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Abstract—This work studies online learning-based trajectory
planning for multiple autonomous underwater vehicles (AUVs)
to estimate a water parameter field of interest in the under-ice
environment. A centralized system is considered, where several
fixed access points (APs) on the ice layer are introduced as
gateways for communications between the AUVs and a remote
data fusion center (FC). We model the water parameter field
of interest as a Gaussian process (GP) with unknown hyper-
parameters. The AUV trajectories for sampling are determined
on an epoch-by-epoch basis. At the end of each epoch, the APs
relay the observed field samples from all the AUVs to the FC
which computes the posterior distribution of the field based on
the Gaussian process regression (GPR) and estimates the field
hyper-parameters. The optimal trajectories of all the AUVs in
the next epoch are determined to minimize a long-term cost that
is defined based on the field uncertainty reduction and the AUV
mobility cost, subject to the kinematics constraint, the commu-
nication range constraint and the sensing area constraint. We
formulate the adaptive trajectory planning problem as a Markov
decision process (MDP). A reinforcement learning (RL)-based
online learning method is designed to determine the optimal
AUV trajectories in a constrained continuous space. Simulation
results show that the proposed learning-based trajectory planning
algorithm has performance similar to a benchmark method that
assumes perfect knowledge of the field hyper-parameters.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) are emerging as
attractive platforms for remote underwater exploration and
monitoring. Given the high cost of AUVs and their deploy-
ments, the AUV trajectories need to be carefully designed to
collect the “best” data over scalar or vector fields that vary on
a range of spatial and temporal scales [1]-[4]. Compared to the
open water scenario, research on the under-ice AUV trajectory
planning has been very limited, with existing work mainly
focused on a single AUV [5]-[8], and the AUV trajectory is
typically pre-programmed with decision autonomy to handle
malfunctions and external events [6], [9].

This work studies the adaptive trajectory planning of mul-
tiple AUVs in the under-ice environment for estimateion of
a water parameter field of interest. Particularly, we consider
a centralized system as illustrated in Fig. 1, where the fixed
access points (APs) on the ice layer serve as gateways for
communications between the AUVs and a remote data fusion
center (FC). The AUV trajectories are determined by the FC
on a time epoch-by-epoch basis based on the samples collected
in the past epochs.
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Fig. 1. An illustration of a system layout with 3 AUVs and 4 APs.

In this work, the water parameter field of interest is modeled
as a Gaussian process (GP) with unknown hyper-parameters
[10]. At the end of each epoch, the APs relay the field
samples collected by the AUVs to the FC where the field
hyper-parameters are estimated via the maximum likelihood
method [10], and the posterior field distribution and the field
uncertainty are computed via the Gaussian process regression
(GPR) [11]. The AUV trajectories in the next epoch will then
be determined based on the current system state including the
current positions of all the AUVs and the field knowledge, with
an aim of minimizing a long-term system cost that is defined
based on the field uncertainty reduction and the AUV mobility
cost. The AUV trajectories are expected to satisfy several
practical constraints, including the kinematics constraint, the
constraint on the communication range, and the constraint of
being within the area of interest.

We formulate the adaptive trajectory planning problem as
a Markov decision process (MDP) [12] with a constrained
continuous action space. A reinforcement learning (RL)-based
method is designed for online learning of the optimal ac-
tion, i.e., the trajectories of all the AUVs, which satisfies
the constraints. The knowledge for determining the optimal
trajectories in each epoch is first obtained by transferring
the historical knowledge used to determine the trajectories
in the previous epoch and then is further adjusted based
on the newly collected system cost. The proposed RL-based
trajectory planning algorithm is validated using simulated 2-



dimensional (2D) fields. The simulation results show that
the proposed algorithm achieves performance similar to a
benchmark method that assumes perfect knowledge of the field
hyper-parameters.

The main contributions of this work are in the following.

o The developed algorithm is non-myopic and for multiple
AUVs, while most existing works on non-myopic plan-
ning consider only a single vehicle [13]-[15].

o This work performs the online learning of the field hyper-
parameters, while many existing works assume known a
priori of the field knowledge [2], [16], [17].

o The developed algorithm considers a continuous action
space, while many existing works consider either a dis-
crete action space or a finite number of pre-determined
trajectory patterns [14], [15], [18].

The rest of the paper is organized as follows. The system
model is presented in Section II. The RL-based adaptive
trajectory planning algorithm is developed in Section III.
Evaluation of the proposed algorithm is included in Section
IV. Conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system in details and
build a mathematical model for the field estimation. The
trajectory planning for multiple AUVSs is then formulated as
an optimization problem under constraints.

A. System Description

The system under consideration consists of multiple AUVs,
several fixed APs and a remote FC. Denote the set of the
AUVs as M = {1,2,...,|M|}. The AUVs are equipped with
sensors and acoustic communication devices. They take field
measurements at different sampling locations as navigate along
their trajectories. A total number of Nap APs are placed
at fixed locations which collect data from all the AUVs via
acoustic links. The APs send the observation data and location
information of all the AUVs to a data FC via high data rate
radio links where the FC performs further data processing.
An illustration of the system layout with 3 AUVs and 4 APs
is shown in Fig. 1. The underwater area of interest can be
described by a continuous location set Xarea C RP withD = 2
or D = 3. The field can be described as f(x), where x € Xarea
represents a location in the area of interest.

The system operates on an epoch-by-epoch basis. The
proposed trajectory planning mechanism for AUVs in each
epoch is described as in Fig. 2. The planned trajectory of each
AUV in the /(th epoch consists of K waypoints in K time
slots and is determined at the end of the (¢ — 1)th epoch, i.e.,
Vi(l) == [yia(€);yi2(€);- - ;yir (€)]. Each AUV takes field
measurements around the waypoints, and after reach the last
waypoint in the current epoch, it transmits the observed data
and the corresponding sampling locations to the nearest AP via
acoustic links in water. The APs then relay all the information
to the FC via radio links above water. The FC estimates the
field based on all the observation data, estimates the field
knowledge, determines the trajectories {y,; (¢ + 1),7 € M} for
all the AUVs in the next epoch, and transmits via APs the

FC receives samples via APs,

reconstructs field, and plans trajectories
|
S E— K time slots % |

/ epoch ¢ |

AUVs move and sense FC distributes trajectory

information to AUVs via APs

Fig. 2. Epoch structure for water parameter field estimation using AUVs.

planned trajectories to all the AUVs. At the end of the (th
epoch, all the AUVs receive their planned trajectories in the
next epoch.

B. Constraints on Sampling Trajectories

The planned trajectories must satisfy practical constraints. In
this work, we consider three constraints related to kinematics,
the communication range, and the sensing area.

1) Kinematics Constraint: Due to the limited travel speed
of an AUV, in each epoch, the distance between any two
consecutive waypoints for each AUV is constrained as

VI (O0-yige (O <k Vie M (1)
with 1 < j < K—1, and
Viyi (@) —ya (0 + D] < sup,Vie M ()

where r,,, is the maximal distance that an AUV can travel
within one time slot.

2) Communication Range Constraint: Since the field sam-
ples of each AUV must be sent to an AP in the last time slot in
each epoch, we must ensure that in the K'th time slot of each
epoch, each AUV must be within the communication range of
at least one of the Nap APs, ie.,

VIyirc(€) = YEU2 < feomm: 3 € Tap, Vie M ()

where Zap := {1,2,---, Nap} is the AP index set, yg% is
the location of the jth AP, and K¢omm 1S the communication
range that ensures error-free transmission between an AP and
an AUV.

3) Sensing Area Constraint: We assume that all the AUVs
should stay within the area of interest, i.e.,

yij(é)EXaremViEMaiZOaOSjSKaZZO- (4)

C. Modeling Real Trajectories of AUVs

Denote Y({) = {y1(0),y2(0), -,y m ()} as the
planned trajectories consisting of waypoints for all the AUVs
in the /th epoch. Due to the complex underwater environment,
the AUVs may not arrive at each planned waypoint exactly.
We model the true sampling location of the ith AUV in the
kth time slot within the ¢th epoch as

Xik(l) = yir(0) + eir(£), 5

where e;,(¢) € RP is a noise vector which describes the
location inaccuracy, and is assumed following a uniform
distribution U (—¢,€) [19] with € < Koomm and € < Kyp
being the navigation error.



The exact sampling locations of the ith AUV in the /th
epoch are described by %;(¢) = [x;1(¢); Xi2(€); -+ ; Xix (£)].
Denote Xsamp(€) = {%1(£),%2((), ..., X (¢)} as the sam-
pling locations of all the AUVs in the (th epoch, Z({) as
all the sampling location from epoch 0 to epoch ¢, and
f)(f) = [XlK(Z — 1);X2K(f — 1); s ;X|M|K(€ — 1)] as the
locations of all the AUVs at the beginning of the ¢th epoch.

D. Gaussian Process Regression for Field Estimation

In this work, we model the field of interest as a GP,
and employ the GPR for field estimation. We first obtain a
discrete set of target points X by discretizing the area Xyea-
We intend to minimize the field uncertainty over the target
points rather than the whole area of interest to reduce the
computational complexity. The set X can be selected based
on application requirements or to balance the field estimation
accuracy and the computational complexity. We assume that
the total number of elements in X is Ny. The field of interest
is then modeled as a GP with zero mean,

f(x) ~GP(0,K(x,x)),Vx,X" € Xarea (6)

where KC(x,x") is the value of covariance function at locations
x and x’ which describes the spatial correlation between
locations x and x'.

There are various types of covariance functions that can
be employed [10]. In this work, we consider the squared
exponential covariance function,

K(x,x") = 0]% exp {—(x — x)TA 2 (x — <)}y

where A = diag([dy,--- ,dp]) with D = 2 or 3 being the
dimension of the water area and d; being the distance scale
that determines the spatial correlation of two locations, and
o7 is the signal variance.

“In the (th epoch, a set of field observations can be obtained,

P(0) = f (Xsamp(£)) +n(0), ®)

where f(Xsamp(¢)) are the field values at the locations in
Xsamp (), and n(¢) is the observation noise with each of its
elements assumed following a Gaussian distribution N'(0, 02).

Denote ¥ (¢) = {t(¢')}4,_, as available field observations.
Denote C(A,B) as a matrix whose the (7,7)th element is
calculated as K(x;,x;), with x; € A and x; € B. The
posterior distribution of the field in the ¢th epoch over the
target point set X can be obtained as

f(X) ~ N(:u’lv El)v ©)]

with
pe = C(X, Z(0)CZ ¥ (0), (10)
¥ = C(X,X)-C(X,2(£))C5'C(Z(¢), X), (11)

and Cz = C(Z((), Z(£)) + 021, according to [10].

Based on the available observation W (¢) at the end of the
(th epoch, the field hyper-parameters Opyper := {0']%, A} can
be estimate by maximizing the log marginal likelihood [10],

Orsper = guox { = #(OTC W (0) - 10g(Czl | (12)

hyper

The hyper-parameters fully characterize the field spatial cor-
relation, which are unknown a priori and estimated on the fly.
The optimization problem (12) can be solved using a quasi-
Newton method, i.e., the L-BFGS-B method [20].

E. Problem Formulation for Optimal Trajectory Planning

The field uncertainty can be obtained based on the field
posterior distribution which is updated through the GPR.
Specifically, we denote u, := diag(3y_1), to describe the un-
certainty of all the target points in X based on the observations
up to the (¢ — 1)th epoch.

Denote s({) = {p(f),us} as the system state at the
beginning of the /th epoch. Denote a(¢) as the action in the
(th epoch which consists of the planned waypoints for all the
AUVs in the /th epoch.

The desired trajectories for all the AUVs in the /th epoch
can be determined to minimize the expected total discounted
cost,

i, E {;7 C(s(0),a(0)) ¢, (13)
where v € (0,1] is a discount factor, and C(s(¢),a(())
is an application-dependent cost function. In this work, the
cost function considers the field uncertainty reduction, the
AUV mobility cost based on the planned trajectories, and the
constraints from (1) to (4). Next we present the formulation
of the cost function used in this work.

1) Cost Function: Denote the current state s = {p,u}
and the planned trajectories as a. Denote the next state
s’ = {p’,u’}. The costs, reward, and penalties induced by
action a under the current state s and the next state s’ are as
follows.

e Uncertainty reduction reward: The sampling reward to
reduce the field uncertainty by performing the action a
at the system state s is defined as

R(s,a) = <= ([full, = [[l],).
x
where ar is a weighting factor, and ||[u’||; is the sum-
mation of all the elements in u’ which describes the total
estimation error of the field. We intend to minimize the
field uncertainty over the target set.
o Trajectory cost: The mobility cost is defined as

(14)

Cr(a) :== arL(a) + asA(a), (15)

where L(a) is the total distance of the planned trajectories
based on a, A(a) is the total angle that the AUVs travel
along the planned trajectories based on a, and oy and
aa are weighting factors. Less energy will be consumed
if an AUV travels less distance and makes less turns.

o Trajectory constraint penalty: We define a penalty term
for the case if the planned trajectories do not satisfy

constraints (3) to (4). The penalty is defined as
Cp(a) := ap1l1 + apals, (16)

where «p,1 and apo are positive values, and I; and
I are indication functions for constraints (3) and (4),
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respectively, which equal 1 if the constraints are not
satisfied and O otherwise.

Hence, the cost function in (13) used in this work can be
described as

C(s,a) = —R(s,a) + Cr(a) + Cp(a). (17)
III. REINFORCEMENT LEARNING-BASED ADAPTIVE
TRAJECTORY PLANNING

The proposed optimization problem in (13) can be taken
as an MDP when the field hyper-parameters are known a
priori. In this section, we employ an actor-critic-based algo-
rithm, namely, the deep deterministic policy gradient (DDPG)
algorithm [21], to solve the proposed MDP.

A. DDPG Basics and Design

In an actor-critic method, the actor learns how to generate
the optimal action while the critic learns how to provide action
evaluation which helps the actor to improve its action genera-
tion strategy. In the DDPG algorithm, an actor is represented
by a neural network which takes the system state s as the
input and takes the optimal action a under the system state s
as the output. A critic is represented by another neural network
which takes the system state s and the action a as the inputs
and takes the Q-value function Q(s,a) as the output, which
indicates the expected cost after taking action a under system
state s. In the learning process, the actor network is leveraged
to provide the action a to be executed under the state s. After
performing the action a, the corresponding cost C(s,a) can
be obtained. Based on the obtained cost, the weights of the
critic network are adjusted to better approximate the Q-value
function )(s,a). Then, the weights of the actor are adjusted
using the policy gradient method such that the action obtained
by the actor could result in lower expected cost. For more
details about the DDPG method, please refer to [21].

The structural design of the actor and the critic in this work
is shown in Fig. 3. For the actor, as illustrated in Fig. 3(a), the
field uncertainty and the current locations of all the AUVs go
through two fully connected layers with rectified linear units
(ReLUs) as the activation functions. The output layer takes the
summation of the outputs of the second fully connected layer
and uses a bounded tanh activation function to ensure that
the action satisfies the kinematics constraints (1) and (2). For
the critic, as shown in Fig. 3(b), the field uncertainty, and the
current locations and actions of all the AUVs go through two
fully connected layers with ReLUs as the activation functions.

layer

layer
Current locations 11

(b) Critic network

Tlustration of the forward structures of the actor network and the critic network.

The output layer of the critic is the summation of the outputs
of the second fully connected layer. In each training iteration,
the parameters of the actor and the critic networks are updated
based on one iteration of the backpropagation algorithm [22].

For the constraints (3) and (4), we modify the DDPG
algorithm by using two experience replay buffers. Experience
replay is a technique used to train the actor and the critic
with system transition samples drawn from a buffer which
consists of historical transitions from the previous experience.
The two buffers consist of transitions whose actions satisfy the
constraints (3) and (4) and otherwise, respectively. To learn
the optimal actions which satisfy the constraints, we should
ensure that the actor and the critic learn sufficient samples
from both buffers in the training process. In this way, the
actor will generate actions which have less cost and satisfy
the constraints (3) and (4) while the critic could evaluate the
actions and states without a bias.

If the field hyper-parameters are known a priori, the above
modified DDPG algorithm can be used to learn the optimal
actions offline, and the corresponding performance serves as
an upper bound for the proposed online learning strategy.

B. Online Learning for Trajectories Planning with Unknown
Field Hyper-parameters

In practice, the perfect knowledge of the field hyper-
parameters is often unavailable. It is generally the case that
those hyper-parameters should be estimated online during the
sampling process. We propose an online learning algorithm
which incorporates the modified DDPG algorithm to determine
the optimal trajectories of all the AUVs in each epoch, where
the field hyper-parameters are online estimated. Specifically,
at the end of each epoch, the unknown field hyper-parameters
in the covariance function (7) can be estimated by solving
the optimization problem in (12) based on all the current and
historical observations. After obtaining the estimated hyper-
parameters, the learned weights of the actor and critic networks
in the previous epoch are transferred directly to the current
epoch. The modified DDPG algorithm is then applied based
on the available knowledge of the actor and the critic, as well
as the estimated field hyper-parameters, to learn the optimal
trajectories for the future epoch. In this way, the optimal
trajectories for each epoch can be learned online based on
the online estimated field hyper-parameters.

IV. ALGORITHM EVALUATION

We consider an under-ice field of interest in a 2D 15 km
x 15 km square area, and the target set X consists of 16
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x 16 grid points where the latitude and longitude distance
between any two consecutive locations is 1 km. The 2D water
parameter field is generated based on the circulant embedding
method [23] with the field hyper-parameters as O’]% =1 and
A = diag([0.3, 0.3]).

The duration of one time slot is 1,000 seconds (16.7
minutes), and one epoch consists of 3 time slots, leading to
an epoch duration of 50 minutes. We consider a total of 9
epochs in the sampling process, which yields a deployment
time duration of 7.5 hours in total. The simulated system
consists of 4 AUVs and 4 APs. The 4 APs are located
at (4 km,4 km), (4 km,11 km), (11 km,4 km), and
(11 km, 11 km), respectively. Those four locations are also
the initial deployment sites of the 4 AUVs. The maximal
navigation error is € = 5 m. The maximal speed of each AUV
is 1 m/s, and the maximal distance of an AUV can travel within
one time slot is therefore ., = 1 km. The communication
range for underwater acoustic links between an AUV and an
AP 1S Keomm = 3.5 km. The discounted factor is v = 0.99.
The weights in the total cost function (17) are ag —10,
arp =1x1073, a4 =5 x 1072, ap1 = 2, and oy = 4.

We evaluate the field estimation performance of three
schemes.

e Scheme 1: The clairvoyant method which determines the

sampling trajectories through the offline modified DDPG
algorithm based on the perfect knowledge of the field
hyper-parameters;

e Scheme 2: The proposed online RL algorithm which
determines the sampling trajectories epoch-by-epoch
through the modified DDPG algorithm where the field
hyper-parameters are online estimated in each epoch
based on the collected samples;

o Scheme 3: All the AUVs sample the water parameter field
via random walk. Here, we present the simulation result
that is selected among 10,000 Monte Carlo runs which
yields the minimal total cost.

We take the normalized mean square error (NMSE) as a
performance metric for the field estimation, which describes
the normalized difference between the true field and the
estimated field,

S () = F(x)[[2dx
S, MNf&)|Pdx 7

where [ is the true field and f is the estimated field based on
the mean of the GPR.

The three schemes are first examined from the perspectives
of the total traveled distance, the total traveled angle and the
NMSE, as shown in Table I. Scheme 1 achieves the least

NMSE :=

(18)



TABLE I
PERFORMANCE COMPARISON OF THREE SCHEMES.
Scheme 1 | Scheme 2 | Scheme 3
Total traveled distance [km] 74.4 77.9 78.1
Total traveled angle [rad] 76.6 117.4 131.5
Normalized mean square error 0.11 0.15 1.07

total traveled distance and the least total traveled angle, while
Scheme 2 has a similar total traveled distance but greater total
traveled angle. The performance gap is due to the fact that
Scheme 2 estimates the field hyper-parameters and determines
the actions online. The total traveled distance and the total
traveled angle obtained by Scheme 3 are similar to those of
Scheme 2. However, the NMSEs obtained by Schemes 1 and
2 are significantly smaller than that of Scheme 3, where a
marginal difference of the NMSEs obtained by Schemes 1
and 2 can be observed.

The simulated true field and the estimated fields by the
three schemes are presented in Fig. 4. One can see that
Schemes 1 and 2 can capture important features of the true
field, and the estimated field by Scheme 3 is significantly
different from the true field. The planned trajectories obtained
by the three schemes are shown in Fig. 5. To explore the area
with high uncertainty, the trajectories determined by Scheme
1 spread out more than those of Schemes 2 and 3, which
results in the largest sensed area. The sensed area based on the
trajectories obtained by Scheme 2 at the early epochs is small
due to the inaccurate field hyper-parameter estimation based
on limited field samples at the early stage. With more field
samples collected, the trajectory pattern obtained by Scheme
2 is similar to the pattern obtained by Scheme 1 which tends
to explore the area with high uncertainty.

V. CONCLUSIONS

This work investigated the adaptive trajectory planning of
multiple AUVs for the water parameter field estimation in
the under-ice environment. An online learning-based trajectory
planning algorithm was proposed to adaptively determine
the trajectories of AUVs. The field of interest was modeled
as a GP with unknown hyper-parameters. The field hyper-
parameters and the field posterior distribution were estimated
online based on the collected samples. The adaptive trajectory
planning problem was formulated as an MDP with a goal
of minimizing a long-term cost that is defined based on
the field uncertainty reduction and the AUV mobility cost,
subject to the kinematics constraint, the communication range
constraint and the sensing area constraint. A RL-based method
was designed to solve the above MDP with a constrained
continuous action space. The simulation results showed that
the proposed RL-based adaptive trajectory planning algorithm
achieved the performance close to a benchmark method that
assumes perfect knowledge of the field hyper-parameters.
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