
A Truthful Mechanism for Interval
Scheduling

Jugal Garg and Peter McGlaughlin(B)

University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
{jugal,mcglghl2}@illinois.edu

Abstract. Motivated by cloud computing, we study a market-based
approach for job scheduling on multiple machines where users have hard
deadlines and prefer earlier completion times. In our model, completing a
job provides a benefit equal to its present value, i.e., the value discounted
to the time when the job finishes. Users submit job requirements to the
cloud provider who non-preemptively schedules jobs to maximize the
social welfare, i.e., the sum of present values of completed jobs. Using a
simple and fast greedy algorithm, we obtain a 1+s/(s−1) approximation
to the optimal schedule, where s > 1 is the minimum ratio of a job’s
deadline to processing time. Building on our approximation algorithm,
we construct a pricing rule to incentivize users to truthfully report all
job requirements.

1 Introduction

Cloud computing’s explosive growth over the past decade is attributable to its
flexible computing resources and the economy of scale provided by large data
centers. This framework allows users to rent computing resources on demand,
avoiding the need for costly infrastructure investment. Typically, pricing is pay-
as-you-go where users pay per unit time. While simple, this pricing scheme
does not reflect current market conditions, i.e., user demand versus the cloud
provider’s capacity, nor does it account for important job requirements such as
deadlines.

We investigate an alternative market based approach for the fair allocation
of reusable resources by introducing a new scheduling problem, Present Value
Scheduling (PVS). Abstractly, the problem is to non-preemptively schedule jobs
with hard deadlines on m identical machines. Each job Ji = (vi, ti, di) is defined
by a processing time ti, a deadline di, and a value vi if completed immediately.
Users prefer earlier completion times, leading job values to decay over time as
determined by the discount factor 0 < β < 1 shared by all jobs. Then, completing
job Ji at time τ ∈ [ti, di] provides a benefit of viβ

τ . Note that this is the job’s
present value, the standard economic model for the time value of money.

Users submit job requests to the cloud provider who determines an allocation
of resources based on the jobs’ requirements with the objective of maximizing

J. Garg—Supported by NSF CRII Award 1755619.

c© Springer Nature Switzerland AG 2018
X. Deng (Ed.): SAGT 2018, LNCS 11059, pp. 100–112, 2018.
https://doi.org/10.1007/978-3-319-99660-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99660-8_10&domain=pdf

A Truthful Mechanism for Interval Scheduling 101

social welfare, i.e. the sum of present values of completed jobs. The inherently
difficult scheduling problem is further complicated as users may misreport any
job parameter (vi, ti, di) in an effort to increase their utility, defined as present
value minus payment. We aim to construct scheduling and pricing rules to incen-
tivize truthful reporting of all job information.

Our Contribution. This paper addresses a fundamental issue in mechanism
design, non-preemptive job scheduling for social welfare maximization. Our
model, PVS, includes the natural preference for early completion times by dis-
counting the value of job to the time when it finishes. In other words, we consider
maximizing the present value of completed jobs.

PVS is a special case of interval scheduling with arbitrary values, i.e., a job’s
value is an arbitrary function of time. Theoretical work in this area centers
on constant factor approximations as the allocation (scheduling) problem is NP-
hard. However, most existing algorithms do not ensure truthfulness. While there
is a black-box method to construct truthful mechanisms from these approxima-
tions, the conversion comes at high computational cost. Fortunately, PVS pro-
vides sufficient structure to achieve a deterministic truthful mechanism through
simple and efficient allocation and pricing rules.

First we provide a 1 + s/(s − 1) approximation to PVS for any discount
factor 0 < β < 1, where s = mini di/ti > 1. Our algorithm greedily schedules
jobs in decreasing order of weights wi = viβ

ti/(1 − βti) on the machine which
gives the earliest completion time, as long as jobs complete by their deadlines.
Our method achieves significantly faster run time compared to other applicable
approximations which do not require truthfulness, an important consideration
for large scale problems encountered in practice. The 1 + s/(s − 1) bound is
essentially tight for β ≈ 1 and s � 1. However, it is conservative for β � 1 or
s ≈ 1. Second, we show a few key properties of our greedy approximation algo-
rithm that allow an extension of Myerson’s lemma [12] to PVS. As a result, we
obtain a deterministic mechanism which is truthful with respect to all parame-
ters (vi, ti, di).

1.1 Related Work

We provide a survey of related work in interval scheduling and mechanism design,
taking care to highlight competing approaches to design truthful mechanisms
for PVS.

Interval Scheduling. The allocation problem’s theoretical foundations lie in
interval scheduling. Essentially the discrete version of machine scheduling, each
job is defined by explicitly listing all available scheduling times (intervals), with
each interval potentially providing a different value. In other words, jobs’ values
are arbitrary functions of time. Nearly all versions of the problem are NP-hard,
confining theoretical work to constant factor approximations. We focus on the
best known approximations applicable to PVS and note that none of the follow-
ing works require truthfulness.

102 J. Garg and P. McGlaughlin

Bar-Noy et al. [3] presents a 2 approximation based on LP rounding. Their
algorithm starts by finding the optimal fractional allocation to the natural LP
relaxation of the problem. The fractional solution is rounded into a set of polyno-
mially many integer valued (feasible) solutions using a graph coloring argument,
the largest of which yields at least 1/2 the optimal schedule’s value. Bar-Noy
et al. [2] uses the local ratio technique to derive a combinatorial 2 approximation
in a generalization of interval scheduling where each job has a width. Indepen-
dently, Berman and DasGupta [4] obtained a similar algorithm which achieves
better runtime by specializing to the standard interval scheduling problem.

Mechanism Design. There is extensive literature on scheduling in the context
of mechanism design, starting with the seminal work of Nisan and Ronen [13].
However, the majority of existing literature focuses on makespan minimization,
e.g., see [9,11]. One particularly interesting and relevant approach for PVS is the
black-box method of Lavi and Swamy [10] which converts approximation algo-
rithms for set packing problems to truthful randomized mechanisms with the
same approximation ratio. The procedure starts by applying a fractional VCG
mechanism to the natural LP relaxation of the problem. Using the approximation
algorithm as a separation oracle, the rescaled fractional allocation is decomposed
into a convex combination of integer valued allocations. These integer solutions
provide a truthful in expectation randomized mechanism with the same perfor-
mance guarantees as the initial approximation algorithm. Although applicable
to the previously mentioned interval scheduling approximations, and therefore
PVS, the technique raises practical concerns for computational efficiency. First,
one must solve an LP with a large number of variables and constraints multi-
ple times for the fractional VCG mechanism. Then, decomposing the fractional
allocation requires multiple calls to the approximation algorithm.

Recent work in the related field of batch computing in cloud systems offers
an alternative to the black-box method. Batch computing generalizes interval
scheduling by allowing jobs to run on multiple machines in parallel, up to a given
threshold. Drawing on the LP rounding approximation of [3] and the black-box
method of [10], Jain et al. [6] construct a truthful in expectation mechanism
which approaches a 2 approximation as the number of machines goes to infin-
ity. Requiring only one solution to the natural LP relaxation, their mechanism
addresses some of the computational efficiency issues of the black-box approach,
and it also allows job values to be arbitrary non-increasing functions of time.

In the preemptive version of batch computing, Jain et al. [7] develop a deter-
ministic truthful mechanism with near optimal performance as the number of
machines goes to infinity under a slackness condition on jobs, i.e., a lower bound
on the ratio of a job’s deadline to its processing time di/ti. From the perspec-
tive of PVS, this paper is of interest as the allocation rule is akin to our own.
Their approximation greedily schedules jobs in decreasing order of value density
vi/ti, the natural analog of our weights wi when the discount factor β = 1.
Azar et al. [1] extend this mechanism to the online setting. We note both works
assume job values are constant over time.

A Truthful Mechanism for Interval Scheduling 103

2 Definitions and Notation

PVS Model. In PVS a set of n jobs, J = {J1, . . . ,Jn}, compete for processing
time on m identical machines. Each job Ji is defined by the tuple (vi, ti, di)
where: vi is the job’s valuation, ti is the job’s processing time, and di is the job’s
deadline. Note that under the identical machines assumption, a job’s processing
time is the same on all machines. We assume integer valued processing times
and deadlines, though techniques generalize naturally to positive real values.
The value of completing a job decays over time, determined by the discount
factor 0 < β < 1 shared by all jobs. Specifically, the value of completing job Ji

at time τ ∈ [ti, di] is viβ
τ .

A schedule for machine j is an ordered subset of jobs: Sj = {Jk1 , . . . ,Jka
}

⊆ J , to be completed in the given order, i.e., Jk1 is completed first, then Jk2 and
so on. The value of a schedule on machine j is the sum of values of completed jobs.
That is, if Sj = {Jk1 , . . . ,Jka

}, then job Jki
completes at time τki

=
∑i

b=1 tkb

and the value of the schedule Sj is: V (Sj) =
∑a

i=1 vki
βτki . A full schedule

consists of a schedule for each machine: S = {S1, . . . , Sm}. We will simply say
schedule when the distinction between full and machine specific schedules is
clear. A schedule is feasible if each job is contained in no more than one machine
schedule: Si ∩ Sj = ∅, ∀i, j. In words, each job is processed at most once across
all machines. The social welfare maximizing schedule S∗ is the feasible schedule
with maximum value: V (S∗) ≥ V (S) for all feasible S. We will often refer to the
social welfare maximizing schedule simply as the optimal schedule. We call the
problem of finding the optimal schedule the allocation problem. We say that a
schedule S is an α approximation (to optimal schedule) if V (S) ≥ V (S∗)/α.

Mechanisms. A mechanism M is an algorithm to produce an allocation (sched-
ule) and a set of payments pi. Each job in a schedule Ji ∈ S is charged a pay-
ment pi, earning utility ui(Ji,J−i) = viβ

τi − pi, where τi > 0 is time when
Ji completes. Note pi = 0 for all Ji ∈ J \ S. Further, we assume agents
receive no benefit for partially completing their job, or completing their job
after their deadline. Jobs seek to maximize utility. The true parameters of a job
Ji = (vi, ti, di) are private information and a job may misreport any or all of the
values J ′

i = (v′
i, t

′
i, d

′
i) to gain higher utility. A mechanism is truthful if accurately

reporting all job parameters is a dominant strategy: ui(Ji,J−i) ≥ ui(J ′
i ,J−i),

∀J ′
i . In words, truthfully reporting job parameters maximizes utility. We say a

mechanism is social welfare maximizing if the scheduling algorithm returns the
social welfare maximizing schedule S∗, and an α approximation if it returns an
α approximation.

3 Approximation for PVS

Due to space restrictions, we do not provide all proofs. Complete, detailed proofs
can be found in the full version of this paper. Our first goal is solving the PVS
allocation problem, i.e., maximizing the present value of completed jobs. In the

104 J. Garg and P. McGlaughlin

Algorithm 1. Greedy Scheduling Algorithm (GS)
Input : Job parameters (vi, ti, di) for each job Ji

Output: Schedule S of jobs

1 Define: wi = viβti

1−βti

2 Sort and relabel jobs in descending order of wi

3 Sj ← ∅, j = 1, . . . , m (schedule on machine j)
4 τj ← 0, j = 1, . . . , m (total processing time of machine j)
5 k = 1 (machine offering fastest completion time)
6 for i = 1 to n do
7 if τk + ti ≤ di then
8 Sk ← (Sk, Ji); τk ← τk + ti; k ∈ arg minj τj

full version of this paper, we show that this problem is strongly NP-hard. For
this reason, we design a greedy algorithm which achieves a 1+s/(s−1) approxi-
mation to the optimal schedule, where s = mini di/ti > 1. Before presenting our
algorithm, it is instructive to consider a simpler scheduling problem on single
machine without deadlines. This special case admits an exact solution.

Proposition 1. Define the weight of job Ji as:

wi =
viβ

ti

1 − βti
. (1)

If there is a single machine, and there are no deadlines, then placing jobs in
decreasing order of wi maximizes the social welfare.

This result follows from a simple interchange argument. Proposition 1 pro-
vides the basis for a natural greedy approximation: schedule jobs in decreasing
order of weights wi = viβ

ti/(1−βti) on the machine providing the earliest com-
pletion time, as long as jobs complete by their deadlines. A formal algorithm is
shown in Greedy Scheduling Algorithm (GS). Despite its simplicity, GS provides
performance guarantees for any discount factor 0 < β < 1, under an assumption
on the minimum slackness of any job s = mini di/ti > 1.

Theorem 1. Assume the minimum slackness of any job s = mini di/ti > 1,
then GS provides an approximation of 1+s/(s−1) to the PVS allocation problem.

Remark 1. Intuitively, the assumption s > 1 means all agents are willing to
wait at least a small amount of time proportional to the length of their job. For
some applications, it is plausible that s ≈ 1 making the performance guarantee
vacuous. However, this bound is conservative for s ≈ 1. In the full version of this
paper, we show the actual approximation factor approaches (2− β)/(1 − β) as s
goes to 1. Meaning GS gives a constant factor approximation for all β < 1. For
practical application, we assume that cloud providers can use historical data to
estimate s for their platform and assess our mechanism’s guarantee from there.

A Truthful Mechanism for Interval Scheduling 105

3.1 Analysis of GS

The analysis of GS relies on dual fitting, an approach for proving approximation
guarantees on greedy algorithms [16]. At a high level, we consider an LP relax-
ation of PVS and its dual. For any dual feasible variables λ, define cost(λ) as the
value of the dual problem evaluated at λ. Abusing notation, let GS be the value
of the greedy schedule. Suppose we can show αGS ≥ cost(λ) for some α ≥ 1,
then weak duality implies GS is an α approximation to the optimal schedule.
Under standard terminology, we say the algorithm GS is charged α to pay for
the dual variables λ.

LP Relaxation of PVS and its Dual. We begin with the natural LP relax-
ation of PVS and its dual. Let Ii(t) = {s : s ≤ di, t ≤ s ≤ t + ti − 1} be the set
of feasible finishing times for job Ji that overlap the time interval [t− 1, t), then
an Integer Programming formulation of PVS is:

max
x

n∑

i=1

∑

t∈[ti,di]

viβ
txi,t (P)

subject to:
1
m

∑

i:di≥t

∑

s∈Ii(t)

xi,s ≤ 1 t = 1, 2, . . . , T (C1)

∑

t∈[ti,di]

xi,t ≤ 1 i = 1, 2, . . . , n (C2)

xi,t ∈ {0, 1} ∀i, t,

where T = maxi di, is the last deadline. Here, the variables xi,t indicate that
job Ji finishes at time t ∈ [ti, di]. The constraints (C1) require that at most m
jobs are scheduled at any point in time, and the constraints (C2) require that
each job is scheduled at most once. We obtain the natural LP relaxation with
xi,t ≥ 0. Note that the constraints xi,t ≤ 1 are redundant due to (C2).

The dual problem has a simple form. There is one dual variable γi for each
job, and there is one dual variable λt for each time slot t = 1, 2, . . . , T . Note that
we define time slots in terms of their right endpoints, so that λt corresponds to
the time interval (t − 1, t]. The dual problem is:

min
λ,γ

n∑

i=1

γi +
T∑

t=1

λt (D)

subject to: γi +
1
m

t∑

s=t−ti+1

λs ≥ viβ
t ∀i, ∀t ∈ [ti, di] (C3)

γi ≥ 0, ∀i, λt ≥ 0, ∀t

Note that, for each job Ji there is exactly one constraint for each possible
finishing time t ∈ [ti, di].

106 J. Garg and P. McGlaughlin

Approximation Guarantee. First we show how to construct dual feasible γ
and λ to satisfy (C3) for jobs used by GS. For each time slot t = 1, . . . , T , there
are at most m jobs processing in the greedy schedule, say Jk1 , . . . ,Jkm

. These
jobs have weights wk1 , . . . , wkm

. We set:

λt =
m∑

j=1

wkj
(1 − β)βt−1. (2)

Suppose GS finishes job Ji at time τi, then we set:

γi = viβ
τi (3)

and γi = 0 otherwise.

Lemma 1. The dual variables γ and λ ensure dual constraints (C3) are satisfied
for each job Ji used in GS.

Proof (Sketch). We consider the three cases:

Case 1: (C3) for t ≥ τi. From (3): γi + 1
m

t∑

l=t−ti+1

λl ≥ γi ≥ viβ
t .

Case 2: (C3) for t ≤ τi − ti. GS schedules jobs in decreasing order of weight on
the machine providing the earliest completion time. Since Ji starts processing
at time slot τi − ti ≥ t, GS must be processing m jobs with higher weight than
wi for all times l ≤ t. By (2):

γi +
1

m

t∑

l=t−ti+1

λl ≥ 1

m

t∑

l=t−ti+1

λl ≥
t∑

l=t−ti+1

wi(1 − β)βl−1 = βt−tiwi(1 − βti) = viβ
t.

The last equality follows from: wi(1−βti) = viβ
ti , which is easily seen from (1).

Case 3: (C3) for τi − ti < t < τi. This case is handled with a technique similar
to Case 2. �

We still need to satisfy (C3) for jobs not used in GS. This is easy if GS always
uses jobs with higher weight up to the unused job’s deadline. That is, suppose
job Jj is not used in GS, and for all t ≤ dj GS uses a job Ji with wi ≥ wj ,
then all of Jj ’s dual constraints are satisfied. The argument is essentially the
same as Case 2 of Lemma 1. If this is not true, then there is some smallest time
u < dj so that for all time slots t ∈ [u + 1, dj] GS uses a job with lower weight
on some machine. We call Jj a missed job. Covering dual constraints for missed
jobs is the most challenging part of proof. For clarity, we present the remaining
argument for a single machine. We show how to generalize the result to multiple
machines in the full version of this paper.

Let Jj be a missed job. Note that dj − tj is the last time we can start
processing Jj and have it finish before its deadline. Let Jk be the job used by
GS during this time slot, and τk be the time it completes. Since GS schedules jobs
in decreasing order of weight, wk ≥ wj and u > τk ≥ dj − tj +1. We say that Jj

A Truthful Mechanism for Interval Scheduling 107

is missed at time τk. In our approach, we will go through each job Jk in GS and
cover dual constraints for any missed jobs at τk by increasing λt’s. Let w(t) be
the weight of job GS uses at time t. To cover all of Jj ’s dual constraints, we need
to increase λt’s by: λ̂t = (wj −w(t))(1−β)βt−1, for all times slots t ∈ [u+1, dj].
This follows from (2), since λt + λ̂t = w(t)(1 − β)βt−1 + (wj − w(t))(1 − β)βt−1

so that:

u∑

t=dj−tj+1

λt +

dj∑

t=u+1

(
λt + λ̂t

)
=

u∑

t=dj−tj+1

wk(1 − β)βt−1 +

dj∑

t=u+1

wj(1 − β)βt−1 ≥ vjβdj .

We pay for the λ̂t’s using a portion of the value of GS up to time τk. In fact,
we will show that an extra 1/(s− 1) copies of the greedy schedule are enough to
pay for the increased cost in dual variables for all missed jobs.

Let Q(τk) be the pool of resources available to cover the additional costs
λ̂t’s needed to satisfy dual constraints for any missed jobs at τk. Formally, we
set Q(τ1) = v1β

τ1/(s − 1), the discounted value of the first job used by the
greedy schedule scaled by 1/(s − 1). We use Q(τ1) to pay C(τ1) =

∑dj

t=u+1 λ̂t,
the cost of covering (C3) for all missed jobs at τ1. Suppose J2 is the second job
used by GS, then the available resources to pay for missed jobs at time τ2 is:
Q(τ2) = Q(τ1)−C(τ1)+ v2β

τ2/(s− 1). In words, the available resources at time
τ2 are the resources remaining after covering all missed jobs up to time τ1 plus
the discounted value of the next job used in GS. Define Q(τk) similarly for all
times τk when GS completes job Jk. The following lemma provides a key result.

Lemma 2. Assume s = mini di/ti > 1, and let Jj be a missed job at time τk.
If Q(τk) satisfies:

Q(τk)
1 − βτk

≥ wj

s − 1
, (4)

then Q(τk) is enough value to pay for the λ̂t’s required to cover Jj’s dual con-
straints. In addition, if the next job used by the greedy schedule Jk+1 completes
after dj, then:

Q(τk+1)
1 − βτk+1

≥ wk+1

s − 1
. (5)

Lemma 2 is essentially a technical result, a proof is provided in the full paper.

Proof (Theorem 1). Lemma 1 shows that setting λ and γ according to (2) and
(3) respectively satisfies all dual constraints for jobs used in the greedy schedule.
Clearly, this costs two copies of GS.

Lemma 2 implies that 1/(s − 1) extra copies of GS are enough to cover dual
constraints of all missed jobs. We start with J1 the first job of GS. Let Jj be
the missed job at τ1 with longest processing time. We may assume that Jj also
has the highest weight of all missed jobs at time τ1 since this means Jj is the
missed job with the highest value. Therefore, satisfying (C3) for Jj will satisfy
(C3) for all other missed jobs at τ1. Since GS schedules jobs in decreasing order
of weight wj ≤ w1. By (1) and Q(τ1) = v1β

t1/(s − 1), condition (4) of Lemma 2

108 J. Garg and P. McGlaughlin

is satisfied. This means Q(τ1) is enough to pay for the increased cost of dual
variables needed to satisfy (C3) for all jobs missed at time τ1.

We only pay for a portion of required increase in dual variables now and
defer the remaining payment until time τ2, when the second job of GS com-
pletes. Specifically, at τ1 we only pay for the portion of wj which exceeds w2, i.e.
λ̂t = (wj − w2)(1 − β)βt−1 for t = τ1 + 1, . . . , dj . Effectively, this artificially
extends the deadline of J2 to dj , allowing application of the second condition
(5) of Lemma 2 to yield Q(τ2)/(1 − βτ2) ≥ w2/(s − 1). However, artificially
extending the deadline of J2 also increases the value of GS. To account for this,
we add a fictitious missed job Ĵj at time τ2 with weight w2, processing time
tj , and deadline dj . It is easily seen that this matches the value added to GS.
Further, all missed jobs at τ2, including the newly added fictitious job, have
weight less than w2 and (4) is satisfied again at τ2. As a result, Q(τ2) is enough
value to cover the cost of all missed jobs at τ2. Repeating the above argument
for each job used in the greedy schedule we see that our 1/(s − 1) extra copies
of GS are enough to pay for the dual constraints of all missed jobs. In total we
require 2 + 1/(s − 1) = 1 + s/(s − 1) copies of GS to construct dual feasible λ
and γ. �

The above proof extends easily from a single machine to m identically
machines. First we use wm(t) = m−1

∑m
i=1 w(t) in place of w(t) in Lemma 2.

Then, we proceed through the jobs of GS in increasing order of completion time,
covering missed jobs as we go. The full version of the paper provides all details.

Remark 2. The 1+s/(s−1) performance guarantee is essentially tight for β ≈ 1
and s ≥ 2. However, the bound is conservative for β � 1 or if s ≈ 1. This is
due to the somewhat loose analysis in Lemma 2. More careful treatment reveals
C(β, s) = βs−1(1 − β)/(1 − βs−1) copies of GS are sufficient to cover all missed
jobs, giving the performance guarantee of 1 + (1 − βs)/(1 − βs−1), showing the
algorithms dependence on β. We state the conservative bound since we assume
most applications require β close to 1. Indeed, β > 0.9 is common in economics
and finance literature.

4 Truthful Mechanism

Our 1 + s/(s − 1) approximation to the allocation problem is only half of the
mechanism design problem. As rational agents, job owners may lie about any or
all of their job’s parameters (vi, ti, di) to increase utility. We seek a pricing rule
to ensure truthful reporting is a dominate strategy. The task is well understood
in single parameter domains where the celebrated Myerson’s lemma [12] pro-
vides the unique payment rule for any monotone allocation rule. Multi-parameter
domains, as our own problem, present a challenge. VCG payments [14] create
a truthful mechanisms when the allocation problem can be solved exactly, but
many problems of interest require an approximation algorithm. It is known that
generalizations of monotonicity are necessary and sufficient in these situations,
see [5,8,15], but the conditions are difficult to check. Instead, we show a few

A Truthful Mechanism for Interval Scheduling 109

simple properties of the GS allocation rule allow us to construct a pricing rule
which yields a truthful mechanism. We note that this is an extension of a result
first obtained by Jain et al. in [7].

Properties of GS Allocation. We begin by introducing some notation used
throughout this section. In PVS, each agent i reports a bid bi = (vi, ri) of their
job’s value vi and requirements ri = (ti, di). Given the set of bids b = (b1, . . . , bn),
the cloud provider determines a completion time τi for i’s job. We say i receives
the allocation Ai(b) = βτi and note that i receives a value of viAi(b) = viβ

τi .
Assume bi = (vi, ri) are the agent’s true valuation and job requirements,

but they may misreport any of these values. If the agent submits a false bid
b′
i = (v′

i, r
′
i), the actual allocation they receive may be different from Ai(b′

i, b−i)
depending on their true requirements. For example, if an agent reports t′i > ti
and is scheduled for the time slot [0, t′i), then their actual allocation is the inter-
val [0, ti) as their job only requires ti units of processing time. Define Ai(b|r)
as the actual allocation received by agent i assuming the requirements r. Con-
tinuing the earlier example with t′i > ti, then Ai(b′

i, b−i|ri) = [0, ti). We assume
Ai(b′

i, b−i|r′) = Ai(b′
i, b−i). Finally, we note that the true benefit received from

bidding b′
i is viAi(b′

i, b−i|ri) and the utility received is:

ui(b′) = viAi(b′|ri) − pi(b′). (6)

We show how a few simple properties of the allocation Ai allow us to con-
struct a pricing rule pi(bi, b−i) which yields a truthful mechanism. For nota-
tional convenience, we drop the b−i argument and write Ai(v, r|r′) instead of
Ai(bi, b−i|r′) or pi(v, r) instead of pi(bi, b−i).

Definition 1: An allocation rule A is rational if for all agents i, all bids b−i, all
requirements r, r′: Ai(v, r′|r) > 0 =⇒ Ai(v, r′|r′) > 0.

Definition 2: An allocation rule A is value monotonic if for all agents i, all
bids b−i, all requirements r, r′, and all valuations v < v′:

Ai(v, r′|r) ≤ Ai(v′, r′|r). (7)

Definition 3: An allocation rule A is requirement monotonic if for all agents
i, all bids b−i, all requirements r, r′ the following property holds: if there exists
a v such that Ai(v, r′|r) > 0 then:

Ai(v, r′|r′) ≤ Ai(v, r′|r) and Ai(v′, r′|r′) ≤ Ai(v′, r|r),∀v′. (8)

Intuitively these definitions have the following meanings: Rationality says if
an allocation satisfies an alternative set of job requirements r, then it must also
satisfy the requested requirements r′. Value monotonicity asks that the alloca-
tion is non-decreasing in the valuation v after fixing a set of job requirements.
Finally, requirement monotonicity says if an allocation meets an alternate set
of requirements r, then these requirements must be easier to satisfy and will

110 J. Garg and P. McGlaughlin

always receive an allocation at least as good as the original request r′. Before
establishing that the GS algorithm satisfies these properties, we show how they
contribute to a truthful mechanism.

Proposition 2. Let A be a non-negative, rational, value monotonic and require-
ment monotonic allocation rule, then mechanism M(A, p) using the pricing rule:

pi(v, r) = vAi(v, r|r) −
v∫

0

Ai(x, r|r)dx (9)

is truthful and individually rational.

Note that the form of the payment rule is the same as that of Myerson’s
lemma, the important distinction being that jobs have additional requirements
which must be satisfied, e.g., complete before their deadline. This result is an
extension of [7] in which allocations are binary functions, i.e., jobs have con-
stant value and are either completed or not. In PVS, the allocation is piece-wise
constant. This means pricing rule (9) reduces to: the sum over (change in allo-
cation) * (value where the allocation changes). The derivation is similar to the
familiar single parameter case of Myerson’s lemma. For more details, see the full
version of the paper.

PVS Mechanism. Before showing GS satisfies the assumptions of Proposi-
tion 2, we impose a few natural constraints on what agents may misreport. It
is important to note that these are not additional assumptions, rather certain
types of misreporting are dominated by truthfulness. Therefore, a rational job
owner would not misreport values in these ways. We assume bi = (vi, ti, di) are
Ji’s true valuation and requirements, and b′

i = (v′
i, t

′
i, d

′
i) are alternative values.

First, agents may only misreport longer processing times t′i ≥ ti. This holds
since agents receive no benefit from partially completed jobs. As such, a job
owner reporting t′i < ti gains no benefit from any allocation but is charged a
non-negative price, implying ui(b′

i, b−i) ≤ 0. Therefore, no rational job owner
would report t′i < t. Second, we assume agents may only under report their
deadlines d′

i ≤ di. This case is similar to the first, completing a job after the
deadline provides no benefit but requires a non-negative payment creating the
possibility for negative utility. We now show that GS satisfies the conditions of
Proposition 2.

Proposition 3. The GS allocation is rational, price monotonic, and require-
ment monotonic.

These properties follow easily from the fact that GS greedily schedules jobs
in decreasing order of weight: wi = viβ

ti/(1 − βti), which is increasing in vi and
decreasing in ti. Full details are provided in the full paper. Proposition 3 shows

A Truthful Mechanism for Interval Scheduling 111

GS satisfies the assumptions of Proposition 2, providing a truthful mechanism
when using pricing rule (9). Combining this with Theorem1 we obtain:

Corollary 1. Assuming s = mini di/ti > 1, the mechanism consisting of the GS
allocation rule and the pricing rule (9) gives a truthful 1+s/(1−s) approximation
to the social welfare maximizing schedule.

5 Conclusion

In this paper, we propose a new scheduling problem, PVS, where jobs have hard
deadlines and their values decay over time. Our simple and fast greedy scheduling
algorithm, GS, provides reasonable performance guarantees under the relatively
mild assumption that users are willing to wait for at least a short period of
time, i.e. s > 1. Further, we exploit the greedy nature of GS to extend the
celebrated Myerson’s Lemma to a special multi-parameter domains where users
report processing time and deadline in addition to their job value. From this, we
obtain a mechanism for PVS which truthful with respect to all job parameters.

Our model does suffer from some over simplifications. Most notably, all users
must have the same discount factor β. Allowing user specific discount factor βi is
more realistic. Further, βi should be private information so that users report bids
bi = (vi, ti, di, βi). This presents interesting and challenging problems in both
the design of an approximation algorithm and a truthful mechanism. We leave
this to future work. Another avenue for future work is the design of a truthful
revenue maximizing mechanism.

References

1. Azar, Y., Kalp-Shaltiel, I., Lucier, B., Menache, I., Naor, J.S., Yaniv, J.: Truth-
ful online scheduling with commitments. In: Proceedings of the Sixteenth ACM
Conference on Economics and Computation, pp. 715–732. ACM (2015)

2. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach
to approximating resource allocation and scheduling. J. ACM (JACM) 48(5), 1069–
1090 (2001)

3. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Approximating the throughput of
multiple machines in real-time scheduling. SIAM J. Comput. 31(2), 331–352 (2001)

4. Berman, P., DasGupta, B.: Multi-phase algorithms for throughput maximization
for real-time scheduling. J. Comb. Optim. 4(3), 307–323 (2000)

5. Bikhchandani, S., Chatterji, S., Lavi, R., Mu’alem, A., Nisan, N., Sen, A.:
Weak monotonicity characterizes deterministic dominant-strategy implementation.
Econometrica 74(4), 1109–1132 (2006)

6. Jain, N., Menache, I., Naor, J.S., Yaniv, J.: A truthful mechanism for value-based
scheduling in cloud computing. Theory Comput. Syst. 54(3), 388–406 (2014)

7. Jain, N., Menache, I., Naor, J.S., Yaniv, J.: Near-optimal scheduling mechanisms
for deadline-sensitive jobs in large computing clusters. ACM Trans. Parallel Com-
put. 2(1), 3 (2015)

8. Kovács, A., Vidali, A.: A characterization of n-player strongly monotone scheduling
mechanisms. In: IJCAI, pp. 568–574 (2015)

112 J. Garg and P. McGlaughlin

9. Lavi, R., Swamy, C.: Truthful mechanism design for multi-dimensional scheduling
via cycle monotonicity. In: Proceedings of the 8th ACM Conference on Electronic
Commerce, pp. 252–261. ACM (2007)

10. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear pro-
gramming. J. ACM (JACM) 58(6), 25 (2011)

11. Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness. In: Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1143–1152. Society for Industrial and Applied Mathematics (2007)

12. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)
13. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proceedings of the Thirty-

First Annual ACM Symposium on Theory of Computing, pp. 129–140. ACM (1999)
14. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory,

vol. 1. Cambridge University Press, Cambridge (2007)
15. Rochet, J.C.: A necessary and sufficient condition for rationalizability in a quasi-

linear context. J. Math. Econ. 16(2), 191–200 (1987)
16. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2013)

