
A Dynamic Discretization Discovery Algorithm
for the Minimum Duration

Time-Dependent Shortest Path Problem ?

Edward He, Natashia Boland, George Nemhauser, and Martin Savelsbergh

H. Milton Steward School of Industrial & Systems Engineering, Georgia Institute of
Technology, 755 Ferst Dr, Atlanta GA 30318

Abstract. We present an exact algorithm for the Minimum Duration
Time-Dependent Shortest Path Problem with piecewise linear arc travel
time functions. The algorithm iteratively refines a time-expanded net-
work model, which allows for the computation of a lower and an upper
bound, until - in a finite number of iterations - an optimal solution is
obtained.

1 Introduction

Finding a shortest path between two locations in a network is a critical compo-
nent of many algorithms for solving transportation problems. There is a growing
interest in the setting where the travel time along an arc in the network is a func-
tion of the time the arc is entered. Time-dependent travel times are typically
a result of congestion. We refer to these problems as Time-dependent Shortest
Path Problems (TDSPPs). It is commonly assumed that travel times on arcs
satisfy the First-In First-Out (FIFO) property, i.e., it is impossible to arrive at
the end of the arc earlier by entering the arc later. Given a departure time at the
source, the standard approach for finding a path that reaches the sink as early as
possible is detailed in [1]. For an overview of other methods, see [2]. In this pa-
per, we consider the problem of finding a path such that the difference between
the departure time at the source and the arrival time at the sink is as small
as possible. We call it the Minimum Duration Time-Dependent Shortest Path
Problem (MD-TDSPP), sometimes referred to as the least travel time TDSPP
or the minimum delay TDSPP. The MD-TDSPP arises in many contexts. It has
been studied, for example, in the context of path planning in traffic networks
[3], and it has even arisen in the analysis of social networks [4].

We present an efficient dynamic discretization discovery algorithm for the
variant of MD-TDSPP in which travel times on the arcs are given by piecewise
linear functions. It was established only recently that an algorithm polynomial in
the number of travel time function breakpoints exists [5]. Our key contribution
is the development of an algorithm that, in practice, investigates only a small

? This material is based upon work supported by the National Science Foundation
under Grant No. 1662848.

fraction of the travel time function breakpoints in the search for an optimal path
and the proof of its optimality. In Section 2, we formally introduce MD-TDSPP
and briefly discuss the relevant literature. In Section 3, we describe our algorithm
and illustrate it on a small instance. In Section 4, we present the results of a
small computational study.

2 Problem Description

We are given a directed network D = (N,A) with N = {1, 2, . . . , n} and A ⊆
N×N , a time interval [0, T], and piecewise linear travel times ci,j(t) for t ∈ [0, T]
satisfying the FIFO property for arcs (i, j) ∈ A. Without loss of generality, we
let 1 be the source and n be the sink. Satisfying the FIFO property, in this
case, is equivalent to having the slopes of the linear pieces being at least −1.
(Note the FIFO property implies that waiting anywhere except at the source is
sub-optimal, since it is always better to depart immediately.)

The MD-TDSPP is to find a starting time 0 ≤ τ ≤ T and a time-dependent
path P (τ) = (t1, a1, t2, a2, . . . , am−1, tm), which is a path P = (a1, a2, . . . , am−1)
from 1 to n inD and a set of associated departure times (t1 = τ, t2, . . . , tm−1) and
arrival time tm at node n, where the departure times satisfy tk + cak(tk) = tk+1

for all k = 1, . . . ,m−1, meaning that the arrival time for one arc is the departure
time of the next arc. Among all possible paths and starting times, P (τ) minimizes
the duration, which is given by tm − t1. Furthermore, we require that tm ≤ T .
We characterize time-dependent paths (TDPs) by their starting times as the
problem of finding the minimum duration given a starting time is a TDSPP,
which can be solved easily.

The MD-TDSPP has attracted much attention since the early work of Orda
and Rom [6]. There are two classes of approaches: discrete and continuous. In the
discrete approaches, a time-expanded network (TEN) is formed and the prob-
lem can be solved using the same method as for TDSPP. The DOT algorithm
presented in [1] solves the TDSPP with complexity O(SSP +nM+mM), where
SSP is the cost of solving a static SP, n is the number of nodes, m is the num-
ber of arcs, and M is the size of the time discretization. Discrete approaches
are inexact and rely heavily on the quality of the discretization. A denser dis-
cretization leads to a better approximation, but an increase in computation time.
Continuous methods, such as the Dijkstra’s algorithm variants [7, 8], and the A*
algorithm variant [9], create and update arrival time functions at each node and
are exact. The complexity analysis of these methods has relied on being able
to store and manipulate such functions efficiently and is given in terms of these
operations, which are hard to quantify. Even for continuous piecewise linear
functions, it was only recently that an algorithm that is polynomial in the total
number of breakpoints (in the piecewise linear functions) was proposed [5]. The
authors show that there is an optimal path that contains an arc (i, j) where
the departure time occurs exactly at a breakpoint. Their algorithm investigates
all arcs (i, j) and all its breakpoints t, solves the TDSPP from i to n starting
at time t and the TDSPP from 1 to i ending at time t. The latter is done by

pre-computing the inverse costs (given an arc (i, j) and an arrival time t, what
is the latest time to depart i so that we arrive at time t) so that we can solve
the TDSPP from 1 to i ending at time t. If we let K be the total number of
breakpoints in the network, then the complexity is O(K × SSP). Such an ap-
proach performs many extraneous calculations due to its brute force nature. Our
algorithm very significantly reduces the number of breakpoints investigated.

3 Dynamic Discretization Discovery Algorithm

Our algorithm is inspired by [10] and dynamically updates the discretization of
a TEN. Any TEN allows the computation of lower and upper bounds on the
duration of an optimal path. The lower and upper bounds are used to determine
whether a minimum duration path has been found and, if not, for which parts
of the TEN the time discretization should be refined.

We illustrate our ideas using the network in Figure 1 with travel time func-
tions as given in Table 1. The time interval is [0, 5], breakpoints for each arc
are at every integer point, with the exception of arc (3, 4) which only has break-
points at 0, 1, 2, 5. These values have been chosen to increase the visibility of the
algorithm progression and to reduce the number of iterations.

1

2

3

4

c1,2

c1,3

c2,3

c2,4

c3,4

Fig. 1: Network D

BP Time
Arc Travel Times

(1,2) (1,3) (2,3) (2,4) (3,4)
0 1.34 2.85 1.99 1.29 0.61
1 0.66 2.95 1.82 1.02 0.73
2 0.14 3.00 1.51 1.63 0.83
3 0.01 2.98 1.10 2.57 —
4 0.35 2.90 0.67 3.00 —
5 1.00 2.76 0.30 2.54 1.00

Table 1: Arc Travel Times at Each
Breakpoint (BP)

We maintain a set of Arc-completed Backwards Shortest Path Trees (AB-
SPTs), each denoted by D(k,tk), where k ∈ N and tk ∈ [0, T], and is created
by the following procedure. First, find a TDSP from (k, tk) to n to obtain an
arrival time tn at n, see Figure 2a. Then, compute a time-dependent backwards
shortest path tree (BSPT), giving node-time pairs (i, ti) for each node in N , see
Figure 2b. Finally, “arc-complete” the tree by adding an arc ((i, ti), (j, tj)) for
each arc (i, j) ∈ A which is missing, see Figure 2c. Note that D(k,tk) can also be
identified as D(i,ti), for any (i, ti) ∈ D(k,tk), since the procedure starting at either
(k, tk) and (i, ti) generates the same ABSPT. In particular, it is convenient to
identify an ABSPT by its departure time at 1. By the FIFO property, the AB-
SPTs in a TEN have a natural chronological order (the ABSPTs can be sorted

in nondecreasing order of their departure time at 1). The benefit of working
with ABSPTs is that any possible path can be represented in an ABSPT and
an ABSPT can be used to compute a lower and upper bound on the duration
of an optimal path.

0 1 2 3

1

2

3

4

0.00

1.34

2.57

1.3
4

1.
23

Time

N
o
d

e

(a) TDSP from (1, 0)

0 1 2 3

1

2

3

4

0.00

1.34

1.76

2.57

1.3
4

0.
81

1.
23

Time
N

o
d

e

(b) BSPT from (4, 2.57)

0 1 2 3

1

2

3

4

0.00

1.34

1.76

2.57

1.3
4

1.
76

2.
85

1.
23

0
.4
2
1
.7
2

0.
81

Time

N
o
d

e

(c) Arc-completed BSPT (actual travel
times in red)

0 1 2 3

1

2

3

4

0.00

0.03 1.34

1.16 1.76

1.26 2.57

0.0
3

2.
85
1.
23

1
.1
3

0.
81

Time

N
o
d

e

(d) Arc-completed BSPT with underes-
timated travel times (using D(4,5)) and
node times (actual node times in red)

Fig. 2: Procedure to generate the ABSPT corresponding to (1, 0) (departure
times in blue; travel times in black).

Suppose we have at least two ABSPTs in a TEN. Let (i, t1i) be a node-time
pair in one ABSPT and (i, t2i) be the node-time pair for i in the (chronologically)

next ABSPT. Instead of actual travel times cij(t
1
i) on D(i,t1i), use the underes-

timated travel times (UTTs) given by cij(t
1
i) = mint′ {cij(t′) | t1i ≤ t′ ≤ t2i }, see

Figure 2d. It is easy to see that a shortest path from (1, t11) to (n, t1n) using the
underestimated travel times gives a lower bound on a minimum duration path

departing in [t11, t
2
1), and that a shortest path from (1, t11) to (n, t1n) using the ac-

tual travel times gives an upper bound. The last ABSPT, which will always be
D(n,T) in our algorithm, is treated separately. Let (1, t1) be the node-time pair
in D(n,T) for 1. By the construction of D(n,T), it is not possible to depart later
than t1 and arrive at n by time T , hence, we do not need to use underestimated
travel times and instead keep the actual travel times for this particular ABSPT.

Given an ordered set L of ABSPTs, L = (D(1,t11), . . . ,D(1,tp1)), as well as asso-

ciated lower and upper bounds, suppose that D(1,tk1) contains the smallest lower
bound. We choose to refine our time discretization by exploring the gap in the

TEN between ABSPTs D(1,tk1) and D(1,tk+1
1). Adding an ABSPT corresponding

to any node-time pair (i, t) such that tki < t < tk+1
i and updating the underesti-

mated travel times for D(1,tk1) (since the next ABSPT is no longer D(1,tk+1
1)) may

improve the lower bound, since the interval used to calculate the underestimated
travel times has shortened.

The concepts presented so far can be used to devise an algorithm that con-
verges to an optimal path, but not enough to ensure finite termination. Finite
termination can be achieved by exploiting the fact that there exists an optimal
path that contains a departure at a node i at time t for some arc (i, j) that has
a breakpoint at time t (see [5]). Therefore, we only create ABSPTs that con-
tain at least one node-time pair (i, t) corresponding to a breakpoint. Since there
are a finite number of breakpoints, this ensures finite termination. To achieve
efficiency, we exploit the fact that the arrival time function at n for departures
between t11 and t21 is concave if no shortest path that departs between t11 and
t21 contains a breakpoint (also shown in [5]). This situation occurs when there

are no more breakpoints remaining in the gap between two ABSPTs D(1,tk1) and

D(1,tk+1
1), and we know that the minimum duration path departing between tk1

and tk+1
1 departs at either tk1 or tk+1

1 , both of which have already been calculated

as an upper bound, hence the lower bound for D(1,tk1) can be updated to one
of these upper bounds and thus no longer needs to be considered. This gives us
an additional termination criterion: we can terminate when the smallest lower
bound among the ABSPTs still being under consideration is larger than the
best upper bound obtained so far. A high-level overview of our algorithm can be
found in Algorithm 1.

The algorithm explores breakpoints. We choose to look for a breakpoint t in
the travel time function of arc (i, j) such that i is minimized, then j is minimized,
and t is the median among the breakpoints. The performance of the algorithm
depends greatly on being able to efficiently compute the minimum arc travel time
in a departure time interval. This is accomplished by (efficiently) pre-computing
a look-up table that gives the next local minimum for any breakpoint.

Next, we illustrate the algorithm on the example; see Figure 3. The algo-
rithm is initialized with D(1,0),D(4,5), which are generated by the paths P =
((1, 2), (2, 4)) and P = ((1, 2), (2, 3), (3, 4)), respectively.

In Iteration 1, since D(1,0) gives the lower bound, look at the section of the
TEN succeeding D(1,0), and observe that arc (1, 2) has a breakpoint at t = 1, so
we add D(1,1). It turns out that D(1,1) has UB= 2.0804 and LB= 1.4470. Since

Algorithm 1: Dynamic Discretization Discovery (DDD) Algorithm.
input : G = (N,A), ci,j(t), T
output: minimum duration shortest path
L← (D(1,0),D(n,T));

UB ← min{computeUB(D(1,0)), computeUB(D(n,T))} ;

LB ← computeLB(D(1,0)) ;

D(1,tk1) ← D(1,0) ;
while (LB < UB) do

if there is a breakpoint (j, τ) between D(1,tk1) and D(1,tk+1
1) then

if computeUB(D(j,τ)) < UB then
UB ← UB(D(j,τ))

end

recomputeLB(D(1,tk1)) ;

computeLB(D(j,τ)) ; insert(L,D(j,τ)) ;

else

LB(D(1,tk1)) = UB(D(1,tk1)) ;
end
LB ← updateLB(L) ;

D(1,tk1) ← getBestLB(L) ;

end

LB < UB, we continue with the algorithm. We proceed to add D(1,2) and D(2,2).
In Iteration 4, D(1,1) contains the LB, however, since there are no breakpoints in
the succeeding section, we replace the LB of D(1,1) with its UB. The new LB is
contained in D(2,2). We proceed to replace the LB of D(2,2) and D(1,2) with their
UB due to the lack of breakpoints in the succeeding sections, at which stage
UB= 1.8886 is less than LB= 1.8888 and hence the algorithm terminates. The
optimal path is the one that corresponds to UB, which was found when D(1,2)

was created and is ((1, 2), (2, 4)) starting at time 2.

4 Computational Study

To analyze the performance of the DDD algorithm, we apply it to several ran-
domly generated instances. In particular, we solve 10 instances with n = 20 and
T = 200 and 10 instances with n = 30 and T = 200. The instances are gener-
ated as follows. The arc set A consists of all pairs of nodes (i, j) where i < j.
The travel time on arc (i, j) is the piecewise linear interpolant of the function
fi,j(t) = (j− i)+sin(bi,j× t) at each integer point from 0 to T , so that there are
T + 1 breakpoints, where bi,j is a random number between 0 and 1 generated
using a pre-specified random seed and the Matlab ‘twister’ RNG. The function
f is designed so that ci,j satisfies the FIFO property (since the slope is always
greater than −1). In addition, due to the additional constant (j − i), the opti-
mal path is likely to use many arcs. Note that we choose T ≥ n to avoid the

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

(g) Iteration 7 (h) Legend

Fig. 3: Time-expanded network in each iteration for the example in Figure 1
(note that a ABSPT may satisfy multiple criteria in the legend).

possibility of having no feasible TDSP. To analyze the impact of the number of
breakpoints on the performance of the DDD algorithm, we stretch the horizon T
and the function fi,j(t); we multiply T by a factor S = 2.5 and = 5. In Table 2,
we report the minimum, the average, and the maximum number of breakpoints
investigated by our algorithm over the instances, the total number of break-
points in the instance (which is the number of breakpoints that the enumeration
algorithm investigates [5]), and the fraction of the total number of breakpoints
investigated by the DDD algorithm. Furthermore, we report the solve times
of the DDD algorithm and the enumeration algorithm and the ratio of these
solves times. Note that the total number of breakpoints is |N − 1| × (T + 1) not
|A| × (T + 1), as in [5], since for arcs with a common tail node and breakpoint,
we only need to investigate the breakpoint once.

Table 2: Computational results.

n S BP Total %BP Avg. Time Avg. Time Ratio
Min. Avg. Max. #BP DDD Enum.

20
1 112 169.7 224 3800 4.47 103.4 55.8 1.86

2.5 127 175.2 229 9500 1.84 118.3 218.9 0.54
5 139 185.0 242 19000 0.97 136.2 690.0 0.20

30
1 182 229.4 268 5800 3.96 290.6 170.4 1.71

2.5 165 243.9 303 14500 1.68 376.7 774.9 0.49
5 179 261.8 328 29000 0.90 439.5 2493.0 0.18

The results show clearly that the DDD algorithm investigates only a small
fraction of the total number of breakpoints. In addition, the fraction decreases
when both n and T increase. For finer discretizations of time, the DDD algorithm
significantly outperforms the enumeration algorithm in terms of solve times as
well even though it has not been optimized for efficiency.

5 Concluding Remarks

We have shown that dynamic discretization discovery concepts can dramatically
reduce the number of breakpoints explored when solving MD-TDSPP instances.
Preliminary computational results show that our method scales well in both the
number of nodes and number of breakpoints. Next, we will explore extending
these ideas to other types of transportation problems, e.g., the Time-Dependent
Traveling Salesman Problem.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. 1662848.

References

1. Chabini, I.: Discrete dynamic shortest path problems in transportation applica-
tions: Complexity and algorithms with optimal run time. Transportation Research
Record: Journal of the Transportation Research Board (1645) (1998) 170–175

2. Dean, B.C.: Shortest paths in fifo time-dependent networks: Theory and algo-
rithms. Rapport technique, Massachusetts Institute of Technology (2004)

3. Demiryurek, U., Banaei-Kashani, F., Shahabi, C., Ranganathan, A.: Online com-
putation of fastest path in time-dependent spatial networks. In: International
Symposium on Spatial and Temporal Databases, Springer (2011) 92–111

4. Carley, M.: Information lifetime aware analysis for dynamic social networks venkata
mv gunturi, kenneth joseph, shashi shekhar, kathleen. Technical report, University
of Minnesota (2012)

5. Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent short-
est paths. Algorithmica 68(4) (2014) 1075–1097

6. Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length. Journal of the ACM (JACM) 37(3) (1990) 607–625

7. Nachtigall, K.: Time depending shortest-path problems with applications to rail-
way networks. European Journal of Operational Research 83(1) (1995) 154–166

8. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large
graphs. In: Proceedings of the 11th international conference on Extending database
technology: Advances in database technology, ACM (2008) 205–216

9. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network
with speed patterns. In: Data Engineering, 2006. ICDE’06. Proceedings of the
22nd International Conference on, IEEE (2006) 10–10

10. Boland, N., Hewitt, M., Marshall, L., Savelsbergh, M.: The continuous-time service
network design problem. Operations Research 65(5) (2017) 1303–1321

