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testForDEU().
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Introduction

RNA-seq experiments can be analyzed to detect differences across groups of samples in total gene expression — the
total expression produced by all isoforms of a gene — and additionally differences in transcript isoform usage within
a gene. If the amount of expression switches among two or more isoforms of a gene, the total gene expression may
not change by a detectable amount, but the differential transcript usage (DTU) is nevertheless biologically relevant.
DTU is common when comparing expression across cell types: recent analysis of the Genotype-Tissue Expres-
sion Project (GTEx)' dataset demonstrated that half of all expressed genes contained tissue-specific isoforms?.
DTU may produce functionally different gene products through alternative splicing and changes to the coding
sequence of the transcript, and may also result in transcripts with different untranslated regions on the 5’ or 3’ end of
the transcript, which can affect binding sites of RNA binding proteins. Reyes and Huber’ found that alternative
usage of transcription start and termination sites was a more common event than alternative splicing when exam-
ining DTU events across tissues in GTEx. Specific patterns of DTU have been identified in a number of diseases,
including cancer, retinal diseases, and neurological disorders, among others’. Large-scale analyses of cancer transcrip-
tomic data, comparing tumor to normal samples, have identified that protein domain losses are a common feature of
DTU in cancer, including domains involved in protein-protein interactions™”.

While many tutorials and workflows in the Bioconductor project address differential gene expression, there are
fewer workflows for performing a differential transcript usage analysis, which provides critical and complementary
information to a gene-level analysis. Some of the existing Bioconductor packages and functions that can be used for
statistical analysis of DTU include DEXSeq (originally designed for differential exon usage)’, diffSpliceDGE
from the edgeR package’”, diffSplice from the limma package”'’, and DRIMSeq'. Other Bioconductor
packages which are designed around a DTU analysis include stageR'?, SGSeq", and IsoformSwitchAnalyzeR".
stageR can be used for post-processing of transcript- and gene-level p-values from DTU detection methods, and will
be discussed in this workflow. SGSeq can be used to visualize splice events, and leverages DEXSeq or limma for
differential testing of splice variant usage. The Bioconductor package IsoformSwitchAnalyzeR is well docu-
mented and the vignette available from the IsoformSwitchAnalyzeR landing page can be seen as an alternative to
this workflow. IsoformSwitchAnalyzeR is designed for the downstream analysis of functional consequences of
identified isoform switches. It allows for import of data from various quantification methods, including Salmon,
and allows for statistical inference using DRIMSeq. In addition, IsoformSwitchAnalyzeR includes functions for
obtaining the nucleotide and amino acid sequence consequences of isoform switching, which is not covered in this
workflow. Other packages related to splicing can be found at the BiocViews links for DifferentialSplicing and
AlternativeSplicing, For more information about the Bioconductor project and its core infrastructure, please
refer to the overview by Huber er al."”.

We note that there are numerous other methods for detecting differential transcript usage outside of the Biocon-
ductor project. The DRIMSeq publication is a good reference for these, having descriptions and comparisons with
many current methods''. This workflow will build on the methods and vignettes from three Bioconductor packages:
DRIMSeq, DEXSeq, and stageR. This Bioconductor workflow article does not contain any new statistical methods
for detection of DTU or DGE, but instead leverages existing statistical methods and software packages.

Previously, some of the developers of the Bioconductor packages edgeR and DESeq2 have collaborated to develop
the tximport package'® for summarizing the output of fast transcript-level quantifiers, such as Salmon'’, Sailfish',
and kallisto". The tximport package focuses on preparing estimated transcript-level counts, abundances and effec-
tive transcript lengths, for gene-level statistical analysis using edgeR’, DESeq2”" or limma-voom'. tximport produces
an offset matrix to accompany gene-level counts, that accounts for a number of RNA-seq biases as well as
differences in transcript usage among transcripts of different length that would bias an estimator of gene fold
change based on the gene-level counts’. fximport can alternatively produce a matrix of data that is roughly on
the scale of counts, by scaling transcript-per-million (TPM) abundances to add up to the total number of mapped
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reads. This counts-from-abundance approach directly corrects for technical biases and differential transcript usage
across samples, obviating the need for the accompanying offset matrix.

Complementary to an analysis of differential gene expression, one can use tximport to import transcript-level
estimated counts, and then pass these counts to packages such as DRIMSeq or DEXSeq for statistical analy-
sis of differential transcript usage. Following a transcript-level analysis, one can aggregate evidence of differential
transcript usage to the gene level. The srageR package in Bioconductor provides a statistical framework to
screen at the gene level for differential transcript usage with gene-level adjusted p-values, followed by confir-
mation of which transcripts within the significant genes show differential usage with transcript-level adjusted
p-values'”. The method controls the overall false discovery rate (OFDR)* for such a two-stage procedure, which
will be discussed in more detail later in the workflow. We believe that stageR represents a principled approach to
analyzing transcript usage changes, as the methods can be evaluated against a target error rate in a manner that
mimics how the methods will be used in practice. That is, following rejection of the null hypothesis at the gene
level, investigators would likely desire to know which transcripts within a gene participated in the differential usage.

Here we provide a basic workflow for detecting differential transcript usage using Bioconductor packages,
following quantification of transcript abundance using the Salmon method (Figure 1). This workflow includes live,
runnable code chunks for analysis using DRIMSeq and DEXSeq, as well as for performing stage-wise testing of
differential transcript usage using the stageR package. For the workflow, we use data that is simulated, so that
we can also evaluate the performance of methods for differential transcript usage, as well as differential gene

TU

DGE

F tximport |

counts + length offset,
“scaledTPM", or
‘lengthScaledTPM”

gene adj. p-values
transcript p-values

gene p-values
transcript p-values

1

Differentially expressed
genes (FDR control)

Differential transcript usage: genes
and transcripts (OFDR control)

Figure 1. Diagram of the methods presented in this workflow. The left side shows two paths for performing differential
transcript usage (DTU) using Bioconductor packages and the right side shows two paths for performing differential
gene expression (DGE). DTU and DGE are complementary analyses of changes in transcription across conditions. This
workflow focuses mostly on DTU, as there are a number of other published Bioconductor workflows for DGE. In bold are
the recommended choices for quantification and filtering Salmon transcript-level data as input to the statistical methods.
The recommended filters implemented in DRIMSeq, and applied upstream of DRIMSeq and DEXSeq, are discussed in
this workflow.
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and transcript expression. The simulation was constructed using distributional parameters estimated from the
GEUVADIS project RNA-seq dataset™ quantified by the recount2 project”, including the expression levels of the
transcripts, the amount of biological variability of gene expression levels across samples, and realistic coverage
of reads along the transcripts.

Structure of this article
1. In the Methods, we describe the simulation dataset, the quantification data generated by Salmon and
imported via tximport, and the two statistical models for DTU, DRIMSeq and DEXSeq, that are highlighted

in this workflow.

2. We present an end-to-end Workflow for detection of DTU, starting from sequenced reads files (FASTQ)
and ending with sets of genes and transcripts determined to exhibit evidence of DTU by the statistical
methods, DRIMSeq and DEXSeq. We demonstrate how stageR can be used with the output of DRIMSeq
or DEXSeq to control the OFDR across genes and transcripts. Finally, we present code for performing
differential gene expression (DGE) analysis using DESeq2 and edgeR, and show how to create a scatter
plot that compares DTU and DGE results across all genes.

3. We present an Evaluation of the methods presented in the workflow along with other popular methods for
detection of DTU, DGE, and differential transcript expression (DTE) on the simulated data. While the
evaluations rely on simulated data, and are therefore relevant only to the extent that the simulation model
and parameters reflect characteristics of real data, we feel the evaluations are useful for a rough compari-
son of method performance, and for observing relative changes in performance for a given method as
sample size increases.

4. We conclude with a Discussion of the methods used in the workflow, including benefits and limitations,
and our set of recommendations from the evaluation of the simulated data.

Methods

Simulation

First we describe details of the simulated data, which will be used in the following workflow and in the evalua-
tion of methods. Understanding the details of the simulation will be useful for assessing the methods in the later
sections. All of the code used to simulate RNA-seq experiments and write paired-end reads to FASTQ files can
be found at an associated GitHub repository for the simulation code”, and the reads and quantification files can
be downloaded from Zenodo’*. Salmon'’ was used to estimate transcript-level abundances for a single sample
(ERR188297) of the GEUVADIS project”, and this was used as a baseline for transcript abundances in the simula-
tion. Transcripts that were associated with estimated counts less than 10 had abundance thresholded to 0, all other
transcripts were considered “expressed” (n=46,933). alpine’ was used to estimate realistic fragment GC bias
from 12 samples from the GEUVADIS project, all from the same sequencing center (the first 12 samples from
CNAG-CRG in Supplementary Table 2 from Love et al.’). DESeq2” was used to estimate mean and dispersion
parameters for a Negative Binomial distribution for gene-level counts for 458 non-duplicated GEUVADIS samples
provided by the recount2 project*, accounting for variation associated with sequencing center and human popula-
tion. Note that, while gene-level dispersion estimates were used to generate underlying transcript-level counts,
additional uncertainty on the transcript-level data is a natural consequence of the simulation, as the transcript-level
counts must be estimated (the underlying transcript counts are not provided to the methods).

polyester’! was used to simulate paired-end RNA-seq reads for two groups of 12 samples each, with realistic frag-
ment GC bias, and with dispersion on transcript-level counts drawn from the joint distribution of mean and
dispersion values estimated from the GEUVADIS samples. We will call this the "main simulation". To compare
DRIMSeq and DEXSeq in further detail, we generated an additional simulation in which dispersion param-
eters were assigned to genes via matching on the gene-level count, and then all transcripts of a gene had counts
generated using the same per-gene dispersion. We will call this the "fixed per-gene dispersion” simulation.
The first sample for group 1 and the first sample for group 2 followed the realistic GC bias profile of the same
GEUVADIS sample, and so on for all 12 samples. This pairing of the samples was used to generate balanced
data, but not used in the statistical analysis. countsimQC* was used to examine the properties of the simulation
relative to the dataset used for parameter estimation (Supplementary Figure 1). The simulation contains
24 samples, and the relevant parameters for countsimQC (per-gene mean and dispersion) were estimated over 458
samples. The full countsimQC report can be accessed at the associated GitHub repository for simulation code™.

Differential expression across two groups was generated as follows: The 46,933 expressed transcripts as defined
above belonged to 15,017 genes. 70% (n=10,514) of these genes with expressed transcripts were set as null
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genes, where abundance was not changed across the two groups. For 10% (n=1,501) of genes, all isoforms were
differentially expressed at a log fold change between 1 and 2.58 (fold change between 2 and 6). The set of tran-
scripts in these genes was classified as DGE (differential gene expression) by construction, and the expressed
transcripts were also DTE (differential transcript expression), but they did not count as DTU (differential transcript
usage), as the proportions within the gene remained constant. To simulate balanced differential expression, one
of the two groups was randomly chosen to be the baseline, and the other group would have its counts multiplied
by the fold change. For 10% (n=1,501) of genes, a single expressed isoform was differentially expressed at a
log fold change between 1 and 2.58. This set of transcripts was DTE by construction. If the chosen transcript
was the only expressed isoform of a gene, this counted also as DGE and not as DTU, but if there were other iso-
forms that were expressed, this counted for both DGE and DTU, as the proportion of expression among the
isoforms was affected. For 10% (n=1,501) of genes, differential transcript usage was constructed by exchang-
ing the TPM abundance of two expressed isoforms, or, if only one isoform was expressed, exchanging the
abundance of the expressed isoform with a non-expressed one. This counted for DTU and DTE, but not for
DGE. An MA plot of the simulated transcript abundances for the two groups is shown in Figure 2.

Quantification and data import

As described in the Introduction, this workflow uses transcript-level quantification estimates produced by Salmon'’
and imported into R/Bioconductor with tximport'®. Details about how to run Salmon, and which type of transcript-
level estimated counts should be imported, is covered in the Workflow, with the exact code used to run the DTU
analysis. Salmon estimates the relative abundance of each annotated transcript for each sample in units of tran-
scripts-per-million (TPM); the estimated TPM values should be proportional to the abundance of the transcripts
in the population of cells that were assayed. One critical point is that Salmon only considers the transcripts that
are provided in the annotation; it is not able to detect expression of any novel transcripts. If many un-annotated
transcripts are expressed in the particular set of samples, successful application of this workflow may require
first building out a more representative set of annotated transcripts via transcriptome assembly or full transcript
sequencing.

In addition to relative abundance, Salmon estimates the effective length of each transcript, which can take into
account a number of sample-specific technical biases including fragment size distribution (default), fragment GC
content, random hexamer priming bias, and positional bias along the transcript. If a transcript had certain properties,
related to its length and its sequence content, that made it difficult to produce cDNA fragments and sequence
reads from these fragments, then its effective length should be lower for that sample, than if these technical biases

uw
L * DGE
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= * nul
! T T T T
0 5 10 15

Figure 2. MA plot of simulated abundances. Each point depicts a transcript, with the average log2 abundance in
transcripts-per-million (TPM) on the x-axis and the difference between the two groups on the y-axis. Of the 35,850
transcripts which are expressed with TPM > 1 in at least one group, 77% (n=27,429) are null transcripts (grey), which fall
by construction on the M=0 line, and 23% (n=8,421) are differentially expressed (green, orange, or purple). This filtering
of 1 TPM is for visualization only and unrelated to the DRIMSeq filtering used in the workflow. As transcripts can belong
to multiple categories of differential gene expression (DGE), differential transcript expression (DTE), and differential
transcript usage (DTU), here the transcripts are colored by which genes they belong to (those selected to be DGE-,
DTE-, or DTU-by-construction).
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were absent. The estimates of TPM and the effective lengths can be used to estimate the number of fragments
that each transcript produced, which will be called estimated counts in this workflow.

Different types of estimated counts may be correlated with effective transcript length, and so we will discuss
in the Workflow our recommended type to use for DTU and DGE analysis (also diagrammed in Figure 1).

DTU testing

We focus on two statistical models for DTU testing in this workflow, DRIMSeq'' and DEXSeq‘. DEXSeq was
published first, as a statistical model for detecting differences in exon usage across samples in different condi-
tions. Most of the DEXSeq functions and documentation refer specifically to exons or exonic parts within a gene,
while the final results table refers more generally to these as features within a group. It is this more general usage
that we will employ in this workflow, substituting estimated transcript counts in place of exonic part counts.

DEXSeq assumes a Negative Binomial (NB) distribution for the feature counts, and considers the counts
for each feature (originally, the exonic parts) relative to counts for all other features of the group (the gene),
using an interaction term in a generalized linear model (GLM). The GLM framework is an extension of the
linear model (LM), but shares with LM the usage of a design matrix, typically represented by X, which is made up
of columns of covariates that are multiplied by scalar coefficients, typically represented by S. The design matrix
with its multiple coefficients is useful for extending statistical models beyond simple group comparisons, allowing
for more complex situations, such as within-patient comparisons, batch correction, or testing of ratios.

DEXSeq models each feature independently in the GLM fitting stage, and so does not take into account any cor-
relation among the counts across features in a group (e.g. transcript counts within a gene), except insofar as such
correlation is accounted for by columns in the design matrix. This last point is important, as correlation induced
by DTU across condition groups, or even DTU that can be associated with cell-type heterogeneity, can be
modeled in the DEXSeq framework by interaction terms with relevant covariates introduced into the design
matrix. In the current workflow, we provide an example of capturing DTU across condition using DEXSeq,
but future iterations of this workflow may also include controlling for additional covariates, such as estimated
cell type proportions. DEXSeq was evaluated on transcript counts by Soneson et al.” and then later by Nowicka
and Robinson'’, where it was shown in both cases that DEXSeq could be used to detect DTU in this configura-
tion, though isoform pre-filtering greatly improved its performance in reducing the observed false discovery rate
(FDR) closer to its nominal level.

In contrast to the NB model, DRIMSeq assumes an Dirichlet Multinomial model (DM) for each gene, where the
total count for the gene is considered fixed, and the quantity of interest is the proportion for the transcript within
a gene for each sample. If the proportion for one transcript increases, it must result in a decrease for the propor-
tions of the other transcripts of the gene. Genes that are detected as having statistically significant DTU are
those in which the proportion changes observed across condition were large, considering the variation in
proportions seen within condition. The variation in proportions across biological replicates is modeled using
a single precision parameter per gene, which will be discussed in the workflow below. DRIMSeq also uses
a design matrix, and so can be used to analyze DTU for complex experimental designs, including within-patient
comparisons, batch correction, or testing of ratios.

A critical difference between the two models is that DRIMSeq directly models the correlations among transcript
counts within a gene via the DM distribution, and so can capture these correlations across exchangeable samples
within a condition. DEXSeq with the NB distribution only can capture correlations among transcript counts within
a gene when the DTU is across sample groups defined by covariates in the design matrix. On the other hand,
DRIMSeq is limited in modeling a single precision parameter per gene. If there are two transcripts within a gene
with very different biological variability — perhaps they have separate promoters under different regulatory
control — then DEXSeq may do a better job modeling such heterogeneity in the biological variability of transcript
expression, as it estimates a separate dispersion parameter for each transcript.

Operation

This workflow was designed to work with R 3.5, and the DRIMSeq, DEXSeq, stageR, and tximport packages from
Bioconductor version 3.7. As the code for this article is linked to Bioconductor version 3.7 (released April 2018),
please consult the live Bioconductor workflow as the correct code for running the packages may change over
time. Bioconductor packages should always be installed following the official instructions. The workflow uses
a subset of all genes to speed up the analysis, but the Bioconductor packages can easily be run for this dataset
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on all human genes on a laptop in less than an hour. Compute time for the various packages is included in
the respective evaluation sections.

Workflow

Salmon quantification

We used Salmon version 0.10.0 to quantify abundance and effective transcript lengths for all of the 24
simulated samples. For this workflow, we will use the first six samples from each group. We quantified against the
GENCODE human annotation version 28, which was the same reference used to generate the simulated reads.
We used the transcript sequences FASTA file that contains ‘“Nucleotide sequences of all transcripts on the refer-
ence chromosomes”. When downloading the FASTA file, it is useful to download the corresponding GTF file, as
this will be used in later sections.

To build the Salmon index, we used the following command. Recent versions of Salmon will discard identical
sequence duplicate transcripts, and keep a log of these within the index directory. The ~gencode command trims
the GENCODE FASTA headers to only include the transcript identifier.

salmon index --gencode -t gencode.v28.transcripts.fa \
-i gencode.v28 salmon-0.10.0

To quantify each sample, we used the following command, which says to quantify with six threads using the
GENCODE index, with inward and unstranded paired end reads, using fragment GC bias correction, writing out
to the directory sample and using as input these two reads files. The library type is specified by -1 IU (inward
and unstranded) and the options are discussed in the Salmon documentation. Recent versions of Salmon can
automatically detect the library type by setting -1 A. Such a command can be automated in a bash loop using
bash variables, or one can use more advanced workflow management systems such as Snakemake** or Nextflow™.

salmon quant -p 6 -i gencode.v28 salmon-0.10.0 -1 IU \
--gcBias -o sample -1 sample 1.fa.gz -2 sample 2.fa.gz

Importing counts into R/Bioconductor

We can use tximport to import the estimated counts, abundances and effective transcript lengths into R.
The tximport package offers three methods for producing count matrices from transcript-level quantifica-
tion files, as described in detail in Soneson ef al.'®, and already mentioned in the introduction. To recap these are:
(1) original estimated counts with effective transcript length information used as a statistical offset, (2) generat-
ing “counts from abundance” by scaling TPM abundance estimates per sample such that they sum to the total
number of mapped reads (scaledTPM), or generating “counts from abundance” by scaling TPM abundance
estimates first by the average effective transcript length over samples, and then per sample such that they sum
to the total number of mapped reads (lengthScaledTPM). We will use scaledTPM for DTU detection, with the
statistical motivation described below, and the original estimated counts with length offset for DGE detection.

We recommend constructing a CSV file that keeps track of the sample identifiers and any relevant variables,
e.g. condition, time point, batch, and so on. Here we have made a sample CSV file and provided it along with this
workflow’s R package, rnaseqDTU. If a user is applying the code in this workflow with her own RNA-seq data,
she does not need to load the rnasegDTU package. If a user is running through the code in this workflow with the
workflow simulated data, she does need to load the rnaseqDTU package.

In order to find this CSV file, we first need to know where on the machine this workflow package lives, so we
can point to the extdata directory where the CSV file is located. These two lines of code load the workflow
package and find this directory on the machine. Again, these two lines of code would therefore not be part of a
typical analysis using one’s own RNA-seq data.

library(rnasegDTU)
csv.dir <- system.file("extdata", package="rnasegDTU")

The CSV file records which samples are condition 1 and which are condition 2. The columns of this CSV
file can have any names, although sample id will be used later by DRIMSeq, and so using this column name
allows us to pass this data.frame directly to DRIMSeq at a later step.

samps <- read.csv(file.path(csv.dir, "samples.csv'"))
head (samps)
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##  sample id condition
1 s11 1
## 2 s2_1 1
## 3 s3 1 1
#H 4 s4 1 1
## 5 s5 1 1
## 6 s6_1 1

sampsScondition <- factor (sampsScondition)
table (samps$condition)

##
## 1 2
## 6 6

files <- file.path("/path/to/dir", sampsSsample id, "quant.sf")
names (files) <- sampsSsample id
head (files)

HH sl 1 s2 1
## "/path/to/dir/sl 1/quant.sf" "/path/to/dir/s2 1/quant.sf"
HH s3 1 s4 1
## "/path/to/dir/s3 1/quant.sf" "/path/to/dir/s4 1/quant.sf"
HH s5 1 s6 1

## "/path/to/dir/s5 1/quant.sf" "/path/to/dir/s6_1/quant.sf"

‘We can then import transcript-level counts using zximport. For DTU analysis, we suggest generating counts from
abundance, using the scaledTPM method described by Soneson ef al.'°. The countsFromAbundance
option of tximport uses estimated abundances to generate roughly count-scaled data, such that each column will
sum to the number of reads mapped for that library. By using scaledTPM counts, the estimated proportions fit
by DRIMSeq, which are generated from counts, will be equivalent to proportions of the abundance of the isoforms.

If instead of scaledTPM, we used the original estimated transcript counts (countsFromAbundance="no"),
or if we used lengthScaledTPM transcript counts, then a change in transcript usage among transcripts of
different length could result in a changed total count for the gene, even if there is no change in total gene expres-
sion. For more detail and a diagram of this effect, we refer the reader to Figure 1 of Trapnell ef al.”'. Briefly, this
is because the original transcript counts and lengthScaledTPM transcript counts scale with transcript length,
while scaledTPM transcript counts do not. A change in the total count for the gene, not corrected by an offset,
could then bias the calculation of proportions and therefore confound DTU analysis. For testing DTU using DRIM-
Seq and DEXSeq, it is convenient if the count-scale data do not scale with transcript length within a gene. This
could be corrected by an offset, but this is not easily implemented in the current DTU analysis packages. For
gene-level analysis (DGE), we can use gene-level original counts with an average transcript length offset, gene-
level scaledTPM counts, or gene-level lengthScaledTPM counts, as all of these three methods control for
the length bias described by Trapnell er al.”’ and Soneson et al.'®. Our DTU and DGE countsFromAbundance
recommendations are summarized in Figure 1.

A final note is that, the motivation for using scaledTPM counts hinges on the fact that estimated fragment
counts scale with transcript length in fragmented RNA-seq data. If a different experiment is performed and
a different quantification method used to produce counts per transcript which do not scale with transcript
length, then the recommendation would be to use these counts per transcript directly. Examples of experiments
producing counts per transcript that would potentially not scale with transcript length include counts of full-
transcript-length or nearly-full-transcript-length reads, or counts of 3’ tagged RNA-seq reads aggregated to
transcript groups. In either case, the statistical methods for DTU could be provided directly with the transcript
counts.

The following code chunk is what one would use in a typical analysis, but is not evaluated in this workflow

because the quantification files are not provided in the rnasegDTU package due to size restrictions. Instead we will
load a pre-constructed matrix of counts below. In a typical workflow, the code below would be used to generate
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the matrix of counts from the quantification files. All of the quantification files and simulated reads for this
dataset have been made publicly available on Zenodo; see the Data availability section at the end of this workflow.

library (tximport)

txi <- tximport(files, type="salmon", txOut=TRUE,
countsFromAbundance="scaledTPM")

cts <- txiScounts

cts <- cts[rowSums (cts) > 0,]

Transcript-to-gene mapping

Bioconductor offers numerous approaches for building a 7xDb object, a transcript database that can be used
to link transcripts to genes (among other uses). The following code chunks were used to generate a TxDb,
and then use the select function with the 7xDb to produce a corresponding data.frame called txdf which
links transcript IDs to gene IDs. In this 7xDb, the transcript IDs are called TXNAME and the gene IDs are called
GENEID. The version 28 human GTF file was downloaded from the GENCODE website when download-
ing the transcripts FASTA file. Due to size restrictions, neither the gencode.v28.annotation.gtf.gz
file nor the generated . sglite file are included in the rnasegDTU package.

library (GenomicFeatures)

gtf <- "gencode.v28.annotation.gtf.gz"
txdb.filename <- "gencode.v28.annotation.sglite"
txdb <- makeTxDbFromGFF (gtf)

saveDb (txdb, txdb.filename)

Once the TxDb database has been generated and saved, it can be quickly reloaded:

txdb <- loadDb (txdb.filename)

txdf <- select (txdb, keys(txdb, "GENEID"), "TXNAME", "GENEID")
tab <- table (txdf$GENEID)

txdfSntx <- tab[match (txdf$SGENEID, names (tab))]

DRIMSeq

We load the cts object as created in the zximport code chunks. This contains count-scale data, gener-
ated from abundance using the scaledTPM method. The column sums are equal to the number of mapped
paired-end reads per experiment. The experiments have between 31 and 38 million paired-end reads that were
mapped to the transcriptome using Salmon.

data (salmon cts)
cts[1:3,1:3]

## sl 1 s2 1 s3 1
## ENST00000488147.1 179.798908 184.437348 229.046306
## ENST00000469289.1 0.000000 0.000000 0.000000
## ENST00000466430.5 5.004159 3.627831 9.463167

range (colSums (cts) /1e6)

#4# [1] 31.37738 38.47173

We also have the txdf object giving the transcript-to-gene mappings (for construction, see previous section).
This is contained in a file called simulate.rda that contains a number of R objects with information about the
simulation, that we will use later to assess the methods’ performance.

data (simulate)
head (txdf)

## GENEID TXNAME ntx

## 1 ENSGO0000000003.14 ENST00000612152.4 5
## 2 ENSG0O0000000003.14 ENST00000373020.8 5
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## 3 ENSGO0000000003.14 ENST00000614008.
## 4 ENSGO0000000003.14 ENST00000496771.
## 5 ENSGO0000000003.14 ENST00000494424.
## 6 ENSG00000000005.5 ENST00000373031.

SO D
N oo ol

all (rownames (cts) %in% txdf$STXNAME)
## [1] TRUE

txdf <- txdf[match (rownames (cts), txdf$STXNAME), ]
all (rownames (cts) == txdfS$STXNAME)

## [1] TRUE

In order to run DRIMSeq, we build a data.frame with the gene ID, the feature (transcript) ID, and then columns
for each of the samples:

counts <- data.frame (gene 1d=txdfSGENEID,
feature id=txdfSTXNAME,
cts)

We can now load the DRIMSeq package and create a dmDSdata object, with our counts and samps
data.frames. Typing in the object name and pressing return will give information about the number of genes:

library (DRIMSeq)
d <- dmDSdata (counts=counts, samples=samps)
d

## An object of class dmDSdata
## with 16612 genes and 12 samples

## * data accessors: counts(), samples|()

The dmDSdata object has a number of specific methods. Note that the rows of the object are gene-oriented, so
pulling out the first row corresponds to all of the transcripts of the first gene:

methods (class=class (d))
#4# [1] [ coerce counts dmFilter dmPrecision length
## [7] names plotData show

## see ’?methods’ for accessing help and source code

counts (d[1,]) [,1:4]

## gene_id feature id sl 1 s2 1
## 1 ENSG00000000419.12 ENST00000371588.9 1394.71411 1210.12539
## 2 ENSG0O0000000419.12 ENST00000466152.5 135.15850 18.20031
## 3 ENSG0O0000000419.12 ENST00000371582.8 154.77943 35.39425
## 4 ENSG00000000419.12 ENST00000371584.8 42.85733 86.04958
## 5 ENSG00000000419.12 ENST00000413082.1 0.00000 0.00000

It will be useful to first filter the object, before running procedures to estimate model parameters. This greatly
speeds up the fitting and removes transcripts that may be troublesome for parameter estimation, e.g. estimat-
ing the proportion of expression among the transcripts of a gene when the total count is very low. We first define
n to be the total number of samples, and n.small to be the sample size of the smallest group. We use all three
of the possible filters: for a transcript to be retained in the dataset, we require that (1) it has a count of at least
10 in at least n.small samples, (2) it has a relative abundance proportion of at least 0.1 in at least n.small
samples, and (3) the total count of the corresponding gene is at least 10 in all n samples. We used all three
possible filters, whereas only the two count filters are used in the DRIMSeq vignette example code.
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It is important to consider what types of transcripts may be removed by the filters, and potentially adjust depend-
ing on the dataset. If n was large, it would make sense to allow perhaps a few samples to have very low counts, so
lowering min samps gene expr to some factor multiple (< 1) of n, and likewise for the first two filters for
n.small. The second filter means that if a transcript does not make up more than 10% of the gene’s expression
for at least n.small samples, it will be removed. If this proportion seems too high, for example, if very lowly
expressed isoforms are of particular interest, then the filter can be omitted or the min feature prop lowered.
For a concrete example, if a transcript goes from a proportion of 0% in the control group to a proportion of 9% in
the treatment group, this would be removed by the above 10% filter. After filtering, this dataset has 7,764 genes.

n <- 12

n.small <- 6

d <- dmFilter(d,
min samps feature expr=n.small, min feature expr=10,
min samps feature prop=n.small, min feature prop=0.1,
min samps gene expr=n, min gene expr=10)

d

## An object of class dmDSdata
## with 7764 genes and 12 samples
## * data accessors: counts (), samples/()

The dmDSdata object only contains genes that have more that one isoform, which makes sense as we are test-
ing for differential transcript usage. We can find out how many of the remaining genes have N isoforms by
tabulating the number of times we see a gene ID, then tabulating the output again:

table (table (counts (d) Sgene_id))

##
#H# 2 3 4 5 6 7

## 4062 2514 931 222 34 1

We create a design matrix, using a design formula and the sample information contained in the object, accessed
via samples. Here we use a simple design with just two groups, but more complex designs are possible. For some
discussion of complex designs, one can refer to the vignettes of the limma, edgeR, or DESeq2 packages.

design full <- model.matrix(~condition, data=DRIMSeq::samples(d))
colnames (design_ full)

## [1] " (Intercept)" "condition2"

Only for speeding up running the live code chunks in this workflow, we subset to the first 250 genes, representing
about one thirtieth of the dataset. This step would not be run in a typical workflow.

d <= d[1:250,]
7764 / 250

## [1] 31.056

We then use the following three functions to estimate the model parameters and test for DTU. We first esti-
mate the precision, which is related to the dispersion in the Dirichlet Multinomial model via the formula below.
Because precision is in the denominator of the right hand side of the equation, they are inversely related. Higher
dispersion — counts more variable around their expected value — is associated with lower precision. For full
details about the DRIMSeq model, one should read both the detailed software vignette and the publication''.
After estimating the precision, we fit regression coefficients and perform null hypothesis testing on the coef-
ficient of interest. Because we have a simple two-group model, we test the coefficient associated with the
difference between condition 2 and condition 1, called condition2. The following code takes about half a minute,
and so a full analysis on this dataset takes about 15 minutes on a laptop.

1

dispersion = —————
1 + precision
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set.seed (1)

system.time ({
d <- dmPrecision(d, design=design full)
d <- dmFit(d, design=design_ full)
d <- dmTest (d, coef="condition2")

1)

## ! Using a subset of 0.1 genes to estimate common precision !
## ! Using common precision = 21.2862 as prec_init !

## ! Using 0 as a shrinkage factor !

## user system elapsed

## 34.213 0.450 35.846

To build a results table, we run the results function. We can generate a single p-value per gene, which tests
whether there is any differential transcript usage within the gene, or a single p-value per transcript, which tests
whether the proportions for this transcript changed within the gene:

res <- DRIMSeq::results(d)

head (res)

## gene_ id 1lr df pvalue adj pvalue

## 1 ENSG00000000457.13 1.493561 4 8.277814e-01 9.120246e-01

## 2 ENSG00000000460.16 1.068294 3 7.847330e-01 9.101892e-01

## 3 ENSG00000000938.12 4.366806 2 1.126575e-01 2.750169e-01

## 4 ENSG00000001084.11 1.630085 3 6.525877e-01 8.643316e-01

## 5 ENSG00000001167.14 28.402587 1 9.853354e-08 5.007113e-07

## 6 ENSG00000001461.16 9.815460 1 1.730510e-03 6.732766e-03

res.txp <- DRIMSeq::results(d, level="feature")

head (res.txp)

## gene_ id feature_ id lr df pvalue adj pvalue
## 1 ENSG0O0000000457.13 ENST00000367771.10 0.16587607 1 0.6838032 0.9171007
## 2 ENSG00000000457.13 ENST00000367770.5 0.01666448 1 0.8972856 0.9788571
## 3 ENSG0O0000000457.13 ENST00000367772.8 1.02668495 1 0.3109386 0.6667146
## 4 ENSG0O0000000457.13 ENST00000423670.1 0.06046507 1 0.8057624 0.9323782
## 5 ENSG0O0000000457.13 ENST00000470238.1 0.28905766 1 0.5908250 0.8713427
## 6 ENSG00000000460.16 ENST00000496973.5 0.83415788 1 0.3610730 0.7232298

Because the pvalue column may contain NA values, we use the following function to turn these into 1’s. The
NA values would otherwise cause problems for the stage-wise analysis. From investigating these NA p-value
cases for DRIMSeq, they all occur when one condition group has all zero counts for a transcript, but suffi-
cient counts from the other condition group, and sufficient counts for the gene. DRIMSeq will not estimate a
precision for such a gene. These all happen to be true positive genes for DTU in the simulation, where the isoform
switch is total or nearly total. DEXSeq, shown in a later section, does not produce NA p-values for these genes. A
potential fix would be to use a plug-in common or trended precision for such genes, but this is not implemented in
the current version of DRIMSeq.

no.na <- function(x) ifelse(is.na(x), 1, x)
resSpvalue <- no.na(resSpvalue)
res.txpSpvalue <- no.na(res.txpSpvalue)

We can plot the estimated proportions for one of the significant genes, where we can see evidence of switching
(Figure 3).
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Figure 3. Estimated transcript proportions for one of the significant genes.

idx <- which(resSadj pvalue < 0.05) [1]
res[idx, ]

## gene_id 1r df pvalue adj pvalue
## 5 ENSG00000001167.14 28.40259 1 9.853354e-08 5.007113e-07

plotProportions(d, resSgene id[idx], "condition™")

stageR following DRIMSeq
Because we have been working with only a subset of the data, we now load the results tables that would have
been generated by running DRIMSeq functions on the entire dataset.

data (drim tables)
nrow (res)

## [1] 7764
nrow (res.txp)

## [1] 20711

A typical analysis of differential transcript usage would involve asking first: “which genes contain any evidence
of DTU?”, and secondly, “which transcripts in the genes that contain some evidence may be participating in the
DTU?” Note that a gene may pass the first stage without exhibiting enough evidence to identify one or more
transcripts that are participating in the DTU. The stageR package is designed to allow for such two-stage test-
ing procedures, where the first stage is called a screening stage and the second stage a confirmation stage'.
The methods are general, and can also be applied to testing, for example, changes across a time series followed
by investigation of individual time points, as shown in the stageR package vignette. We show below how stageR is
used to detect DTU and how to interpret its output.
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We first construct a vector of p-values for the screening stage. Because of how the stageR package will com-
bine transcript and gene names, we need to strip the gene and transcript version numbers from their Ensembl IDs
(this is done by keeping only the first 15 characters of the gene and transcript IDs).

pScreen <- resS$Spvalue
strp <- function(x) substr(x,1,15)
names (pScreen) <- strp(resSgene id)

‘We construct a one column matrix of the confirmation p-values:

pConfirmation <- matrix(res.txpSpvalue, ncol=1)
rownames (pConfirmation) <- strp(res.txpSfeature id)

We arrange a two column data.frame with the transcript and gene identifiers.

tx2gene <- res.txpl,c("feature id", "gene id")]
for (i in 1:2) tx2genel,i] <- strp(tx2gene[,i])

The following functions then perform the stageR analysis. We must specify an alpha, which will be the over-
all false discovery rate target for the analysis, defined below. Unlike typical adjusted p-values or g-values, we
cannot choose an arbitrary threshold later: after specifying alpha=0.05, we need to use 5% as the target in
downstream steps. There are also convenience functions getSignificantGenes and getSignificantTx, which are
demonstrated in the stageR vignette.

library (stageR)

stageRObj <- stageRTx (pScreen=pScreen, pConfirmation=pConfirmation,
pScreenAdjusted=FALSE, tx2gene=tx2gene)

stageRObj <- stageWiseAdjustment (stageRObj, method="dtu", alpha=0.05)

suppressWarnings ({

drim.padj <- getAdjustedPValues (stageRObj, order=FALSE,
onlySignificantGenes=TRUE)
1)
head (drim.padij)

#4# genelD txID gene transcript
## 1 ENSG00000001167 ENST00000341376 1.446731e-05 0.000000
## 2 ENSG00000001167 ENST00000353205 1.446731e-05 0.000000
## 3 ENSG00000001461 ENST00000003912 8.263160e-03 0.000000
## 4 ENSG00000001461 ENST00000339255 8.263160e-03 0.000000
## 5 ENSG00000001631 ENST00000394507 1.287012e-04 0.060474
## 6 ENSG00000001631 ENST00000475770 1.287012e-04 1.000000

The final table with adjusted p-values summarizes the information from the two-stage analysis. Only genes that
passed the filter are included in the table, so the table already represents screened genes. The transcripts with
values in the column, transcript, less than 0.05 pass the confirmation stage on a target 5% overall false
discovery rate, or OFDR. This means that, in expectation, no more than 5% of the genes that pass screening
will either (1) not contain any DTU, so be falsely screened genes, or (2) contain a falsely confirmed transcript.
A falsely confirmed transcript is a transcript with an adjusted p-value less than 0.05 which does not exhibit
differential usage across conditions. The stageR procedure allows us to look at both the genes that passed the
screening stage and the transcripts with adjusted p-values less than our target alpha, and understand what kind
of overall error rate this procedure entails. This cannot be said for an arbitrary procedure of looking at standard
gene adjusted p-values and transcript adjusted p-values, where the adjustment was performed independently.

Post-hoc filtering on the standard deviation in proportions

We found that DRIMSeq was sensitive to detect DTU, but could exceed its false discovery rate (FDR) bounds,
particularly on the transcript-level tests, and that a post-hoc, non-specific filtering of the DRIMSeq transcript
p-values and adjusted p-values improved the FDR and OFDR control. We considered the standard deviation
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(SD) of the per-sample proportions as a filtering statistic. This statistic does not use the information about which
samples belong to which condition group. We set the p-values and adjusted p-values for transcripts with small
per-sample proportion SD to 1. We do not recompute adjusted p-values, although we will provide the filtered
p-values to the stageR procedure.

We note that the p-values are no longer necessarily uniform after filtering out small effect size transcripts and
genes, although we find that in this simulation at least, the filtering made the procedure more conservative: exclud-
ing transcripts with small SD of the per-sample proportions brought both the observed FDR and the observed
OFDR closer to their nominal targets, as will be shown in the evaluations below.

res.txp.filt <- DRIMSeq::results(d, level="feature")
smallProportionSD <- function(d, filter=0.1) {
cts <- as.matrix(subset (counts(d), select=-c(gene id, feature id)))
gene.cts <- rowsum(cts, counts(d)Sgene id)
total.cts <- gene.cts[match(counts(d) Sgene id, rownames (gene.cts)),]
props <- cts/total.cts
propSD <- sqgrt(rowVars (props))
propSD < filter
}
filt <- smallProportionSD (d)
res.txp.filtSpvalue[filt] <- 1
res.txp.filtSadj pvalue[filt] <- 1

The above post-hoc filter is not part of the DRIMSeq modeling steps, and to avoid interfering with the mod-
eling, we run it after DRIMSeq. The other three filters used before have been tested by the DRIMSeq package
authors, and are therefore a recommended part of an analysis before the modeling begins. We do not apply this
post-hoc filter to DEXSeq in this workflow, as DEXSeq seemed to be closer to controlling its FDR and OFDR in
the evaluations, after using the DRIMSeq filters recommended in this workflow.

DEXSeq

The DEXSeq package was originally designed for detecting differential exon usage’, but can also be adapted to
run on estimated transcript counts, in order to detect DTU. Using DEXSeq on transcript counts was evaluated by
Soneson et al.”’, showing the benefits in FDR control from filtering lowly expressed transcripts for a transcript-level
analysis. We benchmarked DEXSeq here, beginning with the DRIMSeq filtered object, as these filters are intuitive,
they greatly speed up the analysis, and such filtering was shown to be beneficial in FDR control.

The two factors of (1) working on isoform counts rather than individual exons and (2) using the DRIMSeq filtering
procedure dramatically increase the speed of DEXSeq, compared to running an exon-level analysis. Another advan-
tage is that we benefit from the sophisticated bias models of Salmon, which account for drops in coverage on
alternative exons that can otherwise throw off estimates of transcript abundance™. A disadvantage over the exon-
level analysis is that we must know in advance all of the possible isoforms that can be generated from a gene
locus, all of which are assumed to be contained in the annotation files (FASTA and GTF).

We first load the DEXSeq package and then build a DEXSeqDataSet from the data contained in the dmDStest
object (the class of the DRIMSeq object changes as the results are added). The design formula of the DEX-
Seq-DataSet here uses the language “exon” but this should be read as “transcript” for our analysis. DEXSeq will
test — after accounting for total gene expression for this sample and for the proportion of this transcript relative
to the others — whether there is a condition-specific difference in the transcript proportion relative to the others.

library (DEXSeq)

sample.data <- DRIMSeq: :samples (d)

count.data <- round(as.matrix (counts(d)[,-c(1:2)1))

dxd <- DEXSegDataSet (countData=count.data,
sampleData=sample.data,
design="sample + exon + condition:exon,
featureID=counts (d) Sfeature id,
groupID=counts (d) Sgene_ id)
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The following functions run the DEXSeq analysis. While we are only working on a subset of the data, the full
analysis for this dataset took less than 3 minutes on a laptop.

system.time ({

dxd <- estimateSizeFactors (dxd)

dxd <- estimateDispersions (dxd, quiet=TRUE)

dxd <- testForDEU(dxd, reducedModel="sample + exon)
1)

## user system elapsed
## 7.451 0.032 7.488

‘We then extract the results table, not filtering on mean counts (as we have already conducted filtering via DRIMSeq
functions). We compute a per-gene adjusted p-value, using the perGeneQValue function, which aggregates
evidence from multiple tests within a gene to a single p-value for the gene and then corrects for multiple
testing across genes’. Other methods for aggregative evidence from the multiple tests within genes have been
discussed in a recent publication and may be substituted at this step™. Finally, we build a simple results table with the
per-gene adjusted p-values.

dxr <- DEXSegResults (dxd, independentFiltering=FALSE)
gval <- perGeneQValue (dxr)
dxr.g <- data.frame (gene=names (gqval),gval)

For size consideration of the workflow R package, we reduce also the transcript-level results table to a simple
data.frame:

columns <- c("featureID","groupID","pvalue")
dxr <- as.data.frame (dxr[,columns])
head (dxr)

## featurelID groupID
## ENSG00000000457.13:ENST00000367771.10 ENST00000367771.10 ENSGO0000000457.13
## ENSG00000000457.13:ENST00000367770. ENST00000367770.5 ENSG00000000457.13
## ENSG00000000457.13:ENST00000367772. ENST00000367772.8 ENSG00000000457.13
## ENSG00000000457.13:ENST00000423670. ENST00000423670.1 ENSG00000000457.13
## ENSG00000000457.13:ENST00000470238. ENST00000470238.1 ENSG00000000457.13
## ENSG00000000460.16:ENST00000496973. ENST00000496973.5 ENSG00000000460.16
## pvalue

U= = o Ul

## ENSG00000000457.13:ENST00000367771.10 0.5620081
## ENSG00000000457.13:ENST00000367770.5 0.8399434
## ENSG00000000457.13:ENST00000367772.8 0.5675043
## ENSG00000000457.13:ENST00000423670.1 0.7032904
## ENSG00000000457.13:ENST00000470238.1 0.8476920
## ENSG00000000460.16:ENST00000496973.5 0.2108527

stageR following DEXSeq
Again, as we have been working with only a subset of the data, we now load the results tables that would have
been generated by running DEXSeq functions on the entire dataset.

data (dex tables)

If the stageR package has not already been loaded, we make sure to load it, and run code very similar to that used
above for DRIMSeq two-stage testing, with a target alpha=0.05.

library (stageR)

strp <- function(x) substr(x,1,15)

pConfirmation <- matrix(dxrSpvalue,ncol=1)

dimnames (pConfirmation) <- list(strp(dxrSfeaturelD), "transcript")
pScreen <- gval
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"groupID")])

(1 in 1:2) tx2gene[,1i] <- strp(tx2genel,i])

The following three functions provide a table with the OFDR control described above. To repeat, the set of genes

passing screening should not have more than 5% of either genes which have in fact no DTU or genes which

contain a transcript with an adjusted p-value less than 5% which do not participate in DTU.

stageRObj <- stageRTx (pScreen=pScreen, pConfirmation=pConfirmation,
pScreenAdijusted=TRUE, tx2gene=tx2gene)

stageRObj <- stageWiseAdjustment (stageRObj, method="dtu", alpha=0.05)

suppressWarnings ({

dex.padj <- getAdjustedPValues (stageRObj,

})

head (dex.padj)

order=FALSE,

onlySignificantGenes=TRUE)

## genelD txID gene transcript
## 1 ENSG00000001167 ENST00000341376 1.379695e-05 0
## 2 ENSG00000001167 ENST00000353205 1.379695e-05 0
## 3 ENSG00000001461 ENST00000003912 1.011322e-03 0
## 4 ENSG00000001461 ENST00000339255 1.011322e-03 0
## 5 ENSG00000001630 ENST00000003100 4.979296e-03 0
## 6 ENSG00000001630 ENST00000450723 4.979296e-03 0

Citing methods in published research

This concludes the DTU section of the workflow. If you use DRIMSeq'', DEXSeq’, stageR", tximport'®, or
Salmon'’ in published research, please cite the relevant methods publications, which can be found in the References
section of this workflow.

DGE analysis with DESeq2

In the final section of the workflow containing live code examples, we demonstrate how differential transcript
usage, summarized to the gene level, can be visualized with respect to differential gene expression analysis
results. We use zximport and summarize counts to the gene level and compute an average transcript length offset
for count-based methods'®. We will then show code for using DESeq2 and edgeR to assess differential gene expres-
sion. Because we have simulated the genes according to three different categories, we can color the final plot by
the true simulated state of the genes. We note that we will pair DEXSeq with DESeq?2 results in the following plot,
and DRIMSeq with edgeR results. However, this pairing is arbitrary, and any DTU method can reasonably be
paired with any DGE method.

The following line of code is unevaluated, but was used to generate an object txi.g which contains the
gene-level counts, abundances and average transcript lengths.

txi.g <- tximport(files, type="salmon", tx2gene=txdf[,2:1])

For the workflow, we load the txi.g object which is saved in a file salmon gene txi.rda. We then load
the DESeq2 package and build a DESegDataSet from txi.g, providing also the sample information and a
design formula.

data (salmon _gene txi)
library (DESeg?2)
dds <- DESegDataSetFromTximport (txi.g,

samps, ~condition)

## using counts and average transcript lengths from tximport
The following two lines of code run the DESeq2 analysis™.

dds <- DESeq(dds)
dres <- DESeqg2::results(dds)
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Because we happen to know the true status of each of the genes, we can make a scatterplot of the results, coloring
the genes by their status (whether DGE, DTE, or DTU by construction).

8

all (dxr.gSgene %in% rownames (dres))

## TRUE

[11]
dres <- dres[dxr.gSgene, ]
# we can only color because we simulated...
col <- rep(8, nrow(dres))

col [rownames (dres) %in% dge.genes] <- 1
col [rownames (dres) %in% dte.genes] <- 2
col [rownames (dres) %in% dtu.genes] <- 3

Figure 4 displays the evidence for differential transcript usage over that for differential gene expression. We
can see that the DTU genes cluster on the y-axis (mostly not captured in the DGE analysis), and the DGE genes
cluster on the x-axis (mostly not captured in the DTU analysis). The DTE genes fall in the middle, as all of them
represent DGE, and some of them additionally represent DTU (if the gene had other expressed transcripts). Because
DEXSeq outputs an adjusted p-value of 0 for some of the genes, we set these instead to a jittered value around
107, so that their number and location on the x-axis could be visualized. These jittered values should only be

used for visualization.

bigpar ()
# here cap the smallest DESeg2 adj p-value
cap.padj <- pmin(-loglO (dresS$padj), 100)
# this vector only used for plotting
jitter.padj <- -1logl0O(dxr.gSgval + 1e-20)
jp.idx <- jitter.padj 20
Jjitter.padj[jp.1idx]
plot (cap.padj, jitter.padj,
xlab="Gene expression",
ylab="Transcript usage")
legend ("topright",
c("DGE", "DTE", "DTU", "null"),

col=col,

<- rnorm(sum(jp.idx), 20,

.25)

col=c(1:3,8), pch=20, bty="n")
(o] g Q. 8 O 3 .
— @é)"m & s} DGE
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* DTU
* null

15
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Figure 4.Transcript usage over gene expression plot. Each point represents a gene, and plotted are -log10 adjusted
p-values for DEXSeq's test of differential transcript usage (y-axis) and DESeq2’s test of differential gene expression
(x-axis). Because we simulated the data we can color the genes according to their true category.
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DGE analysis with edgeR
We can also perform differential gene expression analysis using edgeR as the inference engine’. The following
code incorporates the average transcript length matrix as an offset for an edgeR analysis.

library (edgeR)

cts.g <- txi.g$Scounts

normMat <- txi.gSlength

normMat <- normMat / exp (rowMeans (log (normMat)))

o <- log(calcNormFactors (cts.g/normMat)) + log(colSums (cts.g/normMat))
y <- DGEList(cts.qg)

y <- scaleOffset(y, t(t(log(normMat)) + o))

keep <- filterByExpr (y)

y <- ylkeep,]

The basic edgeR model fitting and results extraction can be accomplished with the following lines:

y <- estimateDisp(y, design full)

fit <- glmFit(y, design_ full)

lrt <- glmLRT(fit)

tt <- topTags(lrt, n=nrow(y), sort="none")[[1l]]

Again, we can color the genes by their true status in the simulation:

common <- intersect (resSgene id, rownames (tt))
tt <- tt[common, ]

res.sub <- res[match(common, resSgene id),]

# we can only color because we simulated...
col <- rep(8, nrow(tt))

col[rownames (tt) %in% dge.genes] <- 1
col[rownames (tt) %in% dte.genes] <- 2
col[rownames (tt) %in% dtu.genes] <- 3

Figure 5 displays the evidence for differential transcript usage over that for differential gene expression, now
using DRIMSeq and edgeR. One obvious contrast with Figure 4 is that DRIMSeq outputs lower non-zero
adjusted p-values than DEXSeq does, where DEXSeq instead outputs 0 for many genes. The plots look more
similar when zooming in on the DRIMSeq y-axis, as can be seen in the right panel of Figure 5.

bigpar ()
plot (-1oglO (ttSFDR), -1logl0(res.subSadj pvalue), col=col,
xlab="Gene expression",
ylab="Transcript usage")
legend ("topright",
c("DGE", "DTE", "DTU", "null"),
col=c(1:3,8), pch=20, bty="n")

bigpar ()
plot (-1oglO (ttSFDR), -loglO(res.subSadj pvalue), col=col,
xlab="Gene expression",
ylab="Transcript usage", ylim=c(0,20))
legend("topright",
c ("DGE", "DTE", "DTU", "null"),
col=c(1:3,8), pch=20, bty="n")

End of workflow section

This marks the end of the workflow section of the article. The following sections provide an evaluation of the
methods presented in this workflow for DTU and DGE, alongside evaluation of other popular methods for DTU
and for DGE. We additionally provide an evaluation of popular methods for DTE. While the workflow does not
contain any code for performing DTE, we felt it was valuable to include an evaluation at this level of analysis
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Figure 5. Transcript usage over gene expression plot, as previously, but for DRIMSeq and edgeR. The right panel
shows the same data as the left panel but zooming in on the y-axis.

as well. In practice, for count-based methods such as DESeq2 and edgeR, performing DTE uses the same
code as for DGE, but the counts are provided at the transcript level rather than summarized to the gene level.
All of the analysis code used in the evaluations is provided in the associated GitHub repository™.

Evaluation

We investigated the performance of the Bioconductor packages used in the workflow above, DRIMSeq and
DEXSeq for DTU, DESeq2 and edgeR for DGE, relative to other popular methods for DTU and DGE. It is
useful to assess the performance of methods for DGE in a simulation which also includes DTU — to see whether
there is potentially an enrichment of false positives for certain types of genes according to the simulation. We
also considered the question of DTE, and evaluated a number of methods designed for DGE — as well as meth-
ods designed for either DGE or DTE — by testing at the transcript level. DTE is not one of the analyses included
in the workflow, but it is straightforward to perform with many of the DGE methods as well as with the methods
explicitly designed to perform DGE or DTE.

As in the last plots presented in the workflow, in the evaluation we categorized genes by their simulation type, using
the terms "DGE", "DTE", and "DTU". When referring to the gene types in the simulation: these refer to the 10%
of genes wherein all expressed transcripts had a constant fold change across condition (DGE), the 10% of genes
where a single expressed transcript had a fold change across condition (DTE), and the 10% of genes where two
transcripts had their expression switched across condition (DTU). Thus, the DTU genes counted as false posi-
tives for the DGE analysis, and vice versa. The DTE genes counted as true positives for the DGE analysis
(because the total expression changed), and counted as true positives for DTU analysis if there were other expressed
transcripts in the gene, or a false positive for DTU analysis if there were no other expressed transcripts (and so
the proportions did not change).

We used three types of plots to explore the results. For assessing overall method performance for DTU, DGE,
and DTE analysis, the iCOBRA package’’ was used to construct plots to assess the true positive rate (TPR) over
the false discovery rate (FDR) at three nominal FDR thresholds: 1%, 5%, and 10%. We additionally used
bar plots to show the number of false positives for each method across simulated gene-type categories (these
plots referred to here as breakdown plots). We can do this at both the gene and transcript level: a false posi-
tive transcript can be categorized according to the type of gene to which it belongs. Finally, we created an OFDR
plot for assessing the use of stageR for constructing gene-transcript OFDR sets, after applying stageR to the
output of the DTU detection methods. The OFDR plot displays the observed OFDR on the x-axis and the
sensitivity in recovering DTU transcripts on the y-axis. We used a fixed target OFDR for these plots of 5%. The
code for evaluating all methods and constructing the iCOBRA plots is included in the simulation repository™.

Other popular methods for DTU
We assessed two other methods for DTU, SUPPA2* and RATs*, both of which can take Salmon quantifications
as input. For statistical testing of DTU, SUPPA2 computes, for a given transcript, the difference in proportion
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across condition and the differences in proportion seen between biological replicates. SUPPA2 then compares
the difference in proportion across condition to the distribution of between-replicate differences for transcripts
with similar average abundance by TPM. The transcript p-value is the tail probability from this empirical distri-
bution, divided by two. SUPPA2 is implemented as a command-line software package written in python, with
a number of distinct features, including the ability to translate from Salmon transcript-level quantifications
to individual splicing events, which are cataloged using a specific vocabulary described in the SUPPA2 software
usage guide. SUPPA2 additionally offers differential analysis on the splicing events, which may be more
valuable to investigators than per-transcript results, depending on the research goals (similar to the exon-level
primary use case of DEXSeq).

RATs uses a G-test of independence® at both the gene level and transcript level: at the gene level it compares
the sets of abundances for each transcript across condition, and at the transcript level it compares the abundance
of each transcript against the pooled abundance of the other transcripts in the gene, similar to the approach of
DEXSeq in detecting differential exon usage, although with a different statistical test. RATs uses gene- and tran-
script-level expression filters before statistical testing. Unlike the other DTU methods discussed, RATs uses the
inferential replicates (bootstrap or Gibbs samples) to repeat the testing multiple times, and then calculates the
fraction of inferential replicates which achieve statistical significance. RATs also repeats the statistical test-
ing multiple times using subsets of samples as a secondary assessment of reproducibility. The RATs software
version we used additionally performs a filter on effect size, such that only genes or transcripts which were both
reproducible according to inferential replicates and sub-sampling, and having a sufficiently large effect size are
reported as DTU. RATs is implemented as an R package designed to detect DTU from transcript quantifica-
tion as produced by Salmon or kallisto". As mentioned above, it can operate either on estimated counts alone, or
on inferential replicates of the counts (bootstrap or Gibbs samples) as generated by either of these quantification
tools. It is recommended in the RATs software guide to use a counts-from-abundance approach to generate the
transcript counts.

We ran SUPPA2 in its differential transcript usage mode. We enabled a filter to remove transcripts with less
than 1 TPM. TPM filtering is a command-line option available during the diffSplice step of SUPPA2 and
this greatly improved the running time without loss of sensitivity (an additional filter to enable direct com-
parison with other methods is discussed below). We did not use the SUPPA2 optional gene-correction, which
does not correct for false discovery rate across genes, as we wanted to apply the aggregation and correc-
tion method perGeneQvalue from DEXSeq to obtain an FDR-bounded set of genes and transcripts as output.
We ran RATs with 30 bootstrap replicates from Salmon, generating counts from abundance by scaling up TPMs.
The bootstrap replicates approach performed similarly to the approach without bootstrap replicates, with a
minor improvement in the FDR and OFDR with including the bootstrap replicates. For easier visualization and
to avoid overlapping data points, we only include the RATs bootstrap results in the evaluation plots.

To facilitate comparisons across methods, we only considered the genes and transcripts passing the DRIMSeq
filters for minimum gene and transcript counts and minimum proportion. This eliminated genes which had expres-
sion too low to have very much statistical power for detecting DTU, and transcripts which were very lowly
expressed in both conditions, and so not contributing useful information for DTU. We assessed that excluding these
lowly expressed genes and transcripts did not change the relative differences in sensitivity of the methods, as they
were not detectable by any of the methods with regards to DTU. For SUPPA2, we performed perGeneQValue
only on those genes and transcripts passing the DRIMSeq filters. For RATs, we provided the bootstrap replicate
counts-from-abundance for the genes and transcripts that passed the DRIMSeq filters. We performed identical stage-
wise analysis with stageR on SUPPA2 and RATs output, to allow direct comparison with DRIMSeq and DEXSeq
stage-wise results and observed OFDR. Exact code for running SUPPA2 and RATs is provided in the respective
directories in the associated GitHub repository>.

DTU evaluation

In the workflow, we showed a typical analysis for a comparison of 6 vs 6 samples. As we were interested in the
performance at various sample sizes, we performed the entire analysis for DRIMSeq, DEXSeq, RATs, and
SUPPA2 at per-group sample sizes of 3, 6, 9, and 12. The following evaluation corresponds to the “main”
simulation as described in the Methods.

At the gene level, in terms of controlling the nominal FDR, SUPPA2 always controlled its FDR, RATs controlled
its FDR except for the 1% threshold for sample size 3, DEXSeq controlled its FDR except for the 1% threshold
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at all sample sizes and 5% threshold for sample size 3, and DRIMSeq exceeded its FDR but approached the tar-
get for larger sample sizes (Figure 6). RATs gave nearly the same set of genes whether thresholding at 1%, 5%,
or 10% nominal FDR, which we found was related to its default filtering procedures. Exceeding the nominal
FDR level by a small amount should be considered with a method’s relative sensitivity in mind as well, compared
to other methods. For example, for the 6 vs 6 comparison, DRIMSeq had an observed FDR of 12% at nominal
10%, meaning that for every 100 genes reported as containing DTU, the method reported 2 more false
positive genes than its FDR target would allow. In general, SUPPA2 and RATs were able to strictly control the
FDR, while DRIMSeq and DEXSeq sometimes exceeded their FDR but with a large gain in sensitivity, particularly for
per-group sample sizes of 6 or larger.

We further broke down the true positives and false positives at the gene level, for a target 5% FDR, according to
the simulated gene type (“DGE”, “DTE”, “DTU”, or “null”). The true positives for most methods matched the
gene-type proportion of true genes with transcript usage changes (Supplementary Figure 2). About two-thirds were
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Figure 6. Gene-level screening for differential transcript usage (DTU). True positive rate (y-axis) over false discovery
rate (FDR) (x-axis) for DEXSeq, DRIMSeq, RATs, and SUPPA2. The four panels are for per-group sample sizes: 3, 6,
9, and 12, as indicated in the title. Circles indicate thresholds of 1%, 5%, and 10% nominal FDR, which are filled if the
observed value is less than the target (dashed vertical lines).
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from the simulated DTU genes (two transcripts with swapped expression), and one-third were from simulated
DTE genes with one transcript differentially expressed but where the proportions did change because at least one
other transcript was expressed. SUPPA2 and RATs had a slight decrease in relative sensitivity for the simulated
DTE genes. The false positives for methods mostly tracked with the proportion of genes without transcript usage
changes (Supplementary Figure 3). The methods that tended to exceeded the target FDR, DRIMSeq and DEXSeq,
did not have any particular category of simulated gene type that was over-represented in the false positives.

We assessed the overall false discovery rate (OFDR) procedure implemented with stageR using gene- and
transcript-level p-values from DRIMSeq, DEXSeq, RATs, and SUPPA2, for a 5% target OFDR. SUPPA2 and
RATs controlled the target OFDR at all sample sizes, with RATs having nearly exactly 5% OFDR at the smallest
sample size. DEXSeq input to stageR was close to the 5% OFDR target except for a sample size of 3, which had an
OFDR around 10%. For DRIMSeq, we assessed whether raising the p-values to 1 for transcripts with small propor-
tion SD helped to recover OFDR control. The observed OFDR for DRIMSeq with proportion SD filtering was at
lowest around 12% at per-group sample size of 6 and higher (Figure 7). Without the filtering, the observed OFDR
for DRIMSeq was otherwise around 25%. While SUPPA2 and RATs always controlled the OFDR, we noted that
the sensitivity in terms of transcripts detected via the stageR two-stage procedure did not increase with sample
size, unlike DRIMSeq and DEXSeq which approached 75% sensitivity at the largest sample size.

Finally, although the workflow showed how to integrate the transcript- and gene-level tests using the stageR pro-
cedure, we also evaluated the transcript-level adjusted p-values alone for DRIMSeq, DEXSeq, RATS, and SUPPA2.
This evaluation corresponds to an analysis which does not use any gene-level aggregation, and does not use stageR,
but considers only the adjusted p-values per transcript from each method. Here we computed the standard FDR,
where the unit of false discovery is the transcript, in contrast to the OFDR where the unit of false discovery is
the gene. SUPPA2 and RATs tended to control their FDR as in the gene-level analysis (Figure 8). DEXSeq only
slightly exceeded its FDR for sample sizes 6 or larger, eventually controlling the 10% target FDR. DRIMSeq with
proportion SD filtering approached the target FDR as sample size increased for the 5% and 10% targets, while
without filtering, the observed FDR was much higher than the target.

The breakdown of false positives by gene type, for a target 5% FDR, was revealing for the transcript-level anal-
ysis, as we noticed that for this simulation DRIMSeq tended to have an excess of false positive transcripts that
belonged to true DTU genes (Supplementary Figure 4), relative to what would be expected by random sampling
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Figure 8. Transcript-level differential transcript usage (DTU) analysis without stage-wise testing. True positive rate
(y-axis) over false discovery rate (x-axis) for DEXSeq, DRIMSeq (with and without post-hoc filtering), RATs, and SUPPA2.
The four panels are for per-group sample sizes: 3, 6, 9, and 12, as indicated in the title. Circles indicate thresholds of
1%, 5%, and 10% nominal FDR.

of the transcripts not participating in differential transcript usage. From looking at individual examples, we noticed
that DRIMSeq would sometimes correctly identify the gene as DTU, but have a low p-value for one or more addi-
tional transcripts beyond the two transcripts whose expression was actually swapped. This excess of false positive
transcripts from true DTU genes was also observed for DEXSeq as sample size increased.

We also assessed all of the above metrics for a sample size of 2 vs 2, including gene-level DTU detection, OFDR,
and transcript-level DTU detection (Supplementary Figure 5). This additional analysis at a very low per-group
sample size revealed that most of the methods could not control the gene-level FDR, only RATs was able to con-
trol a target 10% FDR. SUPPA2 and RATs were the closest at controlling the target 5% OFDR, with observed
OFDR around 10%. At the transcript-level, only RATs could control the 10% FDR, and with less than 50%
sensitivity. This analysis revealed that a per-group sample size of 2 is probably not sufficient to to detect most DTU
genes and transcripts.
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In Table 1 we include the compute time for each method at various sample sizes. Compute time includes
only the call DTU step of RATs, and only the diffSplice step of SUPPA2 (the other SUPPA2 steps
take less than a minute). For DRIMSeq and DEXSeq, we include the compute time of the estimation steps
(importing counts with tximport and filtering takes only a few seconds).

Fixed per-gene dispersion

In order to further investigate performance differences between the two methods highlighted in the workflow
section, DRIMSeq and DEXSeq, we generated an additional simulation we called “fixed per-gene dispersion” in
which genes were assigned Negative Binomial dispersion parameters by matching the gene-level count to the
joint distribution of mean and dispersions on the GEUVADIS dataset. Then transcript-level counts were gener-
ated with all transcripts of a gene being assigned the same Negative Binomial dispersion parameter. This contrasts
with the “main” simulation, in which each transcript was assigned its own dispersion parameter, resulting in het-
erogeneity of dispersion within a gene. As we do not know the degree to which transcripts of a gene would have
correlated biological variability in an experimental dataset, we also include the results for the count-based methods
that estimate precision/dispersion, DRIMSeq and DEXSeq, for this additional simulation.

DRIMSeq, which estimates a single precision parameter per gene, performed better in terms of FDR control on this
simulation at the gene level (Figure 9), although we note that DRIMSeq nearly controlled FDR at the gene level
already in the first simulation for samples sizes 6 and larger. DEXSeq models different dispersion parameters for
every transcript, and its performance changes less across the two simulations, although it had better OFDR
and FDR control for the smallest sample size. DRIMSeq with proportion SD filtering had much better control of
OFDR (Figure 10) and of FDR in the transcript-level analysis (Figure 11) in the “fixed per-gene dispersion” sim-
ulation compared to the “main” simulation. We also assessed the true positive and false positive proportions for
the gene level and transcript level for the “fixed per-gene dispersion” simulation, and these were very similar to
the true positive and false positive breakdown plots generated for the “main” simulation (data not shown).

Negative binomial gene-level counts

We additionally compared DRIMSeq and DEXSeq on an existing human transcriptome simulation dataset gener-
ated by Soneson et al.** and analyzed in the DRIMSeq publication''. This simulation has similarities to the “fixed
per-gene dispersion” simulation in that gene-level estimated mean and dispersion parameters from real data-
sets were used. However, instead of generating transcript-level counts from a Negative Binomial distribution, the
Soneson et al.** simulation generated gene-level counts, converted these to an abundance measure, and then used
a Dirichlet distribution to generate random proportion vectors per sample to distribute the abundances to transcript
isoforms. To simulate DTU, 1,000 genes were selected and the abundance of the two most abundant tran-
scripts was swapped. Finally RSEM-sim was used to generate reads''. We used the identical kallisto" estimated
transcript counts generated by Soneson et al.** and assessed performance via the true DTU status per gene published
as supporting data.

As reported in previous publications, we found that both DRIMSeq and DEXSeq had better control of FDR with
increased filtering (Figure 12). The best performance of both methods was observed with the gene-level and
transcript-level count filters, and a sample-sized-based proportion filter of 0.1, as recommended in this workflow.

Table 1. Compute time of methods for
differential transcript usage (DTU) in
hours:minutes by per-group sample
size, using one core. The fourth row,
RATs (count), gives the compute time
using the scaledTPM counts, and not
the bootstrap replicates.

Method n=3 n=6 n=9 n=12
DRIMSeq 0:15 0:15 0:18 0:18
DEXSeq 0:01 0:02 0:05 0:10
RATs 1:41 2:34 4:44 6:08
RATs (count) 0:10 0:38 1:22 2:32
SUPPA2 0:16 1:18 3:48 5:33
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Figure 9. Gene-level screening for differential transcript usage (DTU), on the “fixed per-gene dispersions”
simulation. The four panels are for per-group sample sizes: 3, 6, 9, and 12, as indicated in the title. Circles indicate
thresholds of 1%, 5%, and 10% nominal FDR.

The sensitivity (TPR) around 70% is similar to that reported by Nowicka and Robinson'!, and similar to what
we observed in our “main” and “fixed per-gene dispersion” simulations. We recreated the “5%-any” filtering
rule from Nowicka and Robinson'', which kept a transcript if it was observed with a proportion higher than 5%
in any of the samples. This is in contrast with the recommendation from this workflow and the current DRIMSeq
vignette which makes use of the number of replicates per condition for the transcript-level filters, i.e. requiring 3
out of 6 samples to have proportions higher than a certain threshold for a 3 vs 3 experiment. For the “5%-any” fil-
tering, for target 10% FDR, we observed FDR for DRIMSeq and DEXSeq at around 25% and 20%, respectively.
This is not identical, but comparable to the ~28% FDR for both methods reported by Nowicka and Robinson''.

Again, a caveat of all of our comparative evaluations of DRIMSeq and DEXSeq is that we do not know whether
various real RNA-seq experiments will more closely reflect heterogeneous dispersion or fixed dispersion
within genes, or if the counts within a gene are better modeled by distributing gene-level abundance to tran-
scripts via a Dirichlet distribution as in Soneson er al.”’. However, we have examined simulations reflecting each
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Figure 10. Number of true positives and observed overall false discovery rate (OFDR) using stageR for 5% target,
on the “fixed per-gene dispersions” simulation.

of these cases, and confirmed that minimum count and minimum proportion filtering benefit both DRIMSeq
and DEXSeq in terms of their FDR and OFDR control.

Methods for DGE and DTE

In the workflow, we showed how DESeq2 and edgeR can be used to detect differential gene expression with Salmon
quantifications imported and summarized to the gene level via tximport. There are many other methods for test-
ing for DGE. Here we will briefly review some of the methods with well-documented R packages hosted on
Bioconductor, CRAN, or GitHub and then compare their performance in detecting DGE and DTE on the “main”
simulation. The primary reasons for including this DGE and DTE assessment is that we are interested in how
the tools designed for DGE perform when DTU is present, and we are also interested in assessing how the DGE
methods, some of which were not designed for DTE, perform when provided with estimated transcript counts.

A number of the methods, edgeR’, edgeR-QL (using the quasi-likelihood functions)”, EBSeq"”, and DESeq2™,
use a Negative Binomial distribution to model the counts, and empirical Bayes techniques to estimate per-gene
parameters despite limited sample size. The Negative Binomial is a useful distribution for counts, in that it has a
parameter for the location of the mean count, as well as a dispersion parameter for the expected spread of counts.
For high counts, the dispersion parameter is approximately equal to the square of the coefficient of variation (the
standard deviation over the mean), and so can be interpreted for high counts as how much the data can be expected
to vary around the mean count, relative to the size of the mean.

EBSeq, uniquely among these Negative-Binomial-based models, was also specifically designed to accommodate
extra uncertainty in transcript counts when assessing DTE. EBSeq has a DTE mode in which the number of tran-
script isoforms per gene is supplied as a piece of information before running the main analysis function. edgeR-QOL
differs from edgeR and DESeq?2 in that it accounts for uncertainty in the dispersion estimate via a quasi-likelihood
framework. limma with voom transformation'’ and sleuth™ model the log of scaled counts, with sleuth addition-
ally taking into account inferential variance on the transcript- and gene-level counts, unlike any of the other DGE
or DTE methods we assessed. Finally, SAMseq'” scales counts via a resampling approach and applies rank-based
statistical tests to detect differences in samples across condition; by operating on ranks, it is much less sensitive
to count outliers or in general to mis-specified parametric modeling.

For DGE and DTE, the following filtering functions or rules for each package were used: filterByExpr
for edgeR, edgeR-QL, and limma with voom, sleuth prep for sleuth, and a custom filter requiring a count
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Figure 11. Transcript-level differential transcript usage (DTU) analysis without stage-wise testing, on the “fixed
per-gene dispersions” simulation. The four panels are for per-group sample sizes: 3, 6, 9, and 12, as indicated in the
title. Circles indicate thresholds of 1%, 5%, and 10% nominal FDR.

of 10 or more for half the samples for DESeq2, EBSeq, and SAMSeq, which do not come with their own filtering
functions. For evaluation, all genes (or transcripts in DTE analysis) were included, except those for which no
software provided an adjusted p-value.

DGE evaluation

We assessed the aforementioned R packages for differential gene expression, to determine true positive rate
and control of false discovery rate on the “main” simulated dataset. In this analysis, the simulated “DGE” genes
(where all transcripts are differentially expressed at the same fold change), and the “DTE” genes (where a
single transcript was chosen to be differentially expressed) should count as true positives for differential gene
expression, while the simulated “DTU” genes should count as false positives for differential gene expression, as
the total expression of the gene remains constant.
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Gene-level screening, n=3 vs 3, Soneson (2016)
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Figure 12. Gene-level screening for differential transcript usage (DTU) analysis on the 3 vs 3 human transcriptome
simulated data from Soneson et al.*. In the method names, “Prop05.any” refers to proportion filtering such that a
single sample must have a proportion higher than 5% for a transcript to be kept. “Prop05.half” refers to proportion
filtering such that 3 out of 6 samples must have a proportion higher than 5%. “Prop10.half.cts” refers to the same filters
recommended in this workflow: 3 of out 6 samples with proportions higher than 10% to keep a transcript, 3 out of 6
samples with transcript counts greater than 10 to keep a transcript, and all samples with gene counts greater than 10 to
keep a gene. Circles indicate thresholds of 1%, 5%, and 10% nominal FDR. Current release versions of methods were
used, though results were very similar for “Prop05.any” for DEXSeq version 1.10.1 used in Nowicka and Robinson''.

We compared DESeq2, EBSeq, edgeR, limma with voom transformation, SAMseq, and sleuth. We used tximport
to summarize Salmon abundances to the gene level, and provided all methods other than DESeq2 and sleuth with
the lengthScaledTPM count matrix. sleuth takes as input the quantification from kallisto", which was run
with 30 bootstrap samples and bias correction. For gene-level analysis in sleuth, the argument aggregation
column="gene id" was used. As DESeq2 has specially designed import functions for taking in estimated gene
counts and an offset from tximport, we used this approach to provide Salmon summarized gene-level counts and
an offset. edgeR and edgeR-QL had the same performance using the counts and offset approach or the length-
ScaledTPM approach, so we used the latter for code simplicity. The exact code used to run the different methods
can be found at the simulation code repository”. Compute time for the different gene-level methods are presented
in Table 2.

iCOBRA plots with true positive rate over false discovery rate for gene-level analysis across four different per-
group sample sizes are presented in Figure 13. For the smallest per-group sample size of 3, all methods except
DESeq2 and EBSeq tended to control the FDR, while those two methods had, for example, 15% and 18% FDR
respectively at the nominal 10% rate. SAMseq, with so few samples, did not have adequate sensitivity to detect
DGE. At the per-group sample size of 6, all methods except DESeq2 and SAMseq tended to control the FDR. At
this sample size, EBSeq controlled its FDR. For the largest per-group sample sizes, 9 and 12, the performance of
many methods remained similar as previously, except sleuth did not control its nominal FDR. For ease of com-
parison, we also provide Supplementary Figure 6 where the x-axis remains fixed through the sample sizes.
We performed an additional simulation, called “uniform coverage”, to see if the performance of sleuth at higher
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Table 2. Compute time of methods
for differential gene expression
(DGE) rounded to the minute by
per-group sample size. Compute

time includes data import and
summarization to gene-level
quantities using one core.

Method n=3 n=6 n=9 n=12
DESeq2 <1 <1 <1 <1
EBSeq 1 2 2 3
edgeR <1 <1 <1 <1
edgeR-QL <1 <1 <1 <1
limma <1 <1 <1 <«
SAMseqg <1 <1 <1 «<«Ad
sleuth 2 4 5 7
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Figure 13. True positive rate over false discovery rate for differential gene expression of the simulated dataset.
The four panels are for per-group sample sizes: 3, 6, 9, and 12, as indicated in the title. The y-axis remains fixed but the

x-axis changes scale in the bottom panels.
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sample sizes was related to the realistic GC bias parameters used in the simulation, but simulating fragments
uniformly from the transcripts revealed the same performance at per-group sample sizes 9 and 12 (Supplementary
Figure 7). We then performed another simulation, called “low DE”, wherein we reduced the number of DGE,
DTE and DTU genes from 10% to 5% each. In the “low DE” simulation, sleuth did recover control of the FDR at
the nominal 5% and 10% FDR (Supplementary Figure 8).

As in the DTU evaluation, for the DGE evaluation we broke down the number of false positives by simu-
lated gene type, for a target 5% FDR (Supplementary Figure 9). Here there was a slight increase of “DTU” gene
types in the gene-level false positives for all methods, relative to what would be expected by random sampling of
the genes without differential gene expression.

DTE evaluation

Finally, we assessed the Bioconductor and R packages used in the DGE evaluation for differential transcript
expression analysis. While we believe the separation of differential transcript usage and differential gene expres-
sion described in the workflow represents an easily interpretable approach, some investigators may prefer to assess
differential expression on a per-transcript basis. For this assessment, all of the simulated non-null transcripts
count as true positives of differential transcript expression, whether they originate from the simulated “DGE”,
“DTE”, or “DTU” genes. For most of the methods, we simply provided the transcript-level data to the same
functions as for the DGE analysis. EBSeq was provided with the number of isoforms per gene. The compute
time of the methods is presented in Table 3.

iCOBRA plots with the true positive rate over false discovery rate for the transcript-level analysis are shown in
Figure 14. The performance at per-group sample size of 3 was similar to the gene-level analysis, except DESeq2
came closer to controlling the FDR and EBSeq performed slightly worse than before, while the rest of the meth-
ods tended to control their FDR. At per-group sample size of 6, all of the evaluated methods tended to control
the FDR, though DESeq2, EBSeq, SAMseq, and sleuth tended to have higher sensitivity than edgeR, edgeR-QL
and limma. The same issue of FDR control for sleuth was seen in the transcript-level analysis as in the gene-level
analysis, for per-group sample size 9 and 12. For ease of comparison, we also provide Supplementary Figure 10
where the x-axis remains fixed through the sample sizes. We broke down the number of false positives at the
transcript level by gene type, for a target 5% FDR (Supplementary Figure 11). All methods had proportion of
false positives similar to what would be expected by random sampling of the non-differentially expressed transcripts.

Discussion

Here we presented a workflow for analyzing RNA-seq experiments for differential transcript usage across
groups of samples. The Bioconductor packages used, DRIMSeq, DEXSeq, and stageR, are simple to use and fast
when run on transcript-level data. We show how these can be used downstream of transcript abundance quantifi-
cation with Salmon. We evaluated these methods on a simulated dataset and showed how the transcript usage
results complement a gene-level analysis, which can also be run on output from Salmon, using the tximport pack-
age to aggregate quantifications to the gene level. We used the simulated dataset to evaluate Bioconductor and
other R packages for differential gene expression, and differential transcript expression.

Table 3. Compute time of

methods for differential transcript
expression (DTE) rounded to

the nearest minute by per-group
sample size. Compute time includes
data import.

Method n=3 n=6 n=9 n=12
DESeq2 <t <1 <1 A1
EBSeq 5 11 18 22
edgeR <1 <1 <1 <1
edgeR-QL <1 <1 <1 <A

limma <1 <1 <1 <1
SAMseg <1 <1 <1 1
sleuth 2 2 2 2
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Figure 14. True positive rate over false discovery rate for differential transcript expression of the simulated
dataset. The four panels are for per-group sample sizes: 3, 6, 9, and 12, as indicated in the title. The y-axis remains
fixed but the x-axis changes scale in the bottom panels.

From the DTU evaluations, we found that SUPPA2 and RATs tended to always control the FDR, at the cost of
reduced sensitivity relative to DRIMSeq and DEXSeq especially as the per-group sample size increased to 6 and
higher. DEXSeq with minimum transcript- and gene-level count filters, and 10% minimum proportion filter tended
to have good control of a target 10% FDR for sample sizes of 6 and higher. DRIMSeq with those three filters and
post-hoc proportion SD filtering approached control of a target 10% FDR. Both of these methods had increased
sensitivity as the sample size increased. Both of these methods make use of linear models and R’s built-in design
formula, and so can be extended to complex designs, including within-individual comparisons, blocking for batch
effects, or additional interaction terms.

Although statistical power depends obviously on biological variability and on the effect size (amount of change
in proportion across conditions), from this simulation study we would recommend per-group sample sizes
larger than 3 to achieve greater than 50% sensitivity for detecting DTU. The maximal gene-level DTU sensi-
tivity achieved in the “main” simulation was around 80% at a per-group sample size of 12. This reflects the fact
that for some of the DTU genes, the change in proportions across conditions was small, and was not detectable
relative to the within-condition biological variability. As the “main” simulation used gene-level mean and
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dispersion estimates from real data to generate transcript-level counts, it is possible that RNA-seq datasets may
exhibit even more biological variability on the transcript counts than seen here, thus underscoring the need for
sufficient sample size to achieve a reasonably high sensitivity for detecting DTU.

We recommend the use of stageR in DTU analysis for its use of a formal statistical procedure involving a screen-
ing and confirmation stage, as this fits closely to what we expect a typical analysis to entail. It is likely that an
investigator would want both a list of statistically significant genes and transcripts participating in DTU, and
stageR provides error control on this pair of lists, assuming that the underlying tests are well calibrated.

From the DGE and DTE analyses of this particular simulation data, we found that edgeR had better control of
FDR than DESeq2. DESeq2 approached its target FDR as sample size grew. Popular methods that had relatively
high sensitivity and control of FDR across all sample sizes include limma with voom transformation and edgeR-QOL,
both of which had better control than edgeR at per-group sample size of 3.

One potential limitation of this workflow is that, in contrast to other methods such as the standard DEXSeq
analysis, SUPPA2, or LeafCutter”, here we considered and detected expression switching between annotated
transcripts. Other methods such as DEXSeq (exon-based), SUPPA2, or LeafCutter may benefit in terms of
power and interpretability from performing statistical analysis directly on exon usage or splice events. Methods
such as DEXSeq (exon-based) and LeafCutter benefit in the ability to detect un-annotated events. The work-
flow presented here would require further processing to attribute transcript usage changes to specific splice events,
and is limited to considering the estimated abundance of annotated transcripts.

Session information
The following provides the session information used when compiling this document.

devtools::session _info()
## Session info --------------------m

## setting
## version R version 3.5.0 (2018-04-23)
## system  x86 64, darwinl5.6.0

##  ui X11

## language (EN)

## collate en US.UTF-8

value

#H otz America/New York

## date 2018-06-17

## Packages ————=-——--—— -
## package * version date source

## acepack 1.4.1 2016-10-29 CRAN (R 3.5.0)
## annotate 1.58.0 2018-05-01 Bioconductor
## AnnotationDbi * 1.42.1 2018-05-08 Bioconductor
## assertthat 0.2.0 2017-04-11 CRAN (R 3.5.0)
## Dbackports 1.1.2 2017-12-13 cran (Q@1.1.2)
## Dbase * 3.5.0 2018-04-24 local

## basebdenc 0.1-3 2015-07-28 CRAN (R 3.5.0)
## Biobase * 2.40.0 2018-05-01 Bioconductor
## BiocGenerics * 0.26.0 2018-05-01 Bioconductor
## BiocInstaller * 1.30.0 2018-05-04 Bioconductor
## BiocParallel * 1.14.1 2018-05-06 Bioconductor
## BiocStyle 2.8.0 2018-05-01 Bioconductor
## BiocWorkflowTools 1.6.1 2018-05-24 Bioconductor
## DbiomaRt 2.36.0 2018-05-01 Bioconductor
## Biostrings 2.48.0 2018-05-01 Bioconductor
## Dbit 1.1-12 2014-04-09 CRAN (R 3.5.0)
## bito4d 0.9-7 2017-05-08 CRAN (R 3.5.0)
## Dbitops 1.0-6 2013-08-17 CRAN (R 3.5.0)
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stringi
stringr

SummarizedExperiment

survival
tibble
tinytex
tools
utils
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xtable
XVector
yaml
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2018-05-06
2017-09-07
2018-05-02
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2018-06-14
2017-06-18
2018-04-24
2018-04-24
2018-05-02
2018-05-10
2018-05-11
2018-04-16
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2018-04-24
2018-04-24
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CRAN (R 3.5.0)

cran (@0.12.17)

CRAN (R 3.5.0)

CRAN (R 3.5.0)

cran (@0.2.1)

CRAN (R 3.5.0)

local (mikelove/rnasegDTURNA)
CRAN (R 3.5.0)

cran (@1.3-2)
Bioconductor
CRAN (R 3.5.0)
CRAN (R 3.5.0)
Bioconductor
CRAN (R 3.5.0)
local

cran (@1.2.22)
CRAN (R 3.5.0)
local

local

CRAN (R 3.5.0)
CRAN (R 3.5.0)
Bioconductor
CRAN (R 3.5.0)
CRAN (R 3.5.0)

CRAN (R 3.5.0)
local

local

CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
CRAN (R 3.5.0)
Bioconductor
CRAN (R 3.5.0)
Bioconductor

The statistical methods were evaluated using the following software versions: DRIMSeq - 1.8.0, DEXSeq -
1.26.0, stageR - 1.2.21, tximport - 1.8.0, DESeq2 - 1.20.0, EBSeq - 1.20.0, edgeR - 3.22.2, limma - 3.36.1, RATs
- 0.6.4, samr - 2.0, sleuth - 0.29.0, SUPPA2 - 2.3. The samples were quantified with Salmon version 0.10.0 and
kallisto version 0.44.0. polyester version 1.16.0 and alpine version 1.6.0 were used in generating the simulated
dataset.

Data availability
The simulated paired-end read FASTQ files have been uploaded in three batches of eight samples each to Zenodo-

https://doi.org/10.5281/zenodo.1291375%

https://doi.org/10.528 1/zenodo. 1291404

https://doi.org/10.5281/zenodo.1291443%

The quantification files are also available as a separate Zenodo dataset: 10.5281/zenodo.1291522%,

The scripts used to generate the simulated dataset are available at the simulation GitHub repository (https:/
github.com/mikelove/swimdown) and archived here- https://doi.org/10.528 1/zenodo.1410443%.

The counts associated with Soneson et al.** have been deposited to Zenodo (10.5281/zenodo.1409201%).

All data is available under a CC BY 4.0 license.
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Software availability
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1. All software used inl this workflow is available as part of Bioconductor version 3.7.

Source code for the workflow: https://github.com/mikelove/rnaseqDTU

2
3. Link to archived source code as at time of publication: https://doi.org/10.528 1/zenodo.1410442%
4

License: Artistic-2.0
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v

Kristoffer Vitting-Seerup , Malte Thodberg
Department of Biology, Biotech Research and Innovation Centre, University of Copenhagen,
Copenhagen, Denmark

Although we still believe some of the suggestions from our last report would make the article appeal to a
larger audience we agree with the authors that they are not necessary as the changes in the last update
does take care of our major concern.

Competing Interests: No competing interests were disclosed.
Referee Expertise: Bioinformatics with a focus on isoform usage analysis.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

Referee Report 08 October 2018

https://doi.org/10.5256/f1000research.17982.r38962

v

Nick Schurch
Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK

The authors have made a great improvements to the article along the lines suggested by the referees.

I still think there is a considerable amount of work that could be added to expand the study, as | suggested
in my original report. | understand, however, that the authors feel that a more expansive exploration of the
tool parameter space and the addition of assessment on real data is beyond the scope of the article. | am
of the opinion that, with these suggestions in hand, they are best positioned to define the scope of their
own work. In my opinion the improvements they have made round out the article nicely and certainly
make it acceptable for publication and indexing.

Minor comment:

1) Introduction, line 1: This sentence is awkward. | think total gene expression is self explanatory, but if
the authors feel it requires more explanation perhaps they could make the sentense clearer - something
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like:
"RNA-seq experiments across groups of samples can be analyzed to detect differences in the total

expression of all isoforms of a gene and, additionally, differences in transcript isoform usage within a
gene."

P.S. | particularly like the use of the hex 'stickers' for the tools in the workflow diagram - nice.

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 01 October 2018

https://doi.org/10.5256/f1000research.17766.r38328

v

Alicia Oshlack , Marek Cmero
Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia

We feel the authors have done an excellent job in improving the structure and clarity of the paper. We
believe the improved introduction and workflow diagram will be particularly helpful to readers and we
accept the paper for indexing.

A few very minor points remain:

® 118, could the authors please rewrite this sentence for clarity: "To repeat, the set of genes passing
screening should not have more than 5% of either genes which have in fact no DTU or genes
which contain a transcript with an adjusted p-value less than 5% which do not participate in DTU."

® 132, second paragraph: could the authors hypothesise why there was a slight increase of false
positives for DTU genes in the DGE analysis?

® 134, fourth paragraph: mentions of SUPPA2, DEXseq and leafcutter are repeated across two
sentences in the same context.

Competing Interests: No competing interests were disclosed.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

Referee Report 28 September 2018

https://doi.org/10.5256/f1000research.17766.r38330

?
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Kristoffer Vitting-Seerup , Malte Thodberg
Department of Biology, Biotech Research and Innovation Centre, University of Copenhagen,
Copenhagen, Denmark

Summary

In “Swimming downstream: statistical analysis of differential transcript usage following Salmon
quantification” Love et al presents a combined workflow and benchmark for differential transcript usage.
This is a vital paper as there is no consensus on which differential transcript usage tools works better
(here addressed by the benchmark part) and very few people are aware of the feasibility of analysis of
differential transcript usage — something the workflow can hopefully help with. Of special note is the extent
to which open source have been embraced by Love et al — an approach that is commendable (and worthy
repeating).

In the revised version (version 2) the workflow and benchmark have been separated and the workflow has
been simplified which, together with the overview figure and the general improvements makes the article
much more readable. With regards to analysis especially the benchmark session have been extended. In
summary, the revised manuscript version address the majority of our concerns but we still believe the
introduction and benchmark could be improved, as detailed below.

Comments
®  The authors have updated the benchmark to use testForDEU instead of nbinomLRT for the
DEXSeq analysis (verified at https://github.com/mikelove/rnaseqDTU) but seem to accidentally
have forgotten to correct this in the workflow part of the article (page 17)
® The introduction lacks:
® A section describing why differential transcript usage are of interest in the first place.
® Alayman introduction to the terms DTU, DTE and DGE. Here it should also be highlighted
that DTU can be analyzed both at transcript and gene level (since it is confusing for people
not in the field). A more detailed introduction here would also make the concepts behind
StageR clearer to readers not familiar with the subject.
®  The workflow/benchmark still contains large chunks of text that belongs in the
introduction/methods. Specifically we are thinking of:
®  The scaling section (page 9)
® |t could be even further highlighted that the difference between “scaledTPM” and the
other scaling methods is whether the issue with transcript lengths are normalized
away. This could also be highlighted by making a figure like Fig1 in Trapnell et al
which instead illustrates the DTU problem.
® We further recommend that the documentation for tximport with regards to scaling is
updated with the descriptions made here.
®  The section regarding the theory behind DRIMSeq (bottom of page 12) (could be with the
rest of the theory regarding DRIMSeq (page 7)
®  The section regarding StageR (page 14)
®  The article would benefit from a one or two sentence layman introduction to all the tools (for
people not in the field).
®  The DTU benchmark should also include an analysis on unmodified simulated data to test how
many false positives are found if there truly are no DTU (which might be the case for some
datasets). We suggest comparing samples internally in either set 1 or set 2.
®  To reflect a very common use case scenario the DGE / DTE benchmark should also be performed
with 2 replicates.
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® AlliCOBRA plots would benefit from zooming in on the y-axis to the min and max of any tool across
all samples (currently much of the y-axis range is never used — which just squish all samples
together). This is especially problematic for the DGE/DTE benchmark.

®  The section on page 30 describing the results in figure 13 is very hard to understand.

®  Given the success of repurposing DEXSeq to DTU, the good performance of limma/edgeR for
DTE/DGE and the recent incorporation of RATS, the current benchmark could also test a
repurposing of limma’s (and edgeR’s) differential exon usage test (diffsplice/diffSplice DGE). This is
optional — but it would be a huge step forward for testing differential isoform usage as it would bring
a lot of clarity to the field.

Competing Interests: No competing interests were disclosed.
Referee Expertise: Bioinformatics with a focus on isoform usage analysis.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

Michael Love, University of North Carolina at Chapel Hill, USA

Thank you for reviewing our revised version.

Yes, unfortunately, while we updated the results in version 2 to use testForDEU and the code in the
Bioconductor git repository, we neglected to update the displayed code chunk with nbinomLRT to
testForDEU(). A version 3 is already in production which will show the correct code.

Regarding the placement of the text in various sections, an F1000Research workflow article does
not have exactly the same structure as a typical research article, and we feel our current structure
is appropriate and fits with the pattern of other Bioconductor workflow article published in
F1000Research. In particular, we feel it is appropriate to introduce concepts as they arise in the
natural flow of the workflow, rather than all in the Introduction or in the terse Methods section.

In version 2, we feel we have included sufficient background and citations to research and review
articles about the importance of detecting DTU in the Introduction (see the first paragraph of the
Introduction).

For full details on the theory of DRIMSeq, we have instead recommended that readers go to the
primary source.

We will not be adding additional simulations or evaluations to the workflow in the near future, as it
already contains much more evaluations and simulation than the comparable workflows published
in the Bioconductor channel of F1000Research.

Competing Interests: No competing interests were disclosed.
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Referee Report 13 August 2018

https://doi.org/10.5256/f1000research.16780.r35682

?

Nick Schurch
Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK

In 'Swimming downstream: statistical analysis of differential transcript usage following Salmon
quantification' Love, Sonesson & Patro present both 1) a workflow for identifying the signatures of
differential transcript usage between RNA-seq samples in two conditions, based on a suite of tools, and
2) a benchmarking analysis of the performance of these tools based on simulated data. The aims of this
work are laudable and | have no doubt it will be a valuable addition to the literature, the resulting paper
suffers from several flaws and needs considerable additional work, in my opinion.

Major comments:

1) The intermingling of the benchmarking and workflow sections of this manuscript make the text
confused and difficult to read. I'd suggest that the authors either restructure the manuscript beginning with
the workflow section and then following with the benchmarking section, or split the work in to two and
concentrate separately on the two areas.

2) This work is listed as a Method article. | am not convinced that an example of stringing existing tools
together fits the description required for this section (that is: "Method Articles describe a new
experimental, observational, or computational method, test or procedure (basic or clinical research).").
The benchmarking part of the work is better suited to a Research Article, whilst the workflow part is more
like a computational protocol and might be better suited for publication as a Study Protocol.

3) Quantifying transcript expression from RNA-seq data is challenging but has become common-place
and relatively straight-forward thanks to the development of high-performance tools such Salmon and
Kallisto. These tools typically provide a transcripts-per-million estimation of a transcripts expression. With
these quantifications in place the inevitable, and even more challenging, next step is to identify those
transcripts where their expression is changing between samples. To date there has not been a clear
data-driven exploration of the underlying statistical properties of TPM quantifications (or estimated
transcript counts from TPMs) as a function of biological and technical replication - instead, much as was
the case for differential gene expression from RNA-seq data until relatively recently - the tools for
identifying DTE are built on the strong assumption of a distribution for the quantifications and, typically,
assume a negative binomial distribution. Although this looks to be a good assumption in the case of gene
expression, it is far from clear to me that the assumption of a negative binomial distribution for the
distribution of a transcripts TPM or estimated counts across biological replicates is a good assumption for
TPMs or estimated counts from TPMs, particularly given that - in the context of biological DTU - the
expression of a transcript can be strongly correlated with the other child transcripts of the gene. The fixed
per-gene dispersion section seems like the beginnings of an exploration in this area but this assumption
too is without any justification. Perhaps the authors could use some highly replicated data from a complex
eukaryote to actually measure these distributions and give clarity on whether these assumptions are
valid? Or, failing that, explore the impact of different potential distributions of the tool performance?
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4) The entire discussion section of the benchmarking results is essentially missing and the current
discussion section of more like a brief conclusion. Points that | would like to see the authors discuss in
detail include:
®  The low overall TPRs exhibited by all the tools; 25-80% for DTU, 50-80% for DGE & only 20-50%
for DTE. What this means for these field and how might these be improved?

® The TPR/FPR performance of the tools not only as function of the sample size, but also as a
function of the annotation used in the original transcript quantitations, as a function of the
effect-size threshold used and as a function of the low-count-rate filtering used for each tool. These
are all critical parameters in the tools performance.

o

An expanded discussion of the extremely poor FPR performance of DRIMseq, that is largely
glossed-over in the current text. Why is DRIM-seq performing so poorly? It is more or less
dependant on the specific parameters used, or the details of the simulated data, than the other
tools - or is it just generically over-sensitive across all the parameter space.

®  The overlap between the sets of DTU, DGE & DTE identified by each tool, instead the authors just
give us some numbers and the TPR/FPR performance metrics. Are these tools reliably identifying
the same thing or are they finding wildly different sets of results? (but please, no Venn diagrams! |
can respectfully recommend upsetR for this kind of plot).

®  The use of p-values, adjusted or not, as a threshold for subsetting these results for scientific
relevance - particularly given Blume et. al 2018".

®  Some discussion of why the authors limit themselves to discussing DRIMseq, DEXSeq and
SUPPA2 despite listing five additional alternative methods in the introduction. Alternatively, the
authors could include these tools in their benchmarking, particularly if they decided to split the work
into two papers with one of these focussing on the benchmarking.

o

Some discussion of the impact that the development of long-read sequencing of native RNAs will
have on this field, these tools, and their results in the next few years - perhaps the authors could
even use some of the publically available data from the Oxford Nanopore RNA consortium
(https://github.com/nanopore-wgs-consortium/NA12878/blob/master/RNA.md) to contrast the
performance of this new technology with the tools they examine here for detecting DTE and DTU.
®  How do these tools cope with RNA-seq experiments with more complex designs? For example,
what about if there are 7 conditions, or a time-series (see for example Calixto et. al., 20182? What
approaches would the authors then recommend?

5) No effort has been made to test these workflows with real data with validated instances of DTU. These
exist in the published literature. For a workflow description this is fine, but for the benchmarking aspect of
the work | would like to see the authors use this pipeline in anger, with real data, and see what the results
are and how they match up with the validated results.

6) The introduction does not motivate the importance of identifying DTU in biology. I'd like to see the
introduction present the biological relevance of DTU, the relative sparsity of existing validated DTU
instances, and the scope DTU has for being an explored layer of regulation for basic biological processes.

7) The only conclusion from the paper seems to be that the authors recommend the use of stageR -
based largely on the fact that its two-stage model matches what the authors think a typical analysis
workflow is. This conclusion may be sound advice but a) this paper does not present any compelling
*evidence* that this is a typical workflow, and b) stageR is not really what this paper is about" Indeed, here
stageR is used as a framework to assist with assessing the performance of the other tools. I'd like to see
the authors instead draw some clear conclusions about which tools are the best to use for identifying
DTU.
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Minor Comments:

1) The workflow section really needs some workflow diagrams to highlight the chain for each tool and
where they are similar and different.

2) The plots in the paper are not as high quality as I'd expect:

- Figures need to be higher resolution (this may be the journals fault, not the authors)

- Figures 3,5,6,8,12 & 13 are multi-panel figures with the same axes on each figure. They would benefit
from being plotted with shared axes allowing the performance between different samples sizes to be more
clearly visible to the reader.

- Figures 9-11: perhaps consider using a multi-panel 2d histogram to show the density profiles for each
group, or at least using a better point symbol.

References

1. Blume JD, D'Agostino McGowan L, Dupont WD, Greevy RA: Second-generation p-values: Improved
rigor, reproducibility, & transparency in statistical analyses.PLoS One. 2018; 13 (3): e0188299 PubMed
Abstract | Publisher Full Text

2. Calixto CPG, Guo W, James AB, Tzioutziou NA, Entizne JC, Panter PE, Knight H, Nimmo HG, Zhang
R, Brown JWS: Rapid and Dynamic Alternative Splicing Impacts the Arabidopsis Cold Response
Transcriptome.Plant Cell. 2018; 30 (7): 1424-1444 PubMed Abstract | Publisher Full Text

Is the rationale for developing the new method (or application) clearly explained?
No

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: | am first author of a paper for a DTU tool (RATs
https://www.biorxiv.org/content/early/2017/05/02/132761) that is currently going through the publication
process. In it we clearly highlight that existing DTU tools including those used here do not perform well.

Referee Expertise: Bioinformatics, RNA-seq, transcriptomics tools, benchmarking

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Page 45 of 61



FIOOOResearch F1000Research 2018, 7:952 Last updated: 23 JAN 2019

Michael Love, University of North Carolina at Chapel Hill, USA

We thank all reviewers for their insightful comments and suggestions that we feel have greatly
improved the readability and usefulness of the workflow. We summarize the main changes and
then address reviewer-specific comments point-by-point:

We have addressed all minor text or grammatical suggestions by the reviewers.

We have re-organized the article into distinct and more separated Workflow and Evaluation
sections, which was suggested by all reviewers. We begin the article with a clear outline,
titled: "Structure of this article", which outlines the Workflow part and the Evaluation part.
This outline has direct links to relevant sections and subsections which follow. We have also
included an overview diagram of the methods and packages included in the Workflow
section, and how they are interconnected.

We have added to the Introduction more motivational text on why a DTU analysis is relevant
for biology and biomedical research.

We have added a large section describing the methods DEXSeq and DRIMSeq, before the
Workflow section.

We have expanded the original sections discussing counts-from-abundance and their use in
the workflow, to make our use of the tximport method more clear.

For the DEXSeq section, we have corrected an earlier incorrect use of nbinomLRT(), which
is now replaced with the correct testForDEU(). The practical result is that DEXSeq performs
somewhat less conservatively, but the original code was incorrect, and the fix is necessary.
The incorrect use of nbinomLRT() in this context will now produce an error in future releases
of Bioconductor, to avoid possible incorrect usage.

We have added RATSs to the DTU Evaluation.

We now apply stageR to all DTU methods that are evaluated: DRIMSeq, DEXSeq, RATS,
and SUPPA2. The RATs and SUPPA2 methods are described, but the code is not provided,
as these packages are not part of the Workflow.

We use consistent x-axes and y-axes whenever possible, and use PDF instead of JPG to
reduce compression artifacts. When a consistent x-axis is not used in the main text, we
include Supplementary Figures with the same plots with outlying methods dropped to keep
the x-axis consistent.

We use a palette in which colors are more discernable for color-blind readers

In the Evaluation sections, we include additional plots which examine the simulated gene
type source of false positives for the DTU, DGE, and DTE analyses.

We added a new evaluation to examine performance differences between DRIMSeq and
DEXSeq, using the identical simulated data that was used in Soneson et al (2016) and
Nowicka and Robinson (2016).

We have added a 2 vs 2 simulation for the DTU Evaluation.

We added a brief overview description of all methods assessed in the DGE and DTE
Evaluations.

We have added more recommendations in the Discussion.

Reviewer-specific comments:

1) We have followed the reviewer's suggestion, and have separated the Workflow and Evaluation
sections, with an outline at the beginning clearly delineating the two sections, and an overview
diagram.
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2) We originally submitted our Bioconductor workflow as a "Research" article, but the Editorial
Office recommended to change the categorization to "Method", which is the categorization of many
of the other Bioconductor workflows. Bioconductor workflows are not intended to introduce new
computational methods or new software packages, but to demonstrate, with live code that resides
in an Rmarkdown vignette within an R package structure, how to use a number of different existing
Bioconductor packages to analyze a dataset.

We asked for comment from the Editorial Office on the recommended categorization of
Bioconductor workflows under the F1000Research article types, and they provided us with the
following statement:

“In general, Bioconductor workflows are classified as Method articles in F1000Research, since
Research articles must present novel research findings, and Software Tool articles must present
novel software tools. Since this article by Love et al neither presented novel research findings nor a
new software tool, the F1000Research editorial office felt that classifying this article as a Method
article was most appropriate. The majority of workflows submitted to the Bioconductor gateway will
fall into this article type." -F1000Research Editorial Office

3) We have followed the reviewer's suggestion and included, in addition to the fixed per-gene
dispersion simulation, an additional simulation from Soneson et al. (2016), to assess differences
between DRIMSeq and DEXSeq, the two methods that are the focus of the workflow. This
simulation involved generation of Negative Binomial gene counts, and then the expression was
distributed from genes to transcripts by per-sample draws from a Dirichlet distribution, with a
minority of genes undergoing DTU across condition. Analysis of additional datasets, and a final
determination of which type of data-generating process is closer to various real RNA-seq datasets,
is beyond the scope of this workflow, but we feel that the existing simulations cover a range of
possibilities and are useful to the readers of the workflow. We comment in a number of places on
the limitations of the simulation, including in the overview:

"While the evaluations rely on simulated data, and are therefore relevant only to the extent that the
simulation model and parameters reflect real data, we feel the evaluations are useful for a rough
comparison of method performance, and for observing relative changes in performance for a given
method as sample size increases."

Also at the end of the DTU Evaluation:

"Again, a caveat of all of our comparative evaluations of DRIMSeq and DEXSeq is that we do not
know whether various real RNA-seq experiments will more closely reflect heterogeneous
dispersion or fixed dispersion within genes, or if the counts within gene are better modeled by
distributing gene-level abundance to transcripts via a Dirichlet distribution as in Soneson et al
(2016). However, we have examined simulations reflecting each of these cases, and confirmed
that minimum count and minimum proportion filtering benefit both DRIMSeq and DEXSeq."

4) We now include more discussion on the results of the evaluations in the Discussion, including a
comment on statistical power. We include a breakdown of false positives by the simulated gene
type. Further cross-section of all methods' performance by incomplete annotation, effect size
filters, and various count or proportion filters is beyond the scope of the article. Complete analysis
of overlap of calls across the various simulations and analyses is also beyond the scope of the
article.
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We now explore DRIMSeq's performance in the "main" and "fixed per-gene dispersion”
simulations, wherein we see that many of the excess false positives at the transcript-level arise
from simulated DTU genes, so other transcripts not participating in DTU were being reported as
significant. In the “main” simulation, where DRIMSeq has the most problem with FDR control, it
only slightly exceeds a target 10% FDR at the gene level at per-group sample sizes 6 and higher.
With proportion SD filtering, DRIMSeq at the transcript level also has small inflation of target 10%
FDR for per-group sample sizes 6 and higher.

We now include RATSs as an additional method evaluated on the "main" simulation for DTU
analysis. RATs performs similar to SUPPA2, in that it nearly always controls the FDR, although in
some cases, it displays higher gene-level sensitivity than SUPPA2. We do not intend the article to
be a complete evaluation of all existing methods for DTU, but to compare the two Bioconductor
methods that are the focus of the workflow with a few key DTU methods.

Extended discussion of long-read sequencing is beyond the scope of the article, although we
added the following comment to the workflow section on importing counts:

"If a different experiment is performed and a different quantification method used to produce
counts per transcript which do not scale with transcript length, then the recommendation would be
to use these counts per transcript directly. Examples of experiments producing counts per
transcript that would potentially not scale with transcript length include counts of
full-transcript-length or nearly-full-transcript-length reads, or counts of 3' tagged RNA-seq reads
aggregated to transcript groups. In either case, the statistical methods for DTU could be provided
directly with the transcript counts."

A relevant quote from Nowicka and Robinson (2016) is:

"With emerging technologies that sequence longer DNA fragments (either truly or synthetically), we
may see in the near future more direct counting of full-length transcripts, making transcript-level
quantification more robust and accurate.”

In the "DTU testing" section, we now discuss how DEXSeq and DRIMSeq can be used to evaluate
experiments with complex designs, with little limitation as long as the coefficients for each sample
can be encoded as a design matrix multiplied by a vector of coefficients.

5) Comprehensive evaluation of the methods on additional datasets is beyond the scope of the
article.

6) Following this and other reviewers' suggestion, we have now added motivation to the first part of
the Introduction as to why DTU is relevant for biological or biomedical research.

7) We have revised some of our description of the stageR framework to be more clear about why
we recommend its use in a DTU workflow:

"It is likely that an investigator would want both a list of statistically significant genes and transcripts
participating in DTU, and stageR provides error control on this pair of lists, assuming that the
underlying tests are well calibrated."
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We also provide some more details in the Discussion regarding the various methods and their
performance.

Minor Comments:
1) We have added an overview diagram as Figure 1.

2) We have updated figures to be PDF instead of JPG, and made the axes more consistent when
possible.

Competing Interests: No competing interests were disclosed.

Referee Report 30 July 2018

https://doi.org/10.5256/f1000research.16780.r35546

?

Alicia Oshlack , Marek Cmero
Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia

A workflow to enable more people to perform differential transcript usage on their RNA-seq data set is a
useful addition to the literature. Benchmarking methods and combinations of workflows are also an
important part of the literature. In this manuscript, both things have been attempted, which unfortunately
makes the manuscript a little blurred in its focus.

We view a workflow as an instructional manuscript in which a step-by-step analysis can be reproduced
with a new data set that a user wants to bring to the analysis. This is presented in the sections
Quantification and data import and Statistical analysis of differential transcript usage and, in our view,
should be the focus of the manuscript. These are complex analyses combining several packages with
several alternative paths. It would really help the user if a flowchart for this analysis could be made that
shows the common parts of the workflow (e.g. starting with a Salmon, importing into R), how the
alternatives split and which packages are used for alternative parts of the workflow. For example,
DRIMseq is an alternative to DEXseq, which can then be followed by stageR, and Suppa is a complete
(parallel) workflow.

The evaluation sections are somewhat useful and interesting in their own right, but rely on simulated data
and are therefore not directly applicable to readers who are looking for workflows to guide them in their
own data analysis. However, they do help users decide which workflows to choose in their own analysis.

Overall we wonder if this manuscript could be two separate manuscripts: a workflow for DTU and an
evaluation of methods based on simulated data? Another (preferable) alternative would be to only focus
on DTU in the evaluation and keep the section Evaluation of methods for DTU as a guide to help the user
to choose the workflow (with this clearly stated). We felt there were too many additional analysis
introduced after this point which relied on more in-depth understanding of the DGE literature, which was
not really the focus of the workflow.

Minor comments:
Several sections should be edited for clarity and flow of ideas. Specifically,
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page 6: "We recommend scaledTPM for differential transcript usage so that the estimated
proportions fit by DRIMSeq in the following sections correspond to the proportions of underlying
abundance." Could the authors please rewrite/break up this sentence to improve readability?
page 6, section 'Import counts into R/Bioconductor': the authors should clarify whether the
referenced R package is for demonstration purposes only (i.e. should the user install the
rnaseqDTU to perform any of the workflow?).

page 6: could the concept of using counts from abundance be introduced/explained before
referring to specific package parameters and settings?

page 6: "The following code chunk is not evaluated, but instead we will load a pre-constructed
matrix of counts". Could the authors please clarify this sentence? We assume this means that
instead of constructing a matrix of counts (as in a typical workflow), pre-constructed data is loaded.
page 7 "We ran the following unevaluated code chunks": does 'unevaluated' refer to not runin a
typical workflow?

page 7, 'Statistic analysis of differential transcript usage', second paragraph: could the description
of txdf be moved to the previous section where it is constructed? This would help improve the flow.
page 12: "(2) contain a transcript with a transcript adjusted p-value less than 0.05 which does not
participate in DTU, so contain a falsely confirmed transcript": could the authors please rewrite this
sentence for clarity.

page 13: sentence "The testing of “this” vs “others”..." could be improved for clarity, e.g.: "DEXseq
in its original version requires fitting of coefficients for each exon within a gene. Running DEXseq at
a transcript-level considerably improves performance as fewer features per gene require fitting of
coefficients."

page 14, after the line "dxr <- as.data.frame(dxr[,columns]": showing head(dxr) could help in
clarifying the output.

page 15, in the code "pasteO("suppa/group1.tpm")": the paste function is not necessary here.
Section 'Evaluation of methods for DTU'": could the authors offer an explanation why SUPPA2 only
reported one DGE gene as DTU?

Could the y and x axes on the plots on pages 17-20 and 25 be made consistent with each other?
Also, very minor point, but these plots have some jpeg artefact. Could pdf or png plots be used
instead?

page 19 "DRIMSeq [...] performed slightly better": could a metric be referenced in how the package
performed better?

page 22: "We can repeat the same analysis...": 'same analysis' is misleading as this section tests
only DGE.

page 24: could the authors formally introduce or describe EBSeq and SAMseq packages,
preferably earlier in the manuscript?

page 26: could the authors use 'compute time' instead of 'timing'?

We identified the following typographical errors and grammatical issues:

page 5: "We recommend [constructing] a CSV file..."

page 6: "We suggest for DTU analysis to generate counts from abundance..." reword to "For DTU
analysis, we suggest generating counts from abundance..."

page 16: "DEXSeq controlled [the FDR] except for..."

page 16: "DRIMSeq had [an] observed FDR.."

page 16: "...reported 2 extra genes more than..." change to "reported two more genes than"

page 16: "...DEXseq were the most sensitive methods [for] recovering"

page 19 "...DRIMSeq and DEXSeq[,] [in] this additional simulation"
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® page 19: "Again, we caveat our comparative evaluation of DRIMSeq and DEXSeq by noting that
we do not know..." change to "Again, a caveat of our comparative evaluation of DRIMSeq and
DEXSeq is that we do not know..."

®  page 24: "did not have [adequate] sensitivity to detect DGE"

® page 24: "while those two method[s] had"

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

Michael Love, University of North Carolina at Chapel Hill, USA

We thank all reviewers for their insightful comments and suggestions that we feel have greatly
improved the readability and usefulness of the workflow. We summarize the main changes and
then address reviewer-specific comments point-by-point:
® We have addressed all minor text or grammatical suggestions by the reviewers.
® We have re-organized the article into distinct and more separated Workflow and Evaluation
sections, which was suggested by all reviewers. We begin the article with a clear outline,
titled: "Structure of this article", which outlines the Workflow part and the Evaluation part.
This outline has direct links to relevant sections and subsections which follow. We have also
included an overview diagram of the methods and packages included in the Workflow
section, and how they are interconnected.
®  We have added to the Introduction more motivational text on why a DTU analysis is relevant
for biology and biomedical research.
® We have added a large section describing the methods DEXSeq and DRIMSeq, before the
Workflow section.
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We have expanded the original sections discussing counts-from-abundance and their use in
the workflow, to make our use of the tximport method more clear.

For the DEXSeq section, we have corrected an earlier incorrect use of nbinomLRT(), which
is now replaced with the correct testForDEU(). The practical result is that DEXSeq performs
somewhat less conservatively, but the original code was incorrect, and the fix is necessary.
The incorrect use of nbinomLRT() in this context will now produce an error in future releases
of Bioconductor, to avoid possible incorrect usage.

We have added RATSs to the DTU Evaluation.

We now apply stageR to all DTU methods that are evaluated: DRIMSeq, DEXSeq, RATs,
and SUPPA2. The RATs and SUPPA2 methods are described, but the code is not provided,
as these packages are not part of the Workflow.

We use consistent x-axes and y-axes whenever possible, and use PDF instead of JPG to
reduce compression artifacts. When a consistent x-axis is not used in the main text, we
include Supplementary Figures with the same plots with outlying methods dropped to keep
the x-axis consistent.

We use a palette in which colors are more discernable for color-blind readers

In the Evaluation sections, we include additional plots which examine the simulated gene
type source of false positives for the DTU, DGE, and DTE analyses.

We added a new evaluation to examine performance differences between DRIMSeq and
DEXSeq, using the identical simulated data that was used in Soneson et al (2016) and
Nowicka and Robinson (2016).

We have added a 2 vs 2 simulation for the DTU Evaluation.

We added a brief overview description of all methods assessed in the DGE and DTE
Evaluations.

We have added more recommendations in the Discussion.

Reviewer-specific comments:

We have tried to separate and clarify the Workflow section and the Evaluation section. We
now include an overview diagram, as helpfully suggested here.

We have expanded the section on counts-from-abundance, added a section before the
counts are imported, and clarified the sentences highlighted by the reviewers.

We have clarified a number of the "not evaluated" sentences in the original workflow.

The description of txdf is given in the section where it is constructed, under the heading
“Transcript-to-gene mapping".

We have clarified the OFDR description in the sentence highlighted by the reviewers, and
have removed the "this" vs "other" sentence, as the history of DEXSeq method development
is not necessary or useful for the readers of this workflow.

We have added “head(dxr)’ to demonstrate the output.

We have removed the SUPPA2 code, as now the workflow focuses on the Bioconductor
package DRIMSeq and DEXSeq, which have live code examples (SUPPA2 is a python
package and so cannot have live code examples in a Bioconductor workflow).

We have made the x- and y-axes consistent whenever possible.

We have revised the Workflow and Evaluation sections following all of the reviewers' helpful
comments, error spotting, and suggestions on improved wording.

Competing Interests: No competing interests were disclosed.

Referee Report 24 July 2018
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https://doi.org/10.5256/f1000research.16780.r35548

? Kristoffer Vitting-Seerup , Malte Thodberg
Department of Biology, Biotech Research and Innovation Centre, University of Copenhagen,
Copenhagen, Denmark

Summary

In “Swimming downstream: statistical analysis of differential transcript usage following Salmon
quantification” Love et al presents a combined workflow and benchmark for differential transcript usage.
This is a vital paper as there is no consensus on which differential transcript usage tools works better
(here addressed by the benchmark part) and very few people analyze differential transcript usage -
something the workflow can hopefully help with. Of special note is the extent to which open source have
been embraced by Love et al — an approach that is commendable (and copy worthy). Although the
manuscript has a lot of potential it can, in its current form, be challenging to read and the benchmark of
differential transcript usage part needs to be extended. Revisions are therefore required.

Preface
® Malte Thodeberg helped me review this paper — thanks Malte!
® Since neither of us are native English speakers/writers we have not attempted to corrected for
potential gramma and/or spelling mistakes
® I'm the developer of IsoformSwitchAnalyzeR.

General comments

®  The article switches between describing a workflow, which users can follow to perform differential
transcript usage on their own data, and a benchmark of differential expression/usage tools. The
two sections should be much more clearly separated and each should be more concisely written.

®  One solution would be to have the benchmark first and the workflow afterwards. It would
then be natural that workflow used the tool(s) deemed better by the benchmark.

®  The main problem with the workflow part of the manuscript is the intermixing of the workflow and
benchmarking (and the intro/methods) sections which makes it necessary to include a lot of
callouts, omissions and special cases. This has the unintended effect of cluttered the workflow
making it hard to read and/or follow. This would however be solved by the above suggested
re-structuring. If such restructure were implemented it would also seem more natural that the
workflow consistently only use a small dataset (either a subset of the simulated data or another
dataset entirely) whereby the workflow could be simplified a lot.

® Although the benchmark is of high quality it still needs to be a bit more exhaustive.

® (Even with the suggested re-structure) The whole article would highly benefit from an overview
paragraph and/or figure to give the reader the high-level overview of the outline before jumping into
it (something like a table/figure/description of content). This could also be a table of content (with
links included to enable easy jumping in the article).

Title
® The title should reflect it is a workflow and/or benchmark. The current title suggests the authors
developed a new tool for differential transcript usage which were specifically designed to integrate
with Salmon. Furthermore, it could be considered to change the title so it also indicates the
differential gene/transcript expression performed in the manuscript.

Introduction
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The introduction lacks a section describing why differential transcript usage are of interest in the
first place.
Large parts of what would normally be in the introduction and methods have been moved into the
results. Introduction to tools and methods including descriptions of how they work belongs in the
introduction. Description of parameter choice for e.g. scaling during tximport also belongs in
intro/methods.

®  Optional suggestion: include a lay-man introduction to how the tools work (the technical part

are in the original papers for people interested).

In the section where tools for DTU are mention please remove (or argue for inclusion of) BITSeq
and stageR. StageR is for post analysis of p-values (no test). Although BITSeq is mentioned in
some of the BiocViews of alternative splicing neither the article nor the vignette shows anything but
DTE (aka no DTU). Mention that SGSseq wraps DEXSeq.
The test build into IsoformSwitchAnalyzeR in not rank-based — but it is obsolete and will be
removed from the next update — so it could be skipped entirely (along with the other
non-maintained tests).
Please reference IsoformSwitchAnalyzeR for its main purpose: the downstream analysis of
functional consequences of identified isoform switches. Consider also mentioning other tools for
downstream analysis (some can be found at
https://www.bioconductor.org/packages/devel/BiocViews.html#___AlternativeSplicing ).
To be more user-friendly please insert a link when mentioning the IsoformSwitchAnalyzeR
vignette.

Methods

Please add in the number of transcripts considered expressed (>= 10 estimated fragment counts)
The simulations performed should either be named or numbered to allow for clear reference to
which of the simulated datasets are used.

In the countSimRepport please compare the simulated data to the 12 samples which were used for
the basis of the simulation (comparing 12 to hundreds of samples is not easy to interpret).

Please elaborate on discussion of the different options for scaling-from-TPM-to-counts. It is unclear
what the difference is and when it matters. Furthermore you write “if we used lengthScaledTPM
transcript counts, then a change in transcript usage among transcripts of different length could
result in a changed total count for the gene, even if there is no change in total gene expression” is
there a mixup here? If not, why do you then use lengthScaledTPM in the DGE/DTU section?
Please include a recommendation of when to use which option for analysis of DGE/DTE, DTU and
if both are present in the data.

Modifications

® Include a paragraph on quantification before introducing the modifications. If any expression
filtering was done (as fig 1 indicate and mention above) it should be clearly stated.

®  Currently it is unclear how many genes were modified in which way. To remedy that please
provide a table indicating the number genes modified for DTU or DGE by each of the
changes you introduce (as well as the total number of genes modified.

[

Why both simulate DTU with a modification of a single isoform and a switch of two isoforms
if you are not investigating whether it makes a difference - seems redundant? (more on that
in the DGE benchmark).

In the workflow

Please add a comment of why DRIMSeq have NA as p-values (that will confuse many people)

Post-hoc filtering on DRIMSeq
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What is the reasoning beheading this filtering step? And is it statistically valid to do this filtering —
the proportions and p-values are not independent. Is the modified p-value distribution still uniform
in the interval [0.05-1[ enabling proper FDR correction?

If the filtering is statistically sound why not also do it for the other methods?

Evaluation of methods for DTU. This is the major selling point of the article and the part that require
most work.

To reflect a very common-use case scenarios the benchmark should also be formed with 2

replicates. Since the benchmark presented here show quite subtle differences (in TPR vs FDR)

between 9 and 12 replicates the 2-replicate scenario could for replace either of them.

The benchmark simulation should not only be performed once (one time) as the exact samples

used in that run will have a large effect (especially for the smaller comparisons). Instead 25

simulations should be performed and the average iCOBRA plot could be shown (possibly

extended to also show variation across the simulations).

The benchmark must also include a run on unmodified simulated data to test how many false

positives are found if there truly are no DTU (which might be the case for some datasets).

Be consistent and concise in the use of stageR. Either use with no tools or use with all tools (or

both to also enable a benchmark of stageR). Else the transcript level FDR between tools are not

comparable). Highlight the difference between perGeneQValue and stageR (or only use one of

them) or highlight where each is used. For example, it is not clear whether stageR was used in

figure 3 and if it was whether it was for all tools.

Given the success of repurposing DEXSeq to DTU, and the good performance of limma for

DTE/DGE, the current benchmark could also test a repurposing of limma’s (and edgeR’s)

differential exon usage test. This is optional — but it would be a huge step forward for testing

differential isoform usage as it would bring a lot of clarity to the field.

Use same axis for the 4 iICOBRA plots to illustrate improvement with increasing number of

samples. Please include group sizes (e.g. 3 vs 3, 6 vs 6 etc.) in the figure to make it easier to read -

could be instead of the rather uninformative “overall” facet title.

Please comment:

®  On the large performance increase from “Kallisto + DEXSeq” in Soneson el al, Genome
Biology 2016 (where FDR performance was quite poor) to the current “Salmon + DEXSeq”
which performs rather good.
®  On the differences between your benchmark (indicating DEXSeq works better) and the

benchmark performed by Nowicka et al in the DRIMSeq paper (indicating DRIMSeq) works
better.

Please move the evaluation with fixed per-gene dispersion to supplementary material as it is just a

sanity check.

Please end section with a recommendation of what tool to use.

Evaluation of DTU vs DGE

This section belongs in the workflow part of the article.

Evaluation of DGE/DTE

The reason for (re)doing a DGE/DTU benchmark here need to be clearly described (which is to
test how tools perform when there are also underlying DTU as hinted in Soneson 2016,
F1000Research).

To reflect a very common-use case scenarios the benchmark should also be formed with 2
replicates. The 2-replicate scenario could replace either the 9 or 12 replicates
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®  Table with runtime should be moved to supplementary as it can be summarized as “sleuth is
slower”.
® The TPR vs FDR figures are unreadable due to too many lines on top of one another - this must be
fixed. Furthermore, use same axis for the 4 iCOBRA plots to show improvement with increasing
number of samples. Please include group sizes in the figure to make it easier to read - could be
instead of the “overall” facet title.
® The DGE results are quite surprising — in other recent benchmarks most tools handle FDR quite
well — which is not the case here.
® | suspect this might be due to the DGE where only a single isoform was changed (meaning
the overall gene expression could change only marginally). Therefore, the authors should
investigate how the benchmark result differ when only considering either the DGE introduce
with one isoform upregulated or the DGE with all isoforms were upregulated.
® i the results hold op a comment on how this compare to recent DGE benchmarks is
necessary
® |fthe problem rather seems to be the presence of DTU this should be highlighted and discussed.
®  Forfigure S2 please include the sleuth result on the main simulated data as well else a direct
comparison (to judge the effect of the GC content) is not feasible
® Please end section with a recommendation of what tools to use.

Discussion
® There also needs to be a discussion around the benchmark part of the paper - it is currently
completely missing.

Please don't hesitate to contact me if anything was unclear.

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Referee Expertise: Bioinformatics with a focus on isoform usage analysis.
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We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

Michael Love, University of North Carolina at Chapel Hill, USA

We thank all reviewers for their insightful comments and suggestions that we feel have greatly
improved the readability and usefulness of the workflow. We summarize the main changes and
then address reviewer-specific comments point-by-point:

We have addressed all minor text or grammatical suggestions by the reviewers.

We have re-organized the article into distinct and more separated Workflow and Evaluation
sections, which was suggested by all reviewers. We begin the article with a clear outline,
titled: "Structure of this article", which outlines the Workflow part and the Evaluation part.
This outline has direct links to relevant sections and subsections which follow. We have also
included an overview diagram of the methods and packages included in the Workflow
section, and how they are interconnected.

We have added to the Introduction more motivational text on why a DTU analysis is relevant
for biology and biomedical research.

We have added a large section describing the methods DEXSeq and DRIMSeq, before the
Workflow section.

We have expanded the original sections discussing counts-from-abundance and their use in
the workflow, to make our use of the tximport method more clear.

For the DEXSeq section, we have corrected an earlier incorrect use of nbinomLRT(), which
is now replaced with the correct testForDEU(). The practical result is that DEXSeq performs
somewhat less conservatively, but the original code was incorrect, and the fix is necessary.
The incorrect use of nbinomLRT() in this context will now produce an error in future releases
of Bioconductor, to avoid possible incorrect usage.

We have added RATSs to the DTU Evaluation.

We now apply stageR to all DTU methods that are evaluated: DRIMSeq, DEXSeq, RATs,
and SUPPA2. The RATs and SUPPA2 methods are described, but the code is not provided,
as these packages are not part of the Workflow.

We use consistent x-axes and y-axes whenever possible, and use PDF instead of JPG to
reduce compression artifacts. When a consistent x-axis is not used in the main text, we
include Supplementary Figures with the same plots with outlying methods dropped to keep
the x-axis consistent.

We use a palette in which colors are more discernable for color-blind readers

In the Evaluation sections, we include additional plots which examine the simulated gene
type source of false positives for the DTU, DGE, and DTE analyses.

We added a new evaluation to examine performance differences between DRIMSeq and
DEXSeq, using the identical simulated data that was used in Soneson et al (2016) and
Nowicka and Robinson (2016).

We have added a 2 vs 2 simulation for the DTU Evaluation.

We added a brief overview description of all methods assessed in the DGE and DTE
Evaluations.

We have added more recommendations in the Discussion.

Reviewer-specific comments:

General comments
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We believe we have made the separation between Workflow and Evaluation much more clear now,
and have added an outline to the beginning of the article with hyperlinks to subsections and with an
overview diagram, as usefully suggested here.

Title
We believe the title is appropriate and does not suggest a new tool. The fact that existing tools are
leveraged in the workflow is clear from the abstract and the main text.

Introduction

The Bioconductor workflows do not have typical structure with Introduction, Methods, Results and
Discussion, but instead a prolonged section where relevant concepts are typically introduced as
needed. See, for example, the DESeq2 workflow: https://bioconductor.org/packages/rnaseqGene.
We have now added overview descriptions of the methods DEXSeq and DRIMSeq before the
Workflow section begins.

We have removed BitSeq. We believed earlier that cjBitSeq, which is a new DTU method, was
implemented in the Bioconductor package BitSeq, but it is a separate GitHub package
(https://github.com/mgbssppe/cjBitSeq). Since we are listing Bioconductor packages that can be
used for DTU, we now do not list BitSeq. We now have a separate sentence describing stageR and
its connection to the DTU methods, and SGSeq (and we mention its leveraging of DEXSeq or
limma).

We no longer mention the statistical test from Vitting-Seerup and Sandelin (2017). We use the
suggested purpose description for IsoformSwitchAnalyzeR, link to the AlternativeSplicing
BiocViews, and include a link to the IsoformSwitchAnalyzeR vignette.

Methods

We now include the number of transcripts with estimated counts greater than 10 in the Simulation.
We name the various simulations, and use their name when referring to them in the main text or
captions.

Our purpose in using the countsimQC report is to compare the joint distribution of estimated
parameters (mean, dispersion) from the simulation and from the dataset from which the estimates
were derived. We therefore compare the 24 simulated samples to the 458 non-duplicated
GEUVADIS samples that were used for the estimation of the mean and dispersion parameters. We
have made this more clear in the caption of the countsimQC Supplementary Figure.

We have elaborated on discussion of the different options for counts-from-abundance, including
the sentence about change in total counts. We include details on the recommended
counts-from-abundance options through the text and in the overview diagram, Figure 1.

We state whenever any expression filtering was done. The only expression filtering in the DTU
section is performed by the filtering functions in DRIMSeq, and the TPM > 1 filter to speed up
SUPPA2 on the command line. We mention the various expression filters used by the different
DGE and DTE methods in the Evaluation section for those methods. We include in the Simulation
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section the exact number of genes modified by simulated DGE, simulated DTE, and simulated
DTU.

We have added a comment on the NA p-values for DRIMSeq in the section in the workflow where
they are replaced with a p-value of 1. The text now reads:

"From investigating these NA p-value cases for DRIMSeq, they all occur when one condition group
has all zero counts for a transcript, but sufficient counts from the other condition group, and
sufficient counts for the gene. DRIMSeq will not estimate a precision for such a gene. These all
happen to be true positive genes for DTU in the simulation, where the isoform switch is total or
nearly total. DEXSeq, shown in a later section, does not produce NA p-values for any genes. A
potential fix would be to use a plug-in common or trended precision for such genes, but this is not
implemented in the current version of DRIMSeq."

We now perform post-hoc proportion SD filtering on the adjusted transcript p-values for DRIMSeq
directly, which has little effect on the results. The SD of proportions and the p-values may possibly
be independent under the null hypothesis of no DTU, which is the requirement for proper Type |
error control of an independent filter [Bourgon (2010)], but we do not attempt to provide empirical
evidence to support this. Importantly, we apply the post-hoc filtering because we have empirical
evidence that DRIMSeq was not providing uniform p-values for null transcripts on the simulated
data explored in this article. Therefore, we begin with a non-uniform distribution of p-values for the
null transcripts. The filtering is shown empirically to improve the FDR control.

We do not perform the simulation multiple times, and we have not extended iCOBRA to support
multiple iterations on a single plot, which is beyond the scope of this article. We are most interested
in the relative performance of the various methods, and their general location on the TPR-FDR
plots, which is achieved with the current evaluation. We did explore running DEXSeq 25 times on
the 3 vs 3 "main" simulation, and the inter-simulation variation in the TPR-FDR plot was minimal.
We have uploaded all 24 of the simulated paired-end reads to Zenodo, and the dataset is already
quite large. We do not run the methods on entirely null datasets, which is beyond the scope of this
article.

We have now used stageR on all methods. stageR accepts gene-level p-values (or adjusted
p-values) and transcript-level p-values. If gene-level p-values are not provided by a method then
DEXSeq's perGeneQValue was used to generate gene-level adjusted p-values, for use with
stageR.

We do not evaluate other methods for exon usage, as we focus in the workflow on Bioconductor
methods that have been already proposed and evaluated for DTU analysis in publications.

We now use consistent axes, and include the group size in the strip titles.

We now evaluate DRIMSeq and DEXSeq on the identical simulation dataset used in both Soneson
et al (2016) and Nowicka and Robinson (2016). We find similar performance of DEXSeq as
reported in those papers using a less stringent transcript filter, but when we use DRIMSeq count
and proportion filters as recommended in this workflow, the performance of DEXSeq is greatly
improved, to levels consistent with what we see in the "main" simulation.

Evaluation of DGE/DTE
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We clarify why a DGE and DTE evaluation is included.

We do not perform a 2 replicate DGE or DTE evaluation, as this is beyond the scope of the article.
We now breakdown the DGE and DTE results by simulated gene type. We do not see any strong
enrichment of one simulated gene type in the false positive breakdown plots. We believe our
evaluation may differ from others in exploring the consistency of results as sample size increases.

Discussion

We now include in the Discussion some recommendations on tool usage and performance.

Competing Interests: No competing interests were disclosed.

Discuss this Article

Author Response 26 Sep 2018
Michael Love, University of North Carolina at Chapel Hill, USA

Thank you for noting this. This was unfortunately missed during the revision, although we ran the new code
using testForDEU(), we didn't update that code chunk as it is displayed above. | will contact the editors
whether it can be fixed or requires a version 3.

Competing Interests: No competing interests were disclosed.
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