in Ac∪[h] and reassign the value

∑
i∈Au−[h] ui(x

alg
i)

fractionally. Note that for any i ∈ Au− [h], ` ≤ ui(xalg
i) ≤ min(ci, α`). The former inequality

follows from i ∈ Au and the latter inequality follows from the definition of h and i ∈ Au. We
reallocate value so as to move ui(xi) towards the bounds ` and min(ci, α`). As long as there
are two agents whose value is not at one of their bounds, we shift value from the smaller to
the larger. This decreases NSW. We end when all but one agent have an extreme allocation,
either ` or min(ci, α`). One agent ends up with an allocation β` with β ∈ [1, α].

Let us introduce some more notation. Write Au ∩ Aoptrel
c as S ∪ T , where the agents

i ∈ T end up at ci and the agents in S end up at `. Also let s and t be the number of agents
in Au \Aoptrel

c that end up at ` and α` respectively. Then

NSW(xalg) ≥

∏
i∈Ac

ci ·
∏

1≤i≤h
ui(xalg

i) · `s · (α`)t · (β`) ·
∏
i∈T

ci · `|S|
1/n

.

FSTTCS 2018

25:12 On Fair Division for Indivisible Items

Note that n− c− h = s+ t+ 1 + |S|+ |T |. Therefore

NSW(x∗)
NSW(xalg) ≤

(
αs · α

β
·
∏
i∈S

ci
`

)1/n

≤

(sα+ α
β +

∑
i∈S

ci
`

s+ 1 + |S|

)s+1+|S|
1/n

,

where we used the inequality between geometric mean and arithmetic mean for the second
inequality.

The total mass allocated by xoptrel to the agents in Au−[h] is (s+t+1)α`+
∑
i∈S∪T ci. The

allocation xalg wastes up to (1+γ)` for each i ∈ Ac∪ [h] and uses s`+tα`+β`+
∑
i∈T ci+ |S|`

on the agents in Au − [h]. Therefore

(s+ t+ 1)α`+
∑
i∈S∪T

ci ≤ (|Ac|+ h)(1 + γ)`+ s`+ tα`+ β`+
∑
i∈T

ci + |S|`

and hence after rearranging, dividing by ` and adding α/β on both sides

sα+ α

β
+
∑
i∈S

ci
`
≤ (1 + γ)(|Ac|+ h) + s+ |S|+ α

β
+ β − α

≤ (1 + γ)(|Ac|+ h) + s+ |S|+ 1 ≤ (1 + γ)n.

Note that β +α/β −α ≤ 1 for β ∈ [1, α], since the expression is one at β = 1 and β = α and
it second derivative as function of β is positive. Thus

NSW(xoptrel)
NSW(xalg) ≤

((
(1 + γ)(|Ac|+ h) + s+ |S|+ 1

s+ 1 + |S|

)s+1+|S|
)1/n

≤
(

(1 + γ)n
s+ 1 + |S|

)(s+1+|S|)/n
≤ ee

−1/(1+γ)
,

since the maximum of ((1 + γ)δ)1/δ is attained for δ = 1
(1+γ)e

1/(1+γ) and is equal to
exp(exp(−1/(1 + γ))). The following table contains concrete values for small non-negative
values of γ.

1 + γ 1.00 1.01 1.02 1.03 1.04
exp(exp(−1/(1 + γ))) 1.44467 1.44997 1.45523 1.46046 1.46566

I Remark. The paper [5] introduces a mathematical program for maximizing NSW in the
case of additive valuations. The program has an integrality gap of e1/e. We believe that the
fact that the same expression e1/e appears at two places is coincidence and does not point
to some hidden relationship. In particular, Barman et al.’s algorithm computes the optimal
allocation for the instances which [5] uses to demonstrate the integrality gap.

2.4 Guarantees for Individual Agents
The allocation computed by our algorithm is Pareto-optimal and maximizes NSW up to a
factor 1.45. It also gives any uncapped agent i the guarantee minj∈xk Pk(xk−j) ≤ (1+ε)Pi(xi)
for every other agent k. This guarantee is not meaningful for agent i. We now show that
it implies minj∈xk ui(xk − j) ≤ (2 + ε)ui(xi), i.e., the utility for i of k’s bundle minus one
item is essentially bounded by twice the utility of i’s bundle for i. The proof shows that the
additional utility for i of the items that k has in excess of i up to one item is bounded by
(1 + ε)ui(xi). In the case of one copy per good, xk and xi are disjoint and hence any item in
xk is in excess of i’s possession of the same good.

B.R. Chaudhury, Y. K. Cheung, J. Garg, N. Garg, M. Hoefer, and K. Mehlhorn 25:13

I Theorem 10. The allocation computed by the algorithm satisfies minj∈xk ui(xk − j) ≤
(2 + ε)ui(xi) for any agent k and any uncapped agent i.

Proof. Let g be such that uk(xk − g) = minj∈xk uk(xk − j). Then

ui(xk − g) ≤ ui(xi ∪ xk − g) more never harms

= ui(xi) +
∑
j

m(j,xk∪xi−g)∑
`=m(j,xi)+1

ui,j,`

≤ ui(xi) +
∑
j

m(j,xk∪xi−g)∑
`=m(j,xi)+1

αipj since ui,j,`/pj ≤ αi for ` > m(j, xi)

≤ ui(xi) +
∑
j

m(j,xk−g)∑
`=1

αipj

≤ ui(xi) +
∑
j

m(j,xk−g)∑
`=1

αi
uk,j,`
αk

since uk,j,`/pj ≥ αk for k ≤ m(j, xk)

≤ ui(xi) + αipk(xk − g) definition of Pk(xk − g)
≤ ui(x) + αi(1 + ε)Pi(xi) since Pk(xg − g) ≤ Pi(xi)
= (2 + ε)ui(xi) since ui(xi) = αiPi(xi). J

2.5 Polynomial Running Time
The analysis follows Barman et al. with one difference. Lemma 12 is new. For its proof, we
need the revised definition of β3.

I Lemma 11. The price of the least spending uncapped agent is non-decreasing.

Proof. This is clear for price increases. Consider a sequence of swaps along an improving path
P = (i = a0, g1, a1, . . . , gh, ah), where the agent ah loses a good, the agents a`, h′ < ` < h,
lose and gain a good, and the agent ah′ gains a good. By Lemma 1, all agents a` with
h′ < ` ≤ h have a price of at least (1 + ε)Pi(xi) after the swap. Also the price of agent ah′
does not decrease. J

I Lemma 12. For any agent k, let jk be a highest price item in xk. Then maxk Pk(xk −
jk) does not increase in the course of the algorithm as long as this value is above (1 +
ε) minuncapped i Pi(xi). Once maxk Pk(xk − jk) ≤ (1 + ε) minuncapped i Pi(xi), the algorithm
terminates.

Proof. We first consider price increases and then a sequence of swaps.
Consider any price increase which is not the last. Then β4 ≤ β3. Let h be the least

uncapped spender after the price increase and q be the price vector after the increase. Then
Qh(xh) ≤ Qi(xi) ≤ rQh(xh). For k ∈ S, we have minjQk(xk − j) ≤ (1 + ε)Qi(xi) ≤
(1 + ε)rQh(xh), i.e., agents in S can become violators but we can bound how bad they can
become. For the agent k 6∈ S defining β3, we have

min
j
Pk(x` − j) = β3(1 + ε)rPi(xi) ≥ (1 + ε)rQi(xi) ≥ (1 + ε)rQh(xh)

and hence the worst violator stays outside S. We used the equality r = 1 + ε and the
inequality Qi(xi) = βPi(xi) ≤ β3Pi(xi) in this derivation.

FSTTCS 2018

25:14 On Fair Division for Indivisible Items

Consider next a sequence of swaps. We have an improving path from i to k, say
P = (i = a0, g1, a1, . . . , gh, ah = k). Let x′ be the allocation after the sequence of swaps. Then
minj Pk(x′k − j) ≤ minj Pk(xk − j) since k looses a good and minj P`(x′` − j) ≤ (1 + ε)Pi(xi)
for all ` ∈ [0, h− 1] by Lemma 2. J

I Lemma 13. The number of subsequent iterations with no change of the least spending
agent and no price increase is bounded by n2M .

Proof. Let i be the least spending agent. We count for any other agent k, how often the
improving path can end in k. For each fixed length of the improving path, this can happen
at most M times (for details see [3]). The argument is similar to the argument used in the
strongly polynomial algorithms for weighted matchings [7]. J

I Lemma 14. If the least spending uncapped agent changes after a price increase, the value
of the old least spending uncapped agent increases by a factor of at least r.

Proof. The least uncapped spender changes if β = β4 and β4 is at least r. So Pi(xi) increases
by at least r. J

I Theorem 15. The number of iterations is bounded by n3M2 logrMU .

Proof. Divide the execution into maximum subsequences with the same least spender.
Consider any fixed agent i and the subsequences where i is the least spender. At the end of
each subsequence, i receives an additional item, or we have a price increase. In the latter
case, Pi(xi) is multiplied by at least r. Consider the subsequences between price increases.
At the end of a subsequence i receives an additional item. It may or may not keep this item
until the beginning of the next subsequence. If there are more than M subsequences with i
being the least spender, there must be two subsequences such that i looses an item between
these subsequences. According to Lemma 2, the value of i after the swap is at least r times
the minimum price of any bundle and hence at least r times the price of bundle i when i was
least spender for the last time. Thus Pi(xi) increases by a factor of at least r.

We have now shown: After at most M · n2M iterations with i being the least spender,
Pi(xi) is multiplied by a factor r. Thus there can be at most n2M2 logrMU such iterations.
Multiplication by n yields the bound on the number of iterations. J

3 A Lower Bound on the Approximation Ratio of the Algorithm

We show that the performance of the algorithm is no better than 1.44. Let k, s and K be
positive integers with K ≥ k which we fix later. Consider the following instance. We have
h = s(k − 1) goods of value K and n = h+ s goods of value 1. There is one copy of each
good. The number of agents is n and all agents value the goods in the same way.

The algorithm may construct the following allocation. There are h agents that are
allocated a good of value 1 and a good of value K and there are s agents that are allocated
a good of value 1. This allocation can be constructed during initialization. The prices are
set to the values and the algorithm terminates.

The optimal allocation will allocate a good of value K to h players and spread the
h + s = sk goods of value 1 across the remaining s agents. So s agents get value k each.
Thus

NSW(OPT)
NSW(ALG) =

(
Khks

(K + 1)h

)1/(h+s)

=
((

K

K + 1

)(k−1)s
ks

)1/ks

=
(

K

K + 1

)(k−1)/k
k1/k.

B.R. Chaudhury, Y. K. Cheung, J. Garg, N. Garg, M. Hoefer, and K. Mehlhorn 25:15

c

1 nh n−k+1

uhu1

delta

Figure 2 The allocation constructed in the proof of Theorem 16. The dashed line above agents 1
to n− k indicates the utility caps. The solid rectangles visualize the values of the bundles.

The term involvingK is always less than one. It approaches 1 asK goes to infinity. The second
term k1/k has it maximal value at k = e. However, we are restricted to integral values. We
have 21/2 = 1.41 and 31/3 = 1.442. For k = 3, (K/(K + 1))2/3 = exp(2

3 ln(1− 1/(K + 1))) ≈
exp(− 2

3(K+1)) ≈ 1− 2
3(K+1) . So for K = 666, the factor is less than 1− 1/1000 and therefore

NSW(OPT)/NSW(ALG) ≥ 1.440.

4 Certification of the Approximation Ratio

How can a user of an implementation of the algorithm be convinced that the solution returned
has a NSW no more than 1.445 times the optimum? She may read this paper and convince
herself that the program indeed implements the algorithm described in this article. This is
unsatisfactory [11]. In this section, we describe an alternative certificate.

The algorithm returns an allocation xalg, prices pj for the goods, and MBB-ratios αi for
the agents. After scaling all utilities and the utility gap of agent i by αi, we have (3). The
user needs to understand that this scaling has no effect on the optimal allocation. As in
Section 2.3, we introduce the auxiliary problem with M =

∑
j kj goods and one copy of each

good. The goods have uniform utilities. The user needs to understand that the NSW of the
auxiliary problem is an upper bound (Lemma 6). We are left with the task of convincing the
user of an upper bound on the NSW of the auxiliary problem.

I Theorem 16. Let c1 ≥ c2 ≥ . . . ≥ cn be the utility caps of the agents, let u1 ≥ u2 ≥ . . . ≥
uM be the utilities of the M goods of the auxiliary problem, and let xoptaux be an optimal
allocation for the auxiliary problem. Then

NSW(xoptaux) ≤

 ∏
1≤i≤h

min(ci, ui) · δn−h−k ·
∏

n−k+1≤i≤n
ci

1/n

,

where δ =
(∑

h+1≤j≤M uj −
∑
n−k+1≤i≤n ci

)
/(n− h− k) and h and k are such that h <

n− k and cn−k+1 ≤ δ < cn−k and δ < uh. The right hand side is illustrated in Figure 2.

Proof. We insist that the goods 1 to h are allocated integrally and allow the remaining
goods to be allocated fractionally. Clearly, we cannot allocate more than ci to any agent, in
particular, not to agents n− k + 1 to n and to agents 1 to h. The optimal way to distribute
value

∑
h+1≤j≤M uj to agents h+ 1 to n is clearly to allocate δ each to agents h+ 1 to n− k

which all have a cap of more than δ and to the assign their cap to agents n− k+ 1 to n. The
items u1 to uh of value more than δ are best assigned to the agents with the largest utility

FSTTCS 2018

25:16 On Fair Division for Indivisible Items

caps. Assume that two such items, say u` and uk, are allocated to the same agent. Then
one of the first h agents is allocated no such item; let v be the value allocated to this agent.
Moving uk to this agent and value min(uk, v) from this agent in return, does not decrease
the NSW. Also, if any fractional items are assigned in addition to the first h agents, we move
them to agents h+ 1 to n− k and increase the NSW. This establishes the upper bound. J

The upper bound can be computed in time O(n2 + M). We conjecture that it can be
computed in linear time O(n+M). We also conjecture that the bound is never worse than
the bound used in the analysis of the algorithm. It can be better as the following example
shows. We have two uncapped agents and three goods of value u1 = 3, u2 = 1 and u3 = 1,
respectively. The algorithm may assign the first two goods to the first agent and the third
good to the second agent. The set B in the analysis of the algorithm consists of the first
good and the last good. Then ` = 1. The optimal allocation allocates 3 to the first agent
and 2 to the second agent. Thus α` = 2. The analysis uses the upper bound

√
4 · 2 for the

NSW of the optimal allocation. The theorem above gives the upper bound
√

3 · 2; note that
h = 1, k = 0, and δ = 2.

5 Envy-Freeness up to one Copy

For the case of additive valuations and one copy of each good, the optimal allocation is
envy-free up to one good as shown in [4]. Also the allocation constructed by the algorithm by
Barman et al. [3] is envy-free up to one good. In this section, we show that these properties
hold neither for the multi-copy case nor for the capped case.

We first give an example for the multi-copy uncapped case. There are two agents and
two goods. Good 1 has 5 copies, and good 2 has 2 copies. For the first agent, the utility
vector for good 1 is (1, 1, 0, 0, 0) and for good 2 is (δ, 0), where δ = 1/4. For the second agent,
the utility vector for good 1 is (1, 1, 1, 0, 0) and for good 2 is (1, 1). Then at the optimal
NSW allocation, the first agent is allocated two copies of good 1 and none of good 2, while
the second agent is allocated three copies of good 1 and two copies of good 2. Clearly, the
first agent envies the second agent even after removing one copy (of either good) from the
allocation of the second agent. However, u1(x2) = 2 + δ.

What does the algorithm do? The initial assignment constructs the optimal assignment
and sets p1 = p2 = α1 = α2 = 1. Agent 1 is the least spending uncapped agent. The
constraints on α1 are [0, 1] by the first good and [δ, 1] by the second good. The tight graph
consists only of agent 1. We enter the else-case of the main loop with S = 1. Then β1 = 1/δ,
β2 =∞, β3 = 4/(2r2) = 2/r2 and β4 = r1+blogr 5/2c ≥ β3. Thus β = β3. We decrease α1to
r2/2 ≈ 1/2 and terminate. The optimal allocation is now ε-p-envy free up to one copy.

For the linear capped case, again we have two agents, and this time we have four goods
with one copy each. The utility vectors of both agents are (1, 1, 1, 1), but the first agent is
capped at 1 + δ, while the second agent is uncapped. Again δ = 1/4. Then the optimal NSW
allocation allocates one good to the first agent and three goods to the second agent. Clearly,
the first agent envies the second agent, even after removing one good from the allocation of
the second agent.

What does the algorithm do? It may construct the optimal assignment during initialization;
the prices of all four goods and both α-values are set to one. Agent 1 is the least spending
uncapped agent. The tight graph consists of the edges from agent 1 to the goods owned by
agent 2 and from these goods to agent 1. An improving path exists and one of these goods is
reassigned to agent 1. The algorithm terminates with an allocation in which both agents
own two goods.

B.R. Chaudhury, Y. K. Cheung, J. Garg, N. Garg, M. Hoefer, and K. Mehlhorn 25:17

References
1 Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. Nash Social Welfare,

Matrix Permanent, and Stable Polynomials. In ITCS, pages 36:1–36:12, 2017. doi:10.
4230/LIPIcs.ITCS.2017.36.

2 Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V. Vazirani. Nash Social Welfare
for Indivisible Items under Separable, Piecewise-Linear Concave Utilities. In SODA, pages
2274–2290, 2018. doi:10.1137/1.9781611975031.147.

3 Siddharth Barman, Sanath Kumar Krishna Murthy, and Rohit Vaish. Finding Fair and
Efficient Allocations. CoRR, abs/1707.04731, 2017. to appear in EC 2018. arXiv:1707.
04731.

4 Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah,
and Junxing Wang. The Unreasonable Fairness of Maximum Nash Welfare. In EC, pages
305–322, 2016. doi:10.1145/2940716.2940726.

5 Richard Cole, Nikhil R. Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V. Vazi-
rani, and Sadra Yazdanbod. Convex Program Duality, Fisher Markets, and Nash Social
Welfare. In EC, pages 459–460, 2017. doi:10.1145/3033274.3085109.

6 Richard Cole and Vasilis Gkatzelis. Approximating the Nash Social Welfare with Indivisible
Items. In STOC, pages 371–380, 2015. doi:10.1145/2746539.2746589.

7 J. Edmonds and R.M. Karp. Theoretical Improvements in algorithmic efficiency for network
flow problems. J. ACM, 19:248–264, 1972.

8 E. Eisenberg and D. Gale. Consensus of subjective probabilities: The Pari-Mutuel method.
The Annals Math. Statist., 30:165–168, 1959.

9 Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Approximating the Nash Social Welfare
with Budget-Additive Valuations. In SODA 2018, pages 2326–2340, 2018. doi:10.1137/
1.9781611975031.150.

10 Euiwoong Lee. APX-hardness of maximizing Nash social welfare with indivisible items. Inf.
Process. Lett., 122:17–20, 2017. doi:10.1016/j.ipl.2017.01.012.

11 R.M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Com-
puter Science Review, 5(2):119–161, 2011. doi:10.1016/j.cosrev.2010.09.009.

12 Hervé Moulin. Fair division and collective welfare. MIT Press, 2003.
13 J. Nash. The Bargaining Problem. Econometrica, 18:155–162, 1950.
14 Nhan-Tam Nguyen, Trung Thanh Nguyen, Magnus Roos, and Jörg Rothe. Computa-

tional complexity and approximability of social welfare optimization in multiagent re-
source allocation. Autonomous Agents and Multi-Agent Systems, 28(2):256–289, 2014.
doi:10.1007/s10458-013-9224-2.

FSTTCS 2018

http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.36
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.36
http://dx.doi.org/10.1137/1.9781611975031.147
http://arxiv.org/abs/1707.04731
http://arxiv.org/abs/1707.04731
http://dx.doi.org/10.1145/2940716.2940726
http://dx.doi.org/10.1145/3033274.3085109
http://dx.doi.org/10.1145/2746539.2746589
http://dx.doi.org/10.1137/1.9781611975031.150
http://dx.doi.org/10.1137/1.9781611975031.150
http://dx.doi.org/10.1016/j.ipl.2017.01.012
http://dx.doi.org/10.1016/j.cosrev.2010.09.009
http://dx.doi.org/10.1007/s10458-013-9224-2

	Introduction
	Algorithm and Analysis
	A Reduction to Rounded Utilities and Caps
	The Algorithm
	Analysis of the Approximation Factor
	Guarantees for Individual Agents
	Polynomial Running Time

	A Lower Bound on the Approximation Ratio of the Algorithm
	Certification of the Approximation Ratio
	Envy-Freeness up to one Copy

