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Abstract. We introduce and study a variant of network cost-sharing
games with additional non-shareable costs (NCSG+), which is shown
to possess a pure Nash equilibrium (PNE). We extend polynomial-time
PNE computation results to a class of graphs that generalizes series-
parallel graphs when the non-shareable costs are player-independent.
Further, an election game model is presented based on an NCSG+ when
voter opinions form natural discrete clusters. This model captures several
variants of the classic Hotelling-Downs election model, including ones
with limited attraction, ability of candidates to enter, change stance
positions and exit any time during the campaign or abstain from the
race, the restriction on candidates to access certain stance positions,
and the operational costs of running a campaign. Finally, we provide
a polynomial-time PNE computation for an election game when stance
changes are restricted.

Keywords: Network cost-sharing game · Nash equilibrium
Hotelling-Downs

1 Introduction

Network cost-sharing games (NCSGs) are games on a directed graph where each
player selects a path from their source to sink, and players sharing an edge
divide the utility obtained from that edge. Even though these games are known
to possess a pure Nash equilibrium (PNE), computing one is PLS-hard except
for simple special cases, e.g., a restricted variant of series-parallel graphs [15].
We study a generalization of these games, NCSG+, where in addition to the
shareable utility, each edge incurs a non-shareable player-specific cost (such as
a fee or a toll), called the fixed cost of traversing that edge. The advantage of
studying NCSG+ is that they generalize election games, where a path in the
NCSG+ graph corresponds to a campaign strategy in an election. For NCSG+,
we show the existence of a PNE using a potential-function argument in any
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directed graph. Further, we extend polynomial-time PNE computability for a
class of graphs that generalizes series-parallel graphs with multiple source nodes.

In addition to the study of NCSG+, this paper presents a spatio-temporal
bi-objective model for an election game with discrete stances and analyzes its
PNE computation by utilizing the structural properties of NCSG+. Consider an
election where candidates compete to win as many voters as possible. In many
real-life elections, a voter has a stance on a range of issues that matters to them,
and the choice of their candidate is heavily influenced by the candidate’s stance
on those issues. In the classical Hotelling-Downs model [4], stances on each issue
are represented by continuous values in [0, 1], where 0 and 1 are extreme stances
on the issue, and a multi-issue hypercube can be constructed containing all the
voters’ stances. Based on the stance positions in this hypercube, each candidate’s
objective is to choose their stance to be close to the maximum number of voters.
When candidates’ stances are relatively close to each other, they split their vote
share giving rise to a game with spatial competition.

In certain elections, voters’ stance positions exhibit natural accumulations of
opinions forming clusters. As a candidate deciding what their ideal stance should
be, identifying such naturally occurring clusters provides vital information in
making a choice that leads to maximal electoral advantage. For example, a 2014
study conducted by Pew Research Center [9] found that 50% of US adults polled
believe that climate change is caused by human activity, while 23% believe that it
is due to natural patterns, and 25% believe that there is no solid evidence; there
are three mutually exclusive clusters of voter opinions. If an election is based only
on this one issue, and if there is only one candidate, choosing the stance “caused
by human activity” will be their winning strategy. However, if there are 3 other
candidates and all of them have picked that as their stance, the winning strategy
would then be to pick either of the two smaller clusters. As illustrated, there is
a need for election game modeling that extracts the combinatorial structure
exhibited by a finite and discrete stance space. Additionally, there is temporal
decision-making involved. Since campaigns often cost considerable time, money
and resources, the cost of campaigning influences the decisions of whether a
candidate should even enter the race, and if they do, when exactly they should
enter the race. Entering early enables them to gain voters from an earlier time,
but may incur a higher cost of campaigning given the longer time spent, and vice
versa. Hence, there is an inherent trade-off between the accumulation of voters
and cost considerations.

The election game presented allows for candidates to (1) decide whether to
enter the race or not, (2) decide when to enter and exit the race, (3) choose
their stance from a finite set of stances, (4) and also change stances during the
race. It also models the trade-off between voter and cost considerations. While
some of these modeling aspects have been independently studied in prior work,
the flexibility offered by the network-based model provides a unification of these
features. Finally, we derive a stronger polynomial-time PNE result for election
games with a restriction on stance changes.



724 R. Swamy et al.

1.1 Related Literature

This paper makes contributions in two broad areas of research: PNE analysis in
NCSG+, and the spatio-temporal modeling and PNE analysis in election games.

NCSGs naturally model games on a network where the cost of traversing an
edge increases with the number of players sharing the edge, and has applications
in traffic and communication networks. Introduced by Rosenthal [15], a network
congestion game (NCG) is a related game with a general edge latency function
which always possesses a PNE. This spurred research in variants of NC[S]Gs and
their polynomial-time PNE computability. Syrgkanis [19] showed that PNE com-
putation for NCSGs in general directed graphs is PLS-Complete, while providing
polynomial-time algorithms for singleton cost-sharing games (with single-edge
paths) and matroid cost-sharing games. Recently, Feldotto et al. [7] considered
an extension with two types of costs: latency and bottleneck costs, while play-
ers have different preferences for the two. They showed that even though PNE
exists for singleton congestion games, deciding on existence is NP-Hard for gen-
eral matroid congestion games. Along the lines of investigating PNE in various
graphs, Fotakis [8] showed that a greedy best-response algorithm computes a
PNE for NCGs in series-parallel graphs. However, the question of which broader
class of NCG graphs possesses a polynomial-time PNE remains open. This paper
provides PNE computation results for a multi-source single-sink graph that gen-
eralizes series-parallel graphs.

Modeling election games has early roots in Hotelling’s [10] seminal model
for spatial competition in which two competing vendors located at two points
on a street must decide what prices to charge for their products. He derived
closed-form expressions for calculating these price points as a unique PNE. The
Hotelling model was brought into the political sphere by Downs [4] as a strate-
gic method for identifying the equilibrium positions which candidates take on an
issue. This model has influenced research in modeling electoral politics, includ-
ing spatial voting models with issue-based stances. Since then, several variations
of Hotelling-Downs have been explored [2,17]. However, the difficulty in prov-
ing existence and computation of a PNE in general multi-issue elections has led
to several specific adaptations of election models. A multidimensional spatial
model proposed by Duggan and Fey [5] considered a continuous utility function
to obtain equilibrium results under certain special conditions. They show that in
two dimensions, when the number of players is odd and when there is symmetry
in the utility function, a PNE exists. In elections with proportional represen-
tation (where voters submit a preference list of candidates), Ding and Lin [3]
formulated a zero-sum game model and show that for two parties (two types of
candidates), a PNE exists but computing one is NP-hard. The consequence of
choosing stances based on finite clusters is that candidates have influence only
within a finite window around their chosen stance. A similar idea has previously
been modeled by Feldman et al. [6], where voters randomly choose from can-
didates who are sufficiently close to them. This was generalized by Shen and
Wang [18] as a model with limited attraction. However, the strategy space in
these models is infinite in size due to the continuous nature of the stance space.



NCSGs: Equilibrium Computation and Applications to Election Modeling 725

Hence, even though a PNE exists in these models, it is unclear how to find one
efficiently.

Temporal extensions to Hotelling-Downs have been explored in recent work
in modeling election campaigns. Osborne [14] considered the entry of candi-
dates by using the associated campaign cost of doing so. Recently, Kallenbach
et al. [11] introduced an optimization problem to compute the optimal cost of
campaigning for each candidate, and can be used as a subroutine for equilib-
rium computations. Sengupta and Sengupta [17] extended Osborne’s model to
include the option of dropping out from the race. These models possess PNE but
only under specific assumptions. Abstention by candidates has been addressed
in election modeling from early work by McKelvey and Wendell [12]. In strategic
candidacy games (where the choice to enter the election or not is captured by
analyzing the incentives), Brill and Conitzer [1] consider a two-stage game: the
first stage where candidates decide whether to run or not, and the second where
voters decide who to vote for. They show the existence of a PNE when the voter
opinions on issues is single-peaked. However, opinion distributions in general are
not always single-peaked. This model has been extended by Obraztsova et al.
[13] who introduced the concept of lazy candidates who will drop out after a
certain time period if the campaign costs are too high. A strategy candidacy
game proposed by Sabato et al. [16] imposes restrictions on each candidate’s
stance space to within a defined interval and studies its effect using various vot-
ing rules. Our model includes the considerations of abstention and dropping out,
as well as restricted stance sets for the candidates. While these models individu-
ally capture different important aspects of election games, the question remains
whether all these can be captured simultaneously. Our model provides a partial
answer to this by particularly focusing on elections where voter opinions exhibit
natural clusters.

2 Network Cost Sharing Games with Non-sharable Costs

We begin with game theoretic preliminaries. Consider a game with k players,
and for each player j ∈ [k], let Pj be the set of pure strategies that j can
choose from. Further, let Pj ∈ Pj denote a strategy that j chooses and let
S = (P1, P2, . . . , Pk) ∈ (P1 × P2 × · · · × Pk) denote a strategy profile, a vector
of strategies chosen by all the players. Corresponding to a strategy profile and
player j, let P−j denote the vector of strategies chosen by all the players except
j. Further, let uj(Pj ,P−j) ∈ R denote the utility that j receives when j chooses
Pj and all the other players choose P−j . Each player tries to choose a strategy
that maximizes their utility. A PNE is a strategy profile such that no player can
unilaterally increase their utility by deviating from their strategy, i.e., a strategy
profile S = (P1, P2, . . . , Pk) is a PNE if for each player j, there exists no strategy
P ′
j ∈ Pj such that uj(P ′

j ,P−j) > uj(Pj ,P−j). The existence of a PNE is not
guaranteed in general, e.g., the game Rock-Paper-Scissors does not have a PNE.

An NCSG is a game on a directed graph G = (V,E) with k players, and
each player j has a source node sj and a sink node dj . Every edge e ∈ E has
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a sharable utility ue, which is equally divided among the players that traverse
e. We introduce an NCSG with non-shareable costs (NCSG+), where we also
consider a non-sharable player-dependent cost in each edge, called the fixed cost.
For a player j ∈ [k] and edge e ∈ E, let f j

e be the fixed cost for j on edge e.
Each player’s strategy is a path from their source to their sink. Let Pj be player
j’s path from sj to dj , let P−j be a vector containing the paths taken by players
[k]\{j}, and let (Pj ,P−j) be a vector of paths taken by all the players. Given
a strategy profile (Pj ,P−j), let ne be the number of players traversing edge e.
The net utility for j is then defined as uj(Pj ,P−j) =

∑
e∈Pj

(ue

ne
− f j

e ). Every
player’s objective is to choose a path that maximizes their net utility. For net-
work congestion games (with player-independent cost functions), Rosenthal [15]
showed that a PNE is guaranteed to exist using a potential function argument.
We extend this proof to an NCSG+. A potential game is one where there exists
a potential function φ : (P1 × . . . Pk) → R such that if any player deviates to a
better strategy, the change in potential function value is equal to the increase in
that player’s net utility. We now show that an NCSG+ possesses such a potential
function, implying the existence of a PNE.

Lemma 1. An NCSG+ is a potential game, with its potential function given by
φ(S) =

∑
e∈E

( ∑|Ne|
i=1

ue

i
− ∑

i∈Ne
f i
e

)
, where S is a strategy profile and Ne is

the set of players traversing edge e in S.

Proof. Let S = (Pj ,P−j) with respect to a player j. If j deviates its path from
Pj to P ′

j , let S ′ = (P ′
j ,P−j) be the new strategy profile. Then, the set of players

on an edge e ∈ Pj ∩ P ′
j will remain as Ne and hence considering the difference

φ(S ′) − φ(S) after the deviation, these edges will cancel each other. However,
the set of players on an edge e ∈ Pj\P ′

j will be Ne\{j}, and those on e ∈ P ′
j\Pj

will be Ne ∪ {j}. Hence,

φ(S ′) − φ(S) =
∑

e∈Pj\P ′
j

( |Ne|−1∑

i=1

ue

i
−

∑

i∈Ne\{j}
f i
e

)
+

∑

e∈P ′
j\Pj

( |Ne|+1∑

i=1

ue

i
−

∑

i∈Ne∪{j}
f i
e

)

−
∑

e∈Pj\P ′
j

( |Ne|∑

i=1

ue

i
−

∑

i∈Ne

f i
e

)
−

∑

e∈P ′
j\Pj

( |Ne|∑

i=1

ue

i
−

∑

i∈Ne

f i
e

)

=
∑

e∈P ′
j\Pj

( ue

|Ne| + 1
− f j

e

)
−

∑

e∈Pj\P ′
j

( ue

|Ne| − f j
e

)
= uj(S ′) − uj(S).

Hence, φ is a potential function for an NCSG+. ��
Having shown that a PNE exists in any NCSG+, we focus on polynomial-

time PNE computability. A natural question is: what settings of an NCSG+—
graphs, utility-cost functions, number of players—permits a polynomial-time
PNE computation?

A series-parallel (SP) graph is a single-source single-sink directed multi-
graph, whose recursive definition is as follows. An elemental SP graph consists of
a source s, a sink d and the single edge (s, d). Starting from them, any SP graph
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can be constructed from two other SP graphs G and H, using two composition
rules: (a) a series composition whose source-sink pair is (sG, dH) and dG is con-
nected to sH , and (b) a parallel composition whose source is sG and sH merged
into a single node, and whose sink is dG and dH merged into a single node.
In addition to their extensive applications in electrical networks, SP graphs are
of interest to research in computational complexity since many combinatorial
problems that are NP-Complete in general graphs are polynomial-time in SP
graphs [20].

We now consider a network congestion game (NCG) defined as follows. Given
a directed graph G = (V,E) with source s and sink d, a cost function le for all
edges e ∈ E, a NCG is a game where each player i ∈ [k] sends wi ∈ R

+ amount
of flow from s to d through G such that their total cost of sending that flow
is minimized. An NCSG+ whose fixed-cost values on all the edges are player-
independent (i.e. f i

e = f j
e for all i, j ∈ [k], e ∈ E) and the players have a common

source and sink (i.e. si = sj , di = dj∀i, j ∈ [k]) is a special case of an NCG. A
natural method to compute PNE in an NCG (and in an NCSG+) is using the
greedy best response (GBR) algorithm. Starting with an empty set of players,
GBR introduces one new player at a time to enter the game where the new player
selects their best (highest net utility) strategy that is available to them. This
best strategy is also called a best response by that player based on the previously
introduced players, and the algorithm iteratively finds the best response paths
of all the players. An NCG whose edge cost functions are in such a way that
the best response is symmetric (player-independent) about all the players is said
to possess the common best response property. Fotakis et al. [8] showed that
for NCGs on SP graphs that possess the common best response property, GBR
computes a PNE in O(km log m) time, where m = |E| (Theorem 1), even though
they produce a simple counter-example where GBR fails for a non-series parallel
graph.

Theorem 1 [8]. Given a series-parallel graph G = (V,E) with source and sink
nodes s, d, and a network congestion game that has the common best response
property, GBR succeeds and computes a PNE in time O(nm log m), where n =
|V |,m = |E|.

This result can be extended to a subclass of NCSG+ with player-independent
fixed-costs, since these games in SP graphs possess the common best response
property.

Corollary 1. Given a series-parallel graph G = (V,E), and a network cost-
sharing game with player-independent fixed-costs, GBR succeeds and computes
a pure Nash equilibrium in time O(km), where m = |E|.
Proof. The success of GBR in computing PNE in a SP graph follows from The-
orem 1, since an NCSG+ with player-independent fixed-costs in an SP graph is
a special case of an NCG with common best response property in an SP graph.
As for the computation time, every new player introduced solves a longest-path
problem to find their best response path. This problem takes O(m) computa-
tions on a directed acyclic multi-graph, such as an SP graph. Since there are k
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players introduced, it requires O(km) computations for GBR to find PNE for
all the players. ��

In this paper, we consider an NCSG+ with player-independent fixed-costs on
a class of graphs where the source nodes are unique for each player even though
they share a common sink. This class of graphs generalizes SP graphs and is
defined as follows.

Definition 1 (Multi-source Series-Parallel Graph). A Multi-Source
Series-Parallel Graph (MSSP Graph) is given by R = ({Gl}l∈[n],
{si}i∈[k], d, {Hi}i∈[k]), where G = {Gl}l∈[n] is a set of n disjoint series-parallel
(SP) graphs, {si}i∈[k] is a set of k source nodes, and d is a sink node. For each
i ∈ [k], let Hi ⊆ G be a subset of SP graphs that i has “access” to, i.e., from si,
let there be edges to the source nodes of all the SP graphs in Hi. Further, from
the sink node of each SP graph in G, let there be an edge to d.

Fig. 1. An MSSP graph with n = 3 sub-
graphs and k = 2 sources

Figure 1 depicts an MSSP graph with
n = 3, k = 2, H1 = {G1, G2} and H2 =
{G2, G3}. An MSSP graph is a multi-
source generalization of SP graphs with
a unique source node for each player.
Additionally, each player i has access to
only a subset of SP subgraphs defined by
the collection of sets Hi ⊆ G.

A game on an MSSP graph models the restricted access of players to n
resources (SP subgraphs). Even though Corollary 1 states that GBR computes
a PNE for an SP graph, it is unclear whether this approach can be extended
to an MSSP graph since the common best response property is violated if dif-
ferent players can only access certain graphs (unless Hi = G for all i ∈ [k]). To
do so, we introduce a generalization of GBR, called greedy best response with
reactionary movements (GBR-RM). In this algorithm, as a reaction to each new
player introduced into the game, the players who were introduced earlier may
change their previously chosen strategy (termed a reactionary movement) to
another strategy that gives them a better net utility, and this may trigger fur-
ther movements of players, and so on. The success of GBR-RM in computing
PNE relies on the eventual convergence of players to an equilibrium after every
new player introduced (i.e. there are no cycles in reactionary movements).

Theorem 2. Given a multi-source series-parallel graph R = ({Gl}l∈[n], {si}
i∈[k], d, {Hi}i∈[k]), and a network cost-sharing game with player-independent
fixed-costs with k players, GBR-RM computes a pure Nash equilibrium in time
O(km ∗ min{n, k}), where m is the number of edges in R.

Proof. The proof proceeds by induction considering the introduction of players
by the order of their labels from 1 through n. When player 1 is introduced, it
is trivially at equilibrium. Before player i > 1 is introduced, let the paths taken
by the i − 1 players be (p1, p2, . . . , pi−1), and let us assume that they are at
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equilibrium. Let player i’s best response path be pi, and the strategy profile of
the system is denoted by Pi = (p1, p2, . . . , pi). Further, after i’s introduction, for
any player j ≤ i, let the set of paths chosen by all the other players be denoted
by Pi

−j . Let u(pj ,Pi
−j) be the net utility for j to traverse pj given that the other

players chose paths in Pi
−j . More generally, let u(A,Pi

−j) be the net utility for
j to traverse the subset of edges A given that other players chose paths in Pi

−j ,
regardless of whether A is a valid path in the graph. We first show the following
claim.

Claim. Consider an NCSG with player-independent fixed-costs with k players.
During the GBR-RM, before a player i ∈ [k] is introduced, let the system be at
equilibrium. Let pi be the best response path chosen by i. Then, the net utility
for i will be no more than the net utility for any other player j < i in path pj ,
i.e., u(pi,Pi

−i) ≤ u(pj ,Pi
−j).

Proof. Since player j was at equilibrium before player i was introduced, the net
utility from pj was better than from pi. Hence, u(pj ,Pi−1

−j ) ≥ u(pi,Pi−1
−j ). Let

A = pj\pi and B = pi\pj . A and B are disjoint sets, and from the relation above,
we have u(A,Pi−1

−j ) ≥ u(B,Pi−1
−j ), where u(A,Pi−1

−j ) denotes the utility derived
specifically from the edges of A ⊆ pj . Now consider when player i enters the sys-
tem and picks a path pi so as to maximize u(pi,Pi

−i). Clearly u(pi,Pi
−i) ≥

u(pj ,Pi
−i) ⇒ u(B,Pi

−i) ≥ u(A,Pi
−i). However, A and pi are disjoint, so

u(A,Pi
−j) = u(A,Pi−1

−j ), and so are B and pj so u(B,Pi
−i) = u(B,Pi−1

−j ),
which gives us that u(A,Pi

−j) = u(A,Pi−1
−j ) ≥ u(B,Pi−1

−j ) = u(B,Pi
−i). Since

pi and pj derive the same net utility from the edges of pi ∩ pj , this implies that
u(pi,Pi

−i) ≤ u(pj ,Pi
−j). ��

We now show that after player i is introduced, the system reaches equilibrium
after at most O((i − 1) ∗ min{n, k}) reactionary movements.

In an MSSP graph R, since the series-parallel (SP) subgraphs are disjoint,
any path p in R almost entirely lies in exactly one of its SP subgraphs, denoted
by G(p). We say “almost” since p includes an additional edge from a source node
of R to the source node of G(p). For simplicity of notation, if another path q
also almost entirely lies in the subgraph G(p), we will denote this as “q ∈ G(p)”
instead of G(p) = G(q).

With the introduction of player i to pi, if a player j1 wishes to make a
reactionary movement, it must be that pj1 is in G(pi) since j1 was at equilibrium
before i’s introduction. Let the new path chosen by j1 be qj1 . Since we know
that GBR computes a PNE (without any reactionary movements) within an SP
graph, qj1 must traverse an SP subgraph G(qj1) �= G(pj1) such that G(qj1) ∈
Hj1\Hi. This is because if G(qj1) ∈ Hi, then it is already a path which player
i considered and rejected which is edge disjoint from pi, i.e., u(qj1 ,P

i
−j1

) =
u(qj1 ,P

i
−i) ≤ u(pi,Pi

−i) ≤ u(pj ,Pi
−j), where the final inequality comes from

Lemma 2. After j1 moves to qj1 , we set i to traverse pj1 , the path vacated by j1.
By Lemma 2, player i is willing to do so as player j1 was deriving more utility
from it than i currently derives from pi. The set of strategies chosen by players
inside G(pi) is now the same as it was prior to player i’s introduction, and with
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the exception of i no players have changed strategies. Because this state was a
pure equilibrium within G(pi), all players traversing G(pi) remain at equilibrium
and no new players not currently traversing G(pi) wish to change their paths to
do so. Two reactionary movements have occurred as a result of i’s introduction.
We continue to iterate this scheme for picking which players make reactionary
movements, and our next step is to bound the maximum number of reactionary
movements. To do so, we will first show that at each iteration the moving player
must switch to a path that none of the previous players who moved had access
to using an induction.

Similar to the base case, we next consider the consequences of player j1 mov-
ing to G(qj1). Suppose another player j2 on G(qj1) wishes to move in reaction to
j1. Then, j2 must wish to move to qj2 ∈ Hj2 \ (Hj1 ∪ Hi). This comes from the
same reasoning as above. So qj2 ∈ Hj2 \ (Hj1 ∪ Hi). We then move j1 from qj1
to pj2 , restoring the state of G(qj1) to what it was at equilibrium. For the induc-
tive step, assume that players M = {i, j1, j2, ..., jm} have all made reactionary
movements in that order so far, such that in each case, the new path chosen by
player l ∈ M is ql ∈ G(ql) ∈ Hl \ H−l, where H−l = (Hi ∪ Hj1 ∪ ... ∪ Hjl−1).
After player jm switches paths to qjm ∈ G(qjm), player jm+1 wishes to switch
to qjm+1 . We want to show that G(qjm+1) ∈ Hjm+1 \ H−(m+1). Assuming the
contrary, there exists some player l ∈ M such that G(qjm+1) ∈ Hl. Then

u(qjm+1 ,P
ijm+1

−(jm+1)
) = u(qjm+1 ,P

il
−l) where il is the set of paths chosen by all

players after l − 1 has moved to path ql−1 and l − 2 has moved to pl−1. This
is because of the inductive assumption that every player who has moved so
far has moved to a path in Hl \ H−l, and so the state of all players in H−l

remains unchanged from when l considered it. We then have u(qjm+1 ,P
il
−l) ≤

u(ql,Pil
−l) ≤ u(pl+1,P

il+1

−(l+1)) ≤ · · · ≤ u(pjm ,Pijm
−jm

) ≤ u(pjm+1 ,P
ijm+1
−jm+1

), where
the first inequality comes from the fact that l chose ql instead of qjm+1 , and all
other inequalities come from Lemma 2. Hence, G(qjm+1) ∈ Hjm+1 \ H−jm+1 .

Next, we bound the maximum number of reactionary movements. Trivially,
no player can move twice since for any player l, Hl \ (Hi ∪ Hj1 ∪ ... ∪ Hl ∪ ... ∪
Hjm) = ∅, and hence there can be at most i moves. Additionally, if |Hi ∪ Hj1 ∪
... ∪ Hjm | = n, then for any player l, we have Hl \ (Hi ∪ Hj1 ∪ ... ∪ Hjm) = ∅.
Since |Hi ∪ Hj1 ∪ ... ∪ Hjm | − |Hi ∪ Hj1 ∪ ... ∪ Hjm−1 | ≥ 1, there are at most
O(min{k, n}) movements.

Since k players are introduced, the number of movements that may occur is
at most O(k ∗ min{n, k}). Since each subgraph is a series-parallel DAG, we can
compute a maximum cost/profit path from si to d in O(m) time. Therefore, we
can compute a PNE on an MSSP graph in at most O(km ∗ min{k, n}) time. ��

3 Election Game

An election game is between k players (or candidates) competing to appease the
maximum number of voters with the least amount of expenditure. A candidate
can choose from a finite set of stances {1, 2, . . . , n}, where each stance s ∈ [n]
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corresponds to a cluster of voters. Let p(s) ∈ [0, 1] be the fraction of voters
contained in the cluster corresponding to stance s. Further, for each candidate
j ∈ [k], let Hj ⊆ [n] be the subset of stances that are available to candidate j.
Hj models the general condition that j can only choose a stance that is close to
their past record or political inclinations.

Single-Period Election Game. First, consider a game where candidates only
decide which stance to pick. Let cj ∈ Hj denote the stance picked by candidate
j, and let N(cj) be the set of all candidates who picked stance cj . Assume that
there is a certain cost associated with a candidate’s expenditure of resources
(monetary, personnel, etc.) for choosing a stance. For a candidate j, let Cj(c)
denote the cost incurred for j when choosing stance c.

Fig. 2. Stance distribution of vot-
ers on 2 issues with 3 clusters.

In order to compare the electoral compo-
nent of utility (p) and the cost component (C),
let β ∈ R

+ be a trade-off parameter between
the fraction of voters and the cost (in mone-
tary units). For simplicity, we assume that the
cost function C already includes this trade-off.

Then, the net utility obtained by candidate
j is given by uj(cj) = ( p(cj)

|N(cj)| − Cj(cj)). This
means that candidate j shares their electoral
utility with other candidates choosing the same
stance, in addition to incurring a non-shareable
cost.

Each candidate’s goal is to maximize their
net utility. Consider an example with the spa-

tial voter distribution in Fig. 2 with 3 clusters. Let there be 3 candidates who
will compete to pick 3 stances. Further, let candidate 1 pick stance 2 ∈ H1, and
let p(2) = 0.6 and C1(2) = C2(2) = C3(2) = 0.05. Then, candidate 1 receives a
net utility of 0.15 if all three candidates chose stance 2, 0.25 if only one other
candidate does so, and 0.55 if no other candidate does so.

Multi-period Election Game. Generalizing the single-period game, we study
the election game over T time periods, where each time period is an arbitrary
unit of time (a day/week/month or could even be aperiodic like the time between
successive state primaries as in US presidential elections). Each candidate must
first decide whether they should enter the game or not. If a candidate j decides to
enter the game, let the time period at which they enter be tj1 ∈ {0, 1, . . . , T −1},
the stance that they choose be cj,tj1

∈ Hj and the time period at which they exit

the game be tj2 ∈ {tj1 + 1, tj1 + 2, . . . , T}. Further, we assume that candidates are
allowed to change stances during the game.

Let cj,t ∈ Hj denote stance chosen by candidate j at the start of time period
t ∈ {tj1, tj1 + 1, . . . , tj2 − 1}. If a candidate j never exits the race and runs till the
end, then tj2 = T . Hence, if candidate j enters the game, their overall strategy

is represented by the tuple (tj1, t
j
2, {cj,t}t

j
2−1

t=tj1
), where tj2 > tj1.
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Extending the cost function in the single-period game, let Cj(c, t) ∈ R
+ be

the cost associated with candidate j for holding stance c at the start of time
period t. As a temporal extension to the voter distribution, let p(c, t) be the
fraction of voters with stance c who will affirm their stance at time t. This is
a general function that can model any pre-election scenario. For example, if
it is an election where most of the voters affirm their stances only just before
the election, then the candidates would not gain much utility in entering the
race early, as opposed to an election where the opposite trend could occur. Our
generic utility function captures either scenario.

Let J ⊆ [k] be the set of candidates who decide to enter the race at some time
period, and let Nt(c) ⊆ J be the subset of candidates who enter the race/chose
stance c at the start of time period t. On the other hand, if candidate j does not
enter the game at all, then let αj denote the utility obtained by j. This utility
is a measure of monetary or political savings when not entering the race. That
is, uj = αj for every j ∈ [k]\J . Then, the net utility uj for candidate j ∈ J is
defined as

uj(t
j
1, t

j
2, {cj,t}t

j
2−1

t=tj1
) =

⎧
⎨

⎩

∑tj2−1

t=tj1

( p(cj,t, t)
|Nt(cj,t)| − Cj(cj,t, t)

)
, if j ∈ J

αj , otherwise.
(1)

Each candidate’s goal is to maximize their net utility. The longer the candidate
stays in the race, the more is the electoral utility they will gain from staying in
the race. Hence, it is not just sufficient to pick a good sequence of stances, but
the length of the campaign (tj2−tj1) also influences the net utility. In other words,
even if tj2 = T (candidate j stayed till the end), the electoral utility is not just
defined by the last time period, but accumulates from the time they entered the
race. It is also possible that tj2 < T , wherein candidate j drops out before the
completion of the race (due to accumulated costs of campaigning dominating
electoral gain in utility). The net utility gained by an early drop-out models any
amount of political gain resulting from campaigning for the election, even if it
may not help them in that particular election.

3.1 Election Game Graph

We now show that an election game reduces to an NCSG+ through the con-
struction of a graph called the election game graph (EGG). This construction
transforms a strategy in the election game (to enter the race or not? when to
enter? what sequence of stances to choose while in the game? when to quit?) to
a path in EGG, constructed as follows.
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Fig. 3. An EGG with 3 candidates, 3 stances and 2 time
periods. Stance-choice, entry, sustain, exit and abstain
edges are dashed-black, dotted-black, solid black, solid
grey, and thinly dotted-block respectively, along with
their (ue, fe) values; (0, 0) if no label.

Nodes: Each candidate
j ∈ [k] has a source
node sj . A sink node
d is common to all the
candidates. A terminal
node dc is exists for each
stance c ∈ [n]. There
are intermediary nodes,
called stance nodes for
every stance and time
period. Let vct be the
stance node for stance
c ∈ [n] and time period
t ∈ {0, 1, . . . , T}.

Edges: There are six
types of edges as out-
lined below with respect
to candidate j ∈ [k].

1. Stance-choice edge: e = (sj , vc0) for all c ∈ Hj and represents candidate j’s
choice of stance c ∈ Hj . The (ue, f

j
e ) = (0, 0) of such an edge.

2. Entry edge: e = (vc0, vct) for all c ∈ Hj and t ∈ {1, . . . , T − 1} represents
candidate j having already chosen stance c ∈ Hj , entering the race at time
period t. The (ue, f

j
e ) = (0, 0) of such an edge for all j.

3. Sustain edge: e = (vc(t−1), vct) for each stance c ∈ [n] and time period t ∈
{1, . . . , T} represents sustaining in the race for time period t. The (ue, f

j
e ) =

(p(c, t), Cj(c, t)) of such an edge.
4. Stance-change edge: e = (vct, vc′t) for each pair of stances c, c′ ∈ [n], c �= c′

and time period t ∈ {1, 2, . . . , T − 1} represents changing stance from c to c′

between t and t + 1. The corresponding ue = 0, and f j
e = +∞ if c′ /∈ Hj .

5. Exit edge: e = (vct, dc) exists for each stance c and time period t ∈
{1, 2, . . . , T} to represent exiting the race immediately after t. An edge (dc, d)
also exists for each c ∈ [n] to represent the final exit. The (ue, f

j
e ) = (0, 0) of

such an edge.
6. Abstain edge: e = (sj , d) represents abstention, with (ue, f

j
e ) = (αj , 0).

Figure 3 illustrates an EGG without stance-change edges for simplicity. The
construction of the EGG reduces an election game to an instance of NCSG+,
thereby implying the existence of PNE in any election game using Lemma 1.

3.2 Computation of PNE

Consider election games under two restrictions: When candidates are not allowed
to change their stance (i.e. stance-change edges are removed), and when the
non-shareable costs are candidate-independent, denoted by f j

e = fe for edge
e ∈ E,∀ j ∈ [k]. We provide a greedy best-response algorithm with reactionary
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movements for this subclass of election games. First, note that when the entry
and exit edges are removed (i.e. candidates enter at time 0 and exit at time T ),
the corresponding EGG is a multi-source series-parallel (MSSP) graph. Using
Theorem 2, greedy best response with reactionary movements (GBR-RM) com-
putes a PNE in O(knT 2 min{n, k}) time since the number of edges is in the
order of O(nT 2), where k, n and T are the number of candidates, stances and
time periods respectively. However, this computation only utilizes the general
structure of each the series-parallel subgraphs of an MSSP graph with multiple
edges between a pair of nodes, whereas in an EGG, there can be at most 1 edge
between a pair of nodes. We show that even with the inclusion of the entry and
exit edges (candidates may enter or leave any time), PNE can be computed in
O((k+n)T 2+(n+T )k2) time using the greedy algorithm provided in Algorithm
1, with a two-order magnitude improvement compared to the same for MSSP
graphs.

Corresponding to a path from a source to sink, define a sustain path to be
a path that consists exclusively of sustain edges. For a stance c, and entering
and drop-out time periods t1 and t2(> t1), a sustain path is represented by
a sequence of nodes {vc,t1 , vc,t1+1, . . . , vc,t2}. Let P be the set of all sustain
paths in G. Further, let Aj = (sj , d) be the abstain path for candidate j. For
a path P ∈ P ∪k

j=1 Aj , let S(P ) denote the subset of candidates traversing P .
For illustration, consider an example with 3 candidates, 3 stances and 2 time
periods, and the corresponding EGG in Fig. 3. If candidate 1 enters the race at
time period 1 and stays until the end of time period 2 by choosing stance 2, and
suppose candidate 2 does the exact same, then S({v20, v21, v22}) = {1, 2}.

Starting with an arbitrary ordering of candidates, the algorithm assigns a
path for each candidate one at a time and ensures that the system settles down
to an equilibrium. At each stage, candidates also compare their current utility
with the utility in the abstain edge to decide whether they want to abstain or
not.

Algorithm 1 finds the best path for each new candidate in O(n) operations
by tracking the best sustain path in each stance. For each stance c ∈ [n],
let L(c) be the current best sustain path and its corresponding net utility.
In the example in Fig. 3 before any candidate has entered, it is easy to see
that L(1) = (0.08, {v10, v11, v12}), L(2) = (0.5, {v20, v21, v22}), and L(3) =
(0.28, {v30, v31, v32}). Once a new candidate has been assigned a path and the
system resettles into an equilibrium, we show that for at most one stance c ∈ [n],
L(c) needs to be updated. This can be done in O(T 2) operations since there are
T 2 +T

2 sustain paths on each stance.
In a general instance, it is possible that a new candidate entering may trigger

a chain of candidates to change their paths. We show using two nested loops that
the best response does converges to an equilibrium after a finite number of steps.
The outer loop is for every new candidate introduced into the game, while the
inner loop is for every best response move by an existing candidate in the game.

Theorem 3. If the system is at equilibrium with l − 1 candidates, and the lth

candidate is introduced, the sequence of best responses in Algorithm 1 leads to
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Input: An Election Game Graph G = (V, E) and (ue, fe), ∀e ∈ E
Output: A pure Nash equilibrium
P ←Set of all sustain paths; Aj ← Abstain path for candidate j;
S(P ) ← ∅, ∀ P ∈ {P ∪k

j=1 Aj }; // S(P ) contains the set of candidates
choosing P
L(c) ← The best sustain path in stance c for new candidate;

ne ← ∑
P :e∈P |S(P )|, ∀e ∈ E; U(P ) ← ∑

e∈P

ue

ne + 1
− fe;

for i = 1, 2, . . . , k do
Assign i to a path in arg maxc∈Hi U(L(c));
l ← i ; H ← Hl;
while system not at equilibrium do

Choose a candidate j currently not at equilibrium;
Pj ← Candidate j’s current path;
Move j to arg maxc∈Hj\H{U(L(c)), U(Aj)} ;
Move l to Pj ; l ← j; H ← Hl ∪ H; Update S(P ), ∀ P ∈ P ;

end
Update L(c), where c is the stance the last candidate moved to;

end
return S

Algorithm 1. Greedy PNE Computation in an Election Game

a PNE in the new game in at most O(min{l, n}) steps, provided that whenever
a candidate is indifferent between best response paths, it picks the longest one
(most sustain edges).

Define Pi to be the sustain path taken by a candidate i. We first prove Lemma 2.

Lemma 2. Suppose the system is at equilibrium after i − 1 candidates have
been introduced via Algorithm 1. When candidate i is introduced, then for every
candidate j �= i, either Pi ⊆ Pj or Pi ∩ Pj = ∅.
Proof. We prove this by contradiction: Assume that Pi \Pj �= ∅ and Pi ∩Pj �= ∅.
First, due to the latter condition, i must have picked the same stance as j did
since they have overlapping sustain edges. Second, the former condition implies
that there are sustain edges in i’s path that are not in j’s path. There are two
possible cases: i entered the race at an earlier time before j did, or i exited the
race after j did. Let ti1 (ti2) and tj1 (tj2) be the entering (exiting) time-periods of
candidates i and j, respectively.
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Fig. 4. Candidates i and j overlapping sus-
tain edges, nodes are labeled by corre-
sponding time-periods.

Consider the first case, i.e., ti1 < tj1,
as depicted in Fig. 4. We claim that the
sustain edges in Pi \ Pj must together
contribute to a net positive utility for
candidate i. This is true since other-
wise, i would rather not enter the race
as early as time period ti1, but rather
enter at tj1 for a higher net utility,
thereby violating the given condition
that Pi is the best stance path i has
chosen.

However, this claim implies that before i was introduced into the game by
the algorithm, j could have expanded its path to include all the sustain edges in
Pi \ Pj for a higher net utility, thereby violating the condition that the system
was in equilibrium. Hence, the assumption results in a contradiction. We can
make a similar argument for the other case where i exits the race at a later
time-period than j. ��
Proof (Theorem 3). Suppose a new candidate i is introduced when i − 1 can-
didates were previously at equilibrium. Candidate i will join the best (high-
est net utility) path that it has access to, Pi, which will be a stance path in
some stance in Hi. The only candidates who may wish to move are candidates
whose path intersects with candidate i’s. By Lemma 2, the stance path of such
a candidate includes all the edges in Pi. Let a candidate j1 currently on stance
path Pj1 wish to move to another stance path P ′

j1
for better net utility. Any

stance path in Hi cannot provide a greater net utility than Pi, since otherwise,
candidate i would have picked that path instead. But candidate i found that
u(P ′

j1
|P−i) ≤ u(Pi|P−i) ≤ u(Pj1 |P−j1 , Pi) where u(Pi|P−i) is the net utility of

path Pi for i given all other candidates. Therefore, it must be that if such a
path P ′

j1
exists, it is on a stance in Hj1 \ Hi. If such a P ′

j1
exists, the algorithm

moves j1 to it and sets Pi = Pj1 . Doing so restores the net utility of each of the
candidates on the stance path that j1 just left, to what it was before i joined.
Thus, no candidate on i’s stance can make a best response move away from it
or onto it due to the initial assumption of equilibrium prior to i’s introduction.
At this point, three movements have occurred (i to Pi, j1 to P ′

j1
, i to Pj1).

Suppose that candidates j1, ..., jl−1 have made best response movements and
been settled in at most 2i movements, and candidate jl has moved in response
(2l + 1). If candidate jl+1 wishes to move, then by the same reasoning as in the
base case, it will move to a path in a stance set in Hjl+1 \Hjl . However, any path
it would consider must also be on a stance set in Hjl+1 \ Hjl−1 , as candidate jl’s
current path provides a better net utility or equal utility and greater length than
any path in the set Hjl−1 while being inferior or equal to jl+1’s current path. We
extend this line of reasoning back to candidate i and jl+1 must choose a path
represented by a stance set in Hjl+1 \{Hjl ∪ ... ∪ Hj1 ∪ Hi}. Candidate jl+1 then
moves and candidate jl takes its place, bringing the total number of movements
up to 2(l + 1) + 1. However, this cannot continue indefinitely: once we have a jl
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such that |Hjl ∪ ... ∪ Hj1 ∪ Hi| = n, there will be no more movements as for any
jl+1, Hjl+1 ⊂ (Hjl ∪ ... ∪ Hj1 ∪ Hi). Similarly, if i is significantly smaller than
n such that |H1 ∪ ... ∪ Hi−1 ∪ Hi| < n, no candidate l moves stance sets twice,
as Hl ⊂ {Hi ∪ ... ∪ H1} for l ∈ {1, ..., i}. This proceeds at most min(l, n) times,
resulting in O(min{l, n}) total movements. ��
Theorem 4. Algorithm 1 computes a PNE in O((k + n)T 2 + (n + T )k2) time.

Proof. Corresponding to each stance, there are T 2 +T
2 sustain paths. In total,

n(T
2 +T
2 ) operations are needed to compute L. To assign candidate 1, L is

checked to find the best path it has access to, which takes O(n) compar-
isons. Candidate 1 is assigned to the best path and the net utilities of at
most T 2 +T

2 paths are updated, bringing the total number of path evalua-
tions to (n + 1)(T

2 +T
2 ). For 2 ≤ i ≤ k, suppose the first i − 1 candi-

dates have been assigned, the accumulated number of operations till then is
(n+i−1)T

2 +T
2 +

∑i−1
j=1 (j − 1)(T + n − 1). Candidate i is assigned its best path

by checking L, which requires |Hi| ≤ n comparisons. We then check if any other
candidate on candidate i’s chosen path wishes to move. There are at most i − 1
such candidates, each taking at most T computations to evaluate the new net
utility of their path, and each has to compare the utility of that path to at most
n− 1 entries of L, implying that at most (i− 1)(T + n − 1) operations are nec-
essary to evaluate if some candidate is leaving the stance path that i has joined.
Note that if a candidate moves and setting off a chain of movements, there are
still at most (i−1)(T + n − 1) operations in total, as there are only i−1 candi-
dates that were previously at equilibrium. As demonstrated in the proof of Theo-
rem 3, if a path was taken by m candidates before introducing a new candidate, it
is taken by either m or m+1 candidates after all the candidates have settled into
an equilibrium. Only for exactly one stance c, the net utilities on the stance-edges
of c need to be re-evaluated to update L(c), which takes at most T 2 +T

2 computa-
tions. Thus, adding candidate i requires at most |Hi|+ T 2 +T

2 +(i−1)(T +n−1)
additional evaluations, bringing the accumulated number of evaluations to
(n + i)T

2 +T
2 +

∑i
j=1 (j − 1)(T + n − 1) ⇒ O

(
(n + i)T 2 + i2(T + n)

)
. ��
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