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ABSTRACT Influenced by environmental conditions, underwater acoustic communication channels exhibit
dynamics on various time scales. The channel dynamics within a short transmission duration have been
extensively studied in existing research. In this paper, we investigate online modeling and prediction
of slowly-varying channel parameters in a long term, by exploiting their inherent temporal correlation
and correlation with water environmental conditions. Examples of those parameters include the locally-
averaged channel properties within a transmission, such as the average channel-gain-to-noise-power ratio,
the fast fading statistics, the average delay spread, and the average Doppler spread. Adopting a data-driven
perspective, this paper models the temporal evolution of a slowly-varying channel parameter of interest as
the summation of a time-invariant component, a time-varying process that can be explicitly represented
by available environmental parameters, and a Markov latent process that describes the contribution from
unknown or unmeasurable physical mechanisms. An algorithm is developed to recursively estimate the
unknownmodel parameters and predict the channel parameter of interest, based on the sequentially collected
channel measurements and environmental parameters in real time. We further extend the above model
and the recursive algorithm to channels that exhibit periodic (a.k.a. seasonal) dynamics, by introducing
a multiplicative seasonal autoregressive process to model the seasonal correlation. The proposed models and
algorithms are evaluated via extensive simulations and data sets from two shallow-water experiments. The
experimental results reveal that the average channel-gain-to-noise-power ratio, the fast fading statistics, and
the average delay spread can be well predicted.

INDEX TERMS Underwater acoustic channels, large-scale channel dynamics, online channel modeling and
prediction, recursive estimation, seasonal channels.

I. INTRODUCTION
Underwater acoustic (UWA) channels exhibit large temporal
dynamics. Influenced by environmental conditions, such as
water-air interface characteristics, the sound speed profile
and the distribution of ambient acoustic sources, the impulse
response of an UWA channel could fluctuate on various time
scales: seasonal, diurnal, tidal cycles, minutes in the presence
of internal waves, and seconds with ocean swells [2]–[4].
Extensive research has been devoted to the statistical mod-
eling and countermeasures of fast channel variation within a
transmission that consists of one or multiple packets [5]–[7].
The study on the large-scale channel variation, namely,
the temporal evolution of slowly-varying channel parame-
ters over a long term, (e.g., hours, days, months, or years),
has been very limited. Examples of those slowly-varying

parameters include the locally-averaged channel parame-
ters within a transmission, such as the average channel-
gain-to-noise-power ratio (also referred to as channel SNR),
the average delay spread, the average Doppler spread, and
the statistics of fast channel variations. Compared to the
fast channel variation, the large-scale channel variation can
be attributed to the large-scale change of environmental
conditions [7], hence holds a great potential of being pre-
dictable.

In this work, we develop a data-driven approach for
online modeling and prediction of slowly-varying channel
parameters in the real-time UWA communication system by
exploiting their correlation with water environmental con-
ditions. Prediction of those parameters will allow proac-
tive adaptation of higher-level transmission strategies to
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FIGURE 1. An example of the estimated channel impulse response within
an OFDM block duration of 129.46 milliseconds in SPACE08.

the channel dynamics. In the sequel, we will first briefly
describe our observations on the large-scale channel varia-
tion in two field experiments, and then summarize existing
approaches to modeling the large-scale channel variation.
An overview of this work is presented in the end of this
section.

A. OBSERVATION OF THE LARGE-SCALE CHANNEL
VARIATION IN FIELD EXPERIMENTS
We introduce the results from two field experiments to illus-
trate the large-scale channel dynamics. The SPACE08 exper-
iment was conducted in an oceanic environment where
a waveform of 1 minute and within the frequency band
[8, 18] kHz was transmitted every 2 hours to a receiver
located 200 meters away. The waveform consists of 60 short
blocks, and each block is modulated by the zero-padded (ZP)
orthogonal frequency-division multiplexing (OFDM) tech-
nique and has a duration of 129.46 ms. Fig. 1 provides an

example of the channel impulse response (CIR) which is
estimated based on the received waveform of one OFDM
block during a transmission. The KW-AUG14 experiment
was conducted in the Keweenaw Waterway near Michigan
Tech, August 2014 where a waveform of 8.83 seconds and
within the frequency band [14, 20] kHz was transmitted
every 15 minutes to a receiver located 312 meters away. The
waveform consists of 20 ZP OFDM-modulated blocks, and
each of duration 250 ms. Detailed descriptions of the two
experiments can be found in Section VII. For each exper-
iment, the CIR can be estimated based on each received
OFDM block, and the estimated CIRs within each transmis-
sion can be used to calculate the locally-averaged channel
parameters of the transmission; rigorous descriptions can be
found in Section II-A. In Fig. 2, we plot the evolution of
several locally-averaged channel parameters throughout all
transmissions in the two field experiments. For both exper-
iments, one can observe that the average channel SNR is
negatively correlated with the wind speed and possibly corre-
lated with the temperature. The Nakagami-m fading param-
eter in KW-AUG14 exhibits negative correlation with the
wind speed and the temperature, while the correlation is not
obvious in SPACE08. The average root mean square (RMS)
delay spread is correlated with the wind speed negatively
in SPACE08 while positively in KW-AUG14. Moreover,
a diurnal pattern of the slowly-varying channel parame-
ters can be observed in KW-AUG14. Correlations between
UWA channel parameters and water environmental condi-
tions have also been revealed in other field experiments; see,
e.g., [2], [3], [8]–[10]. In this work, following the terminol-
ogy in time series analysis, we refer to the UWA channels
with periodic dynamics (e.g., diurnal or monthly) as sea-
sonal channels [11], where the ‘‘seasonal cycle’’ does not
necessarily correspond to the seasons in an astronomical
year.

FIGURE 2. Evolution of several slowly-varying channel parameters in two field experiments. The sequences of the average channel SNR are scaled
by corresponding transmission power levels. RMS: root mean square. (a) SPACE08. (b) KW-AUG14.
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B. EXISTING METHODS FOR MODELING THE
LARGE-SCALE UWA CHANNEL VARIATION
Existing methods for UWA channel modeling can be grouped
into three categories: wave propagation theory-based model-
ing, empirical channel modeling and statistical channel mod-
eling. Compared to the latter two approaches, the wave prop-
agation theory-based model [12] yields the highest accuracy.
However, it is a deterministic method for a fixed geometry
and environmental description, hence cannot accommodate
random environmental dynamics.

Using measurements in various water settings, marine
engineers have built empirical models that relate the trans-
mission loss and the ambient noise level with water envi-
ronmental parameters, such as water temperature, salinity,
pH, surface wind speed, rainfall rate, and sea state; see,
e.g., [13]–[16]. Consider that the acoustic propagation prop-
erty and the ambient acoustic environment are site-dependent.
The empiricalmodel parameters are often computed via curve
fitting based on field measurements.

In addition, statistical methods have been widely used to
characterize the statistical distribution of the signal trans-
mission loss along each path or an equivalent power loss
after combining the signals propagating along multiple
paths. Compared to the characterization of channel fast
fading [7], [17], [18], studies on the modeling of the large-
scale channel variation have been very limited. Based on
field measurements, a lognormal distribution of the locally-
averaged transmission loss was proposed in [7] and [19],
and the possibility of modeling the temporal evolution of the
locally-averaged transmission loss as a first-order autoregres-
sive (AR) process was discussed in [20].

It is worth noting that existing channel modeling methods
mainly work in an offline manner. They are used either to
evaluate the channel conditions before the system deploy-
ment, or to characterize the channel behaviors based on field
measurements after the system is recovered.

C. OUR WORK
The goal of this work is to develop a method for online mod-
eling and prediction of the large-scale channel variation dur-
ing the system deployment based on sequentially collected
channel measurements and water environmental parameters.
To this end, a data-driven perspective is adopted to exploit
the inherent correlation of the large-scale channel variation
and its correlation with water environmental conditions.

Specifically, for a slowly-varying channel parameter of
interest, we model its temporal evolution as the summation
of (i) a time-invariant component, (ii) a time-varying pro-
cess that can be explicitly represented by available water
environmental parameters, and (iii) a hidden Markov latent
process which accounts for the contribution from unknown
or unmeasurable physical mechanisms. After casting the evo-
lution model into a state-space representation, and following
the maximum likelihood (ML) principle and the expectation-
maximization (EM) algorithm [21], a low-complexity algo-
rithm is developed to recursively estimate the unknownmodel

parameters based on sequentially obtained channel mea-
surements and environmental parameters during the system
operation, which then allows to predict the slowly-varying
channel parameter in the near future. The proposed model-
ing method and the recursive algorithm are further extended
to seasonal channels, where a multiplicative seasonal AR
process [11] is introduced to model the seasonal correlation.

The effectiveness of the proposed models and recur-
sive algorithms are evaluated via simulations and data sets
from two shallow-water experiments, the SPACE08 and the
KW-AUG14. The slowly-varying channel parameters that
are examined using the experimental data sets include the
average channel SNR, the fast fading statistics, the average
RMSdelay spread, and the average RMSDoppler spread. The
results reveal that superior modeling and prediction perfor-
mance can be achieved by exploiting the correlation between
the large-scale channel variation and water environmental
parameters as well as the seasonal correlation in seasonal
channels.

Remark 1: The developed algorithms can be applied to
real-time operating UWA communication systems. Specif-
ically, the model parameters can be updated recursively in
time step-by-step based on newly obtained channel mea-
surements during recent acoustic transmissions as well as
newly obtained environmental parameters.1 The updated
model allows the prediction of the large-scale channel vari-
ation based on the forecast of environmental conditions. The
prediction could guide higher-level proactive adaptation of
future transmission strategies, such as the transmission sched-
ule, the transmission power and rate, and the modulation
scheme [22]. It has been shown in an early study [23] that
even with moderate channel prediction performance, proac-
tive adaptation of the transmission schedule improves energy
efficiency more than 20% than a benchmark method that
transmits each packet upon its arrival with minimal transmis-
sion power that meets a predetermined SNR threshold.

The rest of the paper is organized as follows. The
data-driven modeling method is presented in Section II.
A recursive algorithm for the model parameter estimation is
developed in Section III. Extension of the proposed model
and the recursive algorithm to seasonal channels is pre-
sented in Section IV. The model order selection for prac-
tical UWA channels is discussed in Section V. Simulations
and experimental data processing results are presented in
Sections VI and VII, respectively. Conclusions are drawn in
Section VIII.
Notation: Bold upper case letters and lower case letters

are used to denote matrices and column vectors, respectively.
AT denotes the transpose of matrix A. det(A) denotes the
determinant of matrix A. [a]m denotes the mth element of
vector a, and [A]m,k denotes the (m, k)th element of matrixA.
E[x] denotes the expectation of random variable x.

1The environmental parameters can be collected by sensors equipped on
the communication nodes (e.g., surface buoys and underwater nodes), or sent
from a remote control center to surface buoys via radio-frequency links.
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II. A DATA-DRIVEN METHOD FOR MODELING
LARGE-SCALE CHANNEL VARIATIONS
In this section, we will first provide several examples
of slowly-varying parameters in UWA channels, and then
develop a data-driven model for the temporal evolution of a
slowly-varying channel parameter of interest.

A. SLOWLY-VARYING PARAMETERS IN UWA CHANNELS
The UWA channel features multiple time-varying sound
propagation paths. Denote Npa as a generic representation of
the number of paths. The CIR at time t is

h(t; τ ) =
Npa∑
p=1

Ap(t)δ(τ − τp(t)), (1)

where Ap(t) and τp(t) are the time-varying amplitude and
delay of the pth path, respectively.
For an UWA transmission with Nbl short blocks, the chan-

nel is often assumed block-stationary and could change from
one block to another. For the `th block in the kth transmission,
the CIR can be approximated as

hk,`(t; τ ) =
Npa,k,`∑
p=1

Ap,k,`δ(τ − (τp,k,` − ap,k,`t)), (2)

where Npa,k,` denotes the number of paths, and for each
path, e.g., the pth path, the amplitude is approximated as a
constant Ap,k,`, and the delay variation is approximated by a
first-order polynomial (τp,k,` − ap,k,`t) with τp,k,` being the
initial delay and ap,k,` being the Doppler rate, respectively.
Estimation of the path parameters is typically performed in
each block based on training symbols. An example of the esti-
mated CIR based on the pilot subcarriers in one OFDM block
in the SPACE08 experiment is depicted in Fig. 1. In addition,
the channel SNR in the `th block of the kth transmission can
be denoted as

ζk,` :=
1

N0,k,`

Npa,k,`∑
p=1

|Ap,k,`|2, (3)

where N0,k,` is the noise power in the `th block.
Different from the fast variation of path parameters,

the structure of the CIR could change slowly from one trans-
mission to another in accordance with environmental condi-
tions. Corresponding to the multiple (Nbl) individual CIRs
in the kth transmission, several examples of slowly-varying
channel parameters are in the following.
• The average channel SNR in decibel (dB), defined as

ζ dB[k] :=
1
Nbl

Nbl∑
`=1

10 log10(ζk,`). (4)

• The fast fading statistics. Despite the fast variation of
path parameters within one transmission, the statistics
of the fast variation could change slowly from one trans-
mission to another. In this work, we adopt a Nakagami-m
channel fading model [24], and examine the temporal

evolution of the fading parameter m from one trans-
mission to another. For the kth transmission, the fading
parameter m can be estimated based on the block SNRs
{ζk,1, · · · , ζk,Nbl} that follow a corresponding Gamma
distribution.

• The average RMS delay spread that quantifies the
channel dispersion in delay [25],

τspread[k]

:=
1
Nbl

Nbl∑
`=1

√∑Npa,k,`
p=1 |Ap,k,`|

2(τp,k,` − τ̄k,`)2√∑Npa,k,`
p=1 |Ap,k,`|

2
, (5)

with

τ̄k,` :=

∑Npa,k,`
p=1 |Ap,k,`|

2τp,k,`∑Npa,k,`
p=1 |Ap,k,`|

2
. (6)

• The average RMS Doppler spread that quantifies
the channel dispersion in the Doppler rate, denoted
by aspread[k], which can be similarly defined as τspread[k]
through replacing τp,k,` by ap,k,` in (5) and (6).

In the next subsection we will develop a data-driven
method to model the temporal evolution of a slowly-varying
channel parameter of interest. Estimation of themodel param-
eters will be pursued in Sections III and IV.

B. A DATA-DRIVEN MODEL FOR SLOWLY-VARYING
CHANNEL PARAMETERS
Consider the temporal evolution of a slowly-varying channel
parameter of interest, which is represented by process {α[k]},
with k being an integer time index. We model the pro-
cess {α[k]} as the summation of a time-invariant compo-
nent γ0, a time-varying process {g[k]} that can be explicitly
represented by available and relevant water environmental
parameters, and a latent process {x[k]} that describes the
contribution from unknown or unmeasurable physical mech-
anisms, namely,

α[k] = γ0 + g[k]+ x[k], ∀k. (7)

Specifically about the processes {g[k]} and {x[k]},
• The process {g[k]} can be taken as a function of L
types of available and relevant environmental param-
eters {φ`[k]; ` = 1, · · · ,L}. Consider the potentially
nonlinear relationship between the slowly-varying
channel parameter and water environmental parame-
ters [13]–[16]. The function can be represented by the
Maclaurin series expansion,

g[k] =
L∑
`=1

c`φ`[k]+
L∑

`1=1

L∑
`2=1

c`1,`2φ`1 [k]φ`2 [k]

+

L∑
`1=1

L∑
`2=1

L∑
`3=1

c`1,`2,`3φ`1 [k]φ`2 [k]φ`3 [k]+ · · ·

(8)
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where the expansion coefficients are unknown and could
be slowly time-varying. Estimation of the expansion
coefficients based on channel measurements and envi-
ronmental parameters is challenged by their infinite
dimensionality.
Tomake the problem tractable, a finite number of impor-
tant summands on the right side of (8) can be selected
to approximate the function. Specifically, we include
the infinite elements on the right side of (8) in a set
E[k] := {φ1[k], · · · , φL[k], φ21 [k], φ1[k]φ2[k], · · · },
and denote I as an index set of Nu important elements
within E[k],∀k . The important elements can form a
finite set U[k] := {u1[k], · · · , uNu [k]}, which yields the
approximation,

g[k] ≈
Nu∑
n=1

bnun[k], (9)

where {bn} denote the coefficients of the Nu important
elements.

• The latent process {x[k]} is modeled as a Markov
process with memory length of P,

x[k] =
P∑
p=1

apx[k − p]+ w[k], (10)

where the coefficients {ap} are unknown and could be
slowly time-varying, and the process noise w[k] follows
a zero-mean Gaussian distribution with variance σ 2

w,
namely, w[k] ∼ N (0, σ 2

w).
The latent process order P and the index set I of important
elements in E[k] can be determined via a model-order selec-
tion criterion. A detailed discussion is presented in Section V.
Denote y[k] as the measurement of the slowly-varying

channel parameter at time k . We have

y[k] = γ0 + x[k]+ g[k]+ v[k], (11)

where v[k] is an equivalent noise termwhich consists of mod-
eling inaccuracy and the measurement noise, and is assumed
v[k] ∼ N (0, σ 2

v ), independent from the process noise w[k]
in (10).

Define a := [a1, · · · , aP]T, b :=
[
b1, · · · , bNu

]T, x[k] :=
[x[k], · · · , x[k − P+1]]T, andu[k] :=

[
u1[k], · · · , uNu [k]

]T.
The system model can be compactly represented as

x[k] = aTx[k − 1]+ w[k], (12a)

y[k] = γ0 + x[k]+ bTu[k]+ v[k]. (12b)

Define w[k] := [w[k], 0, · · · , 0]T, h := [1, 0, · · · , 0]T,
and

A :=


a1 a2 · · · aP−1 aP
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

We have the state-space representation of the system model,

x[k] = Ax[k − 1]+ w[k], (13a)

y[k] = γ0 + hTx[k]+ bTu[k]+ v[k]. (13b)

Should the parameters in the set 2 := {γ0, a,b, σ 2
w, σ

2
v }

be known, the latent process can be tracked via the Kalman
filter [26]. In the next section, we will develop a recursive
algorithm to estimate the unknown model parameters while
tracking the latent process based on the measurements {y[k]}
and the environmental parameter vectors {u[k]}. The esti-
mated model parameters allow multiple-step-ahead predic-
tion of the slowly-varying channel parameter. For notation
convenience, in the sequel we use x[k] and xk , y[k] and yk ,
x[k] and xk interchangeably, and denote x

k2
k1
:= {xk1 , · · · , xk2}

and yk2k1 := {yk1 , · · · , yk2}.

III. A RECURSIVE ALGORITHM FOR CHANNEL
MODELING AND PREDICTION
Following the ML principle [26], the unknown parameters
in 2 could be estimated at each time step (e.g., time k) by
maximizing the log-likelihood function of the complete data
set, Lk (2) := ln f (yk0, x−1, x

k
0|2). However, note that the

latent process {xk ′} is not observable. The EM algorithm [21]
can be applied to estimate the unknown parameters iteratively
through an expectation step and a maximization step. Specif-
ically, at time k ,
• Expectation: Given a parameter set estimation 2̂,
the expectation of the log-likelihood function can be
approximated as

E[Lk (2)|2̂] =
∫ ∫ [

ln f (yk0, x−1, x
k
0|2)

]
×f (x−1, xk0|y

k
0, 2̂)dx−1dxk0. (14)

• Maximization: The parameter set estimation can be
updated as

2̂
(new)
= arg max

2
E[Lk (2)|2̂]. (15)

The iterative operation terminates when the number of iter-
ations reaches a pre-determined value or the change of
the parameter set estimation is less than a pre-determined
threshold.

Note that (14) can be decomposed as

E[Lk (2)|2̂] =
∫
[ln f (x−1|2)] f (x−1|yk0, 2̂)dx−1

+

k∑
k ′=0

∫
[ln f (xk ′ , yk ′ |xk ′−1,2)]

×f (xk ′ , xk ′−1|yk0, 2̂)dxk ′dxk ′−1. (16)

The expectation E[Lk (2)|2̂] is computed based on the prob-
ability density function (PDF) f (xk ′ , xk ′−1|yk0, 2̂), ∀k ′ ≤ k .
For a given estimation 2̂, finding f (xk ′ , xk ′−1|yk0, 2̂) requires
to process all the data points. Hence, the original EM algo-
rithm is not amenable to online implementation.
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We next propose an approximation to E[Lk (2)|2̂] that
enables the development of a low-complexity recursive
algorithm for the model parameter estimation and channel
tracking.

A. APPROXIMATION FOR RECURSIVE OPERATION
The approximation to E[Lk (2)|2̂] is made in several steps.

First, we approximate the expectation in (16) by

E[Lk (2)|2̂] ≈ ln f (x−1|2)]

+

k∑
k ′=0

∫
[ln f (xk ′ , yk ′ |xk ′−1,2)]

×f (xk ′ , xk ′−1|yk
′

0 , 2̂)dxk ′dxk ′−1, (17)

where the expectation of [ln f (xk ′ , yk ′ |xk ′−1,2)] is per-
formed with respect to f (xk ′ , xk ′−1|yk

′

0 , 2̂) instead of
f (xk ′ , xk ′−1|yk0, 2̂). This removes the dependence of
{xk ′ , xk ′−1} on future measurements.

Secondly, denote 2̂k ′ as the parameter set estimation at
time k ′. We make a further approximation to (17) through
replacing f (xk ′ , xk ′−1|yk

′

0 , 2̂) by f (xk ′ , xk ′−1|yk
′

0 , 2̂k ′ ),
∀k ′ < k , namely,

E[Lk (2)|2̂] ≈ ln f (x−1|2)

+

k−1∑
k ′=0

∫
[ln f (xk ′ , yk ′ |xk ′−1,2)]

×f (xk ′ , xk ′−1|yk
′

0 , 2̂k ′ )dxk ′dxk ′−1

+

∫
[ln f (xk , yk |xk−1,2)]

×f (xk , xk−1|yk0, 2̂)dxkdxk−1. (18)

The approximations in (17) and (18) enable recursive com-
putation of the summands on the right side of (18).

Thirdly, note that the joint PDF f (xk , xk−1|yk , yk−10 , 2̂)
can be decomposed as

f (xk , xk−1|yk , yk−10 , 2̂)

= f (xk , xk−1|yk , yk−10 , 2̂)δ(xk , xk−1)

=
1
c0
f (xk , xk−1, yk |yk−10 , 2̂)δ(xk , xk−1)

=
1
c0
f (yk |xk , 2̂)f (xk |xk−1, 2̂)

×f (xk−1|yk−10 , 2̂)δ(xk , xk−1), (19)

where c0 is a normalization constant, and the function
δ(xk , xk−1) is introduced to constrain the equity of common
elements in xk and xk−1. We approximate the joint PDF by

f̃ (xk , xk−1|yk , yk−10 , 2̂) :=
1
c′0
f (yk |xk , 2̂)

×f (xk |xk−1, 2̂)f̃ (xk−1|yk−10 , 2̂k−1)δ(xk , xk−1), (20)

where c′0 is a normalization constant, and the approxima-
tion is made through replacing f (xk−1|yk−10 , 2̂) in (19) by
f̃ (xk−1|yk−10 , 2̂k−1) in (20), with f̃ (xk ′ |yk

′

0 , 2̂k ′ ) defined

as the marginalization PDF of xk ′ with respect to
f̃ (xk ′ , xk ′−1|yk ′ , y

k ′−1
0 , 2̂k ′ ), ∀k ′.

Finally, based on (18) and (20), the expectation
E[Lk (2)|2̂] is approximated by Qk (2|2̂) which is recur-
sively defined as

Qk (2|2̂) = λQk−1(2|2̂k−1)+
∫

[ln f (xk , yk |xk−1,2)]

× f̃ (xk , xk−1|yk , yk−10 , 2̂)dxk−1dxk , (21)

where λ ∈ (0, 1] is a forgetting factor that accounts for the
temporal variation of unknown model parameters.
Based on (20) and (21), a recursive algorithm will be

developed for the model parameter estimation and channel
tracking, while at each time step, operations similar to the
expectation and the maximization in the EM algorithm are
iteratively performed.

B. A LOW-COMPLEXITY RECURSIVE ALGORITHM
Denote 2̂

(i)
k = {γ̂

(i)
0,k , â

(i)
k , b̂

(i)
k , σ̂

2,(i)
w,k , σ̂

2,(i)
v,k } as the

parameter set estimation in the ith iteration at time k .
The function Qk (2|2̂

(i)
k ) is computed through finding the

expectation of [ln f (xk , yk |xk−1,2)] with respect to the
PDF f̃ (xk , xk−1|yk , yk−10 , 2̂

(i)
k ) (c.f. (21)). The parame-

ter set estimation can then be updated as 2̂
(i+1)
k =

arg max2 Qk (2|2̂
(i)
k ).

FIGURE 3. The proposed low-complexity recursive algorithm at time k .

At the outset, the proposed low-complexity recursive
algorithm is depicted in Fig. 3. Denote f̃ (xk |yk0, 2̂k ) =
N (µk ,Ck ) (c.f. (20)). At time k , the algorithm takes the PDF
f̃ (xk−1|yk−10 , 2̂k−1) = N (µk−1,Ck−1), the parameter set
estimation 2̂k−1, auxiliary quantities {Mk−2,M−1ũ,k−1} (to be
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defined shortly; computed at time (k − 1)), the measurement
yk and the environmental parameter vector uk as input. Set
2̂

(0)
k = 2̂k−1. Given the parameter set estimation 2̂

(i)
k ,

the Kalman filtering and smoothing can be performed to com-
pute the expectations of quantities in [ln f (xk , yk |xk−1,2)]
with respect to the PDF f̃ (xk , xk−1|yk , yk−10 , 2̂

(i)
k ), namely,

the second summand in (21). The parameter set estima-
tion can then be updated through maximizing Qk (2|2̂

(i)
k ).

The updated parameter estimation can then be used for the
Kalman filtering and smoothing in the next iteration. The
iterative operation terminates when the number of iterations
reaches a pre-determined threshold Nit. We set 2̂

(Nit)
k = 2̂k

as the final parameter set estimation at time k . Based on 2̂k ,
the PDF f̃ (xk |yk0, 2̂k ) = N (µk ,Ck ) is computed via the
Kalman filtering. The PDF f̃ (xk |yk0, 2̂k ), the parameter set
estimation 2̂k and {Mk−1,M−1ũ,k} that are computed at time k ,
will be used for the recursive operation at time (k + 1).
Additionally, based on the parameter set estimation 2̂k and
the state estimation µk , multiple-step-ahead prediction of the
slowly-varying channel parameter can be achieved.

Next, we describe in details the component of the recursive
and iterative parameter estimation, the Kalman filtering and
smoothing, and the multiple-step-ahead prediction.

1) RECURSIVE AND ITERATIVE PARAMETER ESTIMATION
The parameter estimation can be updated by max-
imizing Qk (2|2̂

(i)
k ). Note that f (xk , yk |xk−1,2) =

f (yk |xk ,2)f (xk |xk−1,2). Substitute f (yk |xk ,2) = N (γ0 +
xk + bTuk , σ 2

v ) and f (xk |xk−1) = N (aTxk−1, σ 2
w) into the

log-likelihood function in (21). Denote ũk := [1,uTk ]
T. Set

the partial derivative of Qk (2|2̂
(i)
k ) with respect to each

unknown parameter to zero. A set of recursive equations can
be obtained; see the detailed derivation in Appendix,

â(i+1)k = âk−1 +M−1k−1

×

(
E[xkxk−1]− E[xk−1xTk−1]âk−1

)
, (22a)

σ̂
2,(i+1)
w,k = σ̂ 2

w,k−1 +
1− λ
1− λk

×

{
E
[(
xk − â(i+1),Tk xk−1

)2]
− σ̂ 2

w,k−1

}
,

(22b)[
γ̂
(i+1)
0,k

b̂(i+1)k

]
=

[
γ̂0,k−1

b̂k−1

]
+

M−1ũ,k ũk

λ+ ũTkM
−1
ũ,k ũk

×

(
yk − E[xk ]− γ̂0,k−1 − b̂Tk−1uk

)
, (22c)

σ̂
2,(i+1)
v,k = σ̂ 2

v,k−1 +
1− λ

1− λk+1

×

{
E
[
(yk−xk−γ̂

(i+1)
0,k −b̂

(i+1),T
k uk )2

]
−σ̂ 2

v,k−1

}
,

(22d)

with two matrices defined as

Mk−1 := λMk−2 + E[xk−1xTk−1], (23a)

Mũ,k := λMũ,k−1 + ũk ũTk . (23b)

The expectations in (22) and (23) are performed with respect
to f̃ (xk , xk−1|yk , yk−10 , 2̂

(i)
k ) (c.f. (21)).

2) KALMAN FILTERING AND SMOOTHING
Computation of the expectations in (22) and (23) requires the
marginalization of the joint PDF f̃ (xk , xk−1|yk , yk−10 , 2̂

(i)
k )

with respect to xk and xk−1, respectively. Denote the
marginal PDFs as f̃ (xk |yk0, 2̂

(i)
k ) = N (µ(i)

k ,C
(i)
k ) and

f̆ (xk−1|yk0, 2̂
(i)
k ) = N (µ̆(i)

k−1, C̆
(i)
k−1). Given the expansion of

the joint PDF in (20), the marginalization can be performed
through the Kalman filtering and smoothing [26], as detailed
next.
Define Â(i)

k and Ĉ(i)
w,k as the matrices corresponding to â(i)k

and σ̂ 2,(i)
w,k , respectively. Based on f̃ (xk−1|yk−10 , 2̂k−1) and the

system model in (13), the mean and the covariance matrix of
xk in the marginal PDF f̃ (xk |yk0, 2̂

(i)
k ) can be formulated as

µ
(i)
k = Â(i)

k µk−1+k
(i)
k (yk−â

(i),T
k µk−1−γ̂

(i)
0,k−b̂

(i),T
k uk ), (24a)

C(i)
k = (I− k(i)k hT)P(i)

k , (24b)

where the Kalman gain k(i)k = P(i)
k h
(
σ̂
2,(i)
v,k + hTP(i)

k h
)−1

and the prediction mean square error (MSE) matrix P(i)
k =

Â(i)
k Ck−1Â

(i),T
k +Ĉ(i)

w . We further have E[xkxTk |2̂
(i)
k ] = C(i)

k +

µ
(i)
k µ

(i),T
k .

The marginal PDF f̆ (xk−1|yk0, 2̂
(i)
k ) can be obtained via

the one-step backward smoothing, with the mean and the
covariance matrix formulated as

µ̆
(i)
k−1 = µk−1 + J(i)k−1(µ

(i)
k − Â(i)

k µk−1), (25a)

C̆(i)
k−1 = Ck−1 + J(i)k−1(C

(i)
k − P(i)

k )J(i),Tk−1 , (25b)

where the gain matrix J(i)k−1 = Ck−1Â
(i),T
k (P(i)

k )−1. We further

have E[xk−1xTk−1|2̂
(i)
k ] = C̆(i)

k−1 + µ̆
(i)
k−1µ̆

(i),T
k−1 .

Based on the joint PDF f̃ (xk , xk−1|yk , yk−10 , 2̂
(i)
k ), the cor-

relation between xk and xk−1 can be obtained as

E[xkxTk−1|2̂
(i)
k ] = C(i)

k J(i),Tk−1 + µ
(i)
k µ̆

(i),T
k−1 . (26)

The expectations E[xk |2̂
(i)
k ], E[xkxTk−1|2̂

(i)
k ], and

E[x2k |2̂
(i)
k ] to be used in (22) can be extracted from

E[xk |2̂
(i)
k ] = µ

(i)
k , E[xkxTk−1|2̂

(i)
k ], and E[xkxTk |2̂

(i)
k ],

respectively.

3) MULTIPLE-STEP-AHEAD PREDICTION
Based on the parameter set estimation 2̂k and the state
estimation µk (denoted next also as x̂k ), the m-step-ahead
prediction of the slowly-varying channel parameter can be
recursively computed based on the system model in (12).
Specifically,

x̂k+m = âTk x̂k+m−1, (27a)

α̂k+m = γ̂0,k + x̂k+m + b̂Tk uk+m, (27b)

for m = 1, 2, · · · , where uk+m can be obtained from meteo-
rological forecast sources, e.g., [27].
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Remark 2: Although this work assumes periodic chan-
nel measurements, the proposed model and the recursive
algorithm can be applied to the scenario with non-periodic
channel measurements through replacing the discrete-time
state-space model in (13) by a continuous-time state-space
model (c.f. [26, Ch. 9]).

Remark 3: The proposed model and the recursive algo-
rithm subsume a linear regression method that models the
temporal evolution of the slowly-varying channel parameter
only based on available environmental parameters without
introducing the latent process, namely, the model in (11)
degrades to yk = γ0 + gk + wk . The model parameters γ0
and b can be recursively estimated via (22c).

4) COMPUTATIONAL COMPLEXITY
The computational complexity of the proposed algorithm at
each time step is analyzed in the following. At the outset,
we would like to note that in practical systems, the values
of P and Nu are typically very small. In Section VII, Nit = 20
and Nu = 2 are used for the experimental data processing,
and the value of P varies from 1 to 4 for different channel
parameters.
• Kalman filtering and smoothing: For (24), calculation
of the Kalman gain vector k(i)k of length P has (P2+ 2P)
arithmetic multiplications (AMs), (P2 + P + 2) arith-
metic additions (AAs) and 1 arithmetic division (AD).
Calculation of the MSE matrix P(i)

k of size (P × P)
has (2P3) AMs and (2P3 + 2P2) AAs. Eq. (24a) has
(P2 + 2P+Nu) AMs and (P2 + 3P+Nu + 4) AAs, and
Eq. (24b) has (P3 + P2) AMs and (P3 + 2P2) AAs. The
total computations associated with (24) include (3P3 +
3P2 + 4P+Nu) AMs, (3P3 + 6P2 + 4P+ 4+Nu) AAs
and 1 AD. For (25), calculation of the gain matrix J(i)k−1
of size (P × P) has (2P3) AMs and (2P3) AAs for the
matrix multiplication and a complexity ofO(P3) for the
inversion of matrix P(i)

k . Eq. (25a) has (2P2) AMs and
(2P2 + 4P) AAs, and Eq. (25b) has (2P3) AMs and
(2P3 + 4P2) AAs. The total computations associated
with (25) include (4P3 + 2P2) AMs, (4P3 + 6P2 + 4P)
AAs and a (P × P) matrix inversion with complex-
ity O(P3). In addition, calculation of E[xkxTk |2̂

(i)
k ] and

of E[xk−1xTk−1|2̂
(i)
k ] each has (P2) AMs and (2P2) AAs.

Calculation of the correlation matrix in (26) has (P3 +
P2) AMs and (P3+2P2) AAs. Therefore, the total com-
putations for Kalman filtering and smoothing include
(8P3+8P2+4P+Nu) AMs, (8P3+18P2+8P+6+Nu)
AAs, 1 AD and the inversion of a (P × P) matrix with
complexity O(P3).

• Parameter estimation: For (22a), calculation of the
matrix Mk−1 of size (P × P) in (23a) has (P2) AMs
and (2P2) AAs. Eq. (22a) has (2P2) AMs, (2P2 + 4P)
AAs and the inversion ofMk−1 with complexityO(P3).
Eq. (22b) has (P2+3P+1) AMs and (P2+2P+6) AAs.
Eq. (22c) involves the calculation and the inversion of
matrix Mũ,k of size (Nu + 1) × (Nu + 1). Note that

the Woodbury matrix identity [26] can be applied for
the recursive computation of M−1ũ,k based on M−1ũ,k−1.
Therefore, the total computations associated with (22c)
include (5N 2

u + 13Nu + 9) AMs, (4N 2
u + 12Nu + 16)

AAs and 2 ADs. Lastly, Eq. (22d) has (Nu + 4) AMs
and (Nu + 9) AAs. Therefore, the total computations to
update the parameter estimations include (3P2 + 3P +
5N 2

u + 14Nu + 14) AMs, (3P2 + 6P + 4N 2
u + 13Nu +

31) AAs, 2 ADs and the inversion of a (P × P) matrix
with complexity O(P3).

• Iterative operations: The proposed algorithm performs
Nit iterations of computations in (22) - (26). Therefore,
the computations at each time step include Nit(8P3 +
11P2 + 7P + 5N 2

u + 15Nu + 14) AMs, Nit(8P3 +
21P2 + 14P+ 4N 2

u + 14Nu + 37) AAs, (3Nit) ADs and
a complexity of O

(
2Nit(P3)

)
for matrix inversion.

IV. MODELING AND PREDICTION
IN SEASONAL CHANNELS
The UWA channel could exhibit periodic variations, such as
the diurnal pattern as depicted in Fig. 2(b). In this type of
channels, the slowly-varying channel parameter in one cycle
could be highly correlated with those in previous cycles. Fol-
lowing the terminology in time series analysis [11], we refer
to such type of channels as seasonal channels.

The data-drivenmodel in (11) applies to seasonal channels.
However, different from non-seasonal channels, the latent
process in seasonal channels will be represented by a multi-
plicative seasonal AR process (AR(P)× (Pse)S ) [11], whose
polynomial representation in the lag operator D is a mul-
tiplication of the polynomial of an AR(P) process, (1 −∑P

p=1 apD
p), and the polynomial of a seasonal AR(Pse)

process, (1 −
∑Pse

q=1 ξqD
qS ), where S � P denotes the

seasonal cycle. The latent process in the time domain can be
represented as

x[k] =
P∑
p=1

apx[k − p]+
Pse∑
q=1

ξqx[k − qS]

−

P∑
p=1

Pse∑
q=1

apξqx[k − qS − p]+ w[k]. (28)

The proposed recursive algorithm for non-seasonal chan-
nels could be applied to seasonal channels by defining a
long state vector [xk , xk−1, · · · , xk−PseS−P+1]

T of length (P+
PseS). This, however, will incur very large computational and
storage cost. In this section, we will exploit the structure
of (28), and develop a low-cost recursive algorithm for sea-
sonal channels. To make the exposition easier, we focus on a
simple scenario with Pse = 1, namely,

x[k] =
P∑
p=1

apx[k − p]+ξx[k − S]

−ξ

P∑
p=1

apx[k − S − p]+w[k], (29)
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while the developed algorithm can be extended to the scenario
Pse > 1 with slight modification.
Based on (29), we introduce an auxiliary random variable,

zk := xk − ξxk−S , (30)

which according to (29), forms an AR process,

zk =
P∑
p=1

apzk−p + wk . (31)

Define zk := [zk , · · · , zk−P+1]T. We have the state-space
representation of (31),

zk = Azk−1 + wk , (32)

whereA andwk are defined as in (13). The latent process can
be reformulated as

xk = aTzk−1 + ξxk−S + wk . (33)

Note that according to the principle of orthogonality [26],
xk−S is independent of zk (c.f. (30)) and correspondingly
(aTzk−1) (c.f. (31)).

A. APPROXIMATION FOR RECURSIVE OPERATION
We redefine the unknown parameter set as 2 :=

{γ0, a, ξ,b, σ 2
w, σ

2
v }. Based on (33), the log-likelihood func-

tion [ln f (yk0, x−1, x
k
0|2)] can be decomposed as

Lk (2) =
k∑

k ′=0

ln f (xk ′ , yk ′ |zk ′−1, xk ′−S ,2)

+ ln f (x−1, · · · , x−S |2). (34)

Similar to non-seasonal channels, for the development of a
recursive algorithm, an approximation toE

[
Lk (2)|2̂

]
can be

made through several steps. Particularly about the joint PDF
f (xk , zk−1, xk−S |yk0, 2̂), it can be decomposed and approxi-
mated as

f (xk , zk−1, xk−S |yk , yk−10 , 2̂)

=
1
c1
f (xk , zk−1, xk−S , yk |yk−10 , 2̂) (35a)

=
1
c1
f (yk |xk , 2̂)f (xk |zk−1, xk−S , 2̂)

×f (zk−1, xk−S |yk−10 , 2̂) (35b)

≈
1
c′1
f (yk |xk , 2̂)f (xk |zk−1, xk−S , 2̂)

×f (zk−1|yk−10 , 2̂)f (xk−S |yk−10 , 2̂) (35c)

=
1
c′1
f (yk |xk , 2̂)f (zk |zk−1, 2̂)f (zk−1|yk−10 , 2̂)

×f (xk−S |yk−10 , 2̂)δ(zk , xk − ξxk−S ) (35d)

=
1
c′1
f (yk |xk , 2̂)f (zk |zk−1, 2̂)

×f (zk−1|yk−10 , 2̂)f (xk−S |yk−10 , 2̂)

×δ(zk , xk − ξxk−S )δ(zk , zk−1), (35e)

where c1 and c′1 are normalization constants, δ(zk , xk −
ξxk−S ) is introduced to ensure the equity in (30), and the
approximation from (35b) to (35c) is made by assuming
that f (zk−1,xk−S |yk−10 ,2̂)≈f (zk−1|yk−10 ,2̂)f (xk−S |yk−10 ,2̂).
We further approximate the above PDF by

f̃ (xk , zk−1, xk−S |yk0, 2̂)

:=
1
c′′1
f (yk |xk , 2̂)

×f (zk |zk−1, 2̂)f̃ (zk−1|yk−10 , 2̂k−1)f̃ (xk−S |yk−S0 , 2̂k−S )

×δ(zk , xk − ξxk−S )δ(zk , zk−1), (36)

where c′′1 is a normalization constant, and the approxi-
mation is made through replacing f (zk−1|yk−10 , 2̂)
and f (xk−S |yk−10 , 2̂) in (35e) by f̃ (zk−1|yk−10 , 2̂k−1) and
f̃ (xk−S |yk−S0 , 2̂k−S ), respectively, with f̃ (zk ′ |yk

′

0 , 2̂k ′ ) and
f̃ (xk ′ |yk

′

0 , 2̂k ′ ) defined as the marginalization of f̃ (xk ′ ,
zk ′−1, xk ′−S |yk

′

0 , 2̂) with respect to zk ′ and xk ′ , ∀k ′.
Similar to the non-seasonal channel, the expectation

E[Lk (2)|2̂] can be approximated by Qse,k (2|2̂) which is
recursively defined as

Qse,k (2|2̂) = λQse,k−1(2|2̂k−1)

+

∫
[ln f (xk , yk |zk−1, xk−S ,2)]

×f̃ (xk , zk−1, xk−S |yk0, 2̂)dxkdzk−1dxk−S .

(37)

B. A LOW-COMPLEXITY RECURSIVE ALGORITHM
The proposed algorithm for seasonal channels operates
recursively in a similar fashion as that for non-seasonal
channels. Denote f̃ (xk−S |yk−S0 , 2̂k−S ) = N (µk−S , σ 2

k−S )
and f̃ (zk−1|yk−10 , 2̂k−1) = N (µz,k−1,Cz,k−1). At time k ,
the algorithm takes f̃ (zk−1|yk−10 , 2̂k−1), f̃ (xk−S |yk−S0 , 2̂k−S ),
the parameter set estimation 2̂k−1, auxiliary quantities
(M̃a,k−2, m̃ξ,k−2,M−1ũ,k−1) (to be defined shortly; computed
at time (k − 1)), the measurement yk and the environ-
mental parameter vector uk as input, and sets 2̂

(0)
k =

2̂k−1. The parameter set estimation and the Bayesian fil-
tering and smoothing can be performed iteratively, until
the number of iterations reaches a pre-determined thresh-
old Nit. The final parameter set estimation at time k is set
as 2̂k = 2̂

(Nit)
k . Based on 2̂k , the PDFs f̃ (zk |yk0, 2̂k ) =

N (µz,k ,Cz,k ) and f̃ (xk |yk0, 2̂k ) = N (µk , σ 2
k ) are computed

via the Bayesian filtering. The PDF f̃ (zk |yk0, 2̂k ), 2̂k and
(M̃a,k−1, m̃ξ,k−1,M−1ũ,k ) that are computed at time k , will
be used for the recursive operation at time (k + 1). The
PDF f̃ (xk |yk0, 2̂k ) will be used for the recursive operation
at time (k + S). Additionally, based on the parameter set
estimation 2̂k and the state estimationµz,k and {µk ′; k

′
≤ k},

multiple-step-ahead prediction of the slowly-varying channel
parameter can be achieved.

We next briefly describe the recursive and iterative
parameter estimation and the multiple-step-ahead prediction.

73992 VOLUME 6, 2018



W. Sun, Z. Wang: Online Modeling and Prediction of the Large-Scale Temporal Variation in UWA Communication Channels

A detailed description of the Bayesian filtering and smooth-
ing is presented in Section IV-C.

1) RECURSIVE AND ITERATIVE PARAMETER ESTIMATION
At time k , given the parameter set estimation in the
ith iteration, 2̂

(i)
k , and following the same procedure as in

Section III-B.1, the parameter set estimation can be updated
through maximizing Qse,k (2|2̂

(i)
k ). Specifically, the estima-

tions of {γ0,bk , σ 2
v } can be updated according to the same

equations as in (22). The estimations of {a, ξ, σ 2
w} can be

updated as

â(i+1)k = âk−1

+ M̃−1a,k−1

{
E [zkzk−1]− E

[
zk−1zTk−1

]
âk−1

}
,

(38a)

ξ̂
(i+1)
k = ξ̂k−1+m̃

−1
ξ,k−1

×

{
E
[
(xk−â

(i+1),T
k zk−1)xk−S

]
−E

[
x2k−S

]
ξ̂k−1

}
,

(38b)

σ̂
2,(i+1)
w,k = σ̂ 2

w,k−1 +
1− λ
1− λk

×

{
E
[(
xk−ξ̂

(i+1)
k xk−S−â

(i+1),T
k zk−1

)2]
−σ̂ 2

w,k−1

}
, (38c)

where M̃a,k−1 and m̃ξ,k−1 are defined as

M̃a,k−1 := λM̃a,k−2 + E[zk−1zTk−1], (39a)

m̃ξ,k−1 := λm̃ξ,k−2 + E[x2k−S ]. (39b)

The expectations are performed with respect to f̃ (xk , zk−1,
xk−S |yk0, 2̂

(i)
k ).

2) MULTIPLE-STEP-AHEAD PREDICTION
Based on the parameter set estimation 2̂k and the state esti-
mation µz,k and {µk ′; k ′ ≤ k} (denoted next also as ẑk and
{x̂k ′; k ′ ≤ k}, respectively), the m-step-ahead prediction of
the latent process and the slowly-varying channel parameter
can be obtained recursively as

ẑk+m = âTk ẑk+m−1, (40a)

x̂k+m = ẑk+m + ξ̂k x̂k+m−S , (40b)

α̂k+m = γ̂0,k + x̂k+m + b̂Tk uk+m, (40c)

for m = 1, 2, · · · , where uk+m can be obtained from meteo-
rological forecast sources, e.g., [27].

C. BAYESIAN FILTERING AND SMOOTHING
To find the expectations in (38) and (39), we compute the
marginalization of f̃ (xk , zk−1, xk−S |yk0, 2̂

(i)
k ) with respect to

xk , zk , zk−1, and xk−S , respectively. Denote the marginal
PDFs as

f̃ (xk |yk0, 2̂
(i)
k ) = N (µ(i)

k , σ
2,(i)
k ),

f̃ (zk |yk0, 2̂
(i)
k ) = N (µ(i)

z,k ,C
(i)
z,k ),

f̆ (zk−1|yk0, 2̂
(i)
k ) = N (µ̆(i)

z,k−1, C̆
(i)
z,k−1),

f̆ (xk−S |yk0, 2̂
(i)
k ) = N (µ̆(i)

k−S , σ̆
2,(i)
k−S ).

Based on f̃ (zk−1|yk−10 , 2̂k−1), f̃ (xk−S |yk−S0 , 2̂k−S ), and
the model in (33), xk can be predicted and with the prediction
MSE,

µ
(i)
k|k−1 = â(i),Tk µz,k−1 + ξ̂

(i)
k µk−S ,

σ
2,(i)
k|k−1 = â(i),Tk Cz,k−1â

(i)
k + ξ̂

(i),2
k σ 2

k−S + σ
2,(i)
w,k .

Based on the measurement yk and the measurement model
in (12b), the mean and the variance of xk in the marginal PDF
f̃ (xk |yk0, 2̂

(i)
k ) can be formulated as

µ
(i)
k = µ

(i)
k|k−1 +

σ
2,(i)
k|k−1

σ
2,(i)
v,k + σ

2,(i)
k|k−1

×(yk − µ
(i)
k|k−1 − γ̂

(i)
0,k − b̂(i),Tk uk ), (41a)

σ
2,(i)
k =

σ
2,(i)
v,k σ

2,(i)
k|k−1

σ
2,(i)
v,k + σ

2,(i)
k|k−1

. (41b)

We further have E[x2k |2̂
(i)
k ] = σ 2,(i)

k + (µ(i)
k )2.

Similar operation can be applied to zk . Define Â(i)
k and

Ĉ(i)
w,k as the matrix corresponding to â(i)k and σ̂ 2,(i)

w,k , respec-
tively. Based on f̃ (zk−1|yk−10 , 2̂k−1), zk can be predicted
as Â(i)

k µz,k−1, with the prediction MSE matrix P(i)
z,k =

Â(i)
k Cz,k−1Â

(i),T
k + Ĉ(i)

w,k . Note that the measurement yk can
be represented as

yk = γ0 + hTzk + ξxk−S + bTuk + vk .

Define the gain vector k(i)z,k = P(i)
z,kh

(
ξ̂
(i),2
k σ 2

k−S + σ̂
(i)
k,v +

hTP(i)
z,kh

)−1. The mean and the covariance matrix of zk in the

marginal PDF f̃ (zk |yk0, 2̂
(i)
k ) can be formulated as

µ
(i)
z,k = Â(i)

k µz,k−1+k
(i)
z,k

×
(
yk−â

(i),T
k µz,k−1−ξ̂

(i)
k µk−S−γ̂

(i)
0,k−b̂

(i),T
k uk

)
,

(42a)

C(i)
z,k = (I− k(i)z,kh

T)P(i)
z,k . (42b)

We further have E[zkzTk |2̂
(i)
k ] = C(i)

z,k + µ
(i)
z,kµ

(i),T
z,k .

Furthermore, the marginal PDF f̆ (zk−1|yk0, 2̂
(i)
k ) can be

obtained via the one-step backward smoothing. Denote the
gain matrix J(i)z,k−1 = Cz,k−1Â

(i),T
k (P(i)

z,k )
−1. The mean and

the covariance matrix of zk−1 in the marginal PDF can be
formulated as

µ̆
(i)
z,k−1 = µz,k−1 + J(i)z,k−1(µ

(i)
z,k − Â(i)

k µz,k−1), (43a)

C̆(i)
z,k−1 = Cz,k−1 + J(i)z,k−1(C

(i)
z,k − P(i)

z,k )J
(i),T
z,k−1. (43b)

We further have E[zk−1zTk−1|2̂
(i)
k ] = C̆(i)

z,k−1+µ̆
(i)
z,k−1µ̆

(i),T
z,k−1.

Based on the joint PDF f̃ (xk , zk−1, xk−S |yk0, 2̂
(i)
k ), we also

have E[zkzTk−1|2̂
(i)
k ] = C(i)

z,kJ
(i),T
z,k−1 + µ

(i)
z,k µ̆

(i),T
z,k−1.
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Given f̃ (xk−S |yk−S0 , 2̂k−S ), f̃ (zk−1|yk−10 , 2̂k−1), and the
measurement representation,

yk = γ0 + aTzk−1 + ξxk−S + bTuk + wk + vk ,

the mean and the variance in the marginalized PDF
f̆ (xk−S |yk0, 2̂

(i)
k ), can be formulated as

µ̆
(i)
k−S = µk−S

+
ξ̂
(i)
k σ

2
k−S

(
yk−â

(i),T
k µz,k−1−ξ̂

(i)
k µk−S−γ̂

(i)
0,k−b̂

(i),T
k uk

)
â(i),Tk Cz,k−1â

(i)
k +σ

2,(i)
w,k +σ

2,(i)
v,k +ξ̂

2,(i)
k σ 2

k−S

,

(44a)

σ̆
2,(i)
k−S =

(â(i),Tk Cz,k−1â
(i)
k + σ

2,(i)
w,k + σ

2,(i)
v,k )σ 2

k−S

â(i),Tk Cz,k−1â
(i)
k + σ

2,(i)
w,k + σ

2,(i)
v,k + ξ̂

2,(i)
k σ 2

k−S

.

(44b)

We further have E[x2k−S |2̂
(i)
k ] = σ̆ 2,(i)

k−S + (µ̆(i)
k−S )

2.
The expectations to be used in (38) and (39) can be

directly extracted from the above results. In particular,
given (30), the expectation E[xkxk−S |2̂

(i)
k ] can be com-

puted based on E[z2k |2̂
(i)
k ], E[x2k |2̂

(i)
k ] and E[x2k−S |2̂

(i)
k ].

Note that xk−S and (aTzk−1) are independent. We have
E[xk−S (a(i),Tk zk−1)|2̂

(i)
k ] = µ̆(i)

k−S (a
(i),T
k µ̆

(i)
z,k−1).

V. MODEL ORDER SELECTION
The non-seasonal latent process in (10) can be regarded as
a degraded seasonal latent process in (28) with a seasonal
order of zero. The orders (P,Pse) and the index set I of Nu
important elements within E[k],∀k for the process {gk}, can
be determined via the minimum description length (MDL)
criterion [28], as described in the following.

We stack the channel measurements {y[k]} into a long
vector y of length K . Stack the coefficients of the seasonal
AR(Pse) process into a vector ξ := [ξ1, · · · , ξPse ]

T (c.f. (28)).
Define a long vector θ :=

(
[1 aT] ⊗ [1 ξT]

)T of length
(P+1)×(Pse+1) andwith⊗ denoting the Kronecker product.
Based on (11) and (28), we have

y = H(γ0,b)θ + n, (45)

where H(γ0,b) is a matrix containing unknown parameters,
and its kth row is formed by γ0, {y[k ′]; k ′ < k} according
to (P,Pse), and by the elements in {E[k ′]; k ′ ≤ k} that are
indexed by I and weighed by b, and n is a noise vector, with
n[k] ∼ N (0, σ 2

n ).
The optimal values of (P,Pse) and the index set I can be

determined according to the MDL criterion [28],

min
(P,Pse,I)

K
2
ln σ̂ 2

n +
1
2
(P+ Pse + Nu) lnK , (46)

where σ̂ 2
n =

1
K y

TP⊥(γ̂0, b̂)y is the ML estima-
tion of the noise variance, with P⊥(γ̂0, b̂) := I −
H(γ̂0, b̂)(HT(γ̂0, b̂)H(γ̂0, b̂))−1HT(γ̂0, b̂), and (P+Pse+Nu)
is the number of model parameters. The ML estimation

γ̂0 and b̂ can be found based on (45) by iterative computa-
tional methods. In real applications, consider that the large-
scale phenomena of water environments change very slowly.
The model order selection can be carried out once in a while
by a central processing station, after it collects the measured
slowly-varying channel parameters from underwater nodes.
Given small values of (P,Pse) and limited types of environ-
mental parameters, the optimization problem in (46) can be
solved via exhaustive search.

VI. SIMULATION RESULTS
The proposed recursive algorithms are evaluated via Monte
Carlo simulations. In each simulation setting, we consider
400Monte Carlo runs, and each run contains a time series of a
slowly-varying channel parameter of 3000 samples. The time
series is generated according to the model specified in (12).
In each Monte Carlo run, the time-invariant component γ0
is randomly selected uniformly from [3, 30]. The latent pro-
cesses in non-seasonal channels are generated as AR(P)
processes according to (10), while the latent processes in sea-
sonal channels are generated as multiplicative seasonal AR
processes (AR(P)×(1)96) according to (29), with the seasonal
coefficient ξ randomly selected uniformly from [−1, 1]. Two
types of environmental parameters are considered. The time
sequences of environmental parameters are generated inde-
pendently as AR(P) processes. The AR coefficients of each
process are obtained based on a minimum-phase polynomial
whose roots are randomly chosen within the unit circle in
the complex plane. The process {gk} is generated as a lin-
ear combination of the time sequences of the two types of
environmental parameters φi[k],

g[k] =
L=2∑
l=1

blφl[k]. (47)

The combinational coefficients in b = [b1, b2]T are randomly
selected according to a uniform distribution over [0.2, 1]×ζ ,
where ζ is a scalar for controlling the energy ratio between
the process {gk} and the latent process {xk}. Specifically,
we define the energy ratio

η :=

∑K
k=1 x

2
k∑K

k=1(x
2
k + g

2
k )
, (48)

to control the contribution of the latent process {xk} and
the contribution of the process {gk} in the generated time
series {αk}, with K = 3000. When η = 1, the sequence {αk}
only consists of γ0 and the latent process. When η = 0, the
sequence {αk} only consists of γ0 and the process {gk}. The
value of ζ can be computed based on a pre-selected value of η.
The energy ratio between the summed process {xk + gk} and
the measurement noise is set to a moderate value of 8 dB.

The normalized mean square error (NMSE) is taken as the
performancemetric, which is computed after the convergence
of the model parameter estimation. Specifically, for vector a,
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FIGURE 4. Non-seasonal channels: Normalized mean square estimation error of the model parameters and the latent process. (a) latent process coeff.: â.
(b) env process coeff.: b̂. (c) time-invariant component: γ̂0. (d) latent process: {x̂k }

the estimation NMSE is computed as

1
N

K∑
k=k0

‖a− âk‖22
‖a‖22

, (49)

where âk is the estimation at time k , k0 is the time index
when the estimation converges, N := (K − k0+ 1), and ‖ · ‖2
denotes the `2 norm. The estimation NMSE of other model
parameters can be similarly computed. The estimationNMSE
of the latent process is computed as

1
N

∑K
k=k0 (xk − x̂k )

2

1
N

∑K
k=k0 x

2
k

. (50)

The NMSE of the m-step-ahead prediction of the slowly-
varying channel parameter is computed as

1
N−m

∑K−m
k=k0 (αk+m − α̂k+m)

2

1
N

∑K
k=k0 (αk − ᾱ)

2
, (51)

with ᾱ being the average of the sequence {αk}. In the pro-
posed algorithm for non-seasonal channels and for seasonal
channels, the forgetting factor is set as λ = 0.99. The
proposed algorithms in all the simulation settings converge
within about k0 = 800 time steps.

A. NON-SEASONAL CHANNELS
The recursive algorithm for non-seasonal channels will be
evaluated in two scenarios. The first scenario assumes perfect
prior knowledge of the latent process order P and has access
to both types of environmental parameters, while the second
scenario does not assume the prior knowledge of the latent
process order and may not have access to all the environmen-
tal parameters. The second scenario is closer to real world
applications.

1) MODELING AND PREDICTION WITH CHANNEL
GENERATION KNOWLEDGE
The proposed recursive algorithm is evaluated using the
sequences of {αk} that are generated according to different
latent process orders and different values of the energy ratio η.
The estimation NMSEs of a, b, γ0 and the latent process are
depicted in Fig. 4. One can see that as the energy ratio η
increases, the estimation NMSE of a and of the latent pro-
cess decreases, while the estimation NMSE of b increases.

FIGURE 5. Non-seasonal channels: Prediction performance with the
channel generation knowledge. Clairvoyant: the Kalman filter
performance with perfect knowledge of model parameters.

In addition, as the latent process orderP increases, the estima-
tion NMSE of a increases drastically, whereas the estimation
NMSEs of b, γ0 and the latent process are less sensitive to the
order change. The vector b and the time-invariant component
γ0 can be accurately estimated with the NMSE less than 10−2

and 10−4, respectively.
Corresponding to the latent process order P = 2 and dif-

ferent values of the energy ratio η, Fig. 5 depicts the m-step-
ahead prediction performance of the proposed algorithm.
As a performance upper bound, the m-step-ahead prediction
NMSE of the Kalman filter with perfect knowledge of the
model parameters is also plotted. One can observe that the
proposed algorithm achieves a performance very close to
the performance upper bound. Additionally, the prediction
accuracy improves as the contribution of the latent process
decreases (i.e., as η decreases). In other words, the chan-
nel can be more accurately modeled and predicted when it
has less contribution from unknown physical mechanisms or
unavailable environmental parameters.

2) MODELING AND PREDICTION WITHOUT
CHANNEL GENERATION KNOWLEDGE
We generate the sequences of {αk} according to the latent
process order P = 2 and different values of the energy ratio η.
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FIGURE 6. Non-seasonal channels: Prediction performance without the channel generation knowledge. P = 2. (a) energy ratio η = 0. (b) energy
ratio η = 0.5. (c) energy ratio η = 1.

FIGURE 7. Seasonal channels: Normalized mean square estimation error of the model parameters and the latent process. (a) â. (b) ξ̂ . (c) {x̂k }.

Without the knowledge of P = 2 and potentially in lack
of one or both types of environment parameters, the m-step-
ahead prediction performance of the proposed algorithm is
shown in Fig. 6, where different orders of the latent process
are examined for channel modeling and prediction. One can
see that the prediction performance improves when more
environmental parameters are incorporated and when the
contribution of the latent process decreases. Furthermore, for
each energy ratio, performance improvement can be observed
when the order of the latent process increases from 1 to the
true value of 2, while the improvement is less obvious for
further increase. Additionally, when the energy ratio equals
to one, namely, the sequence {αk} only consists of the time-
invariant component γ0 and the latent process, incorporation
of the environmental parameters into the channel modeling
does not lead to obvious performance degradation.

B. SEASONAL CHANNELS
Following the seasonality in the KW-AUG14 experiment,
we consider a seasonal cycle of S = 96. We next evaluate the
proposed algorithm for seasonal channels with and without
the channel generation knowledge.

1) MODELING AND PREDICTION WITH CHANNEL
GENERATION KNOWLEDGE
For the sequences of {αk} with different values of P and
different values of η, the estimation NMSEs of a, ξ and the

latent process are depicted in Fig. 7. The estimation NMSEs
of b, γ0 are almost identical to those in Fig. 4 for non-seasonal
channels. Comparing the NMSEs in Figs. 4 and 7, one can
see that the estimation NMSE of a in seasonal channels is
larger than that in non-seasonal channels, primarily because
of the nonlinear relationship between a and ξ . Furthermore,
the estimation NMSE of the latent process in seasonal chan-
nels is less than that in non-seasonal channels, thanks to the
seasonal correlation of the latent process.

Corresponding to P = 2 and different values of the energy
ratio η, Fig. 8 shows the m-step-ahead prediction perfor-
mance of the proposed algorithm. As a performance upper
bound, the m-step-ahead prediction NMSE of the Kalman
filter with perfect knowledge of the model parameters is
also plotted. One can obtain similar observations as those in
non-seasonal channels. However, compared to the simulation
results in Fig. 5, less NMSE can be achieved in the seasonal
channel, benefiting from the seasonal correlation of the latent
process.

2) MODELING AND PREDICTION WITHOUT
CHANNEL GENERATION KNOWLEDGE
We generate the sequences of {αk} in seasonal channels with
P = 2 and different values of the energy ratio η. Without
the knowledge of P = 2 and potentially in the lack of one
or both types of environmental parameters, the m-step-ahead
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FIGURE 8. Seasonal channels: Prediction performance with the channel
generation knowledge. Clairvoyant: the Kalman filter performance with
perfect knowledge of model parameters.

prediction performance of the proposed algorithm is shown
in Fig. 9, where different values ofP are examined. Compared
to Fig. 6, similar observations can be obtained, while as the
energy ratio η increases, higher prediction accuracy can be
achieved in the seasonal channel, benefiting from the seasonal
correlation of the latent process.

VII. EXPERIMENTAL DATA PROCESSING
The proposed models and algorithms are evaluated using
measurements from two shallow-water field experiments:
one is the Surface Processes and Acoustic Communication
Experiment (SPACE08) conducted from Oct. 14 to Nov. 1,
2008 near the coast of Martha’s Vineyard, MA, and the other
was conducted in the KeweenawWaterway, MI in Aug. 2014,
abbreviated as KW-AUG14. In SPACE08, a waveform of 1
minute and within the frequency band [8, 18] kHz was trans-
mitted every 2 hours at a fixed power level. The waveform
consists of 60 ZP OFDM-modulated blocks with parame-
ters specified in Table 1. In KW-AUG14, a waveform of
8.83 seconds and within the frequency band [14, 20] kHz
was transmitted every 15 minutes at a fixed power level.
The waveform consists of 20 ZP OFDM-modulated blocks
with parameters specified in Table 1. The CIR is estimated

TABLE 1. OFDM parameters in SPACE08 and KW-AUG14.

per OFDM block based on measurements at pilot subcarriers
using a sparse channel estimator which exploits the multipath
sparsity in the delay and the Doppler domain [29]. Four
types of slowly-varying channel parameters derived from the
estimated CIRs are examined in this section, including the
average channel SNR, the Nakagami-m fading parameter,
the average RMS delay spread, and the average RMSDoppler
spread (c.f. Section II-A). While many environmental param-
eters have impact on UWA channels, the wind speed and
temperature are chosen in this work to evaluate the pro-
posed algorithms based on their availability and low acqui-
sition cost. In addition, noticing that the water condition in
KW-AUG14 was calm with negligible Doppler effect,
we skip the analysis of the average RMS Doppler spread in
this experiment.

For performance comparison, we introduce a recursive
linear regression (LR) method where the time sequence of
a slowly-varying channel parameter is modeled as the sum-
mation of a time-invariant component γ0 and a process {gk}
described by environmental measurements defined as in (47);
see Remark 3 in Section III-B.

A. SPACE08 WITH NON-SEASONAL
CHANNEL VARIATIONS
In SPACE08, we consider the signals received by a
12-element hydrophone array, which was vertically mounted
on a fixed tripod 200 meters away from the source. The
adjacent elements have a 12 cm spacing and the top element
is 3.25 meters above the sea floor. The water depth is about
15 meters. The source transducer was mounted 4 meters
above the bottom. The average channel SNR scaled by

FIGURE 9. Seasonal channels: Prediction performance without the channel generation knowledge. P = 2. (a) energy ratio η = 0. (b) energy
ratio η = 0.5. (c) energy ratio η = 1.
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FIGURE 10. SPACE08: Autocorrelation of slowly-varying channel parameters and their correlation with environmental measurements. (a) average
channel SNR. (b) Nakagami-m fading parameter. (c) average RMS delay spread. (d) average RMS Doppler spread.

the transmission power, the Nakagami-m fading parameter,
the average RMS delay spread, and the average RMSDoppler
spread within each transmission and over the 12 hydrophones
are shown in Fig. 2(a), along with the mean wind speed and
the mean air temperature measurements measured respec-
tively by a 3-axis sonic anemometer and a VaiPTU located
at 12.5 meters above the mean sea level on the meteo-
rological mast of the Martha’s Vineyard Coastal Observa-
tory (MVCO) [30]. The autocorrelation of the slowly-varying
channel parameters and their correlation with environmental
measurements are depicted in Fig. 10. One can see that the
average channel SNR and the average RMS delay spread are
negatively correlated with the wind speed and their correla-
tion with the temperature are not obvious. The Nakagami-m
fading parameter exhibits high inherent temporal correlation,
and slight positive correlation with the temperature and slight
negative correlation with the wind speed. The average RMS
Doppler spread shows slight positive correlation with the
temperature and negligible correlation with the wind speed.

In the proposed algorithm, we set the forgetting factor
λ = 0.96 for the average channel SNR sequence, λ = 0.92
for the Nakagami-m parameter sequence, and λ = 1 for
the sequences of other slowly-varying channel parameters.
According to the MDL criterion in (46), the optimal order
of the latent process is chosen as P = 1 for the sequences
of the average channel SNR and the average RMS delay
spread, P = 2 for the sequence of the average RMS Doppler
spread, and P = 4 for the sequence of the Nakagami-m
fading parameter. In addition, the sequences of the wind
speed and the temperature are normalized individually to
have a unit power, and a linear combination of the two types
of environmental parameters will be used for modeling the
process {gk} (c.f. (8)). With the incorporation of both types
of environmental measurements into the modeling, the model
parameters estimated by the proposed algorithm are listed
in Table 2. The estimated coefficients in b̂ indicate the amount
of contribution from each type of environmental parameters,
and the value of η reveals the energy ratio between the esti-
mated latent process {x̂k} and the summed process {x̂k + ĝk}.

The prediction performance of the proposed algorithm
and the recursive LR are shown in Fig. 11. Specifically, the
proposed algorithm with the incorporation of both types of
environmental measurements achieves the best performance

for all the four types of slowly-varying channel parameters.
For the average channel SNR and the Nakagami-m fading
parameter, the proposed algorithm outperforms considerably
the recursive LR by introducing the latent process to model
the temporal variation caused by unknown physical mech-
anisms. About the average RMS delay spread, thanks to
its high correlation with the wind speed, the recursive LR
achieves a good performance and outperforms the proposed
algorithm without the incorporation of environmental mea-
surements. About the average RMS Doppler spread, due to
its fast decaying autocorrelation and limited correlation with
environmental measurements, its prediction performance is
not as good as the other three types of channel parameters.

B. KW-AUG14 WITH SEASONAL CHANNEL VARIATIONS
In KW-AUG14, the transmission waveform was received
by an acoustic modem located 312 meters away from the
source. The acoustic modem has 4 hydrophones which are
fixed at the vertexes of a horizontal square with 7 cm side
length. The water depth of the experimental area varies from
3 to 6 meters. The average channel SNR scaled by the
transmission power, the Nakagami-m fading parameter, and
the average RMS delay spread within each transmission and
over 4 hydrophones are depicted in Fig. 2(b), along with the
wind speed and the temperature measurements obtained from
the Weather Underground [27]. The autocorrelation of those
slowly-varying channel parameters and their correlation with
environmental measurements are shown in Fig. 12. It can be
seen that both the average channel SNR and the Nakagami-m
fading parameter have high negative correlation with both
the wind speed and the temperature, while the average RMS
delay spread exhibits positive correlation with both types
of environmental measurements. In addition, the sequences
of all the three types of slowly-varying channel parameters
exhibit a seasonal cycle of 96 (24 hours).

In the proposed algorithm, we set the forgetting factor
λ = 1 for all the three types of slowly-varying channel
parameters. According to the MDL criterion in (46), the opti-
mal orders of the latent process are chosen as P = 1 and
Pse = 1 for the average channel SNR and the Nakagami-m
fading parameter, and P = 2 and Pse = 1 for the average
RMS delay spread. In addition, the sequences of the wind
speed and the temperature are normalized individually to
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FIGURE 11. SPACE08: Prediction performance of the proposed algorithm and the recursive linear regression in non-seasonal
channels. (a) average channel SNR. (b) Nakagami-m fading parameter. (c) average RMS delay spread. (d) average RMS Doppler
spread.

FIGURE 12. KW-AUG14: Autocorrelation of slowly-varying channel parameters and their correlation with environmental measurements. (a) average
channel SNR. (b) Nakagami-m fading parameter. (c) average RMS delay spread.

have a unit power, and a linear combination of the two types
of environmental parameters will be used for modeling the
process {gk} (c.f. (8)). With the incorporation of both types
of environmental measurements into the modeling, the esti-
mated model parameters are listed in Table 2.
The prediction performance of the average channel SNR,

the Nakagami-m fading parameter, and the average RMS
delay spread are shown in Fig. 13. For comparison, the algo-
rithm proposed for non-seasonal channels is also evaluated,

where the latent process is modeled as an AR(P) process
without considering the seasonality. It can be observed that
the proposed algorithm for seasonal channels achieves the
best performance when both types of environmental mea-
surements are incorporated. Additionally, as the wind speed
and the temperature have similar cross-correlation with the
sequences of the three slowly-varying channel parameters
(c.f. Fig. 12), similar performances are obtained when either
type of the environmental measurements is incorporated into
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TABLE 2. The estimated model parameters.

FIGURE 13. KW-AUG14: Prediction performance of several algorithms in seasonal channels. (a) average channel SNR. (b) Nakagami-m fading
parameter. (c) average RMS delay spread.

the modeling. Furthermore, compared to the model and the
algorithm proposed for non-seasonal channels, the proposed
model and algorithm for seasonal channels achieve superior
performance by explicitly modeling the channel seasonality
and correspondingly exploiting the seasonality for prediction.

VIII. CONCLUSIONS
This work studied the online modeling and prediction of
slowly-varying locally-averaged channel parameters over a
long term, by exploiting their inherent temporal correla-
tion and correlation with environmental conditions. From a
data-driven perspective, the temporal evolution of a slowly-
varying channel parameter of interest was modeled as the
summation of a time-invariant component, a process that
can be explicitly represented by available and relevant envi-
ronmental parameters, and a Markov latent process that
describes the contribution from unknown or unmeasurable
physical mechanisms. A recursive algorithm was devel-
oped to estimate the unknown model parameters based on
sequentially collected channel measurements and environ-
mental parameters during real-time system operations. The
updated model allows multiple-step-ahead prediction of the
slowly-varying channel parameter, which could then guide
higher-level proactive adaptation of communication strate-
gies to the channel dynamics. The proposed model and the
recursive algorithm were extended to seasonal channels by
introducing a multiplicative seasonal AR process to model
the channel seasonal correlation. Simulations and data sets
from two shallow-water experiments were used to validate
the effectiveness of the proposed models and algorithms.
The experimental data processing revealed that the average

channel SNR, the Nakagami-m fading parameter, and the
average RMS delay spread can be reasonably well predicted.
In addition, superior modeling and prediction performance
can be achieved by exploiting the seasonal correlation in
seasonal channels.

APPENDIX
DERIVATION FROM EQ. (21) to Eqs. (22) and (23)
According to (21), we have the batched representation of
Qk (2|2̂),

Qk (2|2̂) = E[ln f (xk , yk |xk−1,2)]

+

k−1∑
k ′=0

λk−k
′

E[ln f (xk ′ , yk ′ |xk ′−1,2)]+ ln f (x−1|2),

(52)

where the expectation of [ln f (xk , yk |xk−1,2)] is performed
with respect to f̃ (xk , xk−1|yk , yk−10 , 2̂), and the expectation
of [ln f (xk ′ , yk ′ |xk ′−1,2)], k ′ < k is performed with respect
to f̃ (xk ′ , xk ′−1|yk ′ , y

k ′−1
0 , 2̂k ′ ). Note that f (xk , yk |xk−1,2) =

f (yk |xk ,2)f (xk |xk−1,2). We have,

Qk (2|2̂) = E[ln f (xk |xk−1,2)]+ E[ln f (yk |xk ,2)]

+

k−1∑
k ′=0

λk−k
′

{E[ln f (xk ′ |xk ′−1,2)]

+E[ln f (yk ′ |xk ′ ,2)]} + ln f (x−1|2). (53)

Substitute f (yk |xk ,2) = N (γ0 + xk + bTuk , σ 2
v ) and

f (xk |xk−1) = N (aTxk−1, σ 2
w) into (53), and set the partial

derivative of Qk (2|2̂) with respect to each unknown param-
eter in the set 2 = {γ0, a,b, σ 2

w, σ
2
v } to zero. One can
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obtain the batched estimation of the unknown parameters.
The recursive estimation can then be derived based on the
batched estimation. Next, we take a as an example to illus-
trate the derivation of the recursive estimation in (22a). The
recursive estimation of all the other unknown parameters can
be similarly derived.

Substitute f (xk ′ |xk ′−1) = N (aTxk ′−1, σ 2
w) into (53).

We have

−Qk (2|2̂) = E
[

1
2σ 2

w
(xk − aTxk−1)2

]
+

k−1∑
k ′=0

λk−k
′

E
[

1
2σ 2

w
(xk ′ − aTxk ′−1)2

]
+ others.

(54)

Set the partial derivative ofQk (2|2̂) with respect to a to zero,

−
∂Qk (2|2̂)

∂a
= E

[
1

2σ 2
w
(xk − aTxk−1)xTk−1

]
+

k−1∑
k ′=0

λk−k
′

E
[

1
2σ 2

w
(xk ′ − aTxk ′−1)xTk ′−1

]
= 0. (55)

We obtained the batched estimation of a at time k ,

âk =M−1k−1πk , (56)

where the matrix Mk−1 and the vector πk are defined,
respectively, as

Mk−1 := E[xk−1xTk−1]+
k−1∑
k ′=0

λk−k
′

E[xk ′−1xTk ′−1],

πk := E[xkxk−1]+
k−1∑
k ′=0

λk−k
′

E[xk ′xk ′−1].

which can be recursively represented as,

Mk−1 = λMk−2 + E[xk−1xTk−1],
πk = λπk−1 + E[xkxk−1].

According to the Woodbury matrix identity [26], we have

M−1k−1 = λ
−1M−1k−2 − λ

−1M−1k−1E[xk−1x
T
k−1]M

−1
k−2. (57)

The recursive representation of (56) can then be derived as,

âk = M−1k−1E[xkxk−1]

+

(
λ−1M−1k−2−λ

−1M−1k−1E[xk−1x
T
k−1]M

−1
k−2

)
λπk−1

= M−1k−1E[xkxk−1]

+

(
M−1k−2πk−1 −M−1k−1E[xk−1x

T
k−1]M

−1
k−2πk−1

)
= M−1k−1E[xkxk−1]+

(
âk−1−M−1k−1E[xk−1x

T
k−1]âk−1

)
= âk−1 +M−1k−1

(
E[xkxk−1]− E[xk−1xTk−1]âk−1

)
.

(58)

For the proposed recursive and iterative algorithm in
Section III-B, corresponding to the parameter set estimation
2̂

(i)
k in the ith iteration, the result in (58) can be generalized

to (22a) which is obtained by maximizing Qk (2|2̂
(i)
k ).
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