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Abstract—This work studies online learning-based trajectory
planning for multiple autonomous underwater vehicles (AUVs)
to estimate a water parameter field of interest in the under-ice
environment. A centralized system is considered, where several
fixed access points (APs) on the ice layer are introduced as
gateways for communications between the AUVs and a remote
data fusion center (FC). We model the water parameter field
of interest as a Gaussian process (GP) with unknown hyper-
parameters. The AUV trajectories for sampling are determined
on an epoch-by-epoch basis. At the end of each epoch, the APs
relay the observed field samples from all the AUVs to the FC
which computes the posterior distribution of the field based on
the Gaussian process regression (GPR) and estimates the field
hyper-parameters. The optimal trajectories of all the AUVs in
the next epoch are determined to minimize a long-term cost that
is defined based on the field uncertainty reduction and the AUV
mobility cost, subject to the kinematics constraint, the commu-
nication range constraint and the sensing area constraint. We
formulate the adaptive trajectory planning problem as a Markov
decision process (MDP). A reinforcement learning (RL)-based
online learning method is designed to determine the optimal
AUV trajectories in a constrained continuous space. Simulation
results show that the proposed learning-based trajectory planning
algorithm has performance similar to a benchmark method that
assumes perfect knowledge of the field hyper-parameters.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) are emerging as

attractive platforms for remote underwater exploration and

monitoring. Given the high cost of AUVs and their deploy-

ments, the AUV trajectories need to be carefully designed to

collect the “best” data over scalar or vector fields that vary on

a range of spatial and temporal scales [1]–[4]. Compared to the

open water scenario, research on the under-ice AUV trajectory

planning has been very limited, with existing work mainly

focused on a single AUV [5]–[8], and the AUV trajectory is

typically pre-programmed with decision autonomy to handle

malfunctions and external events [6], [9].

This work studies the adaptive trajectory planning of mul-

tiple AUVs in the under-ice environment for estimateion of

a water parameter field of interest. Particularly, we consider

a centralized system as illustrated in Fig. 1, where the fixed

access points (APs) on the ice layer serve as gateways for

communications between the AUVs and a remote data fusion

center (FC). The AUV trajectories are determined by the FC

on a time epoch-by-epoch basis based on the samples collected

in the past epochs.
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Fig. 1. An illustration of a system layout with 3 AUVs and 4 APs.

In this work, the water parameter field of interest is modeled

as a Gaussian process (GP) with unknown hyper-parameters

[10]. At the end of each epoch, the APs relay the field

samples collected by the AUVs to the FC where the field

hyper-parameters are estimated via the maximum likelihood

method [10], and the posterior field distribution and the field

uncertainty are computed via the Gaussian process regression

(GPR) [11]. The AUV trajectories in the next epoch will then

be determined based on the current system state including the

current positions of all the AUVs and the field knowledge, with

an aim of minimizing a long-term system cost that is defined

based on the field uncertainty reduction and the AUV mobility

cost. The AUV trajectories are expected to satisfy several

practical constraints, including the kinematics constraint, the

constraint on the communication range, and the constraint of

being within the area of interest.

We formulate the adaptive trajectory planning problem as

a Markov decision process (MDP) [12] with a constrained

continuous action space. A reinforcement learning (RL)-based

method is designed for online learning of the optimal ac-

tion, i.e., the trajectories of all the AUVs, which satisfies

the constraints. The knowledge for determining the optimal

trajectories in each epoch is first obtained by transferring

the historical knowledge used to determine the trajectories

in the previous epoch and then is further adjusted based

on the newly collected system cost. The proposed RL-based

trajectory planning algorithm is validated using simulated 2-
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dimensional (2D) fields. The simulation results show that

the proposed algorithm achieves performance similar to a

benchmark method that assumes perfect knowledge of the field

hyper-parameters.

The main contributions of this work are in the following.

• The developed algorithm is non-myopic and for multiple

AUVs, while most existing works on non-myopic plan-

ning consider only a single vehicle [13]–[15].

• This work performs the online learning of the field hyper-

parameters, while many existing works assume known a

priori of the field knowledge [2], [16], [17].

• The developed algorithm considers a continuous action

space, while many existing works consider either a dis-

crete action space or a finite number of pre-determined

trajectory patterns [14], [15], [18].

The rest of the paper is organized as follows. The system

model is presented in Section II. The RL-based adaptive

trajectory planning algorithm is developed in Section III.

Evaluation of the proposed algorithm is included in Section

IV. Conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system in details and

build a mathematical model for the field estimation. The

trajectory planning for multiple AUVs is then formulated as

an optimization problem under constraints.

A. System Description

The system under consideration consists of multiple AUVs,

several fixed APs and a remote FC. Denote the set of the

AUVs as M = {1, 2, ..., |M|}. The AUVs are equipped with

sensors and acoustic communication devices. They take field

measurements at different sampling locations as navigate along

their trajectories. A total number of NAP APs are placed

at fixed locations which collect data from all the AUVs via

acoustic links. The APs send the observation data and location

information of all the AUVs to a data FC via high data rate

radio links where the FC performs further data processing.

An illustration of the system layout with 3 AUVs and 4 APs

is shown in Fig. 1. The underwater area of interest can be

described by a continuous location set Xarea ⊂ R
D with D = 2

or D = 3. The field can be described as f(x), where x ∈ Xarea

represents a location in the area of interest.

The system operates on an epoch-by-epoch basis. The

proposed trajectory planning mechanism for AUVs in each

epoch is described as in Fig. 2. The planned trajectory of each

AUV in the ℓth epoch consists of K waypoints in K time

slots and is determined at the end of the (ℓ− 1)th epoch, i.e.,

ỹi(ℓ) := [yi1(ℓ);yi2(ℓ); · · · ;yiK(ℓ)]. Each AUV takes field

measurements around the waypoints, and after reach the last

waypoint in the current epoch, it transmits the observed data

and the corresponding sampling locations to the nearest AP via

acoustic links in water. The APs then relay all the information

to the FC via radio links above water. The FC estimates the

field based on all the observation data, estimates the field

knowledge, determines the trajectories {ỹi(ℓ + 1), i ∈ M} for

all the AUVs in the next epoch, and transmits via APs the

......

epoch l

AUVs move and sense

FC receives samples via APs, 

reconstructs field, and plans trajectories

FC distributes trajectory 

information to AUVs via APs

...K time slots

Fig. 2. Epoch structure for water parameter field estimation using AUVs.

planned trajectories to all the AUVs. At the end of the ℓth

epoch, all the AUVs receive their planned trajectories in the

next epoch.

B. Constraints on Sampling Trajectories

The planned trajectories must satisfy practical constraints. In

this work, we consider three constraints related to kinematics,

the communication range, and the sensing area.

1) Kinematics Constraint: Due to the limited travel speed

of an AUV, in each epoch, the distance between any two

consecutive waypoints for each AUV is constrained as
√

||yij(ℓ)−yi,j+1(ℓ)||2 ≤ κup, ∀i ∈ M (1)

with 1 ≤ j ≤ K−1, and
√

||yiK(ℓ)− yi1(ℓ+ 1)||2 ≤ κup, ∀i ∈ M (2)

where κup is the maximal distance that an AUV can travel

within one time slot.

2) Communication Range Constraint: Since the field sam-

ples of each AUV must be sent to an AP in the last time slot in

each epoch, we must ensure that in the Kth time slot of each

epoch, each AUV must be within the communication range of

at least one of the NAP APs, i.e.,
√

||yiK(ℓ)− y
(j)
AP||

2 < κcomm, ∃j ∈ IAP, ∀i ∈ M (3)

where IAP := {1, 2, · · · , NAP} is the AP index set, y
(j)
AP is

the location of the jth AP, and κcomm is the communication

range that ensures error-free transmission between an AP and

an AUV.

3) Sensing Area Constraint: We assume that all the AUVs

should stay within the area of interest, i.e.,

yij(ℓ) ∈ Xarea, ∀i ∈ M, i ≥ 0, 0 ≤ j ≤ K, ℓ ≥ 0. (4)

C. Modeling Real Trajectories of AUVs

Denote Y(ℓ) :=
{

ỹ1(ℓ), ỹ2(ℓ), · · · , ỹ|M|(ℓ)
}

as the

planned trajectories consisting of waypoints for all the AUVs

in the ℓth epoch. Due to the complex underwater environment,

the AUVs may not arrive at each planned waypoint exactly.

We model the true sampling location of the ith AUV in the

kth time slot within the ℓth epoch as

xik(ℓ) = yik(ℓ) + eik(ℓ), (5)

where eik(ℓ) ∈ R
D is a noise vector which describes the

location inaccuracy, and is assumed following a uniform

distribution U(−ǫ, ǫ) [19] with ǫ ≪ κcomm and ǫ ≪ κup

being the navigation error.
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The exact sampling locations of the ith AUV in the ℓth

epoch are described by x̃i(ℓ) = [xi1(ℓ);xi2(ℓ); · · · ;xiK(ℓ)].
Denote Xsamp(ℓ) :=

{

x̃1(ℓ), x̃2(ℓ), ..., x̃|M|(ℓ)
}

as the sam-

pling locations of all the AUVs in the ℓth epoch, Z(ℓ) as

all the sampling location from epoch 0 to epoch ℓ, and

p̃(ℓ) := [x1K(ℓ − 1);x2K(ℓ − 1); · · · ;x|M|K(ℓ − 1)] as the

locations of all the AUVs at the beginning of the ℓth epoch.

D. Gaussian Process Regression for Field Estimation

In this work, we model the field of interest as a GP,

and employ the GPR for field estimation. We first obtain a

discrete set of target points X by discretizing the area Xarea.

We intend to minimize the field uncertainty over the target

points rather than the whole area of interest to reduce the

computational complexity. The set X can be selected based

on application requirements or to balance the field estimation

accuracy and the computational complexity. We assume that

the total number of elements in X is NX . The field of interest

is then modeled as a GP with zero mean,

f(x) ∼ GP(0,K(x,x′)), ∀x,x′ ∈ Xarea (6)

where K(x,x′) is the value of covariance function at locations

x and x′ which describes the spatial correlation between

locations x and x′.

There are various types of covariance functions that can

be employed [10]. In this work, we consider the squared

exponential covariance function,

K(x,x′) = σ2
f exp

{

−(x− x′)TΛ−2(x − x′)
}

, (7)

where Λ = diag([d1, · · · , dD]) with D = 2 or 3 being the

dimension of the water area and di being the distance scale

that determines the spatial correlation of two locations, and

σ2
f is the signal variance.

In the ℓth epoch, a set of field observations can be obtained,

ψ(ℓ) = f (Xsamp(ℓ)) + n(ℓ), (8)

where f(Xsamp(ℓ)) are the field values at the locations in

Xsamp(ℓ), and n(ℓ) is the observation noise with each of its

elements assumed following a Gaussian distribution N (0, σ2
n).

Denote Ψ(ℓ) = {ψ(ℓ′)}ℓℓ′=0 as available field observations.

Denote C(A,B) as a matrix whose the (i, j)th element is

calculated as K(xi,xj), with xi ∈ A and xj ∈ B. The

posterior distribution of the field in the ℓth epoch over the

target point set X can be obtained as

f(X ) ∼ N (µℓ,Σℓ), (9)

with

µℓ = C(X ,Z(ℓ))C−1
Z Ψ(ℓ), (10)

Σℓ = C(X ,X )−C(X ,Z(ℓ))C−1
Z C(Z(ℓ),X ), (11)

and CZ = C(Z(ℓ),Z(ℓ)) + σ2
nI, according to [10].

Based on the available observation Ψ(ℓ) at the end of the

ℓth epoch, the field hyper-parameters θhyper := {σ2
f ,Λ} can

be estimate by maximizing the log marginal likelihood [10],

θ̂hyper = max
θhyper

{

−
1

2
Ψ(ℓ)TC−1

Z Ψ(ℓ)−
1

2
log |CZ |

}

. (12)

The hyper-parameters fully characterize the field spatial cor-

relation, which are unknown a priori and estimated on the fly.

The optimization problem (12) can be solved using a quasi-

Newton method, i.e., the L-BFGS-B method [20].

E. Problem Formulation for Optimal Trajectory Planning

The field uncertainty can be obtained based on the field

posterior distribution which is updated through the GPR.

Specifically, we denote uℓ := diag(Σℓ−1), to describe the un-

certainty of all the target points in X based on the observations

up to the (ℓ− 1)th epoch.

Denote s(ℓ) = {p̃(ℓ),uℓ} as the system state at the

beginning of the ℓth epoch. Denote a(ℓ) as the action in the

ℓth epoch which consists of the planned waypoints for all the

AUVs in the ℓth epoch.

The desired trajectories for all the AUVs in the ℓth epoch

can be determined to minimize the expected total discounted

cost,

min
{a(ℓ)}∞

ℓ=0

E

{

∞
∑

ℓ=0

γℓC(s(ℓ), a(ℓ))

}

, (13)

where γ ∈ (0, 1] is a discount factor, and C(s(ℓ), a(ℓ))
is an application-dependent cost function. In this work, the

cost function considers the field uncertainty reduction, the

AUV mobility cost based on the planned trajectories, and the

constraints from (1) to (4). Next we present the formulation

of the cost function used in this work.

1) Cost Function: Denote the current state s = {p̃,u}
and the planned trajectories as a. Denote the next state

s′ = {p̃′,u′}. The costs, reward, and penalties induced by

action a under the current state s and the next state s′ are as

follows.

• Uncertainty reduction reward: The sampling reward to

reduce the field uncertainty by performing the action a

at the system state s is defined as

R(s, a) :=
αR

NX
(||u||1 − ||u′||1) , (14)

where αR is a weighting factor, and ||u′||1 is the sum-

mation of all the elements in u′ which describes the total

estimation error of the field. We intend to minimize the

field uncertainty over the target set.

• Trajectory cost: The mobility cost is defined as

CT(a) := αLL(a) + αAA(a), (15)

where L(a) is the total distance of the planned trajectories

based on a, A(a) is the total angle that the AUVs travel

along the planned trajectories based on a, and αL and

αA are weighting factors. Less energy will be consumed

if an AUV travels less distance and makes less turns.

• Trajectory constraint penalty: We define a penalty term

for the case if the planned trajectories do not satisfy

constraints (3) to (4). The penalty is defined as

CP(a) := αp1I1 + αp2I2, (16)

where αp1 and αp2 are positive values, and I1 and

I2 are indication functions for constraints (3) and (4),
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Fig. 3. Illustration of the forward structures of the actor network and the critic network.

respectively, which equal 1 if the constraints are not

satisfied and 0 otherwise.

Hence, the cost function in (13) used in this work can be

described as

C(s, a) = −R(s, a) + CT(a) + CP(a). (17)

III. REINFORCEMENT LEARNING-BASED ADAPTIVE

TRAJECTORY PLANNING

The proposed optimization problem in (13) can be taken

as an MDP when the field hyper-parameters are known a

priori. In this section, we employ an actor-critic-based algo-

rithm, namely, the deep deterministic policy gradient (DDPG)

algorithm [21], to solve the proposed MDP.

A. DDPG Basics and Design

In an actor-critic method, the actor learns how to generate

the optimal action while the critic learns how to provide action

evaluation which helps the actor to improve its action genera-

tion strategy. In the DDPG algorithm, an actor is represented

by a neural network which takes the system state s as the

input and takes the optimal action a under the system state s

as the output. A critic is represented by another neural network

which takes the system state s and the action a as the inputs

and takes the Q-value function Q(s, a) as the output, which

indicates the expected cost after taking action a under system

state s. In the learning process, the actor network is leveraged

to provide the action a to be executed under the state s. After

performing the action a, the corresponding cost C(s, a) can

be obtained. Based on the obtained cost, the weights of the

critic network are adjusted to better approximate the Q-value

function Q(s, a). Then, the weights of the actor are adjusted

using the policy gradient method such that the action obtained

by the actor could result in lower expected cost. For more

details about the DDPG method, please refer to [21].

The structural design of the actor and the critic in this work

is shown in Fig. 3. For the actor, as illustrated in Fig. 3(a), the

field uncertainty and the current locations of all the AUVs go

through two fully connected layers with rectified linear units

(ReLUs) as the activation functions. The output layer takes the

summation of the outputs of the second fully connected layer

and uses a bounded tanh activation function to ensure that

the action satisfies the kinematics constraints (1) and (2). For

the critic, as shown in Fig. 3(b), the field uncertainty, and the

current locations and actions of all the AUVs go through two

fully connected layers with ReLUs as the activation functions.

The output layer of the critic is the summation of the outputs

of the second fully connected layer. In each training iteration,

the parameters of the actor and the critic networks are updated

based on one iteration of the backpropagation algorithm [22].

For the constraints (3) and (4), we modify the DDPG

algorithm by using two experience replay buffers. Experience

replay is a technique used to train the actor and the critic

with system transition samples drawn from a buffer which

consists of historical transitions from the previous experience.

The two buffers consist of transitions whose actions satisfy the

constraints (3) and (4) and otherwise, respectively. To learn

the optimal actions which satisfy the constraints, we should

ensure that the actor and the critic learn sufficient samples

from both buffers in the training process. In this way, the

actor will generate actions which have less cost and satisfy

the constraints (3) and (4) while the critic could evaluate the

actions and states without a bias.

If the field hyper-parameters are known a priori, the above

modified DDPG algorithm can be used to learn the optimal

actions offline, and the corresponding performance serves as

an upper bound for the proposed online learning strategy.

B. Online Learning for Trajectories Planning with Unknown

Field Hyper-parameters

In practice, the perfect knowledge of the field hyper-

parameters is often unavailable. It is generally the case that

those hyper-parameters should be estimated online during the

sampling process. We propose an online learning algorithm

which incorporates the modified DDPG algorithm to determine

the optimal trajectories of all the AUVs in each epoch, where

the field hyper-parameters are online estimated. Specifically,

at the end of each epoch, the unknown field hyper-parameters

in the covariance function (7) can be estimated by solving

the optimization problem in (12) based on all the current and

historical observations. After obtaining the estimated hyper-

parameters, the learned weights of the actor and critic networks

in the previous epoch are transferred directly to the current

epoch. The modified DDPG algorithm is then applied based

on the available knowledge of the actor and the critic, as well

as the estimated field hyper-parameters, to learn the optimal

trajectories for the future epoch. In this way, the optimal

trajectories for each epoch can be learned online based on

the online estimated field hyper-parameters.

IV. ALGORITHM EVALUATION

We consider an under-ice field of interest in a 2D 15 km

× 15 km square area, and the target set X consists of 16
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Fig. 4. The true simulated field and the estimated fields obtained by three schemes.
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Fig. 5. Trajectories of 4 AUVs obtained by three schemes, where the black squares and the black circles indicate the positions of 4 APs and the communication
ranges of the APs, respectively. The black circles are also the initial deployment locations of the 4 AUVs.

× 16 grid points where the latitude and longitude distance

between any two consecutive locations is 1 km. The 2D water

parameter field is generated based on the circulant embedding

method [23] with the field hyper-parameters as σ2
f = 1 and

Λ = diag([0.3, 0.3]).

The duration of one time slot is 1,000 seconds (16.7

minutes), and one epoch consists of 3 time slots, leading to

an epoch duration of 50 minutes. We consider a total of 9

epochs in the sampling process, which yields a deployment

time duration of 7.5 hours in total. The simulated system

consists of 4 AUVs and 4 APs. The 4 APs are located

at (4 km, 4 km), (4 km, 11 km), (11 km, 4 km), and

(11 km, 11 km), respectively. Those four locations are also

the initial deployment sites of the 4 AUVs. The maximal

navigation error is ǫ = 5 m. The maximal speed of each AUV

is 1 m/s, and the maximal distance of an AUV can travel within

one time slot is therefore κup = 1 km. The communication

range for underwater acoustic links between an AUV and an

AP is κcomm = 3.5 km. The discounted factor is γ = 0.99.

The weights in the total cost function (17) are αR = −10,

αL = 1× 10−3, αA = 5× 10−2, αp1 = 2, and αp1 = 4.

We evaluate the field estimation performance of three

schemes.

• Scheme 1: The clairvoyant method which determines the

sampling trajectories through the offline modified DDPG

algorithm based on the perfect knowledge of the field

hyper-parameters;

• Scheme 2: The proposed online RL algorithm which

determines the sampling trajectories epoch-by-epoch

through the modified DDPG algorithm where the field

hyper-parameters are online estimated in each epoch

based on the collected samples;

• Scheme 3: All the AUVs sample the water parameter field

via random walk. Here, we present the simulation result

that is selected among 10,000 Monte Carlo runs which

yields the minimal total cost.

We take the normalized mean square error (NMSE) as a

performance metric for the field estimation, which describes

the normalized difference between the true field and the

estimated field,

NMSE :=

∫

Xarea
||f(x)− f̂(x)||2dx

∫

Xarea
||f(x)||2dx

, (18)

where f is the true field and f̂ is the estimated field based on

the mean of the GPR.

The three schemes are first examined from the perspectives

of the total traveled distance, the total traveled angle and the

NMSE, as shown in Table I. Scheme 1 achieves the least
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TABLE I
PERFORMANCE COMPARISON OF THREE SCHEMES.

Scheme 1 Scheme 2 Scheme 3

Total traveled distance [km] 74.4 77.9 78.1

Total traveled angle [rad] 76.6 117.4 131.5

Normalized mean square error 0.11 0.15 1.07

total traveled distance and the least total traveled angle, while

Scheme 2 has a similar total traveled distance but greater total

traveled angle. The performance gap is due to the fact that

Scheme 2 estimates the field hyper-parameters and determines

the actions online. The total traveled distance and the total

traveled angle obtained by Scheme 3 are similar to those of

Scheme 2. However, the NMSEs obtained by Schemes 1 and

2 are significantly smaller than that of Scheme 3, where a

marginal difference of the NMSEs obtained by Schemes 1

and 2 can be observed.

The simulated true field and the estimated fields by the

three schemes are presented in Fig. 4. One can see that

Schemes 1 and 2 can capture important features of the true

field, and the estimated field by Scheme 3 is significantly

different from the true field. The planned trajectories obtained

by the three schemes are shown in Fig. 5. To explore the area

with high uncertainty, the trajectories determined by Scheme

1 spread out more than those of Schemes 2 and 3, which

results in the largest sensed area. The sensed area based on the

trajectories obtained by Scheme 2 at the early epochs is small

due to the inaccurate field hyper-parameter estimation based

on limited field samples at the early stage. With more field

samples collected, the trajectory pattern obtained by Scheme

2 is similar to the pattern obtained by Scheme 1 which tends

to explore the area with high uncertainty.

V. CONCLUSIONS

This work investigated the adaptive trajectory planning of

multiple AUVs for the water parameter field estimation in

the under-ice environment. An online learning-based trajectory

planning algorithm was proposed to adaptively determine

the trajectories of AUVs. The field of interest was modeled

as a GP with unknown hyper-parameters. The field hyper-

parameters and the field posterior distribution were estimated

online based on the collected samples. The adaptive trajectory

planning problem was formulated as an MDP with a goal

of minimizing a long-term cost that is defined based on

the field uncertainty reduction and the AUV mobility cost,

subject to the kinematics constraint, the communication range

constraint and the sensing area constraint. A RL-based method

was designed to solve the above MDP with a constrained

continuous action space. The simulation results showed that

the proposed RL-based adaptive trajectory planning algorithm

achieved the performance close to a benchmark method that

assumes perfect knowledge of the field hyper-parameters.
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